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Abstract—Exascale performance will be delivered by systems
composed of millions of interconnected computing cores. The way
these computing elements are connected with each other (network
topology) has a strong impact on many performance character-
istics. In this work we propose a multi-objective optimization-
based framework to explore possible network topologies to be
implemented in the EU-funded ExaNeSt project. The modular
design of this system’s interconnect provides great flexibility
to design topologies optimized for specific performance targets
such as communications locality, fault tolerance or energy-
consumption. The generation procedure of the topologies is for-
mulated as a three-objective optimization problem (minimizing
some topological characteristics) where solutions are searched
using evolutionary techniques. The analysis of the results, carried
out using simulation, shows that the topologies meet the required
performance objectives. In addition, a comparison with a well-
known topology reveals that the generated solutions can provide
better topological characteristics and also higher performance
for parallel applications.

I. INTRODUCTION

Exascale computing is the next challenge for the supercom-
puting community aiming to deliver exaflop-capable systems.
To achieve this computing power, these systems must be
composed of millions of interconnected nodes (cores) in order
to execute massive parallel applications. The way these nodes
are connected determines the topology of the network and has
a great impact on the theoretical (and real) performance of the
system. There are many possible topologies that can be used
to build parallel systems, such as the classic torus and tree or
more recent proposals such as Dragonfly [1]. The properties of
these topologies are well-known and are used to build state-of-
the-art supercomputers such as the Blue Gene family [2], [3],
the future Summit supercomputer [4] or many systems from
Cray Inc. [5], [6]. Recently, randomly constructed topologies
have been proposed that seem to have better properties than
the classic ones [7].

The European Exascale System Interconnect and Storage
project (ExaNeSt) [8] is currently designing and building a
prototype architecture capable of reaching Exascale computa-
tion. The aim of ExaNeSt is to develop a system that can be
scaled up to the tens of millions of interconnected low-power-
consumption ARM cores [9] to solve large-scale scientific and
big data problems. In order to support a system of this size

ExaNeSt is confronted with the huge challenge of designing an
interconnect able to meet very strict performance, resilience,
and cost constraints for a range of computational challenges.

The ExaNeSt Interconnect is a multi-tier interconnect
which, for the purpose of this paper, can be divided into two
distinct parts. The lower tiers, which are physically fixed by
means of boards and backplanes, and the higher tiers which
are fully reconfigurable and use FPGA-based routers allowing
the computing and networking elements to be rearranged,
forming different topologies. This flexibility allows us to build
topologies that connect routers directly among themselves or
indirect/hybrid topologies using some external elements (such
as custom 3rd party FPGA-based interconnects or standard
off-the-shelf commodity switches).

This flexibility offers the possibility of favouring topologies
that prioritise one (or several) of the following objectives:
reach specific performance levels (i.e. applications with known
communication patterns), achieve fault tolerance requirements
or maintain certain cost-efficiency levels. However, the large
size of the system together with its reconfigurable capability,
leads to an extremely large design space that is impossible
to be processed manually. This means that we either restrict
our system to standard topologies as the ones mentioned
above or we automatise the exploration of the search space
by considering specific design constraints.

This is precisely the focus of this work, i.e. the development
of a framework to guide the selection of network topologies
that favours some specific characteristics. More specifically,
we use multi-objective optimization strategies that allow rapid
converge to high quality solutions. In particular, we evaluate
two well-know evolutionary strategies with problem-specific
crossover and mutation operators. The use of multi-objective
optimization enables us to search for designs with several
characteristics of interest. In the case of ExaNeSt, the main
design aims are to maximise performance and fault tolerance,
whilst keeping the cost of connectivity as moderate as possible.
With this in mind, we have developed objective functions that
maximize the bisection bandwidth and the path-diversity while
minimizing the number of physical connections.

The solutions generated by the optimization framework are
studied in order to determine which optimization strategy



provides the best results. We compare not only the numerical
values of the objective functions but also some properties of
the topologies generated. However these properties are static
and do not fully reflect the behaviour of the system during
real operation. For this reason, we extend our analysis to
measure several metrics when simulating a realistic workload
using INRFlow, a flexible simulation tool able to deal with
arbitrary networks and workloads. We compare the optimized
topologies against an irregular network. Results show that
the framework is able to design network topologies with the
desired characteristics, and that applications running in those
designs perform the best.

