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A statistical analysis of UK financial networks
by

J. Chu and S. Nadarajah
School of Mathematics, University of Manchester, Manchester, UK

Abstract: In recent years, with a growing interest in big or large datasets, there has been a rise
in the application of large graphs and networks to financial big data. Much of this research has
focused on the construction and analysis of the network structure of stock markets, based on the
relationships between stock prices. Motivated by Boginski et al. Boginski et al. (2005), who studied
the characteristics of a network structure of the US stock market, we construct network graphs of
the UK stock market using same method. We fit four distributions to the degree density of the
vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions,
and assess the goodness of fit. Our results show that the degree density of the complements of the
market graphs, constructed using a negative threshold value close to zero, can be fitted well with
the Fréchet and lognormal distributions.

Keywords: Degree density; Fréchet distribution; Lognormal distribution; Pareto distribution

1 Introduction

Large datasets have useful applications in many different areas, for example, science, engineering,
and computer science, to name just a few. Such large data sets can often be represented in terms
of large graphs, comprising vertices (or nodes) connected by edges. In the most simple case, we
can consider an undirected graph, say G(V,E), which is defined by the set of vertices V and edges
E ⊂ V × V connecting pairs of vertices (Boginski et al. Boginski et al. (2005)).

The applications of large graphs or networks has been studied greatly, and also spans across a
number of fields. For example, in chemistry, Chou Chou (1990)) applies large graphs to enzyme
kinetics and protein folding mechanisms; in ecology, Bunn et al. Bunn et al. (2000)) apply large
graphs to landscape and habitat connectivity; in engineering, Dobrjanskyj and Freudenstein Dobr-
janskyj and Freudenstein (1967) apply large graphs to the structural analysis of mechanisms. In
recent years, there has been a rise in the application of large graphs and networks to large datasets
in the area of finance. More specifically, the structure of stock markets, see Kullman et al. Kull-
mann et al. (2002), Jung et al. WS et al. (2006), Ping and Binghong Ping and Binghong (2006),
Zhuang et al. Zhuang et al. (2007), Tabak et al. Tabak et al. (2010), Zhang et al. Zhang et al.
(2010) and Vizgunov et al. Vizgunov et al. (2014).

In particular, networks constructed based on the relationships between stock prices have been
shown to follow a common distributional model. Kim et al. Kullmann et al. (2002) studied cross-
correlations in stock price changes among S&P 500 companies by a weighted random graph. They
found that the influence-strength distribution in absolute terms follows a power law. Huang et al.
Huang et al. (2009) used a threshold model to construct China’s stock correlation network and
studied the structural properties. After conducting a statistical analysis on the network, they also
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showed that it follows a power law model. Tse et al. Tse et al. (2010) created a complex network
of the US stock market and studied the correlations between closing prices of the stocks. Their
results found that the network shows a scale free distribution, and variations in the stocks were
heavily influenced by a small number of stocks. Boginski et al. Boginski et al. (2005) also studied
the characteristics of the graph representing the structure of the US stock market, using a network
representation based on cross-correlations of stock price fluctuations.

Let Pi(t) denote the price of stock i, i = 1, . . . , N , on day t, t = 1, . . . , T , where N is the
total number of stocks in the sample, and T is the total number of trading days in the time period

considered. Also, let Ri(t) = ln
(

Pi(t)
Pi(t−1)

)
be the log one-period returns of stock i, from time t−1 to

t. It follows that the correlation coefficient, Ci,j ∈ [−1, 1] for all i, j = 1, . . . , N , can be calculated
as:

Ci,j =
E (RiRj)− E (Ri)E (Rj)√

V ar (Ri)V ar (Rj)
, (1)

where E (Ri) is the average log returns of stock i over T days, E (RiRj) is the average of the
product of the log returns of stocks i, j over T days, and V ar (Ri) is the variance of the log returns
of stock i over T days (Boginski et al. Boginski et al. (2005)).

Define the market graph and its complement to be graphs with N vertices represented by each
of the stocks. Let θ ∈ [−1, 1] denote a threshold value, such that an edge connects a pair of stocks
(i, j) if Ci,j ≥ θ (market), or Ci,j ≤ θ (complement). Boginski et al. Boginski et al. (2005) used data
for 6546 financial instruments traded on the US stock markets over 500 consecutive trading days
in 2000-2002 and constructed graphs using various threshold values θ. They showed that under
certain conditions, the degree distribution of the vertices of the market graphs follows a power law
model.

This paper is motivated by Boginski et al. Boginski et al. (2005). Whilst Boginski et al.
Boginski et al. (2005) consider the degree distribution of network graphs of the US stock market,
we construct network graphs of the UK stock market, and fit various distributions to the degree
density of the vertices in these graphs. In our analysis, we find that for the market graphs of
the UK stock market, no particular model (including the Pareto I) gives a significantly better fit
compared with the others. However, complements of market graphs, constructed using a threshold
of θ negative and close to zero, can be fitted well with the lognormal or Fréchet distributions.

The contents of this paper are as follows. In Section 2, we give a brief overview of our dataset
and the construction of our network graphs. In Section 3, we describe the models fitted and the
criteria used for assessing the fit of the models. In Section 4, we present our results comparing the
performances of the fitted models. In Section 5, we give a short discussion of our results and their
relation to some recent related papers. In Section 6, we provide some concluding remarks.

2 Data and construction of the network graphs

The data set considered in our analysis consists of UK stock market data for stocks or financial
instruments traded on three UK stock markets: FTSE100, FTSE250, and FTSEAIM, over three
different time periods each of two years in length. These are the daily closing prices of each stock
listed on any of the three markets, for each trading day between the dates: i) 1st January 2000 - 31st
December 2001; ii) 1st January 2006 - 31st December 2007; iii) 1st January 2012 - 31st December

2



2013. These three periods have totals of T = 505, 505, 506 trading days, respectively. The stock data
were obtained using the Datastream package (Datastream International Datastream International
(2016)) and all analysis was performed using R (R Development Core Team R Development Core
Team (2016)). Note that we consider each time period independently, and for each two year period
we use only the data for stocks that were traded continuously throughout the time period - stocks
for which closing prices were available for all trading days within a two year period. For each of the
three periods, we have a total sample of N = 492, 1052, 991 stocks, respectively. Any stocks which
started trading (on a market) after the first trading day or ceased trading before the last day of
the two year period were omitted, and stocks with a significant amount of missing data were also
omitted.

