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Abstract  

Many genetic and environmental factors lead to inter-individual variations in metabolism and 

transport of drugs, profoundly affecting efficacy and toxicity. Precision dosing, targeting drug 

dose to a well-characterised sub-population, is dependent on quantitative models of the profiles 

of drug-metabolizing enzymes and transporters within that sub-population, informed by 

quantitative proteomics.  We report the first use of ion mobility-mass spectrometry for this 

purpose, allowing rapid, robust, label-free quantification of human liver microsomal (HLM) 

proteins from distinct individuals. Approximately 1000 proteins were quantified in four 

samples, including an average of 75 drug-metabolizing enzymes. Technical and biological 

variability were distinguishable, technical variability accounting for about 10% of total 

variability. The biological variation between patients was clearly identified, with samples 

showing a range of expression profiles for cytochrome P450 and uridine 5ˈ-

diphosphoglucuronosyltransferase enzymes. Our results showed excellent agreement with 

previous data from targeted methods. The label-free methodology, however, allowed a fuller 

characterization of the in vitro system, showing, for the first time, that HLMs are significantly 

heterogeneous. Further, the traditional units of measurement of drug-metabolizing enzymes 

(pmol mg-1 HLM protein) are shown to introduce error arising from variability in unrelated, 

highly abundant proteins. Simulations of this variability suggest that up to 1.7-fold variation in 

apparent CYP3A4 abundance is artefactual, as are background positive correlations of up to 

0.2 (Spearman correlation coefficient) between the abundances of drug-metabolizing enzymes. 

We suggest that protein concentrations used in pharmacokinetic predictions and scaling to in 

vivo clinical situations (PBPK-IVIVE) should be referenced instead to tissue mass.    
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Introduction 

Designing patient-specific dosage regimens within the framework of precision medicine has 

recently been emphasized as a key future direction in biomedical and pharmaceutical research, 

with physiologically-based pharmacokinetics and in vitro-in vivo extrapolation (PBPK-IVIVE) 

expected to play an important role in this application (Jamei, 2016). In pharmacogenomics, one 

of the pillars of personalized medicine, a recent survey of 517 submissions assessed by the 

European Medicines Agency between 1995 and 2014 showed that approximately 15% of 

approved medications have on-label pharmacogenomic information that directly affects 

therapy, indicating the recent move into tailoring drug use for specific patient sub-populations 

(Ehmann et al., 2015). Within this framework of targeted therapy evaluation, IVIVE-PBPK is 

expected to shift its focus to sub-populations with specific therapeutic needs, with increasing 

demand to populate these new models with expression and functional data of proteins involved 

in absorption, distribution, metabolism and excretion (ADME) (Turner et al., 2015; Jamei, 

2016). This is supported by the substantial number of novel drug submissions (136 between 

2008 and 2014) to the Food and Drug Administration for approval where PBPK has 

beneficially informed drug development, especially in the areas of drug-drug interactions and 

paediatrics (Huang et al., 2013; Jamei, 2016). Comprehensive and detailed information about 

the abundance and activity of ADME proteins, which play a central role in drug metabolism 

and disposition, is therefore required, and crucially needs to be generated with clear inter-

relations with genetic, demographic, environmental and clinical information (Schadt and 

Björkegren, 2012; Turner et al., 2015).  

Proteomics is expected to play a more prominent role in the qualitative and quantitative 

characterization of proteins involved in disease development and progression and modulating 

drug therapy, with applications ranging from biomarker discovery and disease monitoring to 
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dosage regimen design (Auffray et al., 2016; Masys et al., 2012). Biomolecular data acquisition 

and analysis should be guided by the intended clinical application with particular emphasis on 

disease prevention and therapy based on inter-individual variability in genetic, lifestyle and 

environmental factors (McGrath and Ghersi, 2016).  

With recent advances in tandem mass spectrometry, many laboratories have started to 

contribute to the wealth of ADME protein abundance literature (Ohtsuki et al., 2012; Prasad et 

al., 2014; Achour et al., 2014a; Harwood et al., 2015; Vildhede et al., 2015; Fallon et al., 2016). 

Protein abundance values from these experiments are used in several drug pharmacokinetic 

prediction exercises including scaling parameters from in vitro models to in vivo clinical 

situations using computational PBPK models (Knights et al., 2016; Rostami-Hodjegan, 2012). 

However, cross-laboratory and inter-study heterogeneity highlighted recently (Achour et al., 

2014b; Badée et al., 2015) have led to ongoing efforts to investigate variability originating 

from using different methodological workflows, taking into consideration their advantages and 

limitations in relation to their intended applications (Harwood et al., 2016; Al Feteisi et al., 

2015).  

There is little consistency in proteomic protocols used for protein quantification in a wide 

variety of samples, including heterogeneous membrane fractions: crude total membrane, 

plasma membrane and microsomal fractions (Schaefer et al., 2012; Russell et al., 2013; Groer 

et al., 2013; Fallon et al., 2013), and whole tissue lysates (Weiss et al., 2015; Wiśniewski et al., 

2014; Wiśniewski et al., 2016a). The effects of different methodological processes on 

determining protein abundance were previously investigated with different levels of evidence, 

sometimes of conflicting nature; however, the general idea emphasized by these studies is that 

differences in sample preparation and in proteomic methods can contribute to considerable 

overall variability in end-point measurements (Balogh et al., 2013; Qiu et al., 2013; Chiva et 

al., 2014; Harwood et al, 2016), which makes assessment of true biological inter-individual 



  DMD # 74732 

6 

 

variability a difficult challenge. Different mass spectrometry platforms can also have an effect 

on the quality and robustness of analysis, with promising improvements in instrumentation 

making proteomic analysis more reliable. Particularly, liquid chromatography in conjunction 

with ion mobility spectrometry and tandem mass spectrometry (LC-IMS-MS/MS) is a 

relatively new approach that allows robust global analysis of entire proteomes, and has recently 

been applied to proteomic analysis of HeLa cell lines (Distler et al., 2014) and breast tumor 

xenografts (Burnum-Johnson et al., 2016).  

