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A mixed financial/physical Partial Differential
Equation (PDE) can optimise the joint earnings of a
single wind power generator (WPG) and a generic
energy storage device (ESD). Physically, the PDE
includes constraints on the ESD’s capacity, efficiency
and maximum speeds of charge and discharge.
There is a mean-reverting daily stochastic cycle for
WPG power output. Physically, energy can only be
produced or delivered at finite rates. All suppliers
must commit hourly to a finite rate of delivery
C, which is a continuous control variable that
is changed hourly. Financially, we assume heavy
‘system balancing’ penalties in continuous time, for
deviations of output rate from the commitment C.
Also, the electricity spot price follows a mean-
reverting stochastic cycle with a strong evening peak,
when system balancing penalties also peak. Hence
the economic goal of the WPG plus ESD, at each
decision point, is to maximise expected Net Present
Value (NPV) of all earnings (arbitrage) minus the NPV
of all expected system balancing penalties, along all
financially/physically feasible future paths through
state space. Given the capital costs for the various
combinations of the physical parameters, the design
and operating rules for a WPG plus ESD in a finite
market may be jointly optimisable.
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1. Introduction
The large-scale use of wind power will pose unprecedented problems, because the supply wattage
of a Wind Power Generator (WPG) over a 24-hour lead time is approximately a mean reverting
Geometrical Brownian Motion (GBM). Such processes are noisy at any lead time, inside and
outside the range of seconds to 105 seconds, and that noise can severely disrupt both system
balancing and price arbitrage. As kindly pointed out by an anonymous referee, the average
contribution of wind in Ireland has already reached 24% in 2015 and in Germany the contribution
peaked at 36% in May 2016, both these (and other) countries therefore face a tremendously
difficult task managing large fluctuations in power. One possible way to make it run more
efficiently would be the introduction of large-scale energy storage on the grid. The optimum
use of an Energy Storage Device (ESD) must hourly reset a committed rate of output, such
as to allocate the ESD’s resources dynamically between the two conflicting priorities of system
balancing, which minimises balancing penalties, and price arbitrage, which maximises income.

Mathematical models that can tackle variable flow rates into and out of a store have emerged
in the literature over the last 10 years, with applications appearing in gas storage [1] as well as
thermal storage [2]. However many ‘real options’ models of electrical storage assume an infinite
or a fixed rate of physical flow into or out of the ESD [3]. This infinite flow rate imitates financial
trading in an inertia-free market. Such models set and solve an optimal stopping problem, of
when to empty or fill the ESD instantaneously, when the selling price hits a suitable trigger level.
Instantaneous emptying is not dynamically possible in a physical power system, but if ESDs
were emptied at the largest physically feasible rate, this would create, rather than solve, system
balancing problems for the physical systems.

The present paper addresses the above problem in three innovative ways, by using a ‘proof of
concept’ mathematical model. Its main features are:

(i) The physical state variables include both a finite and instantaneously variable rate of
in/out flow, and its integral. Using both variables makes the model physically realisable,
and allows it to balance two competing goals, namely system balancing (avoiding real-
time penalties, by holding the rate of supply close to some committed rate C) and
arbitrage (which maximises income from selling the maximum of energy at the daily
peak of selling price – when balancing penalties also peak). The model assumes a market
commitment process in which the joint owner of a WPG and an ESD can change C at
hourly intervals, and there are continuous penalties in real time for deviating from the
presently committed C. Hence C is a continuous control variable that is reset at discrete
times. The time path of C has delayed and highly stochastic effects on future system
balancing penalties and sales income.

(ii) To imitate a future power system, having high wind penetration, the PDE model imposes
the full economic cost of any system balancing needed for wind power supplied. This is
done by a penalty function, which penalises all divergences between supply delivered
and commitment C, continuously in real time. The penalty function can be adjusted to
model the actual opportunity cost to the grid of ‘buying in’ system balancing from any
source, which in turn sets the value to WPG/ESD of doing some of this balancing itself.
In total the PDE interacts with the market economy through three pricing functions: the
cost of capital, the contracted sale value of committed electricity and the system balancing
penalty.

(iii) The model’s PDE includes stochastic dynamics for the wind supply and a stochastic
electricity selling price (both have daily cycles) and it assumes simple deterministic
dynamics for the ESD that are straightforward to generalise.

In the PDE, the stochastic, deterministic, financial and physical variables all interact
instantaneously, and in the diffusion solution all these variables, including the hourly changeable
commitment decision C, also interact through space and time – an example of (joint) Stochastic
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Dynamic Optimisation (SDO). The hourly Bellman optimisation of C maximises the expected
financial outcome along the infinity of dynamically realisable, continuous trajectories passing
through every point in the model’s state space. As later results show, the Bellman solutions make
unexpectedly subtle trade-offs between balancing penalties and selling price arbitrage, and the
trade-offs vary strongly across the state space.

The structure of the paper is as follows: Section 2: A brief introduction to the problem of
stochastic storage for wind energy; Section 3: The dynamics of the ESD are discussed; Section
4: A ‘proof of concept’ SDO PDE is developed; Section 5: Results; Section 6: Conclusions and
prospects for future research.