We form our network model of the UK stock market by constructing network graphs using
the cross correlations of stock price movements, for each two year period. We build the graphs,
using (1), according to Boginski et al. Boginski et al. (2005)’s method as described in Section 1,
for a range of values of θ. To aid us in our computations, we consider the market graphs and
complements in terms of their adjacency matrices - these are N × N matrices, whose elements
represent the edges between stocks. The element (i, j), i, j = 1, 2, . . . , N , refers to the edge (link)
between stocks i and j, taking a value of zero if Ci,j < θ or one if Ci,j ≥ θ, for the market graph,
and vice versa in the case of the complement.

Whilst Boginski et al. Boginski et al. (2005) analysed the degree distribution of the market
graphs and their complements, for various values of θ, we consider the distribution of the degree
density of the market graphs and complements. The degree values of the stocks could be calculated
directly from the adjacency matrices, by totalling the number of edges of each stock - in other
words, summing up all the elements in each row of the matrices, to obtain N∗ ≤ N degree values
for each market graph and complement. Note that in the case of the market graph, we subtract one
edge from the total sum of each row to remove the ‘self-correlation’, correlation values of Ci,j = 1,
where i = j, i, j = 1, . . . , N , which would lead to an extra edge being accounted for, regardless of
the value of θ chosen. The number of degree values, N∗, is allowed to be less than the number of
stocks, as we do not consider a stock if it has a degree value (total number of edges) equal to zero.

3 Distributions fitted to the data

The Pareto I distribution has the probability density function (PDF) given by

f(x) =
αλα

xα+1

for x > λ > 0 and α > 0. Taking a very simple mathematical form, this is not a very flexible heavy
tailed distribution. We consider three other heavy tailed distributions that are more flexible: the
generalized Pareto distribution (GPD) given by the PDF

f(x) =
1

λp

(
1 + α

x− u
λ

)− 1
α
−1

for x > u if α ≥ 0, u < x < u − λ/α if α < 0 and λ > 0, where u is a fixed number known as
threshold and p is the probability that the data exceeds u; the lognormal distribution given by the
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PDF

f(x) =
1√

2παx
exp

{
−(lnx− λ)2

2α2

}
for x > 0, λ > 0 and α > 0; the Fréchet distribution given by the PDF

f(x) =
αλα

xα+1
exp

{
−
(
λ

x

)α}
for x > 0, λ > 0 and α > 0. Each of these PDFs can be monotonically decreasing or unimodal.
We have chosen them because of their simple mathematical forms. There are other heavy tailed
distributions which are even more flexible (for example, capable of allowing for bimodality), but
they come at the most of complicated mathematical forms often involving special functions. They
also suffer from estimation issues like identifiability.

Each distribution was fitted by the method of maximum likelihood, and to avoid possible
complications when fitting the distributions, we consider only those stocks which have at least
one degree. Suppose {x1, x2, . . . , xn} are independent observations. Then the maximum likelihood
estimates for the Pareto I distribution are

λ̂ = min (x1, x2, . . . , xn)

and

α̂ = n

[
n∑
i=1

lnxi − n ln min (x1, x2, . . . , xn)

]−1

.

The maximum likelihood estimates for the lognormal distribution are

λ̂ =
1

n

n∑
i=1

lnxi

and

α̂ =
1

n

n∑
i=1

lnxi −
1

n

n∑
j=1

lnxj

2

.

The maximum likelihood estimate of α for the Fréchet distribution is the root of

n

α
+

(
1

n

n∑
i=1

x−αi

)−1 n∑
i=1

x−αi lnxi +
1

α
ln

(
1

n

n∑
i=1

x−αi

)(
1

n

n∑
i=1

x−αi

)−1 n∑
i=1

x−αi

=
n

α
ln

(
1

n

n∑
i=1

x−αi

)
+

n∑
i=1

lnxi.

The maximum likelihood estimate of λ for the Fréchet distribution is

λ̂ =

(
1

n

n∑
i=1

x−α̂i

)− 1
α̂

.
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The maximum likelihood estimates for the GPD are the simultaneous solutions of

1 + α

λ2

n∑
i=1

(xi − u)

(
1 + α

xi − u
λ

)−1

=
n

λ

and

1 + α

αλ

n∑
i=1

(xi − u)

(
1 + α

xi − u
λ

)−1

=
1

α2

n∑
i=1

ln

(
1 + α

xi − u
λ

)
.

In addition to a visual comparison of the fits of the models to the true degree density, we also
assess the fitted distributions by other various criteria:

• the Akaike information criterion due to Akaike Akaike (1974) defined by

AIC = 2k − 2 lnL
(
Θ̂
)
,

where Θ is the vector of unknown parameters, Θ̂ is the maximum likelihood estimate of Θ
and k is the number of unknown parameters;

• the Bayesian information criterion due to Schwarz Schwarz (1978) defined by

BIC = k lnn− 2 lnL
(
Θ̂
)

;

• the Kolmogorov-Smirnov statistic (Kolmogorov Kolmogorov (1933), Smirnov Smirnov (1948))
defined by

KS = sup
x

∣∣∣∣∣ 1n
n∑
i=1

I {xi ≤ x} − F̂ (x)

∣∣∣∣∣ ,
where I {·} denotes the indicator function and F̂ (·) the maximum likelihood estimate of F (x).

The smaller the values of these criteria the better the fit. For more discussion on these criteria, see
Burnham and Anderson Burnham and Anderson (2004) and Fang Fang (2011).

We also used the chi-square goodness of fit statistic to compare of fits of the models, but its
values were similar to those of the Kolmogorov-Smirnov statistic. So, we shall not report values of
the chi-square goodness of fit statistic.

4 Results

In this section, we provide short graphical comparisons of the fits, for each of the three time
periods considered, of the fitted distributions to the true degree density of the market graphs
and their complements, generated under various threshold values of θ. We also compare numer-
ically the AIC and BIC values, the results of the KS test for the fitted distributions, for each
θ value. For each of the three time periods, we generated market graphs using threshold values
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θ = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, and the complements of the market graphs
using θ = −0.125,−0.1,−0.075,−0.05, −0.025.
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Figure 1: Comparison of the distributions of correlation coefficients, of the sample of stocks, in the
three time periods: i) 1st January 2000 - 31st December 2001 (solid black line); ii) 1st January
2006 - 31st December 2007 (dashed red line); iii) 1st January 2012 - 31st December 2013 (dotted
blue line).