This report describes a proof-of-concept study that aims to apply a LC-IMS-MS/MS proteomic 

approach to the analysis of the human liver microsomal proteome, with specific focus on 

quantification of the expression of drug-metabolizing enzymes. Implications of this 

quantitative assessment for enzyme abundance measurements and expression correlations are 

subsequently considered.   
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Materials and Methods 

Materials and chemicals 

All reagents were obtained from Sigma-Aldrich (Poole, Dorset, UK) unless otherwise 

indicated. Lysyl endopeptidase (LysC) was purchased from Wako (Osaka, Japan) and 

recombinant proteomic-grade trypsin was supplied by Roche Applied Sciences (Mannheim, 

Germany). Label-free protein standards at 95% purity (bovine serum albumin (BSA), bovine 

cytochrome c, equine myoglobin) were purchased from Sigma-Aldrich. Solvents were of 

HPLC grade.   

Human liver microsomal samples 

Four individual human liver microsomal samples (HLM; nominally labeled as HLM01, 

HLM02, HLM03 and HLM04) provided by Pfizer (Groton, CT, USA), along with 

demographic, medication and genotype details of donors, were used in this study. Table 1 

shows demographic and clinical information of the donors; suppliers of these samples were 

Vitron (Tucson, AZ, USA) and BD Gentest (San Jose, CA, USA). The same microsomal 

samples were used in the quantitative experiments using the label-free approach (the present 

study) and the QconCAT targeted approach (Achour et al., 2014a), which was used to analyze 

samples HLM01, HLM02, and HLM04. Microsomal fractions were prepared from liver tissue 

by the two suppliers, both using fractionation methodology based on differential centrifugation 

of hepatic tissue homogenates. Low speed centrifugation (10,000 g) was used to separate the 

S9 fraction (supernatant), which was followed by an ultracentrifugation step (100,000 g) to 

isolate the microsomal fraction (pellet). Ethics were covered by the suppliers.  

Methodological workflows 

Supplemental Figure 1 shows a summary of the label-free global proteomic workflow followed 

in this study. The targeted QconCAT methodology is described elsewhere (Achour et al., 
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2014a). Differences between the methodological steps in these approaches are shown in 

Supplemental Table 1. 

Proteolytic digestion of HLM samples and estimation of protein loss 

Protein content in microsomal samples was determined using a colorimetric protein assay 

(Bradford, 1976). Proteolytic digestion and gravimetric estimation of peptide loss were carried 

out in triplicate using methods previously reported by Harwood et al. (2015) with slight 

modifications. Briefly, HLM samples (50 μg total protein mass) were suspended in ammonium 

bicarbonate buffer (25 mM, pH 8.0) and combined with a standard mixture of unlabeled BSA, 

equine myoglobin and bovine cytochrome c (6 μL, at 0.1, 0.02 and 0.01 mg mL-1, respectively) 

to a final volume of 50 μL. The rationale behind using non-human standard proteins is that 

species-specific peptides can be found in reference proteins that should not be found in the 

target human proteome to allow quantification without interference due to homology in protein 

sequences. Mixtures were then denatured with sodium deoxycholate (acid-labile detergent) at 

a final concentration of 10% (w/v) for 10 min at room temperature. Disulfide bonds were 

reduced (dithiothreitol, 60 mM final concentration) at 56°C for 20 min and subsequently 

alkylated (iodoacetamide, 15 mM final concentration) in the dark at room temperature for 30 

min.  

Sequential enzyme proteolysis was used to increase the scope and depth of analysis and reduce 

the number of missed cleavages (Achour and Barber, 2013; Wiśniewski and Mann, 2012; Al-

Majdoub et al 2014). Samples were diluted 1:10 with ammonium bicarbonate (25 mM) and 1 

μL of LysC (1 μg μL-1) was added, followed by incubation at 30ºC for 4 h. Trypsin (2.5 μL, 

1 μg μL-1) was then added followed by incubation at 37ºC for 18 h. After removal of detergent 

by acidification with trifluoroacetic acid (~pH 3.0) and centrifugation, the supernatant 

containing the peptides was retained and evaporated by vacuum centrifugation. Peptide loss 

was estimated gravimetrically as described previously (Harwood et al., 2015). Supplemental 
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Figure 2 shows the measured protein concentration in the HLM samples and the mass of 

recovered peptides following sample preparation.  

MALDI-TOF mass spectrometric analysis  

To confirm the quality of sample protein digests prior to LC-IMS-MS/MS analysis, digested 

samples were analyzed using MALDI-TOF mass spectrometry performed on an Ultraflex II 

instrument (Bruker, Bremen, Germany). 20 mg mL-1 MALDI matrix was prepared by 

dissolving α-cyano-4-hydroxycinnamic acid (Fluka, Buchs, Switzerland) in 0.1% 

trifluoroacetic acid in 50% acetonitrile in HPLC water. Samples (0.5 μL) were applied onto a 

MALDI target plate in triplicate. Once dry, matrix solution (0.5 μL) was added then the mixture 

was allowed to dry. Spectra were acquired in two m/z ranges: 700 to 2500 and 700 to 5000, to 

check for miscleaved peptides. Laser frequency of 100 Hz and intensity of 30-35% were used. 

Spectra of 2000 laser shots were acquired per spot. Analysis of MALD-TOF MS data was 

performed using FlexAnalysis version 2.2 (Bruker). Quality of spectra was checked for peptide 

peak intensities and m/z range before proceeding to LC-MS experiments.   

Liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS/MS)  

Prepared HLM peptide samples were diluted 1:10, of which 2 μL were analyzed from each 

diluted sample. The mean HLM peptide mass analyzed in each run was 44.53 ± 5.19 ng (range: 

39.59-49.66 ng). Analysis was carried out on a nanoACQUITY™ UPLC® system (Waters, 

Manchester, UK) connected to a SYNAPT™ G2-Si mass spectrometer (Waters). For 1D 

reversed-phase liquid chromatography, peptides were injected onto a Symmetry C18 trap 

column (5 μm, 180 μm × 20 mm), and then eluted onto a HSS T3 analytical column (1.8 μm, 

75 μm × 250 mm), maintained at 35ºC. The LC program consisted of a gradient of 3 to 60% 

acetonitrile in HPLC water (acidified with 0.1% v/v formic acid) over 40 minutes with a flow 

rate of 300 nL min-1, followed by a ramp to 95% acetonitrile for 5 min, then a return to the 

initial conditions over 10 min.  
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Mass spectrometry was performed based on data-independent acquisition using high-definition 

MSE methodology (Distler et al., 2014). The following acquisition parameters were used on 

the SYNAPT G2-Si: HDMSE, positive electrospray (ESI+) mode, V optics, scan time 0.5 

seconds, cone voltage 25 V, m/z range 50-2000, and lock mass [Glu1]-Fibrinopeptide B 

[M+2H]+2 785.8426 m/z. Collision energy (CE) was ramped based the mobility of ions for 

optimal collision-induced dissociation (CID). T-Wave ion mobility (IMS) parameters were as 

follows: IMS T-Wave height 40 V, wave velocity 400-800 m second-1, helium cell gas flow 

180 mL min-1, IMS gas flow 90 mL min-1, mobility trapping release time 450 microseconds, 

and trap height 15 V.  

Analysis of MSE data and database searching 

Analysis and searching of the LC-IMS-MS/MS data was performed using the ProteinLynx 

Global Server (PLGS) version 3.0.2 and IdentityE (Waters) search engine, whereby the 

precursor ions were aligned based on retention time (RT) and drift time. Once the fragment 

and parent data were matched, identification was carried out by searching against a customized 

database containing protein sequences from human UniProt database (154,434 sequences; 

January 2015) and the three reference proteins. Quantification was performed using the 

summed intensity of the top 3 peptide ions based on the acquired label-free data for the proteins 

of interest and the standard proteins. The following quantification equation was applied: 

[𝑃𝑟𝑜𝑡𝑒𝑖𝑛] = [𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑] ∙ (∑ 𝐼𝑜𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑝𝑟𝑜𝑡𝑒𝑖𝑛

3

𝑖 = 1

 ∑ 𝐼𝑜𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

3

𝑖 = 1

⁄ ) 

Where [𝑃𝑟𝑜𝑡𝑒𝑖𝑛] represents the abundance of a target protein, [𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑] represents the 

abundance of the spiked standard in the sample (expressed in units of pmol mg-1 HLM protein), 

and the fraction refers to the ratio of the sum of the intensities of the three highest ion peaks 

for the target protein relative to the standard as described previously (Silva et al., 2006). The 
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integrated peak intensities of eluted peptides were used for quantification and calculations of 

the summed peak intensities were performed by PLGS software.  

This ‘top 3 CID’ approach is an empirical label-free quantification method, which was 

previously shown to produce accurate quantification of mixtures of protein standards (Sliva et 

al., 2006) and to correlate with data from targeted proteomic analysis (Carroll et al., 2011). 

Other label-free approaches include the total protein approach, based on all quantifiable 

peptides from each target protein, an approach which was also previously applied to 

quantifying hepatic ADME proteins (Vildehede et al., 2015).   

Any quantitative data below the limit of quantification were not considered reliable. The limit 

of quantification was nominally set using two criteria: the peptides had to be reliability 

identified in all three technical replicates and the replicate intensities of the peptides had to be 

within 20% CV of each other (i.e. consistent identification and reproducible quantification). 

Further appraisal of the protein standards used in this analysis is included in Supplemental 

Information. 

Protein data annotation for function and sub-cellular localization 

Proteins were classified based on their subcellular localization and function according to GO 

annotations (http://geneontology.org/) and database searching (http://www.uniprot.org/).  

Meta-analysis of hepatic microsomal protein abundance  

In order to assess the effects of variability in the most abundant ten proteins on the end-point 

abundance of cytochrome P450 enzymes and their expression correlations, a Matlab model was 

used. To inform the model with abundance values for these proteins, Medline/Pubmed 

(http://www.nlm.nih.gov/bsd/pmresources.html) and Web of Knowledge 

(http://wok.mimas.ac.uk/) electronic databases (between the years 1980 and 2016) were 

searched for relevant literature on the protein expression of abundant liver microsomal proteins 

http://geneontology.org/
http://www.uniprot.org/
http://www.nlm.nih.gov/bsd/pmresources.html
http://wok.mimas.ac.uk/
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(see Table 2 for a list of these proteins) using suitable keywords including: the protein name / 

gene name (e.g., carboxylesterase 1 / CES1), human liver / human hepatic, protein 

quantification / expression / abundance, microsomes / HLM. Searches were combined and 

articles inspected for relevant data. Inclusion criteria were: studies that quantified primarily 

microsomal proteins / enzymes identified in the present analysis in adult human livers in units 

of, or convertible to, pmol mg-1 HLM protein. This analysis was used to select the ranges of 

the ten most highly expressed proteins in HLM samples. For the two target enzyme families 

(cytochrome P450 and uridine 5´-diphosphoglucuronosyltransferase enzymes), previously 

published meta-analyses on cytochrome P450 (Achour et al., 2014b) and UGT abundance data 

(Achour et al., 2014c) were used, assuming ranges and mean abundances have not changed 

significantly in the last two years. 