The remainder of this paper is organized as follows: Section
II details specifics about the ExaNeSt architecture focusing
on the interconnect. Section III describes characteristics that
should be considered to design it. Then we formulate the
problem of generating network topologies as a multi-objective
optimization problem describing the evolutionary techniques
used (Sections IV and V). We then assess the benefits of
our approach using the experimental framework explained in
Section VI. These results are analysed and discussed in Section
VII. We conclude in Section VIII with some conclusions and
future lines of work.

II. BACKGROUND AND MOTIVATION

In this section we describe the architecture of the ExaNeSt
project that aims to build an exascale system. One of the
main characteristics of this system, in contrast with traditional
supercomputers, is the placement of storage devices physically
close to the computing elements. This new approach will avoid
excessive latency and energy consumption because data will
be frequently available in local devices. However, such a novel
storage organization comes with the challenge of implement-
ing a single, unified interconnect to handle both storage and
application traffic whilst at the same time maintaining system
power and cost constraints. To address this challenge, the
Exanest interconnect will require a well-designed topology,
able to minimize latency and number of hops while providing
high bisection bandwidth.

Figure 1 depicts a general overview of the ExaNeSt project
architecture. The computing power of ExaNeSt is provided
by a combination of low-power ARM cores [9] and hardware
accelerators (FPGAs [10]) referred to as a Computing Element
(CE), this is the minimum building block used in ExaNeSt.
The next level of ExaNeSt is the Chassis, this is composed
of six interconnected CE’s using a backplane that delivers
high-bandwidth connectivity (each CE is provided with 64
links), whilst reducing the costs and power consumption of
external cables and transceivers. In addition, each chassis
contains two routers with a number of variable links (L) that
are used to interconnect multiple chassis. As these routers
are implemented on FPGAs, L can vary in order to deliver
interconnects with different characteristics. Up to 16 chassis
can fit inside a cabinet. The complete system can be composed
of up to 256 cabinets.
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Fig. 1: Representation of the network architecture of the
ExaNeSt project. It is composed of a number of cabinets (CB)
that house several chassis (CH). Each of these chassis contains
six computing elements and two routing elements (R) with
up to L network interfaces (denoted as ‘links’ in our model
below). Connections between routers are not restricted within
the same cabinet being possible to directly connect routers in
different CBs.

The interconnection among chassis can be performed fol-
lowing two alternatives: one is the use of a direct topology
in which we connect the routers directly without using in-
termediate networking elements. In this scenario connections
among chassis housed in different cabinets are allowed. The
second alternative is to build an indirect topology in which the
chassis are interconnected using either custom-made or off-
the-shelf commodity switches. Looking at the interconnection
architecture a third alternative, a hybrid network, could be
easily constructed. In this case we would use a direct topology
within the same cabinet and use Top-of-Rack (ToR) switches
to interconnect multiple cabinets. In this paper, we restrict
our framework to generate direct topologies for the sake of
simplicity, but adapting it to generate other kind of topologies
should be possible and is left as future work.

III. MODELING THE CHARACTERISTICS OF AN
INTERCONNECT

As explained in the previous section, ExaNeSt’s flexibility
allows for the construction of different arrangements among
the chassis. In particular, we can select the number of links
that are used to interconnect the networking elements. In this
section we define characteristics desirable for interconnection
networks which will be used to build a model. The aim is
to use it to guide the design of the network topology. The



following three characteristics are key for the construction of
the ExaNeSt interconnect:

Fault Tolerance: Fault tolerance is the property that enables
a system to continue operating properly in the event one or
more of its components fails. In the context of interconnects,
we are mostly concerned with failures that prevent messages
from reaching their destination due to single node failure.

Performance of the Applications: The final objective of Ex-
aNeSt is the execution of large distributed (scientific and data-
driven) applications. Therefore achieving high performance in
the interconnect is of great importance. In order to reach this
goal, low-diameter and high-bandwidth topologies together
with high path-diversity between all sources and destinations
are essential.