2. Dynamics of Wind and Electricity Price
The static distribution of wind power, relevant to long-term investments in WPG, is often
assumed to be best approximated by a Weibull distribution [4,5]. However this lacks a time-
dependent behaviour, and it is not tractable over the time scales that are operationally important,
which range from seconds (for system balancing) to multi-hour (for arbitrage). Helpfully [6]
report finding a Gaussian time series beneath the daily seasonal patterns in wind data. As [7]
notes, there are long-term seasonal variations over months (winter versus summer) and in some
situations a weak diurnal cycle (e.g. stronger wind at night along coasts). There is also some
ability to forecast the local wind strength rather approximately, within any 24 hour period. This
lead time is relevant for balancing within-day arbitrage gains against system-balancing penalties.
For ‘proof of mathematical concept’ purposes we model wind strength by a Stochastic Differential
Equation (SDE), in which GBM mean-reverts towards a known weak diurnal cycle. The assumed
SDE for wind strength X is

dX = κX

(
θX(t) +

1

κX

dθX
dt
−X

)
dt+ σXXdW. (2.1)

Here κX is the constant local speed of mean reversion of X towards its local mean θX(t) while
σX is a constant volatility and dW is the increment of a Wiener variable. The parameter values
assumed here are κX = 0.1 h−1, σX = 0.2 h−

1
2 and the daily seasonal forcing function for wind

is
θX(t) = θ̄X(1 + αX sin(γ(t+ ψX))), (2.2)

where θ̄X = 8 m s−1, αX = 0.375, ψX = 2 h and γ = π
12 h−1. A long-term static distribution of

wind strength results from this SDE, which can be found by time averaging over the solution to
the associated Fokker-Planck equation. If we analyse the properties of the solution to the Fokker-
Planck equation, we can derive the probability that X < 0 under natural conditions, and we are
able to artificially impose non-negativity if we choose simply by using a reflecting (or no-flux)
boundary condition at X = 0 [8]. When solving the PDE later on we apply reflecting boundary
conditions at X = 0 that are outlined in section 4(c), meaning that even if negative values were
possible we bound our domain by X = 0. This distribution is plotted as the thick solid line in
figure 1(a), and the general similarity of this static distribution to the Weibull static distribution
can be seen clearly. In figure 1(b), the thick solid line represents the median of the distribution, the
three lines below it represent the 1%, 5% and 25% quantiles, and the three lines above represent
the 75%, 95% and 99% quantiles. The two distributions differ but as noted above, the Weibull does
not offer useful time dynamics for system balancing purposes, and as seen later, these different
distributions of wind strength lead to rather similar distributions of electrical power output.

The main driver of arbitrage opportunities is the strong but also stochastic daily cycle of
electricity price. We take both the wind strengthX and the electricity selling price Y to be different
GBMs over the following 24 hours, and we assume that each mean-reverts towards its own daily
cycle (strong for price and weak for wind), which is identical every day. In this analysis we ignore
the longer term cycles of wind across the seasons in order to not over complicate matters. If a more
detailed analysis were to be carried out, such effects could be taken into account most readily by
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solving the problem (in isolation) for representative seasonal days, and then taking the average
value across them. Using a single day cycle allows us to quickly converge to a periodic steady
solution when solving the problem numerically.

We convert the wind strength X to a power output, through a smoothed non-linear function
F (X). We do not model changes in wind direction, because this variable is not present in
most published data on WPG power output. Hence changes in wind direction, and possible
engineering responses to these in WPG design, are not needed in a ‘proof of concept’ model of
the optimal storage of stochastically arriving wind power. The output is scaled to a representative
maximum power output of 1 MW (easily rescaled to model any desired wind power generation
system or WPG), with a cut-in speed of approximately 4 m s−1, a rated wind speed of
approximately 13 m s−1, and a cut-out speed of approximately 25 m s−1 [9]; we show this power
curve in figure 2(a). Given the assumed daily trend and stochastics of wind described in (2.1), we
can calculate the expected capacity factor at each time of the day, as shown in 2(b).

Comparing these assumptions to the empirical analysis of UK wind farms in [7], the model’s
assumptions give a peak output of around 50% of maximum capacity, which is typical of the
empirical maximum seen in UK winter, and a trough output of 10% of maximum capacity, which
resembles the empirical minimum in summer. The model’s grand mean output of 29.5% also
resembles UK empirical values [9]. We note that the existence of cut-in and cut-out speeds reduces
the difference between the GBM and the Weibull, as static distributions of actual power supply
rates, in that they differ most strongly at wind speeds which are too low or too high for generation.

We model the instantaneous market selling price of electricity as Y by the following (mean-
reverting) SDE

dY = κY

(
θY (t) +

1

κY

dθY
dt
− Y

)
dt+ σY Y dZ, (2.3)

where κY is the constant local speed of mean reversion of Y towards its local mean θY (t), and σY
is its volatility. Here dZ is the increment of a Wiener variable, uncorrelated with dW . It should be
noted that the linear mean-reversion term means that this is not a standard GBM model. Models
similar to this have already been used many times in finance, for example [10] fit the standard
GBM mean reverting model to data from the nordic power exchange, whereas [11] use a variation
on our SDE with linear mean-reversion to model interest rates. It is important to note again that
negative prices are possible in the model since the mean-reversion coefficient could go negative.
For our ‘proof of concept’ model we choose to take an arbitrary set of parameters that demonstrate
some properties of the UK market, such as an average price of around 40 £/MWh and the daily
cycle with a peak in the afternoon at 4pm.

κY = 0.04 h−1, σY = 0.075 h−
1
2 , (2.4)

and the daily cyclical forcing function for Y is

θY (t) = θ̄Y (1 + αY sin(γ(t+ ψY ))). (2.5)

We choose the parameters as θ̄Y = 40 £/MWh, αY = 0.375, ψY = 14 h and γ = π
12 h−1. We choose

to bound possible values of Y ≥ 0 using a reflecting boundary condition at Y = 0. Usefully, our
treatment reduces the size of the computational task and simplifies the optimal strategy.

