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Abstract 

Using data from the United Kingdom, we analyse the relative efficiency with which 

university institutions use their financial and human resources to produce a broad range of 

knowledge transfer outputs, including intellectual property disclosures, research and 

consultancy contracts, professional training courses, and public events. The efficiency of this 

multi-input, multi-output transformation process is computed using data envelopment 

analysis; bias-corrected efficiency scores and bootstrapped standard errors are used in order to 

deal with the statistical problems arising in connection with performing inference on non-

independent efficiency scores. By including a broader range of knowledge transfer outputs in 

the computation of efficiency, we find that some universities that do not focus mainly on the 

filing and commercialization of intellectual property, can nonetheless efficiently engage in 

knowledge transfer. Efficiency is linked to specialization in a few subject areas, as well as to 

greater orientation towards the social sciences and business. Universities operating either at a 

very small or at a very large scale are more likely to be efficient, with a negative effect of 

scale, in general, on the probability to be efficient. Research and teaching intensity have no 

significant impact on efficiency in knowledge transfer.  

 

Key words: university performance, knowledge transfer, data envelopment analysis, efficiency, returns 

to scale, HE-BCI survey 

JEL codes: O32 - Management of Technological Innovation and R&D; D24 - Production; Cost; 

Capital; Capital, Total Factor, and Multifactor Productivity; Capacity; C34 - Truncated and Censored 

Models; Switching Regression Models 
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1. Introduction 

As knowledge transfer activities have gained increasing prominence within 

universities, researching what institutional factors underpin their efficient 

performance can provide university institutions with useful empirical evidence in 

order to better organize their knowledge transfer processes. This understanding is also 

relevant from a policy viewpoint. Increasingly, policies have been implemented that 

encourage universities to engage in knowledge transfer and sometimes reward them 

for their successful knowledge transfer performance. For example, in the United 

Kingdom several grants in support of knowledge exchange - the Higher Education 

Innovation Fund in England, the Innovation and Engagement Fund in Wales, the 

Knowledge Transfer grant in Scotland and the Higher Education Innovation Fund in 

Northern Ireland – are allocated to universities on the basis of the income they accrue 

from knowledge transfer activities (HEFCE, 2011). In Australia, universities’ 

knowledge transfer performance measurement is based on the commercial returns 

from the selling or licensing of IP (PhillipsKPA, 2006). 

However, such policies are often based on fragmented empirical evidence, as 

academic investigations into what drives the efficient performance of universities’ 

knowledge transfer activities have emerged only recently (Curi et al., 2012).  

Moreover, the literature often adopts a rather narrow approach to which activities 

constitute “knowledge transfer”. In fact most studies focus on the commercialization 

of research results embedded in intellectual property protection instruments such as 

patents and software licenses, or the transformation of university research findings 

into intellectual property. Instead, it is increasingly acknowledged that the channels 

through which universities transfer knowledge to their stakeholders in the broader 

economy and society are numerous (Bekkers and Bodas Freitas, 2008; Boardman and 

Ponomariov, 2009), and indeed patenting and licensing activities only provide a small 

part of the picture, particularly relevant to a subset of science-based academic 

disciplines in fields such as chemistry, pharmacy, biotechnology, information 

technology and engineering (Harabi 1995; Brouwer & Kleinknecht 1999; Litan et al., 

2008). 

This study examines the efficiency of universities in performing a broader range of 

knowledge transfer activities beyond the patenting and licensing activities that have 

been the focus of most research carried out so far. Using data from the United 
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Kingdom, it explores whether institutions’ relative efficiency changes when adopting 

a broader approach to knowledge transfer. It also investigates whether the efficiency 

of universities’ knowledge transfer processes is related to characteristics of the 

university institutions and of the environment in which they operate. Understanding 

how efficiency in knowledge transfer is affected by institutional variables such as size 

of knowledge transfer operations, specializations in terms of subjects offered, 

research and teaching intensity, is important in order to support evidence-based 

policymaking in an area that is receiving increasing attention from the government 

and the public.  

The paper is structured as follows. In the next section, we briefly review the literature 

on the efficiency of universities’ technology transfer activities. In section 3, we 

present a brief description of the methodologies used to investigate the efficiency of 

production units, and we describe the data and the empirical strategy that we adopt in 

this paper. In section 4, we present our empirical results and in section 5 we draw 

some conclusions and implications for policy. 