Deployment and maintenance cost: Another important char-
acteristic is the cost of the interconnect. To keep this low, we
should reduce the number of external cables and associated
transceivers that are used to interconnect chassis. Moreover,
reducing the number of components will also decrease the
power consumption of the interconnect thus reducing opera-
tional expense.

These characteristics can be achieved by tuning the net-
work parameters at design time and measuring the network’s
capability against the specific requirements listed above. How-
ever, since there is not just one metric that permits driv-
ing/modelling all given characteristics, we must define the
minimal set that when put together cover each of these
characteristics. These metrics are as follows:

The Bisection Width is the minimal number of links that need
to be cut in order to split the system into two distinct parts.
This metric is a good indicator of the performance (aggregate
throughput) and the fault tolerance of the system (minimum
number of link failures to physically disconnect the network).

The Path-Diversity, i.e., the number of non-overlapping,
shortest paths among pairs of nodes, is a good indicator
for both the expected performance of applications and the
fault tolerance of the network. In terms of performance,
the existence of multiple minimal paths between computing
elements allows the avoidance of network congestion and the
efficient use of network bandwidth. Regarding fault tolerance,
the higher the number of paths to reach all the destinations
the greater the ability of the system to continue working in
case of multiple link failures.

The Number of Links used to interconnect the chassis. The
relation of this metric with the cost and power consumption
is clear. Reducing this metric could have a negative effect on
the other two metrics. For the purpose of this paper, we define
a link as a port in one router. Therefore a connection (cable)
between two routers will be defined as a tuple with two links.

These three metrics are good indicators of the practical
characteristics that we need for ExaNeSt and depend solely on
the topology. For this reason we need to develop topologies
in which these metrics are optimized. However, performing

such optimizations by hand is challenging as the optimizations
of these metrics conflict (see above). In the following two
sections we describe the optimization techniques used to
develop such topologies and how we implement the metrics
to measure the properties.

IV. MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS

This section describes the optimization algorithms used in
this work to solve the problem of the generation of network
topologies, formulated as a multi-objective problem. We have
selected two multi-objective evolutionary algorithms: NSGA-
II and SMS-EMOA.

At each step of the optimization process (called genera-
tion), each of the algorithms maintains a set (population) of
individuals (candidate solutions for a given problem). The
quality of a solution is assessed using several fitness functions
(objectives) that represent the (possibly constrained) problem;
in this case, connections between different switches. Typically,
at each generation the most promising individuals are chosen
using a selection criterion and included in the new population.
The rest of the population for the next generation (offspring)
are then created by applying operators (e.g. crossover and
mutation) to a set of individuals of the current population,
to alter their structure and search the solution space. The
optimization process is repeated until the stopping criterion
is fulfilled.

The result of this optimization process is a set of solutions
that simultaneously optimize each of the objectives (the Pareto
set). The value of the functions achieved by the Pareto optimal
solutions is called the Pareto front. Formally, we define a
multi-objective optimization (minimization) problem subject
to some restrictions as:

min{f1(x), . . . , fNObj
(x)} (1){

gj(x) = 0 j = 1, . . . ,M,
hj(x) ≤ 0 j = 1, . . . ,K

(2)

where fi is the i − th objective function, x is a vector that
represents a solution, Nobj is the number of objectives, M+K
is the number of constraints, and gj and hj are the constraints
of the problem.

Now we explain each of the two optimization algorithms
tested in this work. The main difference between them relies
on the selection criterion used to choose the best candidate
solutions at each generation.

Non-dominated Sorting Genetic Algorithm II: The aim of
the NSGA-II [11] algorithm is to improve the adaptive fit of a
population of candidate solutions to a Pareto front constrained
by a set of objective functions. The population is sorted into a
hierarchy of sub-populations based on the ordering of Pareto
dominance. Similarity between members of each sub-group is
evaluated on the Pareto front, and the resulting groups and
similarity measures are used to promote a diverse front of
non-dominated solutions.



S Metric Selection EMOA: SMS-EMOA selects the best
candidate solutions using the hypervolume indicator (S metric)
[12]. This measure is consistent with the concept of Pareto-
dominance; the set of solutions with the highest value of
the indicator dominates other sets. The algorithm’s population
evolves to a well-distributed set of solutions, thereby focusing
on interesting regions of the Pareto front.