Statistical data analysis and modeling   

Microsoft Excel 2010 and GraphPad Prism® version 7.01 (GraphPad Software, San Diego, 

CA) were used for data analysis and generating graphs. Venn diagrams were generated using 

Venny version 2.1 (BioinfoGP, http://bioinfogp.cnb.csic.es/tools/venny/). To obtain data from 

graphs in publications in the meta-analysis step, GetData Graph Digitizer version 2.26 

(http://www.getdata-graph-digitizer.com/) was used. The heat map was generated using 

QCanvas version 1.2.1 (Kim et al., 2012). Matlab R2015a (MathWorks Inc., Natick, MA, 

USA) was used for modeling effects of variability of the most abundant HLM proteins on 

abundance and correlation of P450 enzymes. Simulation was repeated ten times for n=2,000 

livers in each simulation step.   

http://bioinfogp.cnb.csic.es/tools/venny/
http://www.getdata-graph-digitizer.com/
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Results 

In this study, we set out to obtain a snapshot of the drug-metabolizing sub-proteome of four 

human livers, with a focus on rapid and robust sample preparation and measurement. The 

methodology used in this work consisted of in-solution preparation of samples followed by 

nanoLC-Q-IMS-TOF MS/MS, i.e. nanoflow-liquid chromatography, mass spectrometry and 

ion mobility both at the peptide level, then mass spectrometry at the fragment level 

(Supplemental Figure 1). The main aim was to identify and comprehensively quantify a 

complex hepatic sub-proteome in a relatively short time (<1 hour), with particular focus on 

drug-metabolizing enzymes.  

Assessment of protein abundance measurements  

The starting total protein mass for all samples was 50 µg, out of which 35.50±2.22 µg (range 

33.78-38.74 µg) was recovered (Supplemental Figure 2), indicating an overall recovery of 71% 

as estimated gravimetrically (Harwood et al., 2015). The number of identified proteins was 

901-1,018 proteins, of which 706-816 were quantifiable (Figure 1A) with abundances above 

the lower limit of quantification, estimated at ~0.03 fmol peptide (translating to protein 

abundance of ~0.6 pmol mg-1). 

To assess the reproducibility and precision of the methodology, the overlap of the number of 

quantified proteins between samples was estimated and the coefficients of variation related to 

technical replicates were calculated. In addition, relative error of measurements was estimated 

for drug-metabolizing P450 and UGT enzymes, which were quantified previously in three of 

the four HLM samples using QconCAT methodology (Achour et al., 2014a) (Supplemental 

Table 3) to allow cross-methodology comparison. The number of quantified drug-metabolizing 

enzymes ranged from 63 to 76, containing 10-14 drug-metabolizing P450 enzymes and 9-11 

drug-metabolizing UGT enzymes (Figure 1B). Overlap of the quantified enzymes, including 

P450 and UGT enzymes, between the four samples is shown in Supplemental Figure 4. 
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Figure 1C shows significant linear correlation between label-free and QconCAT measurements 

in three samples (R2=0.70; Rs=0.84, p<0.0001) that were analyzed previously (Achour et al., 

2014a), with measurements within 2.5-fold across the two methodologies (Figure 1D). In the 

data of the present study, variability in cytochrome P450 and UGT enzyme abundances 

between samples was estimated at up to 20 fold (total inter-individual variability). Abundance 

values showed technical variability of less than 20% (CV) for all protein measurements. 

Therefore, the expected variability related to technical error; i.e., fold difference between the 

5th and 95th centiles of measurements, calculated as           (1 + 2 CV)/(1– 2 CV), was 2 fold. This 

means technical variability constituted up to 10% of total variability (2 fold out of a total of 20 

fold). The variation due to the inherent reproducibility of mass spectrometry based experiments 

was therefore very small compared with the biological variability found in these samples.   

Protein expression profiles of drug-metabolizing enzymes  

Assessment of the protein expression levels of drug-metabolizing enzymes is summarized in 

Figure 2. The assessed abundances were within reported values where literature was available 

(Figure 2A and B). The overlap between mid-to-high abundance drug-metabolizing P450 and 

UGT enzymes was approximately 80%, with the most abundant enzymes being CYP3A4, 

CYP2E1, CYP2C9, UGT2B4 and UGT2B7. The expression profiles of the quantified drug-

metabolizing enzymes in the samples under study are shown in Figure 2C, showing a distinct 

visual difference in the expression of enzymes in sample HLM03, which is confirmed by the 

heat map and rank order cluster analysis shown in Figure 2D.  

Components of human liver microsomal fractions 

In the liver, hepatocytes are the primary site of drug metabolism. Along with hepatocytes, liver 

tissue contains other non-parenchymal cell types including Kuppfer, stellate, and biliary 

endothelial cells. Human liver microsomes are used as an in vitro model of drug metabolism, 
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in early studies of drug development, but to date, their composition has not been systematically 

investigated.   

A specific cell surface marker for hepatocytes, asialoglycoprotein receptor 1, ASGR1 (Peters 

et al., 2016), was abundant in the microsomal fraction, whereas specific markers for other types 

of cells were not detected in any of the samples analyzed. Within hepatocytes, the main site of 

metabolism is the endoplasmic reticulum; however, other sub-cellular compartments, such as 

the cytosol and mitochondria, also contain drug-metabolizing enzymes. Figure 3A shows 

identified and quantified specific membrane marker proteins that reside in the membranes of 

different organelles within hepatocytes (Vildhede et al., 2015). The most abundant markers 

were those of the endoplasmic reticulum membrane (calnexin), mitochondrial membrane 

(cytochrome c oxidase subunit 4, COX4), and plasma membrane (CD81, ATP1A1), with little 

difference in their abundances between analyzed samples. These specific markers suggest the 

presence of membranes from these compartments in the microsomal fraction and their 

contribution to drug metabolism in HLM preparations, although the extent of such contribution 

has yet to be systematically investigated.  