 

2. The efficiency of universities’ knowledge transfer activities: expanding the 

framework 

Since the early 2000s a growing number of studies have investigated the efficiency 

with which universities engage in knowledge transfer (for a recent review see Siegel, 

2007). These studies are usually based on a production function framework, where a 

frontier of efficient combinations of inputs and outputs is constructed empirically and 

an institution’s technical inefficiency (inability to produce the maximum amount of 

output given one’s inputs, or inability to minimize the use of inputs given one’s 

output) is measured in terms of distance from the frontier. Such frontier can be 

estimated parametrically using stochastic frontier estimation (Aigner et al., 1977; 

Meeusen and Van den Broeck, 1977) or non-parametrically using data envelopment 

analysis (Charnes et al., 1978).  

Table 1 summarises approaches adopted by some recent studies that investigate the 

efficiency of universities’ knowledge transfer operations, relying upon several 

methods: stochastic frontier estimation (SFE), data envelopment analysis (DEA), or 

regression analysis on direct measures of performance. The knowledge transfer 
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transformation process that is modelled is either the commercialization of research 

results embedded in intellectual property protection instruments like patents and 

software licenses (Siegel et al. 2003; Chapple et al., 2005), or the transformation of 

university research findings into intellectual property (Curi et al., 2012) and other 

outputs (Thursby and Kemp, 2002; Anderson, Daim and Lavoie, 2007; Berbegal-

Mirabent, Lafuente and Solé, 2013). The range of outputs of universities’ knowledge 

transfer processes is generally narrow, mainly measured in terms of invention 

disclosures, patents applied for and granted, and licenses issued, with a few studies 

also including research agreements (Kemp and Thursby, 2002) and spinoff companies 

(Anderson, Daim and Lavoie, 2007; Rogers et al., 2000; Caldera and Debande, 2012; 

Berbegal-Mirabent, Lafuente and Solé, 2013). 

Both Chapple et al. (2005) and Curi et al. (2012) find that TTOs exhibit low-levels of 

absolute efficiency, and large inter-organizational variations. In terms of the 

determinants of a university’s performance and efficiency in technology transfer, 

common findings from this stream of literature emphasize the role of the 

characteristics of the university institution, such as subject specialization (having a 

large, high quality faculty in biological sciences and engineering is significantly 

related to efficiency in commercializing licenses, while the size and quality of 

physical science faculty is insignificant; Thursby and Kemp, 2002), ownership (in the 

US, private universities are more efficient; Thursby and Kemp, 2002) faculty quality, 

presence of a medical school or university hospital and, very importantly, the policies 

implemented, including the system of incentives for academic and technology transfer 

staff: well-defined university rules (for example, the regulation of potential conflicts 

of interest and the allocation of a larger proportion of royalties to the inventor) 

improve performance by giving researchers incentives to participate in the transfer of 

technology (Calder and Debande, 2012; this is in line with other studies, such as Link 

and Siegel, 2005; Friedman and Silberman, 2003; Debackere and Veugelers, 2005; 

Belenzon and Schankerman, 2007; Lach and Schankerman, 2004).  Also important 

are the characteristics of TTO, including size, age, management practices (Siegel et 

al., 2002; Debackere and Veugelers, 2005), organizational structure (Bercovitz et al., 

2001) as well as the economic characteristics of the region where the institution is 

located.  
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Table 1. Studies on the efficiency of universities’ knowledge transfer operations 

Study Focus Method Inputs Outputs 

Siegel et al 
(2003)  

113 US 
universities 
(1991–1996) 

SFE Number of invention 
disclosures, number of 
TTO employees, legal 
expenditures 

Number of licences or 
licensing income  

Chapple et al 
(2005) 

50 UK 
universities 
(2002) 

SFE and 
DEA 

Number of invention 
disclosures, total 
research income, 
number of TTO staff, 
external legal IP 
expenditure  

Number of licences or 
licensing income  

Thursby and 
Kemp (2002) 

 

112 US 
universities  
(1991-1996) 

DEA Number of TTO staff, 
amount of government 
funds received, number 
and quality of faculty in 
several subjects  

Sponsored research 
agreements between 
universities and 
industry, number of 
licenses to private 
sector firms, royalty 
payments received, 
number of invention 
disclosures, university 
patent applications  

Anderson, Daim 
and Lavoie 
(2007) 

54 US 
universities  
(2001-2004) 

DEA Total research spending Licensing income, 
licenses and options 
executed, startup 
companies, patents 
filed, patents issued 

Curi, Daraio 
and Llerena 
(2012) 

51 French 
universities  
(2003-2007) 

DEA Number of full time 
equivalent TTO 
employees, number of 
publications of the 
university  