A quick look at the distributions of the correlation coefficients of the samples of stocks (Figure
1), in each of the three time periods, reveals a similar shape to that of the equivalent distribution
in Figure 1 of Boginski et al. Boginski et al. (2005). We see that all three distributions are not
strictly symmetric or centred around zero, but are instead skewed slightly towards the right tail.
The distributions of the coefficients for the two periods covering 2006 - 2008 and 2012 - 2014 have
a higher peak density than that for the earliest period of 2000 - 2002. The density of correlations
in the range of 0 to 0.2 is higher for the earliest period, whilst the density of correlations between
-0.1 and 0, and in excess of 0.3, is slightly greater for the most recent two periods.

One of the key assumptions of the distributions in Section 3 is that data are independently
and identically distributed and have no serial correlation. We tested for no serial correlation using
Durbin and Watson Durbin and Watson (1950) Durbin and Watson (1951) Durbin and Watson
(1971)’s method. This gave the p-values of 0.122, 0.056 and 0.066 for the three data periods. We
tested for the independent and identical hypothesis using the difference sign, turning point and
the rank tests (Brockwell and Davis Brockwell and Davis (2002), Chapter 1). The p-values of the
difference sign test for the three periods were 0.122, 0.056 and 0.066. The p-values of the turning
point test for the three periods were 0.064, 0.195 and 0.120. The p-values of the rank test for the
three periods were 0.072, 0.174 and 0.123.

For the plots in the following subsections, the blue line denotes the Pareto I distribution; the
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green line denotes the Fréchet distribution; the yellow line denotes the lognormal distribution; the
purple line denotes the GPD.

4.1 Period 1: 1st January 2000 - 31st December 2001

The first period contains a total sample of N = 492 stocks, for which the daily closing prices on
each of the T = 505 trading days were available. We note here that the results and plots produced
are for a range of θ values smaller than that specified in Section 4, θ ∈ [0.1, 0.4] for the market
graph and θ ∈ [−0.125,−0.025] for the complements. For the values of θ which were omitted, the
degree density plots either had no real distinct shape or not enough data to be fitted.
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Figure 2: Comparison of the fitted distributions (using market graphs) for: θ = 0.1 (top left);
θ = 0.2 (top right); θ = 0.3 (bottom left); θ = 0.4 (bottom right).

In Figure 2, for the market graph of θ close to 0, i.e. θ = 0.1, it is hard to distinguish any real
fit between the fitted distributions. As θ increases to 0.2, it appears that the Fréchet and lognormal
distributions give the best overall fit, followed by the Pareto I distribution, and the least best fit
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is given by the GPD. Increasing θ further to 0.3, the best overall fit now appears to be given by
the the Pareto I distribution, and then by the Fréchet and lognormal distributions which appear
to show some overestimation. However, the GPD seems to provide the best fit to the upper part
of the density, where the other fitted distributions tail off and decay towards 0. With θ ≥ 0.4 the
results are similar to that of θ = 0.3, however, we note that the true density becomes more sparse
with some degree ranges having a density of zero. We also found that as the chosen threshold value
θ increased, the number of degrees of stocks decreased, and the total number of stocks with at least
one degree also fell. The upper limit of θ = 0.4 was therefore chosen, as it was found that using a
threshold value above 0.4 made it difficult get a reasonable fit from any of the fitted distributions.
This could be explained by the decrease in the number of nodes with at least one degree when θ
exceeds 0.4, due to the low density of stocks with correlations coefficients greater than 0.4.

Table 1: AIC and BIC values for the fitted distributions (using market graphs) for θ ∈ [0.1, 0.4].

AIC BIC

θ Pareto I Fréchet Lognormal GPD Pareto I Fréchet Lognormal GPD

0.1 6621.787 6008.05 5794.663 5653.215 6630.184 6016.447 5803.06 5661.612
0.15 5472.051 5175.919 5035.272 4820.501 5480.407 5184.275 5043.628 4828.857
0.2 3934.483 3891.716 3831.735 3531.416 3942.558 3899.792 3839.81 3539.492
0.25 2617.496 2671.312 2657.229 2358.229 2625.039 2678.855 2664.771 2365.772
0.3 1705.176 1794.992 1801.067 1519.499 1712.061 1801.877 1807.952 1526.383
0.35 1145.129 1198.558 1192.365 965.3112 1151.11 1204.539 1198.345 971.2921
0.4 859.4584 903.899 893.8395 644.3275 864.8594 909.2999 899.2404 649.7284

From Table 1, we observe that the lowest AIC and BIC values over all θ are given by the GPD,
suggesting that the GPD gives the best fit out of all the fitted distributions. For θ ≤ 0.2, the Fréchet
and lognormal distributions give the next lowest AIC and BIC values after the GPD, whereas for
θ > 0.2, the Pareto I distribution gives the next lowest AIC and BIC values after the GPD.
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Table 2: KS test for the fitted distributions (using market graphs) for θ ∈ [0.1, 0.4].

KS test

θ Pareto I Fréchet Lognormal GPD

0.1 0.3598 0.1712 0.1180 0.05596
(0.0000) (5.935× 10−13) (2.220× 10−06) (0.09174)

0.15 0.2698 0.1378 0.09681 0.1113
(0.0000) (2.240× 10−08) (0.0002385) (1.303× 10−05)

0.2 0.1961 0.1128 0.08002 0.1861
(2.054× 10−14) (4.653× 10−05) (0.009342) (4.918× 10−13)

0.25 0.1651 0.1084 0.1221 0.2315
(5.014× 10−08) (0.001063) (0.0001400) (2.220× 10−15)

0.3 0.2381 0.1506 0.1443 0.3020
(8.446× 10−12) (5.651× 10−05) (0.0001335) (0.0000)

0.35 0.2313 0.1645 0.1683 0.3979
(2.955× 10−07) (0.0006981) (0.0004820) (0.0000)

0.4 0.2818 0.2006 0.1852 0.3609
(5.161× 10−08) (0.0002852) (0.001055) (7.239× 10−13)

The corresponding p-values are given in brackets below the KS statistics.