3. Dynamics of the Energy Storage Device
The instantaneous energy content of the ESD is Q, where 0<Q<Qmax and Qmax is the designed
capacity of the ESD. We define the charge or discharge rate from the ESD to be

L(X,Q) =
dQ

dt
, (3.1)

allowing L to be both positive and negative. At any moment, the total system of the WPG plus
ESD has a committed output rate of C. In the ideal case the total system’s output equals C.
However if Q=Qmax or Q= 0, charge and discharge respectively are impossible. When Q is
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Figure 1. Some summary statistics of the wind speed model used in this paper. On the left in (a) we present the static

probability distribution resulting from SDE (2.1) with a solid line, a Weibull distribution with an identical mean and variance

is plotted with a dashed line. On the right in (b) we show the quantile plots at different times of the day for SDE (2.1). The

solid curve at the centre is the 50%, line, with the three lines below representing the 1%, 5% and 25% quantiles, whilst

the three lines above represent the 75%, 95% and 99% quantiles.
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Figure 2. On the left in (a) we present a typical wind speed to power output function, as used in this paper. On the right we

apply this function to the mean daily cycle of wind strength and plot the mean fluctuation of WPG output as a percentage

of maximum output (capacity factor)

not at one of these bounds, the rates of charge and discharge are limited by the design of the ESD
to a maximum charge rate LC and a maximum discharge rate LD . Richer ESD dynamics can be
assumed, and in particular we limit our investigation to cases where LC and LD are both equal
even though there is no such physical restriction on ESDs. We assume here that there is a fixed
percentage loss rate κ=

√
0.7, such that a round trip conversion into and out of the ESD will only

return 70% of the initial energy. This is actually quite low for an ESD, with many ESD providers
claiming up to 95% efficiency. However these figures should be offset by the potential degradation
of the ESD through charge/discharge cycles, and since our model cannot currently take account
of this we set our efficiency at the lower end. Mathematically the above ESD is described by two
scenarios. If the current WPG power output F (X)>C there is a surplus, so the ESD will if charge
at up to its maximum rate, hence

L(X,Q) = min(κ(F (X)− C), LC , ξC(Qmax −Q)) (3.2)
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to ameliorate the discrepancy. If the WPG power output F (X)<C is in deficit, then the ESD will
discharge at up to its maximum rate (after efficiency losses), so that

L(X,Q) = max

(
1

κ
(F (X)− C),−LD,−ξDQ)

)
. (3.3)

These smoothing parameters, ξC and ξD , will limit the charging/discharging rate near
full/empty to numerically smooth the solutions near the boundary, and they are chosen to be
sufficiently large so that increasing them has little effect on the solution. This simplified model of
an ESD has been previously used in [12].

Two alternative sets of parameter values are used to model two alternative designs of ESD. We
define a ‘small’ ESD with LC =LD = 250 kW, Qmax = 1 MWh and we define a ‘large’ ESD with
LC =LD = 1 MW, Qmax = 4 MWh. The ‘small’ ESD can charge or discharge at only a quarter of
the WPG’s peak output rate, and it can store only one hour of the WPG’s peak output rate. The
small ESD is expected to ‘smooth’ the WPG’s output over an hour or two, but not to ‘arbitrage’ the
selling price of the WPG’s output, because this ESD can time shift at most one hour of maximum
wind power output towards the evening peak. In contrast the large ESD can charge or discharge
at the maximum output rate of the WPG, and it can also move four hours of peak power output
away from the early morning peak of physical supply towards the early evening peak, when
physical demand and selling price both peak. Hence the large ESD is expected both to smooth the
WPG’s power output and to time-shift it.

4. Modelling continuous-time penalties for over- and under-
delivery

The smoothing of wind power is becoming an increasingly costly problem for networks around
the world. At present there is a low penetration of such power in most of the world, and therefore
although each individual WPG produces very ‘noisy’ power, they are too few in aggregate to
disturb the overall supply/demand balance – especially in richly connected regions like Germany.
Accordingly, the scale of system balancing charges presently in force was historically designed to
penalise occasional over- or under-supply by fossil generators (which are fairly stable over short
periods). This scheme is often applied unchanged to WPGs, so that a WPG can deliver noisy
power throughout an hour without penalty, provided that the cumulative total delivered matches
the total committed.

At high levels of penetration, fluctuations of wind power have the serious potential to disrupt
the total supply-demand balance on a historically unprecedented scale. Systems will then incur
much higher balancing costs, and they are likely to pass these on as penalties to WPGs. This in
turn should motivate WPGs towards some mix of under-committing their expected output (in the
limit, discarding some power), and storing energy for later smoothing.

This paper’s model assumes a system of balancing charges in a generic form, which can be
set sufficiently harshly (as a function of F (X)− C) to motivate WPGs to undertake some mix
of under-commitment (of expected supply) and storage (of unexpected and/or uncommitted
supply). The assumed system balancing charge, penalises both over- or under-supply in real time,
so that the only penalty-free outcome is to deliver at exactly the committed wattage rate C. This
earns the contracted selling price Y , a stochastic value which is fixed at the moment when C is
fixed. Hence the delivery to the grid D(X,Q,C) at any given time is

D(X,Q,C) =

{
F (X)− 1

κL if F (X)>C, L≥ 0

F (X)− κL if F (X)<C, L≤ 0,
(4.1)
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where the efficiency conversion means that only the quantity κL is provided from the ESD to the
grid. Therefore the instantaneous income function I is defined by

I(X,Y,Q,C) =


CY + Y (1− ζ)(D(X,Q,C)− C) if F (X)>C

CY if F (X) =C

CY − Y (1 + ζ)(C −D(X,Q,C)) if F (X)<C

. (4.2)

Here the parameter 0< ζ < 1 defines the rate of price penalty for under- or over-delivery during
dt. The rate of extra income earned on over-delivered power, at an instantaneous output rate
D(X,Q,C)− C > 0, is Y (1− ζ)<Y . Here the committed wattage rate C has been previously
set to the system, therefore the opportunity cost of instantaneous over-delivery (e.g. after under-
committing, when unable to store a surplus) is to lose the fraction ζ of the selling price of the
wattage over-delivered. Since in our model we choose to bound Y ≥ 0 and ζ < 1 both hold for all
t, the WPG has no incentive to curtail generation. It is often the case in real markets that either
Y < 0 or ζ ≥ 1 causing excess power to be shed from the system. This situation could be included
in future models by adjusting parameters and the relevant boundary conditions.