V. DEFINING THE OPTIMIZATION PROBLEM

The aim of this work is to find suitable arrangements
between the links provided by the network routers in order
to define the topology among them. Taking as a starting
point a random assignment among the links, we will use a
multi-objective optimization algorithm to obtain designs with
the desired properties. This optimization has the following
objectives; to maximise the bisection width and increase the
path-diversity whilst at the same time minimizing the number
of links. In this section we focus on the formal definition of
this particular optimization problem, as well as on the specific
crossover and mutation operators needed by the two multi-
objective optimization algorithms being evaluated.

A. Problem Definition

Given the description of the architecture of the chassis,
i.e., the number of links per router R available to make the
interconnections, the number of chassis per Cabinet N ≤ 16
and the number of Cabinets M ≤ 256, the link assignment
involves finding a bijection ϕ between the set of links (L)
that assigns each link l ∈ L to other link l′ ∈ L:

ϕ :L→ L

l 7→ ϕ(l) = l′

There are several possibilities to represent the solutions
of this problem. The most simple would have the form
s = (s(1), . . . , s(2×R×N ×M)) = (l′1, l

′
2, . . . , l

′
2×R×N×M )

representing that the link i is connected with the link s(i) = l′i.
Solutions to this problem must obey two restrictions: connec-
tions among the same router and within the same chassis are
not allowed because they are already connected internally.

Modelling the problem like this has three disadvantages: the
size of the solutions space, the length of the solutions (up to
8192 × 2 × R for the largest possible system) and the fact
that, if we do not put additional restrictions, we will obtain
most likely completely irregular topologies. For these reasons
we have developed an alternative way to model the problem
in order to reduce those drawbacks.

The new model only considers the connections of one
chassis and builds the rest of the network by symmetry. The
new representation has the form s = (s(1), . . . , s(2 × R)) =
(l′1, l

′
2, . . . , l

′
2×R) where:

• s(i) ∈ [(R×2)− i+1, (N×R×2)− i] if the connection
is made within the same cabinet (internal link) or

• s(i) ∈ [(N ×R× 2)− i+ 1, (M ×N ×R× 2)− i] for
connections among different cabinets (external links).

T=(2,4,2)

s=(5,17,8,22)

Fig. 2: Example of how an individual translates into a network
topology. Red and green arrows represent internal links (same
cabinet) while blue and pink arrows represent external links
(different cabinets). For the sake of clarity we have only
represented some of the connections.

This alternative representation reduces the size of the solu-
tion space, the length of the solutions and provides a degree of
regularity to the network. In addition, it allow us to consider
solutions with the form s(i) = 0 in order to leave links unused.
Notice that due to the new representation, the parameter R
translates into routers of size 2 × 2 × R. It is possible that a
solution generates an invalid topology because it is not fully
connected. In that case it will be removed using a scheme
detailed below.

In Figure 2 we have represented an example of how a
solution translates into a real network topology. Given the
problem parameters T = (R = 2, N = 4,M = 2) and a
solution s = (5, 17, 8, 22), let us focus on the first chassis.
Links 1 and 3 are connected to links (1+5) and (3+8) within
the same cabinet because s(1) = 5, s(3) = 8 < N ×R = 16.
The remaining red links indicate how the rest of the topology
is populated (5 → 10, 9 → 14, 13 → 2). The other links
in the first chassis (green and pink) connect to the second
cabinet (s(2) = 17, s(4) = 22 ≥ N × R = 16). We have
also represented how the last chassis connects the second
link (blue) with the first cabinet. For the sake of clarity we
have represented just a few examples but the process to fully
populate the network is the same.

As explained above, three major selection criteria will be
considered to choose a link assignment. First, we favour solu-
tions that maximize the bisection width and the path diversity.
Both criteria try to positively impact the fault tolerance and
the theoretical performance of the network. The third criterion
reduces the cost because, otherwise, the solutions would use
all the links in order to increase the other criteria. In addition,
it indicates the amount of fault tolerance and connectivity that
can be expected using different number of links. This is very



useful because, as we said in Section II, the use of FPGAs
permits the implementation of a variable number of links in
the deployment stage.