Patent applications, 
software applications  

Berbegal-
Mirabent, 
Lafuente and 
Solé (2013) 

44 Spanish 
universities 
(2006-2009) 

DEA Total faculty, 
administrative staff, 
administrative 
expenses, R&D income 

Graduates, number of 
papers published, 
number of spin offs 
created 

Rogers et al 
(2000) 

131 US 
universities  
(1996) 

Regression 
on various 
performance 
measures 

 Number of invention 
disclosures received, 
number of U.S. patents 
filed, the number of 
licenses, number of 
start-up companies, 
gross licensing income 

Caldera and 
Debande (2012) 

52 Spanish 
universities 
(2001-2005) 

Regression 
on various 
performance 
measures 

 Log of R&D contracts 
income, number of 
R&D contracts,  log of 
licensing income, 
number of licensing 
agreements and 
number of spin-offs  
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However, findings from different studies are often contradictory. Some suggest that 

the presence of a university hospital or medical school exerts a positive effect on 

efficiency (Siegel et al, 2003), while others find the opposite (Thursby and Kemp, 

2002; Chapple et al., 2005; Anderson, Daim and Lavoie, 2007; Curi, Daraio and 

Llerena, 2012). Some studies find that the size of the TTO has a positive effect on 

efficiency (Rogers et al, 2000; Thursby and Kemp, 2002; Caldera and Debande, 2012; 

Curi, Daraio and Llerena, 2012), while others find that it has a negative effect 

(Chapple et al., 2005). By testing appropriate restrictions on the coefficients of a 

parametric production function, Siegel et al (2003) find that licensing revenue is 

subject to increasing returns, while licensing agreements are characterized by constant 

returns to scale. Instead, Chapple et al. (2005) find evidence of decreasing returns to 

scale. Curi Daraio and Llerena (2012) formally test whether the frontier globally 

exerts constant, non-increasing or variable returns to scale, rejecting the null 

hypothesis of global constant returns to scale for French TTOs, in favour of global 

variable returns to scale. 

While most studies focus on a limited set of knowledge transfer activities, namely 

patenting and licensing, it is increasingly acknowledged that the channels through 

which universities transfer knowledge to their stakeholders in the broader economy 

and society are numerous, and indeed patenting and licensing activities only provide a 

small part of the picture, particularly relevant to a subset of science-based academic 

disciplines in fields like chemistry, pharmacy, biotechnology, information technology 

and engineering (Levin, 1986; Harabi, 1995). Varied types of universities, with 

profound differences in research orientation, subject specialization, resources and 

engagement with their external environment, very often have very different profiles in 

terms of knowledge transfer engagement (Wright et al, 2008; Hewitt-Dundas, 2012) 

that include providing consultancies, services like certification, prototyping and 

design, courses for professional development, student placements, or engaging with 

the community in many different ways (through public talks, exhibitions, media 

exposure, and so on). Consequently, measuring efficiency using only a limited range 

of knowledge transfer outputs may disadvantage those universities that use their 

generic inputs to engage in a mix of knowledge transfer activities that do not involve 

the production or commercialization of patentable research findings.   
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To compute the efficiency of universities’ knowledge transfer process taking into 

account a broader range of outputs, so as to allow for a greater variety of forms of 

knowledge transfer engagement, we need to describe the knowledge transfer process 

in broader terms. Figure 1 captures the main elements of the process of transformation 

of generic university inputs into knowledge transfer outputs. It extends the current 

frameworks adopted in the analysis of knowledge transfer efficiency such as those 

presented by Thursby and Thursby (2002) and Anderson, Daim and Lavoie (2007) 

who restricted their attention to the production of IP disclosures (first stage outputs) 

and their further commercial exploitation in the form of licenses and spinoffs (second 

stage outputs), by explicitly including other activities that allow for the direct transfer 

of academic knowledge to external beneficiaries, primarily businesses.  

Figure 1. A broader framework to describe the knowledge transfer process 

 

 

It must be noted that this framework is necessarily very simplified and only useful to 

explain our methodological choices in order to measure the efficiency of knowledge 

transfer processes; it does not aim to capture the full complexity of transformation 

processes occurring within universities, of which this knowledge transfer process 

constitutes only a part. For example, the range of inputs that enter into universities’ 

research and teaching activities can be wider (research and teaching funds can be 

sourced from students, businesses and charities, and administrative staff can also play 

a role in these processes, not to mention the important inputs that students offer to 

teaching and sometimes research activities), and the range of outputs that are 

concurrently produced through research and teaching activities is also much broader 

(publications and qualified and trained human resources are the most obvious).  