The corresponding penalty for instantaneous under-delivery (in addition to being unable to
sell all of the wattage in the commitment C) is a cash ‘fine’ of the fraction ζ of the full spot sales
value of whatever wattage fails to be delivered C −D(X,Q,C). A large enough under-delivery
causes a negative instantaneous income from the wattage actually delivered.

(a) Derivation of the PDE for system value
Now define the contract V (X,Y,Q, t) in units [£] as the current value of the jointly owned WPG
and ESD. This is the expectation under the real-world measure of all future discounted income,
which the WPG plus ESD can make on sales in the electricity supply market. Ignoring the optimal
commitment for the time being, we can write

V (X,Y,Q, t;C) =E

[∫∞
t
e−r(s−t)I(Xs, Ys, Qs, C)ds

]
(4.3)

where 0≤ t≤∞ and C =C(X,Y,Q, s) is the committed delivery amount at time s which may
be a function of all variables in the problem. We define r as a general discount rate, which can
be the given risk adjusted or risk free value, as the nature of the problem requires. Changes to r
will change the capital value of the WPG/ESD system over its lifetime, but should not change the
optimal commitment policy C∗ within any one day. The effects of discounting at a typical real
rate of return (seldom outside the range 1% to 10% per annum) are far smaller over 24 hours than
the expected fluctuation of the real electricity price within that period.

Now let us define

V ∗(X,Y,Q, t) = max
C

V (X,Y,Q, t;C) (4.4)

as the solution to the optimisation problem at time t. Then to introduce our optimal commitment
problem, we first assume that electricity supply sales (which commits us to a fixed rate of supply
C for a fixed time interval ∆T ) happen at discrete time points t= 0,∆T, 2∆T, . . . which are to be
indexed by k. More precisely, at time t= tk = k∆T the owner must choose to commit to deliver at
a rate ofC ∈ [0, Cmax] units of electricity supply, starting at time tk and ending at tk+1 = tk +∆T .
Then the value of this contract given a commitment C is

V (X,Y,Q, t;C, tk+1) =E

[ ∫ tk+1

t
e−r(s−t)I(Xs, Ys, Qs, C)ds

+ e−r(tk+1−t)V ∗(Xtk+1 , Ytk+1 , Qtk+1 , tk+1)

]
(4.5)

for tk < t< tk+1; here V ∗ assumes that all future decisions are made optimally. We can simplify
the notation at this stage by dropping variables that do not play an explicit part in the
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optimisation, namely X , Y and Q, so that the quantities defined in (4.3), (4.4), and (4.5) become
V (t;C), V ∗(t) and V (t;C, tk+1) respectively.

If we assume that the possible set of commitments is a finite set of values {Ci} where Ci ∈
[0, Cmax], then at the decision time tk, we must choose the optimal Ci. Once the decision is made
we must hold that choice of Ci constant over the period tk < t< tk+1, and the value of making
that choice we will write as Vi(t; tk+1) = V (t;Ci, tk+1). Now the optimisation becomes relatively
simple and can be written as

V ∗(t= tk) = max
i

[Vi(tk; tk+1)] . (4.6)

The optimal condition (4.6) can then be transformed into the terminal condition required to solve
for the previous period [tk−1, tk]. The appropriate condition at tk is then

Vi(t= t−k ; tk) = max
j

[
Vj(t

+
k ; tk+1)

]
(4.7)

for all i. The positive and negative superscripts take account of the fact that our choice of
commitment is in the period [tk−1, tk] or [tk, tk+1].

Now if the market includes a delay, so that the owner must precommit to a delivery rate
starting in the future, then at time tk the owner must choose from the set {Ci} for the period
starting at tk+1 and ending at tk+2. We approximate the full set of admissible controls by a finite
set of pairs, where each pair includes the commitment for the current period as well as the next.
So we denote Ci,j = (Ci, Cj) as the scenario in which Ci is the current commitment and Cj is the
commitment at the next step, and Vi,j to denote the value of implementing that control strategy.
We have

Vi,j(t; tk+1) =E

[ ∫ tk+1

t
e−r(s−t)I(Xs, Ys, Qs, Ci)ds

+ e−r(tk+1−t)V ∗j (tk+1; tk+2)

]
for tk < t< tk+1. Here V ∗j (tk+1; tk+2) indicates the value of committing Cj at tk+1 followed by
the optimal commitments for t > tk+2.