B. Objective Functions

More formally, we describe the link assignment as a three-
objective optimization problem. Given B a function that
returns the bisection of a graph, the first objective function
to maximize is defined as follows:

f1(s) : B(G) (3)

where G is the graph that represents the topology. It is
well-known that the bisection problem is NP-Hard. For that
reason we have used the very efficient Kernighan/Lin heuristic
algorithm. For further details check the original paper [13].

Given a solution s, we define the function SDP (s, o, t)
(Shortest Disjoint Paths) that returns the largest set of disjoint,
minimal paths between an origin, o, and a target, t. Based on
SDP, we define the second objective function to maximize as:

f2(s) : 2×
∑|G|

i=1

∑|G|
j=i+1 |SDP (ai, aj)|

(|G|+ 1)× |G|)
(4)

where |G| is the number of routers and ai, aj ∈ G and f2 is
the average number of paths between all pairs of routers in
the topology. This function only considers disjoint paths.

The third objective to optimize is the number of links of the
routers used to interconnect the chassis. Given a solution s we
define the set of active links for this solution as As = {∃i ∈
{1, . . . , 2×R} s.t. s(i) > 0}. Therefore the third function to
minimize is defined as:

f3(s) : |As| (5)

C. Problem-specific Operators

As stated before, at each generation the optimization algo-
rithms must evolve the current population using crossover and
mutation operators. In this work, we have developed specific
operators that consider the characteristics of the problem.

1) Guided Crossover Operator: Crossover is applied with
probability Pcross. The crossover operator combines two indi-
viduals (or parents, pa1 and pa2) to generate two new candi-
dates (or children, ch1 and ch2). First two points, 1 ≤ c1 ≤ R
and R+1 ≤ c2 ≤ 2×R, are generated uniformly at random.
Then, elements 1 to c1 and R + 1 to R + c2 of pa1 and pa2
are exchanged to generate ch1 and ch2. At this point we need
to check that the generated children are valid solutions by
checking whether they represent valid topologies, i.e., are all
the nodes connected. If not, we discard that solution (child).

2) Guided Mutation Operator: Mutation is applied with a
probability Pmut. There are two types of mutation. The first
type, selected with a probability of Pnew, adds a new link into
each router. Adding a link is carried out by selecting randomly
one of the links equal to zero and replacing its value by a
new one, v. With probability Pext, we add an external link
(v ≥ N ×R), otherwise we add an internal link (v < N ×R).
The second mutation, executed with probability 1− Pnew, is

to remove one link from each router. As with the crossover
operator, removing links requires checking that the solution is
still valid.

3) Solutions in the Pareto Front: The three-objective op-
timization algorithm generates a collection of solutions that
represent multiple link assignments (Pareto set), with different
trade-offs between bisection, path-diversity and number of
links. As all Pareto optimal solutions are considered equally
good, we can not decide which one is the best based on
the outcome of our algorithm. However, after these three
objectives are optimised, we can proceed to have a more
detailed analysis of the generated topologies by looking at
their performance in a more realistic scenario. In the next
Section we will evaluate the solutions of the Pareto Set using
our simulation environment, INRFlow.

VI. EXPERIMENTAL FRAMEWORK

This section presents the simulation-based framework used
to evaluate the topologies obtained from the optimization pro-
cess. The experiments try to provide answers to two questions:
(1) which optimization algorithm provides the best numerical
results and (2) what kind of performance can we expect from
the generated topologies.

A. Experiments to compare the optimization algorithms

The first step, to identify which of the two algorithms
provides the best results, is to look directly at the values of the
objective functions. To do that, we carried out two collections
of 10 experiments that provide 10 different Pareto sets, from
which we group the solutions with the same number of links.