The ten most abundant proteins in HLM samples were shown to be localized mainly in the 

endoplasmic reticulum (Table 2); however, when the list is expanded to include all identified 

proteins (1,276), the distribution of the HLM proteins was shown to be balanced between the 

endoplasmic reticulum (429 proteins), plasma membrane (406), cytosol/cytoplasm (411) and 

mitochondria (243), with overlap in a number proteins between different compartments (Figure 

3B and Supplemental Figure 5A). The localization of drug-metabolizing enzymes in different 

cellular compartments and the corresponding overlap are also shown in Figure 3C and 

Supplemental Figure 5B, with most enzymes shown to be localized within the endoplasmic 

reticulum (50 enzymes).  
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Thus, although HLMs exhibit no detectable contamination from other hepatic cell types, these 

findings suggest HLMs are far from pure in terms of sub-cellular composition, with many sub-

cellular compartments other than endoplasmic reticulum being represented. 

The use of total HLM protein mass for enzyme abundance normalization 

Although drug-metabolizing cytochrome P450 and UGT enzymes are mainly present in the 

endoplasmic reticulum, normalization of abundance values has historically been done using 

total HLM protein mass, routinely measured using a colorimetric assay. However, HLM 

samples represent a mixture of proteins from different compartments as shown above, and 

therefore, the effect of the most highly expressed proteins in this system, which are not directly 

related to drug metabolism, was investigated in this study. The top part of Table 2 shows the 

ten most abundant proteins in the microsomal samples, and for comparison, the bottom part 

shows the ranks and abundances of drug-metabolizing P450 enzymes. Figure 4A shows that 

although 600 proteins in the HLM fractions make up the bulk of sample mass (>99%), these 

top ten proteins constitute approximately 15-20% of protein mass in this fraction.  

In order to assess the effect of expression variability in these ten abundant proteins on end-

point measurement of drug-metabolizing cytochrome P450 enzymes, in terms of their 

abundance and correlation of expression, two simulations were performed. This was done 

based on data from literature studies, collated using meta-analysis, and our experimental data. 

The first simulation was intended to describe the effect of variation in the set of 10 abundant 

proteins on CYP3A4 abundance (Figure 4B) and the second was intended to investigate the 

effects of variability in these proteins on correlation between CYP3A4 and CYP2C8 (reported 

in the literature to be strongly correlated, Rs=0.68, p<0.0001 (Achour et al., 2014b)). This latter 

simulation was intended to probe how much of the strong correlation could be attributed simply 

to the units of measurement.  
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Ten simulations of 2,000 livers each with variable CYP3A4 amounts (in pmol expressed in one 

mg of tissue) showed that there is an overall significant decreasing trend in CYP3A4 abundance 

in units of pmol per mg HLM protein (Rs=-0.25 to -0.20, p<0.0001, n=2,000), assuming 

independent regulation of expression. When the amount of CYP3A4 in simulated livers was 

kept constant in tissue at the median, the apparent abundance of CYP3A4 changed 1.4-1.7-fold 

as a function of overall random variability in the most abundant HLM proteins (Figure 4B). 

When CYP2C8 and CYP3A4 were simulated independently (with variable amounts of these 

two enzymes in tissue), the level of correlation increased from Rs=0.0 (with no statistical 

significance) for random abundance values (decoy simulation) to correlation coefficients of 

approximately +0.1 to +0.2 (p<0.0001, n=2,000) in ten repeated simulations as a function of 

variability in the ten most abundant proteins. These preliminary simulations suggest that the 

variation in levels of proteins unrelated to drug metabolism can significantly influence the 

apparent levels of target enzymes if correction factors are not applied, such as MPPGL (mg 

protein per gram liver), to relate protein abundance levels to tissue mass instead of protein 

mass.  
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Discussion 

Qualitative and quantitative protein characterization can afford substantial insight into the 

biochemical state of cells (Collins et al., 2016), and proteomics is therefore becoming 

increasingly important in clinical and biomedical research. Scientists and clinicians are 

required to make important decisions as to whether to employ a targeted approach to robustly 

analyze a limited set of proteins or to apply a non-targeted discovery-like methodology, which 

is more comprehensive but generally produces data of lower quality (Auffray et al., 2016; 

Collins et al., 2016). The present study involved the application of both approaches to human 

liver microsomal samples from the same patients to generate quantitative data for a set of drug-

metabolizing enzymes, demonstrating the wide scope of analysis offered by the global (label-

free) approach. It was particularly gratifying that the results showed good agreement with 

targeted quantification using QconCAT as a standard (Achour et al., 2015). Our results show 

that it is possible to obtain robust global proteomics measurements when quality control steps 

are taken to ensure successful implementation of quantitative analysis. In these experiments, 

there was rigorous quality control of sample preparation, standards, LC-IMS-MS/MS 

measurement and data analysis. A similar assessment of label-free quantification of a set of 

yeast glycolytic enzymes also demonstrated agreement with quantification using QconCAT 

standards (Carroll et al., 2011), further supporting previous reports of consistency in 

measurements carried out within the same laboratory setting (Qiu et al., 2013; Prasad and 

Unadkat, 2014).  