Using data from the United Kingdom’s Higher Education Business and Community 

Interaction Survey (HEBCI) - a yearly survey of all universities in England, Wales, 

Inputs Transformation.processes First.stage.knowledge.transfer.outputs Second.stage.knowledge.transfer.outputs

Academic(staff Research(activities IP(disclosures IP(licenses

Public(funds(for(research Teaching(activities Industry(contracts Spinoffs

Public(funds(for(teaching Industry(consultancies Further(patents(and(licenses

Knowledge(transfer(staff Knowledge(transfer( Services((e.g.(certification,(
support(activities testing,(prototyping(etc)

CDPs(and(other(
educationErelated(activities

Public(events((e.g.(public(talks,(
exhibitions,(media(exposure,(etc)
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Scotland and Northern Ireland, implemented since 1999 and currently managed by the 

Higher Education Statistics Agency -  we aim to assess whether universities’ relative 

efficiency changes when a broad range of knowledge transfer activities beyond 

patenting and licensing are considered (as opposed to the more widespread approach 

based only on patenting and licensing), and to identify which universities benefit from 

the adoption of a broader perspective on knowledge transfer.  

We also aim to assess what institutional and environmental factors are linked to 

greater efficiency, with the objective to provide useful indications for knowledge 

transfer policies intending to support efficient knowledge transfer performance. In 

fact, institutional and environmental factors constrain the university’s availability of 

inputs that can be deployed in knowledge transfer processes, and the opportunities to 

generate knowledge transfer outputs.  

Figure 2, expanding the knowledge transfer framework illustrated in Figure 1, 

summarizes the model of the relationships between knowledge transfer inputs, outputs 

and institutional and environmental factors underpinning our approach.  

Figure 2. Relationships between inputs, outputs and institutional and environmental factors 

 

 

Efficiency is measured as the relationship between input and output employment. 

Institutional factors affect the measurement of efficiency to the extent that they affect 

the availability of inputs and the manner of their deployment within the university’s 

transformation processes. Environmental factors may affect both the availability of 

inputs (for example, intense competition from resources, both financial and human, 

Institutional*factors
Inputs

Teaching)intensity
Research)intensity
Mission
Resources)(tangible)and)intangible)
…

Institutional
Transformation*processes Efficiency

in*knowledge*transfer

Environmental*factors

Economic)opportunities
Competition)from)other)providers
…

Knowledge*transfer*outputs
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may reduce their availability) and the opportunities to generate outputs (for example, 

knowledge transfer opportunities should be higher in more economically prosperous 

regions). 

 

3. Methodology 

3.1. Measuring the relative efficiency of different production units  

We compare different university institutions with respect to their efficiency: their 

ability to produce, given their limited resources, the greatest possible amount of 

knowledge transfer outputs. Two main approaches can be used to measure and 

compare the relative efficiency of different economic units engaged in the same 

production process. Stochastic frontier estimation (SFE) (Aigner et al., 1977; 

Meeusen and Van den Broeck, 1977) is based on the estimation of a production 

function, where differences in performance across units are attributed to an error term, 

εi, which has two components (εi = Vi - Ui): statistical noise Vi (a symmetric, 

independently and normally distributed random error component) and an inefficiency 

component Ui. The latter is a non-negative error term which accounts for the failure 

to produce the maximum output, given the set of inputs used; it is assumed to be 

independently and half-normally distributed (as units are either on the frontier or 

below it). To test the determinants of inefficiency, the inefficiency term Ui can then 

be regressed onto a set of independent and control variables. In more recent models 

(Battese and Coelli, 1995), both the production function (including the inefficiency 

term) and the determinants of relative inefficiency are estimated simultaneously. 

While SFE, as a parametric approach, has several advantages (see for example 

Chapple et al, 2005, for a discussion), it also has the critical limitation that only 

single-output production processes can be modelled. The analysis of processes that 

involve the simultaneous production of different outputs require to either estimate 

alternative models (one for each different output, as in Chapple et al., 2005) or 

aggregate the different outputs using a common metrics (the different outputs can be 

expressed in monetary terms and aggregated, if market prices for them exist; Ray, 

2004). Another crucial limitation is that SFE imposes a parametric functional form on 

the relationship between inputs and output which is expected to hold over the entire 

input range (Chapple et al., 2005). 
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The other approach to efficiency computation, called data envelopment analysis 