In our experiments a cabinet is composed of 16 chassis and
a router that can have up to 32 output ports (R = 8). We
evaluate a small-system with a single cabinet–T = (8, 16, 1)–
and allow internal links only (Pext = 0). Then we assess
a larger system with 4 cabinets–T = (8, 16, 4). In order to
observe the properties generated topologies exhibit when the
proportion between adding new internal and external links
changes, we consider the algorithms using three values of
Pext: 0.25, 0.50 and 0.75. The parameter configuration for
the optimization algorithms is detailed in Table I. Note that
for this particular work we have not made any effort to tune
the parameters, and we have used the same values with all the
optimization algorithms.

TABLE I: Parameter configuration for the optimization algo-
rithms (NSGA-II and SMS-EMOA).

Parameter Value Description
Npop 100 Number of individuals per generation
Ngen 100 Number of generations
Pcross 0.8 Probability of crossing operator
Pmut 0.8 Probability of mutation operator
Pnew 0.5 Probability for mutation type
Pext

? 0, 0.25, 0.5, 0.75 Probability for external link



B. Experiments to evaluate the generated topologies

To corroborate the numerical results of the algorithms, we
extend our evaluation to consider empirical results from our in-
house developed simulator (INRFlow1). This tool models the
behaviour of parallel systems, including the network topology,
the applications and the workload generation. It takes as
input the description of a topology (link arrangement) and
measures several static properties (application-independent)
and dynamic properties (with applications running). The static
experiments are topology-specific, whereas the dynamic ones
depend on the applications being run.

We have conducted a number of experiments using one
application-like traffic model (we leave a more comprehensive
study including other patterns and applications for future
work due to paper length restrictions). The aim is to study
the performance of the generated networks under a realistic
scenario, in which real applications are executed. The work-
load selected provides characteristics from both high perfor-
mance computing systems and data-centres. This captures the
behaviour of a range of unstructured parallel applications,
such as management traffic and graph-analytics applications
that exhibit message causality and phases of higher and
lower communication demands. For simplicity, the sources and
destinations are chosen randomly and follow inter-message
relationships.

These applications are executed in networks induced by the
solutions of the optimization process. In particular, we have se-
lected two solutions with 4, 8 and 12 links from T = (8, 16, 1)
and three solutions generated with pext = (0.25, 0.50, 0.75)
from T = (8, 16, 4). The criterion to select the solutions has
been the value of f1 and f2, selecting one with the highest
bisection and another with the highest path-diversity. The
networks are composed of 32 and 128 routers respectively
and are evaluated in terms of execution time measured as the
(simulated) time required to complete a workload (sending and
receiving all messages).

We have compared the performance of the topologies
against Jellyfish [7], a completely irregular network generated
randomly. We denote it as (Irreg-r) where r is the size of
the switches used. To ensure we exploit the maximization
of the path diversity in all the topologies, we used Equal
Cost Multiple Paths routing (ECMP) [14] which uses all
the minimal paths among two nodes to send the traffic. For
completeness, we compared it against Single Path routing (SP)
which only employs one shortest path.

VII. ANALYSIS OF THE RESULTS

In this section we report and analyse the results of the
experiments explained in Sections VI-A and VI-B.

A. Evaluation of the Optimization Algorithms

The results from the generated topologies allow us to
compare the performance of the optimization algorithms for
this particular problem. Let us start analysing the results for

1Available at: https://bitbucket.org/alejandroerickson/inrflow
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Fig. 3: Graphical representation of four of the generated net-
work topologies showing the values of the objective functions.
For the sake of clarity we have represented routers with small
size. Notice that solutions of size 4 and 6 translate into routers
of size 8 and 12, respectively.

the first collection of experiments for the problem instance
T = (8, 16, 1). Results are summarized in Table II, which
gathers the mean, µ, and standard deviation, σ, of the multiple
runs for both objective functions, f1 (bisection width) and
f2 (path-diversity). Results seem to suggest that NSGA-II is
better suited for the problem at hand. In a majority of cases, it
is the one providing the highest bisection width for any number
of links. Furthermore, in all cases it also obtains the highest
values for f2. The differences between the two algorithms are
quite substantial in most of the cases. In Figure 3 we have
depicted some examples of generated topologies together with
their respective objective values.

TABLE II: Means and standard deviations of objective func-
tions f1 and f2 using NSGA-II and SMS-EMOA for the
problem parameters T = (8, 16, 1). The results are grouped
by f3 (number of links).