The results of the KS test (Table 2) show that for θ close to zero, the GPD and lognormal
distributions produce the lowest KS statistics. For θ ≥ 0.2, the Fréchet and lognormal distributions
give either the lowest or second lowest KS statistics. Looking closer at the p-values, we find that
the majority are very small and close to zero - evidence (in these cases) at all significance levels
to reject the null hypothesis that the data comes from the respective fitted model. However, when
θ = 0.1 the GPD gives the lowest KS statistic with a p-value of 0.09174; when θ = 0.2 the lognormal
distribution gives the lowest KS statistic with a p-value of 0.009342; when θ = 0.25 the Fréchet
distribution gives the lowest KS statistic with a p-value of 0.001063; when θ = 0.4 the lognormal
distribution gives the lowest KS statistic with a p-value of 0.001055, respectively. Therefore, we
conclude that for θ = 0.1, at the 5% significance level we fail to reject the null hypothesis that the
sample degree data is drawn from a GPD.
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Figure 3: Comparison of the fitted distributions (using complement of market graphs) for: θ =
−0.025 (top left); θ = −0.05 (top right); θ = −0.075 (bottom left); θ = −0.1 (bottom right).

Moving on to the complement of the market graph, in Figure 3, we see that the differences
between fits are more pronounced. It can be observed from the plots that for θ very close to
zero, i.e. θ = −0.025,−0.05,−0.075, the shape of the true degree density of the complement of
the market graph differs from that of the original market graph. The peaks in the distributions
instead occur at a ‘low’ number of degrees slightly greater than the minimum. For θ = −0.025,
the best overall fit appears to be given by the lognormal distribution, the second best fit by the
Fréchet distribution, the third best fit by the GPD, with the Pareto I distribution giving the least
best fit overall. These results hold true as we decrease the value (increase in absolute value) of
θ to -0.05, and -0.075. The best overall fits continue to be given by the lognormal and Fréchet
distributions, whilst the Pareto I distribution underestimates the density for low degree values. At
θ = −0.1, for low degree values the Pareto I distribution seems to provide the best fit to the true
distribution. However, the best overall fit may arguably still be given by the Fréchet and lognormal
distributions, whilst the GPD gives the least best fit - overestimating the density at low degree
values. As was the case with the market graph, we find that the number of stocks with at least one
degree decreases, but more significantly as the value of θ decreases (increases in absolute value),
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which may be explained by the skew towards the right tail in the distribution of the correlation
coefficients (Figure 1).

Table 3: AIC and BIC values for the fitted distributions (using complement of market graphs) for
θ ∈ [−0.125,−0.025].

AIC BIC

θ Pareto I Fréchet Lognormal GPD Pareto I Fréchet Lognormal GPD

-0.025 5538.171 4801.396 4633.709 4768.367 5546.568 4809.793 4642.106 4776.764
-0.05 4673.118 4027.107 3896.3 3935.797 4681.507 4035.496 3904.689 3944.186
-0.075 3029.539 2883.193 2827.859 2628.777 3037.762 2891.416 2836.082 2637
-0.1 1420.476 1565.515 1607.256 1256.155 1428.116 1573.155 1614.896 1263.795

-0.125 435.2945 534.822 571.4838 401.5692 441.192 540.7195 577.3813 407.4668

Table 4: KS test for the fitted distributions (using complement of market graphs) for θ ∈
[−0.125,−0.025].

KS test

θ Pareto I Fréchet Lognormal GPD

-0.025 0.4105 0.1177 0.05124 0.1689
(0.0000) (2.395× 10−06) (0.1510) (1.289× 10−12)

-0.05 0.3785 0.1294 0.06823 0.1179
(0.0000) (1.502× 10−07) (0.02086) (2.412× 10−06)

-0.075 0.2923 0.1233 0.06540 0.09016
(0.0000) (2.221× 10−06) (0.04222) (0.001309)

-0.1 0.2849 0.1915 0.1599 0.2849
(0.0000) (3.698× 10−11) (6.518× 10−08) (0.0000)

-0.125 0.3972 0.2601 0.2222 0.3972
(0.0000) (1.030× 10−08) (1.799× 10−06) (0.0000)

The corresponding p-values are given in brackets below the KS statistics.

In comparison with Table 1 for the market graph, Table 3 shows that for θ negative and very
close to 0 (θ ≥ −0.05), the fitted lognormal distribution produces the lowest AIC and BIC values,
indicating that at these values it provides the best fit of all the distributions. However, as θ
decreases (increases in absolute value) the GPD gives the lowest AIC and BIC values (and best
fit), followed by the Pareto I giving the second lowest, with the lognromal and Fréchet distributions
giving the highest values.

The results of the KS test (Table 4) give a clearer picture, as for all values of θ the lognormal
distribution gives the lowest KS statistic. In general, the next lowest values are given by the Fréchet
distribution, then the GPD, with the Pareto I distribution producing the largest KS statistics for
all θ. These results are supported by the corresponding p-values from the test, as for values of
θ = −0.025,−0.05,−0.075 the p-values are 0.1510, 0.02086 and 0.04222, respectively, for the KS
test on the fitted lognormal distribution. This indicates that at the 10% (1%) significance level for

11



θ = −0.025 (θ = −0.05,−0.075) we fail to reject the null hypothesis that the sample degree data is
drawn from the lognormal distribution.

4.2 Period 2: 1st January 2006 - 31st December 2007

The second period that we examine contains a total sample of N = 1052 stocks, for which the
closing daily prices on each of the T = 505 trading days are available. For this two year period, we
computed and plotted the results for the whole range of θ values, as specified in Section 4.
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Figure 4: Comparison of the fitted distributions (using market graphs) for: θ = 0.1 (top left);
θ = 0.2 (top right); θ = 0.3 (middle left); θ = 0.4 (middle right); θ = 0.5 (bottom left); θ = 0.6
(bottom right) .