In order to optimally manage the operation of the wind farm, at time t= tk we lock in the
commitment at tk+1 by maximising over all possible future commitment decisions j for each of
the current possible commitments i (for which we are yet to make a decision on). Mathematically
we can write the optimisation as

V ∗i (tk; tk+1) = max
j

[Vi,j(tk; tk+1)] ∀i. (4.8)

Now as we step back in time across the instant from just after tk to just before tk, we must take
account of the fact that Ci,j refers the current and future commitments, and that current one will
become the future commitment for the previous period. So, if we write t−k to denote the value
the instant before the decision is made, and t+k to denote the instant just after, we obtain the final
condition when solving in the period t∈ [tk−1, tk]

Vi,j(t= t−k ; tk) = max
l

[Vj,l(t
+
k ; tk+1)]. (4.9)

To value the contract in between agreement times tk < t< tk+1, with or without a delay before
its commencement, we can use the Feynman Kac formula (according to Itô calculus, see [13] for
more details) to derive a partial differential equation for Vi,j . It follows simply that we must solve
the following PDE for all possible controls Ci,j ,

∂Vi,j
∂t

+ 1
2σ

2
XX

2 ∂
2Vi,j
∂X2

+ 1
2σ

2
Y Y

2 ∂
2Vi,j
∂Y 2

+ L
∂Vi,j
∂Q

+ κY

(
θY +

1

κY

dθY
dt
− Y

)
∂Vi,j
∂Y

+κX

(
θX +

1

κX

dθX
dt
−X

)
∂Vi,j
∂X

− rVi,j + I(X,Y,Q,Ci) = 0, (4.10)
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where r is the discount rate (per hour) and I is the instantaneous income function as defined in
(4.2). Note that the commitment that enters this equation isCi, the current commitment, whilst the
future commitments Cj enter through boundary conditions (4.9). When the problem to be solved
does not include a time delay before the chosen commitment becomes effective, the j subscript
can be omitted and the final condition (4.7) is used instead.

(b) Boundary Conditions
First we deal with the boundary conditions for X and Y , which are both dealt with in the same
way. In order to derive boundary conditions at X = 0 or Y = 0, we simply set the term to zero in
the PDE and solve the resulting equations. For example, on X = 0 we solve

∂Vi,j
∂t

+ 1
2σ

2
Y Y

2 ∂
2Vi,j
∂Y 2

+ L
∂Vi,j
∂Q

+ κY

(
θY +

1

κY

dθY
dt
− Y

)
∂Vi,j
∂Y

+κXθX
∂Vi,j
∂X

− rVi,j + I(0, Y,Q,Ci) = 0,

and a similar equation is derived for Y = 0.
For the largeX and large Y boundaries we assume that the respective second order differential

term is small and can be neglected so that we may solve the resulting equation. So for large X the
following equation is solved

∂Vi,j
∂t

+ 1
2σ

2
Y Y

2 ∂
2Vi,j
∂Y 2

+ L
∂Vi,j
∂Q

+ κY

(
θY +

1

κY

dθY
dt
− Y

)
∂Vi,j
∂Y

+κX

(
θX +

1

κX

dθX
dt
−X

)
∂Vi,j
∂X

− rVi,j + I(X,Y,Q,Ci) = 0.

The boundary conditions in Y are derived in a similar way.
For the boundaries in Q, note that the we have L≤ 0 on Q= 0, and L≥ 0 on Q=Qmax,

meaning that the characteristics of the solution do not travel outside the domain [0, Qmax] (helped
in the discretisation scheme by the terms ξC and ξD) when moving backwards in time. The result
is that we able to solve the full PDE on the boundaries.

We search for a perpetual solution to the problem which in this case does not mean that ∂/∂t→
0 because our solution will be periodic. Observe that (2.1) and (2.3) both have 24-hour periodic
functions, then we might expect that any steady solution to the problem will also have a 24-hour
period. So we proceed by solving successive 24-hour periods, using the solution from the last
24-hour period as the final condition for the next period. We check on the difference between
solutions at the end of each period, and once we have a solution that satisfies

||V (X,Y,Q, t)− V (X,Y,Q, t+ 24)|| ≤ ε

for some small parameter ε we stop solving. The convergence towards this periodic perpetual
solution is laboriously slow, but we have developed some heuristic methods to speed matters up.

(c) Numerical methods
The wind storage problem has the high dimensionality (for a PDE) of four state variables,
including time. A further difficulty is introduced by the control set, meaning that the high
dimensional PDE must be solved for each and every possible control strategy. In the case of a
trading delay, this means that an extra factor of n2 will be applied to the computation time, where
n is the number of possible commitments at each time. Such calculations are time consuming, but
when their purpose is to value an investment proposition a solution time of days, or even weeks,
may be acceptable.

We apply standard finite-difference techniques, whose convergence and stability properties
for this problem are described in [14]. A typical calculation will divides the domain (X,Y,Q, t, C)

into a fixed grid comprising of 251× 51× 51× 401× 21 points to solve for each contract period.
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We find that using a fine grid will start to take a substantial time, whereas coarser grids with for
example 101× 21× 21× 201× 11 points provide comparable results in a much shorter timescale.
Most of the results in this paper are calculated on the coarser grid. In terms of the X and Y grid,
we chooseXmax = 100 and Ymax = 100. A much smaller number of points in Y andQ can be used
since there are no strong gradients in those directions.

5. Results
In this section we define C∗(t) as the commitment that applies at time t and that has in general
been set optimally at some time before t. In calculating the option’s value V over the four-
dimensional space of X,Y,Q, t, and over all possible strategies for commitment C, the diffusion
PDE’s numerical solution, the value V in £, is the result of a probability weighted integral over
infinitely many potential future trajectories for the continuous variables, between optimisation at
the successive discrete fixings of C.

Clearly the valid C∗, a scalar, contains no time indexed information about the possible future
time-domain trajectory of any of the variables X,Y,Q, or of V or C (even though the physically
and financially feasible trajectories for all these variables have been integrated over whilst
calculating the C∗ at each state point). The absence of time-domain output can have slightly
different effects on WPG investors and on WPG operators.

Investors, in financial theory, are willing to spend any sum ≤ V instantaneously to acquire the
instantaneous value V of owning an (optimised) WPG plus ESD system; time-domain trajectories
for any of these variables do not interest such investors. In contrast WPG operators live in the time
domain, and therefore need to understand how the optimised policy will drive the entire dynamic
system in the time domain. They need to trust that it can and will remain economically optimised.
A wiser (real-world) investor will also always check that the operators can understand, and will
commit to achieving, the predicted optimality of any dynamic trajectories in the time domain
which result from implementing C∗(X,Y,Q, t) at any point.