The global proteomic experiment was designed to be both robust and relatively quick. The time 

of the experiment was intended to be less than 1 hour to demonstrate the possibility of using 

this technique in screening processes. For this purpose, liquid chromatography, ion mobility 

and mass spectrometry were used to provide three layers of separation including the physical 

size of analyzed peptides (Supplementary Figure 6) in order to analyze as many proteins as 
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possible with high reliability (Distler et al., 2014). With this snapshot type of analysis, a set of 

a few hundred proteins (706-816) were successfully quantified, out of which a subset of 63-76 

drug and xenobiotic-metabolizing enzymes were characterized. The abundances of measured 

cytochrome P450 (12) and UGT (9) enzymes were within previously published literature 

ranges (Achour et al., 2014b; Achour et al., 2014c). The phenotypic fingerprint generated using 

the expression profiles and the heat map of drug-metabolizing enzymes revealed a range of 

abundance levels exhibiting differences between the four individual samples, with rank order 

cluster analysis showing sample HLM03 to have the most distinct expression profile.  

The expression fingerprint of sample HLM03 showed overall lower abundances of a set of 

ADME proteins, exemplified by cytochrome P450 enzymes, including CYP1A2, CYP2A6, 

CYP2C9/19 and CYP3A4/5. Differences in the characteristics of the corresponding donor 

included exposure to medications, including an opioid analgesic (morphine) and a non-

steroidal anti-inflammatory agent (ibuprofen), as well as certain genetic differences, including 

polymorphic CYP2C9 (*1/*2), CYP2C19 (*1/*2) and CYP3A5 (*3/*3). Inflammatory 

conditions and polymorphism were previously reported to reduce the catalytic activity of 

CYP1A2, CYP2C9/19 and CYP3A4/5 (Zanger and Schwab, 2013; Zanger et al., 2014). 

Notably, severe reduction in the expression levels of CYP3A5*3/*3 compared to the wild type 

and CYP3A5*1/*3 variant is well-documented in the literature (Lin et al., 2002; Achour et al., 

2014a). In addition, murine hepatic expression of P450 enzymes after exposure to a derivative 

of morphine showed significantly lower abundances of CYP2C and CYP2E enzymes 

determined using immunoblotting (Sheweita, 2003). However, due to the small sample size in 

the present study, the effects of these differences may require further investigation in order to 

confirm and elucidate them. 

Human liver microsomes are routinely used in the metabolic characterization of new and 

existing compounds, with the idea that most of the metabolic activity in these systems is 
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attributed to enzymes localized in the endoplasmic reticulum, which is believed to be 

preferentially enriched using differential centrifugation (Zhang et al., 2015). However, there is 

little evidence in the literature that defines the biomolecular composition of these fractions with 

suggestions that centrifugation can lead to either enrichment or loss of different membrane 

components (Harwood et al., 2014). For the purpose of addressing this gap, annotation related 

to subcellular localization was performed for all identified proteins in the analyzed HLM 

samples (1,276 proteins). This revealed information about the composition of this in vitro 

system, with the main components being the endoplasmic reticulum (34% of all proteins), the 

plasma membrane (32%) and the cytosol/cytoplasm (32%). Mitochondrial proteins also 

constituted a large proportion of proteins identified in HLM samples (19%). This finding is 

supported by the identification and quantification of specific membrane markers for the 

endoplasmic reticulum, mitochondria and plasma membrane in this fraction, indicating that 

HLM samples represent a crude, heterogeneous mixture of proteins from different cell 

compartments (i.e., a crude total membrane fraction), including but not limited to the 

endoplasmic reticulum. Technical differences in the microsomal preparation method can 

theoretically lead to differences in the composition of the final microsomal fraction. However, 

the fractionation methods used by the suppliers of these samples were very similar and the 

abundances of marker proteins from different cell compartments were not significantly 

different. Importantly, the presence of proteins from the nucleus (11%) and Golgi body (12%) 

shows that the initial centrifugation step may require further optimization to achieve better 

enrichment of endoplasmic proteins. A useful approach to eliminate the effect of fractionation 

on measuring protein expression profiles may be to examine the expression levels in liver tissue 

homogenates instead. 

A similar trend was seen with annotated drug and xenobiotic-metabolizing enzymes, with most 

enzymes coming from the endoplasmic reticulum (nearly 60%), the cytosol and the 
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plasma/exosomal membrane. However, the contribution of these non-endoplasmic reticulum 

enzymes to drug metabolism is only hypothesized at this stage. This observation of 

heterogeneity is in line with the findings of a recent global proteomic analysis that showed that 

the distribution of drug-metabolizing enzymes in fractions of liver tissue homogenate is 

complex (Wiśniewski et al., 2016b). Both the current work and that of Wiśniewski et al. point 

to caution in applying scaling factors when enzyme abundances are measured in membrane 

fractions.  

Implications of this level of heterogeneity in HLMs are relevant to both the way abundance 

levels of ADME proteins are reported and the assessment of their correlations of expression. 

Abundance levels of enzymes and transporters have traditionally been measured in units of 

pmol per mg of total microsomal protein mass. We highlight two problems with this tradition.  

Firstly, the total protein mass of microsomal samples represents proteins from different 

compartments of the cell, and the relative contribution of each compartment can, presumably, 

vary.  In addition, the apparent expression of enzyme/transporter abundances can vary based 

on the total amount of protein in this system even in the cases where the level of the target 

enzyme/transporter is constant in tissue. In this study, the ten most abundant proteins in HLM 

samples were shown to constitute 15-20% of protein mass in these samples, and their 

expression can vary, leading to apparent variation in abundance of CYP3A4 by up to 1.7-fold 

(p<0.0001). Further, enzymes enriched in this system can achieve a level of background 

correlation based on variability of unrelated but highly expressed proteins, a hypothesis 

proposed in our earlier reports (Achour et al., 2014b; Achour et al., 2014c). This effect was 

simulated by randomly varying the amount of CYP2C8 and CYP3A4 in tissue and then 

normalizing by total protein mass with variations in the abundance of these ten unrelated 

proteins. This simulation revealed a level of positive background correlation (Spearman 

correlation coefficient, Rs = +0.1 to +0.2) with statistical significance (p < 0.0001) for all 
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assessed enzymes, further supporting the use of tissue mass, instead of total HLM protein mass, 

as the normalization factor, as previously advocated by Milne et al. (2011). The units of protein 

abundance would then be pmol mg-1 tissue.  Although strong correlations between enzymes 

with common genetic regulatory mechanisms are highly expected (Wortham et al., 2007; Jover 

et al., 2009), the reported level of background correlation encourages exercising caution when 

interpreting and using weak to moderate expression relationships reported in the literature 

when abundance values are expressed in the traditional units even if the correlation exhibits 

statistical significance.     