From Figure 4, we can immediately see a difference with the distributions for the first sample
period (Figure 2) - the degree density here is bimodal at low and high degree values, for θ close
to zero. However, none of the fitted distributions captures this, each fitting just one of the two
peaks well. For the degree density of the market graph with θ = 0.1, the best fit to the lower half
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of the distribution appears to be given by the Fréchet and lognormal distributions, followed by
the Pareto I distribution, with the GPD giving the best fit to the upper half of the distribution.
With θ = 0.2, 0.3, the Pareto I, lognormal and Fréchet distributions jointly give the best fit to the
lower half of the distribution, whilst the GPD continues to give the best fit over the upper part of
the distribution at large degree values. At θ = 0.4, the distribution is no longer bimodal, and the
overall best fit seems to be given by the GPD. For θ = 0.5, at low degree values the best fit appears
to be given by the Fréchet, lognormal and Pareto I distributions. When θ reaches our upper limit
of 0.6 we find that the GPD may give the best visual fit out of all the fitted distributions.

Table 5: AIC and BIC values for the fitted distributions (using market graphs) for θ ∈ [0.1, 0.6].

AIC BIC

θ Pareto I Fréchet Lognormal GPD Pareto I Fréchet Lognormal GPD

0.1 14803.99 13966.86 13752.03 13438.74 14813.9 13976.78 13761.95 13448.66
0.2 8412.983 8745.172 8746.506 7907.239 8422.435 8754.624 8755.958 7916.691
0.3 5177.502 5175.583 5046.303 3962.849 5185.569 5183.649 5054.369 3970.915
0.4 3693.377 3543.815 3415.152 3021.877 3700.771 3551.209 3422.546 3029.271
0.5 2182.37 2136.479 2089.138 1901.512 2189.255 2143.364 2096.023 1908.396
0.6 869.4814 902.8605 892.2891 721.8855 875.138 908.5171 897.9457 727.5421

The comparison of the AIC and BIC values from the fitted distributions are shown in Table
5. Again, for all values of θ the GPD produces the lowest AIC and BIC values, indicating that
the GPD may offer the best fit out of all the distributions fitted. In general, the next lowest AIC
and BIC values are given by Fréchet and lognormal distributions, with the Pareto I distribution
producing the most number of largest values across the range of θ.

Table 6: KS test for the fitted distributions (using market graphs) for θ ∈ [0.5, 0.6].

KS test

θ Pareto I Fréchet Lognormal GPD

0.5 0.2276 0.1203 0.09034 0.1724
(8.092× 10−11) (0.002506) (0.04606) (2.174× 10−06)

0.55 0.2033 0.1365 0.1210 0.2788
(5.855× 10−07) (0.002275) (0.009663) (1.028× 10−12)

0.6 0.2320 0.1600 0.1486 0.2698
(2.865× 10−06) (0.003335) (0.008037) (2.514× 10−08)

The corresponding p-values are given in brackets below the KS statistics.

Table 6 shows the results for the KS test for the fitted distributions using the market graphs.
We note that output for θ < 0.5 is omitted as the p-values corresponding to the KS statistics were
found to be zero or very small and insignificant. The largest p-values, relative to all others, can be
found at θ = 0.5, 0.55, 0.6 for the smallest KS statistics given by the lognormal distribution, where
the respective p-values are 0.04606, 0.009663 and 0.008037. From this, we conclude that at the 1%
significance level, for θ = 0.5, we fail to reject the null hypothesis that the sample degree data is

13



drawn from the lognormal distribution.
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Figure 5: Comparison of the fitted distributions (using complement of market graphs) for: θ =
−0.025 (top left); θ = −0.05 (top right); θ = −0.075 (bottom left); θ = −0.1 (bottom right).

In Figure 5, we notice that the results for the degree densities of the complements of the market
graph, in this second period, are similar to those from the first period. Again, with θ very close to 0,
the shape of the distribution differs from that when considering the market graph; the peak in the
distribution of the density occurs close to but not exactly at the minimum number of degrees. With
θ = −0.025, it appears that the best fit overall is given by the Fréchet distribution, the second best
by the lognormal distribution, the third best by the GPD, with the Pareto I distribution giving
the least best fit. These results continue to hold as we decrease θ (increase in absolute value)
further to -0.05 and -0.075. At θ = −0.1, the fit of all the fitted distributions is much more similar,
however the lognormal and Fréchet distributions still appear to provide the best overall fit. The
Pareto I distribution and GPD give the least best fit overall and show signs of underestimation and
overestimation, respectively.

A possible explanation for the similarity in results (relating to the complement of the market
graph) between the two periods, is that the distributions of the negative correlation coefficients in
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all periods, Figure 1, appear to be quite similar. Thus, due to the similarity in the distribution of
the negative correlation coefficients, we may expect the complements of the market graphs (using
negative θ values) in both this (and the third) period to be similar to that of the first. Therefore
we may hypothesise that the respective degree densities and the shape of the fitted distributions
to be very similar too.

Table 7: AIC and BIC values for the fitted distributions (using complement of market graphs) for
θ ∈ [−0.125,−0.025].

AIC BIC

θ Pareto I Fréchet Lognormal GPD Pareto I Fréchet Lognormal GPD

-0.025 12865.72 11131.17 11108.53 11688.57 12875.64 11141.09 11118.45 11698.49
-0.05 10756.18 9271.068 9201.071 9662.023 10766.1 9280.983 9210.986 9671.938
-0.075 8412.428 7449.771 7212.625 7157.561 8422.322 7459.665 7222.519 7167.455
-0.1 4114.2 4188.687 4177.259 3575.537 4123.638 4198.125 4186.697 3584.975

-0.125 1421.347 1656.218 1704.641 1249.465 1429.511 1664.382 1712.805 1257.63

From Table 7, we can also see a similar pattern to the first period in the information criteria
values for the complements of the market graphs. At θ very close to 0, the lognormal distribution
produces the lowest AIC and BIC values, indicating the best fit out of the fitted distributions. This
is followed closely, in second, by the Fréchet distribution. As θ decreases (increases in absolute
value), the GPD gives the lowest values for both (and the best fit), the Pareto I distribution follows
with the second lowest values, whilst the lognormal and Fréchet distributions give the largest values
for both.

Table 8: KS test for the fitted distributions (using complement of market graphs) for θ ∈
[−0.075,−0.025].

KS test

θ Pareto I Fréchet Lognormal GPD

-0.025 0.4093 0.03931 0.06791 0.2368
(0.0000) (0.07745) (0.0001221) (0.0000)

-0.05 0.3882 0.05385 0.05500 0.2100
(0.0000) (0.004511) (0.003464) (0.0000)

-0.075 0.3543 0.1245 0.06521 0.1250
(0.0000) (1.987× 10−14) (0.0002885) (1.577× 10−14)

The corresponding p-values are given in brackets below the KS statistics.