To assist intuition for operators and wiser investors, some sample plots in figure 3 of the joint
time trajectories of the following subset of optimised system variables: Q,C∗, D, t, where D is
the instantaneous rate of power delivery from the WPG and ESD. Each plot was generated from
a single 24 hour realisation of the joint stochastic paths of Qt, Xt, Yt and of the resulting C∗(t)
as computed from the SDEs of the problem. The system balancing penalty payments I and the
resulting cash flows are omitted from the plots to avoid clutter. At the same time the effects of day-
specific stochastic realisations of X and Y , and of the other omitted variables, are partly visible in
the behaviour of those variables actually plotted. The following results mostly use the default set
of parameters shown in table 1.

(a) Optimised dynamics of the physical variables: sample paths and
summary statistics

Simulated paths of the physical dynamics are shown for both a large and a small ESD in Figure 3.
Taking first the large ESD in Figure 3(a), the fine dotted line plots the quantity of energy Q stored
in the ESD. During the nightly peak of wind supply (hours 5 to 9) the optimal C∗ completely
fills the ESD. In this state no more energy can be stored, so all wind power delivered (solid line
of delivery D) has Brownian disturbances. The coarse dotted line of the optimal commitment
C∗ balances the opposite risks of under-committing the Brownian output (causing a lower mean
price for all amounts over-delivered) and of over-committing it (causing severe cash penalties for
amounts under-delivered).

The commitment C∗ is the locally horizontal coarse dotted line, whose hourly jumps in level
were optimally selected one hour previously. In hours 1 to 5 (from midnight) the ESD fills rapidly,
and when the ESD is full (saturated) between hours 5 and 9, deliveries (solid) are free to deviate
from commitment (coarse dotted). Here the commitment does rise, but it remains low enough to
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Parameter Value Parameter Value

Wind Speed σX 0.2 h−
1
2 θ̄X 8 m s−1

αX 0.375 ψX 2 h
κX 0.1 h−1 Capacity factor 29.5%

Wind Power Max output 1 MW Cut out 25 m s−1

Conversion Function Rating 15 m s−1 Constraints Cmin = 0,Cmax = 1

Smoothing ESD Qmax 1 MWh κ
√

0.7

LC 250 kW LD 250 kW
ξC 5 h−1 ξD 5 h−1

Arbitraging ESD Qmax 4 MWh κ
√

0.7

LC 1 MW LD 1 MW
ξC 1.2 h−1 ξD 1.2 h−1

Trading σY 0.075 h−
1
2 θ̄Y 40 £/MWh

αY 0.375 ψY 14 h
κY 0.04 h−1 Contract length 1 h
ζ 0.5 ra 0.05 pa

Cmax 1MW r ra/(365*24) h−1

Table 1. Default parameters used in all calculations unless otherwise stated.
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Figure 3. Monte Carlo simulations demonstrating the optimal strategy for (a) a large ESD (Qmax = 4) and (b) a small

ESD (Qmax = 1). We show the % energy level in the ESD Q/Qmax (dotted), the % commitment C∗/Cmax (dashed) and

the % amount delivered D/Cmax (solid). Underneath we show the simulated processes Xt and Yt (solid lines) used in

both scenarios in (c) and (d) respectively. We also plot θX and θY (dashed lines) for both processes to indicates if the

levels are above/below expected.
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ensure that almost all deliveries are over-deliveries. It is not in general optimal to avoid every risk,
and close examination of the second half of hour 10 shows a brief threat of under-delivery, as a
spike of demand causes a brief discharge from the ESD. Early in hour 11 the ESD is refilled swiftly,
due to a low commitment. It is notable that this refilling is due to a prediction made during hour
9, not to error feedback of a stock fall-off during hour 10. This is because the demand spike arises
late in hour 10, but the low optimised commitment C∗ during hour 11, which swiftly recharges
the ESD at the start of hour 11, was itself set at the start of hour 10.

From hour 12 to hour 24, the period of highest price, the commitment line C and the delivery
line D coincide almost exactly. Because the optimal policy fills the ESD fully overnight (but not
without some jumps in C∗), nothing more could have been done to increase the stock of energy
available during the evening price peak.

Comparable results for the small ESD are shown in figure 3(b). The small ESD was expected to
do continuous smoothing (only) because its small total capacity (one hour of maximum output)
and its small rate of charge/discharge (one quarter of peak output) both seem to forbid price
arbitrage. There are interesting similarities and differences between the optimal C∗ trajectories
for the large and small ESDs. Like the large ESD the small ESD takes the stored energy Q to
higher levels during the night hours 5 to 9, but in this case not to saturation. Then both the large
ESD and the small ESD run Q down during the evening peak hours, 16 to 19.

The intuition here is precisely that the small ESD is so small. On inspection of figure 3(b)
the continuous delivery line D is mostly close to (but above) the stepped commitment line C∗.
These facts, along with the high level of both D and Q at night, arise because when using only
a small ESD, the WPG must deliver most of its power during the nightly peak of wind strength.
To minimise the balancing penalties on these low-priced sales, it is optimal for the small ESD to
remain unsaturated all of the night, in order to absorb fluctuations in the majority of its deliveries
– which must be made at night. Despite this, at the end of the night the optimal policy retains a
fairly large quantity Q in store. This reserve, used up in the peak, allows the small ESD to deliver
the small quantity of energy that it does sell at evening peak prices exactly on commitment.