In conclusion, this report constitutes a proof-of-principle study that demonstrates the utility of 

snapshot global profiling of enzymes in biological systems as a screening method and raises 

cautionary arguments about using abundance levels of ADME proteins reported in the literature 

and their correlations of expression. The report also provides preliminary qualitative and 

quantitative details about the protein composition of HLM samples. Limitations of the current 

work consist of mainly the low sample size (4 HLM samples), which renders comprehensive 

elucidation of inter-individual variability in a population using the data in this report highly 

unlikely.    
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Figure legends 

Figure 1 Proteomic analysis of microsomal sub-proteome in the HLM samples showing the total number 

of identified and quantified proteins in the fraction (A); the number of all drug-metabolizing enzymes, 

DME, drug-metabolizing cytochrome P450 enzymes, CYP450, and drug-metabolizing uridine 5'-

diphosphoglucuronosyltransferase enzymes, UGT (B); Spearman correlation with linear regression of 

measurements of drug-metabolizing enzymes using the label-free methodology described in this report 

and measurements of the same enzymes in three of the analyzed samples using QconCAT targeted 

methodology (C); fold difference in abundance of enzymes of label-free measurements (method 1) in 

each sample relative to QconCAT measurements (method 2) expressed as a ratio ([𝑥1,𝑖 𝑥2,𝑖⁄  ]  for enzyme 

i), with all pairs of measurements within approximately 2.5-fold (gray box) (D). Average fold error (AFE) 

is a measure of bias in the data, whereas absolute average fold error (AAFE) is a measure of scatter or 

spread of measurements; the closer these two measures to 1, the lower the bias and scatter in 

measurement; there was limited bias in the two method and a level of spread in the data (see Supplemental 

Table 3). In panel (C), abundances are expressed in units of pmol mg-1 HLM protein 

Figure 2 Patterns of expression of drug-metabolizing enzymes in liver samples: cytochrome P450 

enzyme abundances compared to literature values (A), UGT abundances compared to literature values 

(B), patterns of expression of quantified drug-metabolizing enzymes in the HLM samples (C), and heat 

map of the expressed P450 and UGT enzymes with samples classed using rank order clustering (D).  

In panels (A) and (B), the gray highlights indicate literature derived ranges, the bars indicate literature 

means and the scatter points indicate experimentally derived values in this study. In panel (C), BLQ is 

assigned for values below the limit of quantification. In panel (D), the abundance values are normal log 

modified. Abundances are expressed in units of pmol mg-1 HLM protein 

Figure 3 The abundance of specific membrane markers of hepatocytes (ASGR1), endoplasmic reticulum 

(calnexin), plasma membrane (ATP1A1, CD81), mitochondria (COX4) and peroxisomes (PEX14) (A), 

sub-cellular localization of all identified proteins (B) and drug-metabolizing enzymes (C) in analyzed 

samples, providing indication of the presence of membrane fractions from these organelles in human 
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liver microsomes. In panel (A), abundances are expressed in units of pmol mg-1 HLM protein. In panels 

(B) and (C), percentages represent the proportions of proteins identified in each sub-cellular location to 

the total identified number of proteins, the sum of which adds up to more than 100% due to overlap in 

localization of protein expression as shown in Supplemental Information 

Figure 4 The contribution of the ten most abundant proteins to total HLM protein mass from 4 human 

livers (A) and simulated effect of variability of the top ten proteins in HLM samples on CYP3A4 

abundance in 2,000 human livers (B). When the amount of CYP3A4 within tissue in simulated livers is 

kept constant, the abundance of CYP3A4 changes on average 1.4-1.7 fold, representing the effect of 

overall random variability in the most abundant proteins. Simulations were based on data obtained from 

this experimental study and a meta-analysis of available literature. In panel (B), abundances are expressed 

in units of pmol mg-1 HLM protein  
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Tables 

Table 1 Demographic and clinical details of the individual liver donors of samples used in this study. The final column 

shows the suppliers of samples 

Patient 

sample  

Age 

(years) 
Ethnicity Gender 

Cause of 

death 
Smoking Alcohol use 

Medical 

history 
Medication Supplier 

HLM01 31 C F Motor 

vehicle 

accident 

Yes No None None BD 

Gentest 

HLM02 62 C F Head trauma No No Hypertension Hypertension 

medications 

BD 

Gentest 

HLM03 41 H F CVA No Occasional Hypertension, 

mild stroke 

Atenolol, 

Dobutamine, 

Morphine, 

Nuprin 

BD 

Gentest 

HLM04 50 C M CVA No No Healthy None Vitron 

C, Caucasian; H, Hispanic; F, Female; M, Male; CVA, Cerebrovascular aneurysm 

Human liver microsomal (HLM) samples were prepared by the suppliers using differential centrifugation of hepatic tissue homogenates 
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Table 2 Rank orders, abundance levels and primary subcellular localization of the ten most abundant proteins in the analyzed HLM samples and those of drug-metabolizing 

cytochrome P450 enzymes 

 
Overall 

rank  
Protein (gene name) 