For the KS test in Table 8, we omit the results for θ < −0.075, as the p-values corresponding
to the KS statistics were found to be either zero or very small and insignificant. Those that were
significant showed a slight departure from the results for the test in the first period (Table 4). For
θ > −0.075 we find that the Fréchet distribution produces the most number of lowest KS statistics,
and the lognormal distribution giving the second most. Across the whole range of θ values the
highest KS statistics are given by the Pareto I distribution. The largest p-values are produced at
the θ values closest to zero (-0.025 and -0.05), however, these correspond to the lowest KS statistics
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given by the Fréchet distribution, as opposed to the lognormal distribution. We note that for
θ = −0.025,−0.05, these p-values are 0.07745 and 0.004511, respectively, thus we conclude that for
θ = −0.025 at the 5% significance level, we fail to reject the null hypothesis that the sample degree
data is drawn from the Fréchet distribution.

4.3 Period 3: 1st January 2012 - 31st December 2013

The final period considered contains a total sample of N = 991 stocks, for which the closing daily
prices on each of the T = 506 trading days are available. For this final two year period, we also
computed and plotted the results for the whole range of θ values, as specified in Section 4.
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Figure 6: Comparison of the fitted distributions (using market graphs) for: θ = 0.1 (top left);
θ = 0.2 (top right); θ = 0.3 (middle left); θ = 0.4 (middle right); θ = 0.5 (bottom left); θ = 0.6
(bottom right) .

The comparisons of the fitted distributions, in Figure 6, show very similar results to those in
Figure 4 for the second period. Again, the degree density is bimodal for θ values close to 0 but loses
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this property when θ ≥ 0.4. With θ = 0.1, the best fit to the lower half of the distribution appears
to be given by the Fréchet and lognormal distributions, followed by the Pareto I distribution, whilst
the GPD gives the best fit to upper half of the distribution. For θ = 0.2, 0.3, the Pareto I, lognormal
and Fréchet distributions jointly give the best fit to the lower half of the distribution, and the GPD
continues to give the best fit to the upper part of the distribution. When θ ≥ 0.4, the bimodal
property disappears, with the overall best fit appearing to be given by the GPD. As θ approaches
the upper limit of 0.6, the GPD may give the best visual fit out of all the fitted distributions.

Table 9: AIC and BIC values for the fitted distributions (using market graphs) for θ ∈ [0.1, 0.6].

AIC BIC

θ Pareto I Fréchet Lognormal GPD Pareto I Fréchet Lognormal GPD

0.1 12940.75 12222.75 12145.49 12124.28 12950.54 12232.54 12155.29 12134.08
0.2 7353.04 7541.859 7496.998 6733.124 7362.142 7550.962 7506.101 6742.226
0.3 4721.579 4739.022 4653.492 4052.203 4729.693 4747.136 4661.606 4060.316
0.4 2922.24 2886.202 2819.461 2505.441 2929.48 2893.443 2826.702 2512.682
0.5 1626.955 1634.281 1602.635 1382.236 1633.46 1640.785 1609.14 1388.74
0.6 673.4181 696.9042 691.9642 578.6943 678.7638 702.2499 697.3098 584.04

Over all values of θ tested, the GPD again gives the lowest AIC and BIC values (Table 9), leading
us to conclude that this result holds true for the market graphs in all three time periods. This
indicates that according to the information criteria, the GPD would be the preferred distribution
relative to the other fitted distributions. Overall, the second lowest AIC and BIC values are given
by the lognormal distribution, whilst the highest values are given by the Pareto I and Fréchet
distributions.

Table 10: KS test for the fitted distributions (using market graphs) for θ ∈ [0.5, 0.6].

KS test

θ Pareto I Fréchet Lognormal GPD

0.5 0.2337 0.1250 0.1145 0.2009
(1.724× 10−09) (0.005121) (0.01337) (4.032× 10−07)

0.55 0.2291 0.1224 0.1083 0.1903
(4.892× 10−07) (0.02595) (0.06664) (5.512× 10−05)

0.6 0.2056 0.1408 0.1338 0.2562
(0.0002356) (0.02880) (0.04325) (1.592× 10−06)

The corresponding p-values are given in brackets below the KS statistics.

From the KS test, we find that in all but two of the cases, for θ = 0.1, 0.15 (not shown) the
lognormal distribution gives the lowest KS statistics, whilst the Fréchet distribution gives the second
lowest. In general, the highest values were found to be given by the GPD for θ ≤ 0.35 and the
Pareto I distribution for θ > 0.35. However, we omit the results for θ < 0.5 as the p-values of the
corresponding KS statistics were found to be either zero or very small and insignificant. Where θ
is large (Table 10) we find the largest p-values, as in the equivalent KS test for the second period,
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Table 6. For θ = 0.5 the lognormal distribution gives the lowest KS statistic with a p-value of
0.01337; for θ = 0.55 the lognormal and Fréchet distributions give the lowest KS statistics with p-
values of 0.06664 and 0.02595, respectively; for θ = 0.6 the lognormal and Fréchet distributions give
the lowest KS statistics with p-values of 0.04325 and 0.02880, respectively. Thus, for θ = 0.55, 0.6
at the 1% level of significance, we fail to reject the null hypothesis that the sample degree data is
drawn from the Fréchet distribution; for θ = 0.5, 0.6 (θ = 0.55) at the 1% (5%) level of significance,
we fail to reject the null hypothesis that the sample degree data is drawn from the lognormal
distribution.
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Figure 7: Comparison of the fitted distributions (using complement of market graphs) for: θ =
−0.025 (top left); θ = −0.05 (top right); θ = −0.075 (bottom left); θ = −0.1 (bottom right).

As was the case for the market graph, the distributions of the complements of the market graph
in the third period, Figure 7, are also very similar to those in the first and second periods over all
θ. For θ close to 0, the best visual fit is given by the Fréchet distribution, second by the lognormal
distribution, third by the GPD, and the least best by the Pareto I distribution. As θ decreases
(increases in absolute value) these results still hold, with the Pareto I and GPD still showing some
underestimation and overestimation, respectively. However, the overall fit of all the distributions
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becomes much more similar. This result would seem to fit our expectations, due to the similarity in
the distribution of the negative correlation coefficients in each of the three time periods, as shown
in Figure 1.