Overall, both the small and large ESDs are ‘arbitraging the precision of control’ towards the
evening price peak. During the price peak both ESDs go from near full to near empty, and both
deliver their cleanest power of the 24 hours (closest to commitment) at this time, when both
selling prices and balancing penalties are at their 24 hour peak. Oddly however, the large ESD
does NOT as intuitively expected ‘both arbitrage and smooth’. This again is because of the actual
size of this ESD. The large ESD ‘chooses not to smooth’ during the night because the balancing
penalties, from selling un-smoothed power during the night, are less than the arbitrage value of
selling almost all of the stored power (less any used up for later smoothing) during the evening
peak of prices and penalties. This suggests two conjectures: (i) only an even larger store than this
large ESD would both arbitrage and smooth during all 24 hours; (ii) there must be diminishing
returns to increasing the size of the ESD, because the optimal solution has already maximised
the returns of a store of this size. These conjectures are explored in the next subsection, which
briefly addresses the effect on value V of continuously improving the store capacityQmax and the
charge/discharge rate L.

The two time plots for the different ESDs are clearly instructive, and are long enough to show
some statistically different variation within/between them. However each is one realised sample
path over 24 hours, from an infinity of possible other paths from the same starting conditions,
over all of which the diffusion solution has been integrated. It is however possible to compute
the expected values (as opposed to sample values) of a wide range of statistical measures, when
integrated over all the possible trajectories for a given optimised solution.

As [15] have pointed out, the optimal decision function C∗(X,Y,Q, t) has set the values of all
feasible changes in C∗ to maximise V . Here V is the integral (from any point in the state space)
of the expected time-discounted future value of I. So far I has been used as an indicator for
each state-point of the actual rate of income earned/paid over dt when the system is at that state
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space point. The Bellman-optimised control policy C∗ at each state point simply maximises the
probability-weighted (diffused) discounted value of I along all trajectories from that state point.

Therefore we are able to compute the expected and discounted value, under C∗(X,Y,Q, t),
of any event or variable at each state point. To do so it is sufficient: (i) to retain the optimised
C∗(X,Y,Q, t); (ii) to replace the cash flow indicator function I at each state point with an
indicator function for the event of interest (e.g. to record the qualitative fact of a physical over-
delivery at any state point, set an indicator function 1C>D ; to record the size of a physical
over-delivery set C −D; to record its square, set (C −D)2, and so on); (iii) to run the model to
equilibrium backwards in time using the new I and unchanged C∗. The resulting value in each
X,Y,Q, t cell is the expected discounted value under C∗ (over the time horizon being evaluated)
of the outcome indicator in question. From this discounted value and the interest rate r the
undiscounted time-average of the required qualitative or quantitative variable over all trajectories
can be recovered.

(b) Effects on annuity returns AR= rV due to varying the ESD design
We return to comparing different ESD designs as in the subsection above, and we use the same
system balancing penalty as before, namely ζ = 0.5, but we now examine the effects on V due to
continuous variations in some of the important and expensive (design) parameters namely Qmax

and LC , LD .
Each solution is a hypercube of V (X,Y,Q, t) values, and £ year−1 annuity values are given

by the simple formula AR= raV where ra is the annual interest rate so as to remove the effect of
the interest rate from the valuation of a stochastic stream of cash flows. For intuitive clarity the
hypercube of V values is averaged over a truncated state space, so reducing the value function
V to a single representative scalar. This seems reasonable as a first approximation, because it is
not likely that an investor would base a decision to buy or design an ESD based on its behaviour
inside any small region of the state space, or of the design space.

The maximised value of the combined WPG and ESD is found by optimising the commitment
C as in (4.9) under the original forcing function I (4.2) so as to calculate the net present value of
operating the ESD in perpetuity. In the case of a known limit on system life this perpetuity value
can be easily adjusted to a finite annuity. In general there might be large positive or negative
payments at the end of the asset’s life, but these are not considered here, as they are a well
understood problem in more conventional ‘real options’ analysis.

The total problem of engineering and economic design for a complete WPG/ESD system has
three main steps: (i) calculate the NPV of the system’s maximised system earnings (income earned
less system balancing penalties) for various combinations of design or operating parameters
Qmax, LC and LD ; (ii) calculate the capital costs of building an ESD with each set of design
parameters, taking into account non-linear economies of scale in building and technology
readiness risks; (iii) optimise the investment decision overall, using conventional real-option tools
to model any long-term random or non-random walks in the financial variables, also including
realistic full costs of entry/exit.

In this paper we briefly consider step (i) only, and only for the ESD, because this is where the
present paper is more innovative. Hence we study the effects of changing the ESD’s operating
parameters (Qmax, LC =LD) on its income after balancing penalties. In figure 4 we vary two
design parameters of the modelled class of ESD: the horizontal axis continuously varies ESD
capacity Qmax, and the successively higher lines show the values of successively higher discrete
rates of charge/discharge (LC =LD). All these curves share a near vertical region close to the
origin. This suggests that much of the value of any ESD comes from smoothing over a period
of 10 to 15 minutes, where this value is near-uniform for all the designs plotted. This is because
Brownian variance is linear in time, and hence any losses proportional to the standard deviation
are proportional to the square root of the time interval.