Overall abundance HLM01 HLM02 HLM03 HLM04 

  Mean ± SD a [pmol mg-1] 
Mean ± SD b [pmol mg-1] Mean ± SD b [pmol mg-1] Mean ± SD b [pmol mg-1] Mean ± SD b [pmol mg-1] 

(rank) (rank) (rank) (rank) 

T
o

p
 t

e
n

 H
L

M
 p

ro
te

in
s 

1 Liver carboxylesterase 1 (CES1) 
c
 403.14 ± 92.8 485.94 ± 24.31 (1) 396.81 ± 31.63 (1) 275.38 ± 13.45 (5) 454.42 ± 19.15 (1) 

2 Cytoplasmic actin 1 (ACTB) 
d
 316.94 ± 74.63 325.51 ± 50.06 (8) 363.32 ± 21.94 (2) 370.02 ± 24.37 (2) 208.93 ± 23.54 (10) 

3 Protein disulfide isomerase (P4HB) 
c
 304.25 ± 101.48 415.74 ± 12.23 (3) 324.86 ± 18.57 (3) 169.96 ± 4.02 (9) 306.44 ± 12.18 (2) 

4 78 kDa glucose-regulated protein (HSPA5) c 284.23 ± 62.67 352.90 ± 10.52 (6) 284.86 ± 24.83 (5) 201.29 ± 2.06 (8) 297.86 ± 10.86 (3) 

5 ATP synthase subunit beta (ATP5B) 
 e

 264.10 ± 96.66 140.23 ± 1.59 (24) 270.66 ± 25.62 (6) 376.41 ± 19.64 (1) 269.09 ± 2.31 (5) 

6 Protein disulfide isomerase A3 (PDIA3)
 c

 262.73 ± 108.03 387.29 ± 12.61 (4) 252.14 ± 17.28 (7) 127.46 ± 2.23  (27) 286.05 ± 12.36 (4) 

7 Calreticulin (CALR) 
c
 257.40 ± 86.90 372.06 ± 7.27 (5) 223.98 ± 36.44 (10) 166.32 ± 13.55 (11) 267.26 ± 4.77 (6) 

8 Haptoglobin (HP) 
f
 253.47 ± 155.76 457.21 ± 34.92 (2) 292.00  ± 22.60 (4) 117.54 ± 10.34 (30) 147.11 ± 1.66 (21) 

9 Endoplasmin (HSP90B1) 
c
 243.64 ± 78.95 335.09 ± 9.03 (7) 231.93 ± 17.82 (9) 144.52 ± 15.96 (14) 263.01 ± 6.13 (7) 

10 Cytochrome b5 (CYB5A)
 c

 226.79 ± 18.36 251.61 ± 26.34 (11) 209.61 ± 15.40 (12) 217.01 ± 7.03 (6) 228.93 ± 36.13 (8) 

D
r
u

g
-m

e
ta

b
o

li
z
in

g
 P

4
5
0

 e
n

z
y
m

e
s 

c  

44 CYP3A4 80.87 ± 58.48 126.83 ± 4.43 (26) 134.71 ± 13.65 (26) 19.32 ± 1.63 (231) 42.64 ± 1.02 (122) 

53 CYP2E1 76.28 ± 14.78 73.50 ± 6.23 (57) 74.36 ± 8.85 (65) 60.84 ± 6.38 (78) 96.43 ± 13.80 (34) 

101 CYP2C9 50.37 ± 30.63 94.26 ± 13.22 (43) 29.89 ± 0.73 (192) 28.82 ± 0.40 (171) 48.49 ± 2.83 (106) 

108 CYP4F 48.31 ± 19.96 28.37 ± 2.56 (165) 68.91 ± 8.19 (70) 34.32 ± 1.79 (142) 61.63 ± 2.33 (80) 

109 CYP2A6 48.11 ± 43.44 108.60 ± 13.01 (36) 38.44 ± 3.53 (147) 5.11 ± 0.57 (597) 40.30 ± 1.37 (127) 

180 CYP3A5 31.07 ± 9.68 37.92 ± 4.13 (117) 24.22 ± 1.54 (231) _ _ 

186 CYP1A2 30.44 ± 7.19 24.25 ± 2.59 (184) 28.72 ± 2.81 (196) _ 38.33 ± 5.88 (134) 

201 CYP2C8 27.57 ± 25.42  64.37 ± 3.03 (66) 23.22 ± 1.72 (244) 6.92 ± 0.77 (516) 15.78 ± 1.25 (296) 

262 CYP2B6 20.98 ± 1.22 20.98 ± 1.22 (225) _ _ _ 

425 CYP2D6 12.45 ± 4.84 10.74 ± 1.07 (372) 8.70 ± 1.72 (538) 17.91 ± 1.79 (245) _ 

560 CYP3A7 9.21 ± 0.62 9.21 ± 0.62 (413) _ _ _ 

815 CYP2C19 5.47 ± 0.69 5.96 ± 0.17 (542) _ _ 4.98 ± 0.76 (604) 

1066 CYP3A43 1.06 ± 0.40 0.66 ± 0.11 (711) 1.20 ± 0.12 (814) 1.04 ± 0.11 (706) 1.46 ± 0.05 (707) 
 51 NADPH cytochrome P450 reductase (POR)

 c
 77.95 ± 19.18 85.88 ± 3.27 (53) 100.12 ± 5.52 (35) 55.97 ± 8.61 (87) 69.85 ± 3.27 (62) 

a SD representing combined biological and technical variability, b SD representing technical variability, c sub-cellular localization: endoplasmic reticulum, d subcellular localization: cytoplasm, e subcellular 

localization: mitochondria, f subcellular localization: secreted 
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