Table 11: AIC and BIC values for the fitted distributions (using complement of market graphs) for
θ ∈ [−0.125,−0.025].

AIC BIC

θ Pareto I Fréchet Lognormal GPD Pareto I Fréchet Lognormal GPD

-0.025 12100.16 10986.85 10972.94 11655.52 12109.96 10996.65 10982.74 11665.32
-0.05 11073.94 9550.712 9531.659 10111.47 11083.74 9560.509 9541.456 10121.27
-0.075 9359.642 8051.588 7961.953 8238.138 9369.44 8061.385 7971.751 8247.936
-0.1 6167.447 5980.643 5930.941 5459.377 6177.111 5990.307 5940.605 5469.041

-0.125 2797.995 3100.486 3172.253 2448.657 2806.711 3109.201 3180.968 2457.373

This similarity in results continues for the information criteria, as Table 11 shows that for
θ ≥ −0.075 the lognormal distribution gives the lowest AIC and BIC values followed by the Fréchet
distribution, whilst for θ < −0.075 the GPD gives the lowest AIC and BIC values. This indicates
(as for the second period) that according to the information criteria, at θ negative and very close
to zero, the lognormal distribution gives the best fit of all models, but away from zero the GPD
gives the best fit.

Table 12: KS test for the fitted distributions (using complement of market graphs) for θ ∈
[−0.075,−0.025].

KS test

θ Pareto I Fréchet Lognormal GPD

-0.025 0.3183 0.05347 0.04761 0.2712
(0.0000) (0.006912) (0.02237) (0.0000)

-0.05 0.3917 0.04005 0.04912 0.2469
(0.0000) (0.08329) (0.01677) (0.0000)

-0.075 0.3787 0.06014 0.05607 0.1677
(0.0000) (0.001541) (0.003931) (0.0000)

The corresponding p-values are given in brackets below the KS statistics.

The results of the KS test are shown in Table 12, with the output for θ < −0.075 being
omitted due to the p-values of the corresponding KS statistics either being zero or very small and
insignificant. We note that the results again show that the largest p-values correspond to the lowest
KS statistics given by the Fréchet and lognormal distributions. In particular, for θ = −0.025 the
lognormal distribution gives the smallest KS statistic with a p-value of 0.02237; for θ = −0.05 the
Fréchet and lognormal distributions give the smallest KS statistics with p-values of 0.08329 and
0.01677, respectively. Thus, for θ = −0.025,−0.05 at the 1% significance level, we fail to reject the
null hypothesis that the sample degree data is drawn from a lognormal distribution; for θ = −0.05
at the 5% significance level, we fail to reject the null hypothesis that the sample degree data is
drawn from the Fréchet distribution.
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5 Discussion

The differences between the true distributions of degree density of the market graphs using data
from period 1 compared with periods 2 and 3, could be explained by the differences in the original
distribution of correlation coefficients in Figure 1. The number of stocks considered in period 1 was
approximately half the number in periods 2 and 3, thus the number of correlation coefficients for
period 1 was approximately a quarter of that in periods 2 and 3. Further to this, the distribution
of the coefficients in period 1 has a smaller range, whilst those for periods 2 and 3 have a higher
peak density and a higher density of large correlation values above 0.3. This may also explain the
bimodal nature of the degree densities of the market graphs in periods 2 and 3 (Figures 4 and 6).

It appears that, in the case of the market graphs, no definitive conclusion could be made about
the best fitting distribution to the degree density. Visually, although we note may be misleading,
the fitted distributions to the degree density of market graphs across the three periods show a
similar pattern. For market graphs constructed with a low threshold θ, the Fréchet, lognormal and
Pareto I distributions give a reasonable fit to the lower part of the distribution, whilst the GPD
gives a reasonable fit to the upper part of the distribution. For market graphs constructed with a
high threshold θ, the GPD appears to give the best fit overall.

However, for all threshold values θ in the three periods, the GPD gives the lowest AIC and BIC
values indicating that according to the information criteria this would be the preferred model out
of those that were fitted. In terms of the KS test, we find that the majority of tests on the fitted
distributions are insignificant due to very small p-values. Although, for θ = 0.1 in period 1 the
GPD gives the smallest KS statistic with a p-value of almost 0.1 - agreeing with the result from
the information criteria, whilst for θ = 0.5 in period 2 the lognormal distribution gives the smallest
KS statistic with a p-value of almost 0.05 - partially agreeing with the information criteria result
(with the lognormal distribution giving the second lowest AIC and BIC values in this case).

On the other hand, we find that the true distributions of degree density of the complement of
market graphs are much more similar, for each threshold value θ, across the three periods. This
may be due to the similarity in the shape of the distributions of the negative correlation coefficients
for each of the three periods analysed (Figure 1). Visually, the Fréchet and lognormal distributions
appear to give the best fit overall to the true distributions of degree density. For θ negative and
close to (further from) zero, the lognormal distribution (GPD) gives the lowest AIC and BIC
values. Indeed, in periods 2 and 3 the lowest AIC and BIC values from the lognormal distribution
are followed by the Fréchet distribution giving the second lowest values for both criteria, showing
agreement with the visual fit.

The KS test also appears to show agreement with these results, as in period 1 the lognormal
distribution gives the smallest KS statistics with statistically significant p-values, as high as 0.15,
at θ values negative and close to zero. In the second period, the Fréchet distribution gives the
lowest KS statistics with significant p-values, for θ negative and close to zero. In the third and final
period, for θ negative and close to zero, the lognormal and Fréchet distributions give the lowest KS
statistics (in comparison with the GPD and Pareto I distribution) with significant p-values.

Many recent papers that have studied financial networks and the construction of network graphs
have explored the alternative statistical route of multiple decision procedures. For example, in
Koldanov et al. Koldanov et al. (2013) the construction of sample market graphs for a financial
network (as in our analysis) is the procedure of the identification of the true market graph, and
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this identification problem is treated as a multiple decision problem of the selection of one from a
set of hypotheses.