Diminishing returns are seen in figure 4 to increase for both the capacity Qmax (continuous,
left to right on the horizontal axis), and the charge-discharge rate LC =LD (successive vertical
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Figure 4. The annuity returns added by the ESD, ARESD = raV − raV (Qmax = 0). The value is shown with LC and

LD ranging from 250 kW up to 1 MW (both are kept equal) and for a market with system balancing penalty parameter

ζ = 0.5. Annuity returns without an ESD are AR= rV (Qmax = 0) = 70583 £pa with ζ = 0.5.

jumps in the vertical axis direction). Taking Qmax = 1, ARESD = 11500 £ year−1, LC =LD = 250

kW as an arbitrary datum point for comparison, more value is added by quadrupling the charge
/discharge rate LC =LD to 1 MW than by quadrupling the capacity Qmax=4. The non-linear
response of gross system value V to changes in Qmax and LC =LD permits quite complex
economic trade-offs between Qmax and LC =LD . The optimum ESD design maximises the
(positive) NPV of ESD net earnings minus the capital cost of installing the ESD. The fact that
there are sharply diminishing returns to increases in ESD capacity and ESD charge/discharge
rate means that there can be (at most) one finite optimum size of ESD for a given WPG, if this pair
is to be optimised in isolation from others, as seen easily in the unrealistically simple case where
the capital cost of the ESD is linear in all of Qmax, LC , LD .

Looking next along the lowest value curve (for the lowest discharge rate) in figure 4, ∂ARESD
∂Qmax

is
approximately zero after Qmax = 2, therefore there is little gain from storage capacity exceeding
8 hours of the WPG’s peak output rate – at such a low discharge rate there is too little time for
a larger ESD ever to empty or fill completely. In contrast for the higher discharge rates in figure
4, close to LD =LC = 1 MW, the value is still increasing since ∂ARESD

∂Qmax
is significantly larger than

zero at the largest Qmax plotted, namely Qmax = 4. This was foreseen in the previous subsection,
in our discussion of figure 3. However while there is still always a slight gain from a larger ESD
(before its capital cost) the important feature of the top lines is that they crowd closer together.
This must be due to the fixed size assumed for the WPG and to the fixed volatilities assumed forX
and Y : eventually larger L∗ rates add almost nothing to smoothing or arbitrage, and larger Qmax

adds fewer and fewer opportunities for price arbitrage (due to moving deeper into the tail of the
demand distribution, even before allowing for the capital costs of doing so). Within this logic the
engineering design and the actual investment decision could be optimised simultaneously.

(c) Effects of the one-hour time delay between fixing C and the start of its
effect

In Figure 5 the size of the system balancing penalty ζ varies left to right on the horizontal axis, and
the effects of ζ on annuity return AR (vertical axis) are plotted for two states of ESD (present and
absent) and for two rules of price setting (with and without an hour’s delay between setting the
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Figure 5. The annuity return AR= rV from the wind farm combined with an ESD. The value is shown with and without

a smoothing ESD for an immediate commitment market and for a delayed market, varying the system balancing penalty

parameter ζ.

commitment C and the start of the hour committed). In all plots an increase in ζ reduces AR. The
plotted falls in AR are all initially non-linear in ζ. Over the range 0< ζ < 0.12 value falls steeply,
but at a diminishing rate; after this the falls in AR in all plots tend towards linearity in ζ. This
suggests some kind of saturation in the effects of higher ζ on the optimum policy itself: over the
range 0< ζ < 0.12, one can reduce penalties by making smaller commitmentsC. Losses tend to be
linear in the remaining variable, the penalty itself. The limiting case is when the ESD’s capacity
is zero, and when the commitment C must be set one hour before it becomes operative; both
apply to the lowest plot on figure 5. This plot shows the lowest level of AR, and also the earliest
approach to linearity in ζ. Conversely the highest of the value plots in this figure represents the
case with the highest physical and pricing flexibility. These plots show how changes in the market
arrangements (a delay in implementing C, and an increase in the system balancing penalty ζ) can
change the optimum size of an ESD, as well as changing the optimum rules for operating it.

6. Conclusions and future work
In contrast to the classic Black Scholes equation, which is purely financial and has no inertia or
dynamic lags, the PDE of this paper incorporates three modifications to enable it to model a
system which is partly physical and/or has ‘lagged’ deterministic dynamics:

a) there is a forcing term, I [£ h−1], which defines a rate of income or cost at every point
in the state space (this ensures that the system’s value is decided not at the instant of its
death, as in most financial options, but by the integration of income and expenditure over
its complete lifetime);

b) there is a control variable C which is continuous, but is reset only at discrete time
intervals; and

c) there is an ‘integration term’, that can model deterministic physical and/or financial
dynamics.

This integration term has the PDE’s units of [£ h−1], but it is the product of a purely physical
coefficient dQ

dt [MW] (which describes the deterministic dynamics of the storage system) and
a purely financial coefficient ∂V

∂Q [£/ MWh ] which is calculated by standard backward Black
Scholes diffusion methods. This type of PDE is suited to the stochastic dynamic optimisation of
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systems in which some of the physical and/or financial variables have deterministic dynamics.
Results in the present ‘proof of mathematical concept’ model show that in a future power system
which has high wind penetration, and therefore high system balancing penalties, a complex
dynamic balance must be, and can be, maintained in real time, between (i) present arbitrage
profits; (ii) all future arbitrage profits; (iii) the present system-balancing penalties; and (iv) all
future system-balancing penalties. Because this model sets absolute physical bounds and/or
absolute physical values, for both the WPG parameters and the ESD parameters, the model
can in principle jointly optimise the engineering design parameters, the operating rules and the
economical performance – with real options methods available to deal with longer-term stochastic
price drifts.

Future work could include energy management within the supply grid and storage problems
in general, not restricted to energy – e.g. financial system design/operation. Taking the energy
opportunities would involve: better estimates of the parameters for weather, prices, energy
storage and trading, plus tests for the model’s robustness to errors in these estimates; wider
opportunities within grid storage which would need more realistic dynamic models of energy
storage (e.g. electrical circuits and/or mechanical devices for energy storage); and more general
‘new modelling topics’ including the optimal design and/or operation of energy storage in
aircraft, ships and cars.

Data Accessibility. All software used was written in c++ code, parameter inputs are provided in the text.
The code is available to download from https://github.com/pjohno/WindFarmESDValuation.
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