NSGA-II SMS-EMOA
f3 µf1 µf2 σf1 σf2 µf1 µf2 σf1 σf2
2 6.04 1.06 0.29 0.00 6.00 1.06 0.00 0.00
4 15.96 10.16 4.48 11.46 14.40 6.56 5.46 6.91
6 27.17 8.57 5.67 1.69 30.38 6.01 4.46 2.65
8 43.71 11.99 7.05 1.62 44.50 6.89 8.37 3.80
10 59.54 10.91 6.39 5.93 56.70 5.57 9.04 3.40
12 73.88 7.00 5.24 4.09 70.50 5.11 9.51 1.60
14 87.88 7.53 7.95 4.87 83.71 4.46 6.84 0.69
16 101.07 6.89 10.02 4.54 94.22 4.60 10.62 0.22



Now, let us analyse the results for the second collection of
experiments for the problem instance T = (8, 16, 4). Results
are summarized in Table III for three values of Pext. Again,
we can see that NSGA-II achieves the highest values for both
functions f1 and f2 for any value of f3 in almost all of the
cases. Moreover, the change in the probability pext barely
affects the algorithms behaviour; NSGA-II still outperforms
SMS-EMOA in most cases. We also wanted to assess how pext
affects the objective functions and hence, the properties of the
topologies. The results are not conclusive for this particular
characteristics (they are similar for any value of Pext) but
could be affecting others such as the diameter or the average
distance of the network.

In the last two rows we have summarized the average
diameter and distance of all the networks generated by the
Pareto set. Although these properties are not part of the
optimization, they can be used as indicators of the quality
of the topologies being generated. The solutions generated
with Pext = 0.75 and NSGA-II achieve the lowest diameter
and average distance: 4.53 and 2.80. If we look at the values
achieved by SMS-EMOA we can see that the lowest values
of diameter and distance are achieved using Pext = 0.25. For
these particular network properties, both algorithms seem to
behave similarly.

Note that the objective criteria used with our optimization
algorithms only provide hints about the expected benefits
for applications. The achievable benefits, expressed in more
tangible terms, are analysed in the following section.

B. Evaluation of the Network Topologies

The objective functions f1 and f2 were designed to have a
positive impact on both the performance of the applications
and the fault tolerance, but we need to assess those impacts
in a meaningful, measurable way. The impact of f1 is clear,
the higher the better, as this characteristic does not depend on
applications. The impact of both f1 and f2 on the performance
is not so clear and we want to evaluate it comparing the
execution time of the selected application in several topologies.

In Figure 4 we have depicted the results obtained for
some networks obtained from the Pareto set of the problem
T = (8, 16, 1) represented as (f1-f2-f3). (22-2-4) and (8-3-
4) are built using routers of size 8, (50-9-8) and (38,14,8)
with routers of size 16 and (74-6-12) and (72-16-12) with
routers of size 24. We compare them with the corresponding
irregular network: Irreg-8, Irreg-16 and Irreg-24 respectively.
The results clearly show that in all cases, applications executed
in the topologies generated using optimization achieve the
lowest execution time, even when using the SP routing.

Now we focus on the improvement achieved using ECMP.
This was expected because one of the criteria to optimise
was the path-diversity and ECMP makes use of them. results
show that ECMP is rather beneficial. In all networks the
use of multi-path routing improves the execution time of the
applications, being especially remarkable the improvement for
(22-2-4) and (8-3-4) in which execution times are more than
halved.

22-2-4 22-3-4 Irreg-8 50-9-8 38-14-8 Irreg-16 74-6-12 72-16-12 Irreg-24

Network Topology

0

2000

4000

6000

8000

10000

12000

S
im

u
la

ti
o
n
 T

im
e
 (

s
)

sp

ecmp

Fig. 4: Execution time of an unstructured application in
multiple topologies using SP and ECMP routing policies. The
network is composed of 32 routers (1 cabinets) with sizes 4,
8 and 12.