Koldanov et al. Koldanov et al. (2013) compute a simulation study in which the random
vector of random variables representing the daily returns of a stock are distributed according to a
multivariate normal distribution or a multivariate Student-t distribution. The main results from
the study are that the method of market graph construction is i) “optimal in the class of all unbiased
statistical procedures if, for the generating hypotheses testing, one uses the tests of the Neyman
structures”; ii) “optimal in a restricted class of unbiased statistical procedures if, for the generating
hypotheses testing, one uses the classical Pearson correlation tests” (Koldanov et al. Koldanov et al.
(2013)). In the former case, edges connect two stocks (i, j) if the sample correlation si,j exceeds a
predetermined threshold ci,j . However, whereas our threshold value θ was chosen arbitrarily, the
threshold ci,j utilises the conditional distribution of si,j from the Wishart distribution. In the latter
case, edges connect two stocks (i, j) if the sample correlation si,j exceeds a predetermined threshold
c. Indeed, our method appears more similar to this case and is in fact optimal in this class for the
special choice of a significance level α = 0.5.

The statistical procedure of stock selection by using the Sharpe ratio is considered in Koldanov
et al. (2015). The problem of stock selection is presented as a multiple decision problem of choosing
(by observations) one hypothesis from a set of hypotheses. In the study, two well known multi-
ple testing statistical procedures are compared, these are the Holm step down procedure and the
Hochberg step up procedure. Given a set of observations of a random variable describing a char-
acteristic of stocks in a financial market, stocks are selected if the condition Shi > Sh0 is satisfied,
that is, the Sharpe ratio of a stock (Shi) exceeds a threshold value (Sh0). The conditional risk of
the two methods as a function of the threshold is explored. For a real financial market which shows
a concentration of Sharpe ratios, it is shown to be more appropriate to use the Hochberg procedure
for stock selection; in all other cases, the Holm procedure may be better suited. Arguably, this
could be viewed as an alternative method for stock selection to what could be achieved through the
method used in our paper. By constructing the complements of the market graphs for threshold
values θ negative and less than zero, one could select stocks and build a portfolio of stocks which
are interconnected in these graphs. For example, this may enable one to choose stocks whose re-
turns move in opposite directions, which would offset each other and help to diversify risk in an
investment portfolio.

Kalyagin et al. Kalyagin et al. (2016) propose a general method for multivariate network
construction based on measures of association. In relation to Kalyagin et al. Kalyagin et al.
(2016), our analysis can be categorised as the construction of threshold graphs for UK financial
networks, with the aim of recovering the reference threshold graph from observations. This provides
the simplest statistical procedure for the identification of the reference threshold graph (a subgraph
of the reference network). Due to the measure of association chosen in our method, the network
graphs constructed can be classed as Pearson correlation networks. Kalyagin et al. Kalyagin
et al. (2016) show that the problem of identifying the reference threshold graph, from observations
of attributes of nodes in a multivariate network, can be solved in terms of a multiple decision
problem — again, as the selection of one from many hypotheses. In their study, they conclude
that for a random vector of nodes in a network with a fixed multivariate distribution, it is possible
to construct various reference networks which relate to a particular measure of association, e.g.
Pearson correlation network, Kendall correlation network, Spearman correlation network, etc.
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6 Conclusions

In our analysis, we have fitted four distributions: i) Pareto I distribution; ii) Fréchet distribution;
iii) lognormal distribution; iv) generalised Pareto distribution, to the degree density of financial
network graphs constructed from correlation coefficients of pairs of stocks in the stock markets,
according to various threshold values of θ ∈ [−1, 1], over three different time periods. Our data set
consisted of the daily closing prices of stocks listed on one of three UK stock markets: FTSE100;
FTSE250; FTSEAIM, over three time periods each of two years in length covering: 2000 - 2002;
2006 - 2008; 2012 - 2014.

We followed Boginski et al. Boginski et al. (2005)’s method to construct the network graphs,
using positive threshold values of θ for market graphs and negative threshold values θ for the
complement of the market graphs. Although our data set consists of UK stock data, as opposed to
Boginski et al. Boginski et al. (2005) who considered US stock data, our analysis covers the same
time period as Boginski et al. Boginski et al. (2005) in addition to two more recent periods.

Our results show that for the degree density of market graphs, constructed using positive values
of the threshold θ, none of the fitted models performs significantly better than others. Observing
the plots of the distributions, it appears that (in general) for low values of θ the Fréchet, lognormal
and Pareto I distributions give a reasonable fit to the lower part of the true distribution, whilst the
GPD gives a reasonable fit to the upper part. For higher values of θ the GPD may give the best
fit overall. However, according to the information criteria, the GPD would be the preferred model
out of the fitted distributions, for all θ across the three time periods.

On the contrary, for the degree density of the complement of the market graphs, constructed
using negative values of the threshold θ, the Fréchet and lognormal distributions appear to give
the best fit with θ close to zero. This is supported by the fact that they give the lowest and second
lowest AIC and BIC values when θ is close to zero. Furthermore, the lowest (and significant) KS
statistics are also either given by the lognormal and Fréchet distributions for θ close to zero.

This work could be extended to analyse stock market data for other countries, in particular
for the US. For example, we note that for our data set the distributions of the degree density of
market graphs in the second and third periods differ from those in the first. In particular, when
using a low threshold θ the true distributions in periods 2 and 3 appear to be bimodal. It would
therefore be interesting to see whether this pattern can be found, over the same time periods, when
using data from other international stock markets, such as the US, or whether this may be due to
the dependence and correlation between stocks in the UK markets only. In addition, it would be
of interest to test whether the Fréchet and lognormal distributions fit well to the degree density of
the complement of market graphs, for other stock data too.

Also, one measure of the goodness of fit used was the information criteria, the Akaike and
Bayesian information criteria. Both of these measures are dependent on the number of estimated
parameters in the model, k, however, in our analysis our four fitted models each have k = 2
estimated parameters. A natural extension to this could be to extend the number of distributions
fitted (including those with a different number of parameters) and utilise a greater number of
goodness of fit tests.

Finally, we acknowledge that our results only scratch the surface in terms of network analysis
of stock market graphs. With regards to the UK stock market network, the next step would be
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to evaluate and analyse some of the many network measures, such as network disparity; graph
centrality; closeness centrality; domination power; clustering coefficients; minimum spanning tree.
This would allow for a deeper understanding of the complexities of the UK stock market network.
Another step is to use more flexible distributions to account for bimodality of some of the data
sets.
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