Let us focus now on the results obtained with T = (8, 16, 4).
In this case we have selected three solutions with routers of
size 16: (106-13-8) from a Pareto set generated using Pext =
0.25 and (124-12-8) and (150-11-8) from Pareto sets using
Pext = 0.50 and Pext = 0.75 respectively. We have selected
these particular solutions because they have a similar value of
f2. Our intention is to test whether there is a difference in
performance between them. The results are depicted in Figure
5.

Looking at the results for the SP routing, the four networks
require almost the same time to complete the execution. How-
ever, when we use the ECMP routing, the picture changes. The
use of multiple paths doubles the performance of applications
executed in our optimised topologies, but has less noticeable
effect on the irregular network. Surprisingly, the execution
time of our three networks is very similar, suggesting that,
as intended, both f1 and f2 have a positive impact on the
performance.
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Fig. 5: Execution time of an unstructured application in four
topologies using SP and ECMP routing policies. The network
is composed of 128 routers (4 cabinets) of size 16.



TABLE III: Means and objective functions f1 and f2 using NSGA-II and SMS-EMOA for the problem parameters T = (8, 16, 4)
and three values for pext. The results are grouped by f3 (number of links). The last two rows corresponds to the average
diameter and distance of the whole Pareto set. For the sake of clarity we do not report the standard deviation.

!

pext = 0.75 pext = 0.50 pext = 0.25
NSGA-II SMS-EMOA NSGA-II SMS-EMOA NSGA-II SMS-EMOA

f3 µf1 µf2 µf1 µf2 µf1 µf2 µf1 µf2 µf1 µf2 µf1 µf2
2 14.67 1.02 12.67 1.02 13.00 1.02 14.00 1.02 15.50 1.02 13.33 1.02
4 40.00 15.97 41.33 6.21 43.29 11.01 37.66 9.07 42.00 11.25 43.22 5.41
6 86.00 10.89 81.83 7.42 76.24 28.62 85.29 6.33 80.10 10.38 78.63 7.68
8 133.33 9.09 122.11 7.28 121.57 9.84 122.60 8.38 140.27 8.33 132.00 5.90

10 157.67 11.25 159.67 7.36 177.67 8.73 165.30 6.74 196.07 8.74 163.11 5.62
12 231.85 9.45 214.44 6.13 234.71 8.07 228.33 5.46 229.86 12.36 196.00 6.89
14 279.82 11.07 282.00 6.01 279.40 9.80 274.40 6.06 273.82 9.35 236.13 6.95
16 327.00 7.05 299.50 5.97 305.56 7.49 302.50 5.95 309.83 7.58 307.00 5.79

Avg. Diam 4.53 5.00 5.10 4.72 4.71 4.58
Avg. Dist 2.80 3.04 3.07 2.91 2.88 2.81

VIII. CONCLUSIONS AND FUTURE WORK

In this work we have presented a multi-objective optimiza-
tion framework to provide automatic support for the generation
of network topologies for large parallel computing systems.
This framework is going to be used in the context of the
ExaNeSt project to explore large-scale topologies that could
be implemented in real systems. The flexibility of both the
network to implement routers with different sizes and the
framework to optimize different properties make this work
very valuable for us.

Our framework considers two of the more popular multi-
objective algorithms: NSGA-II and SMS-EMOA. To do that
we have developed a new way to represent how the links
among routers are established that allows the reduction of the
search space and the generation of more regular topologies.
We have also developed specific crossover and mutation oper-
ators for this particular problem. Moreover, the mutation also
includes a mechanism to tune the amount of inter- and intra-
cabinet connectivity.

Results for small and large systems show that, for this
particular problem, NSGA-II is able to generate consistently
better solutions than SMS-EMOA. In addition we have also
carried out a collection of experiments showing the perfor-
mance of applications running in the generated topologies.
As baseline we have used an irregular network randomly
generated. Results using both single- and multi-path routing
policies show the potential of these topologies achieving, in
all cases, the best performance.

This work has been a first step towards the development of
the framework. We plan to extend it by adding more multi-
objective algorithms and new objective functions to allow the
generation of different topologies from those of this work. In
particular, the framework should be able to generate indirect
and hybrid topologies, therefore we will extend it with such
topologies. We also plan to report the results of this work for
fully populated systems, that due to time restrictions, have not
been reported here.
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