(DEA) (Charnes et al., 1978) consists in numerically computing an “efficiency 

frontier” of the best performing units, and positioning the other units in relation to this 

frontier. This method has been used extensively to compute relative productivity in 

service industries, including the education sector (Charnes et al., 1994), because it 

allows to calculate the efficiency of production processes that generate multiple 

outputs some of which may not have easily identifiable market prices. Fitting the 

linear frontier requires identifying, for each combination of inputs used by the 

observed units, the maximum output that could be produced given that input 

combination: the set of maximum output/input ratios constitutes the efficient frontier, 

and the relative efficiency of each unit can be computed by comparing the unit’s 

actual output with the maximum output that could be produced using the same 

combination of inputs. In practice, this requires solving a linear program: finding the 

set of weights that maximize each unit’s average productivity (ratio of its weighted 

combination of outputs to its weighted combination of inputs) subject to the 

constraints that all weights are non-negative and all ratios are smaller or equal to one 

(that is, maximum efficiency is imposed to be equal to 1). 

Suppose that there are N units, each using n inputs xi, …xn to produce m outputs y1, 

…ym. The linear program identifies the set of weights ui (i = 1….n) and  vj (j = 1, 

…,m) such that, for each unit t:  

max !! !!
!!!!

 

s.t. 

!! !!
!!!!

!≤ 1!!!!!!(! = 1,… .!)!

!! , !! !≥ 0!∀!!, ! 

 

Since there are an infinite number of solutions to this problem, a further constraint is 

added: 

!!!! = 1 
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Once the efficient frontier is computed this way, the efficiency of each unit relative to 

the frontier is measured using a distance function. Usually, inefficiency is presented 

in terms of a score !! ≤ 1 (Shepherd distance) which identifies the fraction of the 

unit’s actual output to its corresponding “optimal output” (the maximum output 

obtainable given the combination of inputs used by the unit): correspondingly, the 

reciprocal score ! ≥ 1  (Farrell-Debreu distance) identifies the increase in output that 

the unit would need to accomplish if it was to become technically efficient. 

DEA models come in different specifications. The model can have an input or output 

orientation, that is, efficiency can be computed in terms of maximum output that can 

be produced given a certain combination of inputs, or of minimum inputs that can be 

used to produce a given output. The model can accommodate constant or variable 

returns to scale, according to the restrictions imposed on the efficiency scores. 

Different types of efficiency frontiers can be fitted: piecewise linear (or “convex 

hull”) as in the standard DEA approach proposed by Charnes et al. (1978), or 

“staircase shaped” as in the Free Disposal Hull approach (Deprins et al., 1984). 

The nonparametric method has also several drawbacks. One important problem is 

that, since the method does not allow for statistical noise, the frontier can be strongly 

influenced by, for example, measurement errors and outliers: as a unit’s efficiency is 

computed with respect to the frontier of the best performing institution, even one or 

two “super efficient” units shift the frontier outwards and reduce the efficiency of 

comparable institutions1. Recently, some techniques like order-m and order-α 

efficiency (Cazals, Florens and Simar, 2002; Daraio and Simar, 2005) have been 

proposed to introduce stochasticity in the estimation of the frontier. Another issue that 

is relevant for our present purposes concerns the estimation of the determinants of the 

efficiency of different institutions. Two-stage estimations, whereby efficiency scores 

are estimated in the first stage and regressed on several organizational and 

environmental variables in the second stage, using OLS or TOBIT models, have been 

widely used (an overview is presented in Simar and Wilson, 2007). It has however 

been pointed out that this approach is problematic as the DEA efficiency scores are 

serially correlated, which invalidates standard approaches regarding statistical 
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inference. Simar and Wilson (2000) have proposed a bias correction procedure to take 

care of this problem, thus allowing for more precise estimates in a two-stage setting.  

In the present paper, we aim to measure universities’ efficiency in the performance of 

a range of knowledge transfer activities that goes beyond patenting and licensing. 

Because such activities produce a variety of outputs that are difficult to commensurate 

(as it is often not possible to find market prices for them), we focus on non-parametric 

frontier estimation, using data envelopment analysis. To perform inference on the 

efficiency measures such derived, we rely upon the bias correction procedure 

suggested by Simar and Wilson (2000). 

3.2. Data and empirical strategy 

We use data about universities in the United Kingdom, drawn from two main data 

sources, both currently managed by the UK’s Higher Education Statistics Agency 

(HESA). One is the database Heidi, which collects numerous data about university 

institutions’ financial, human and capital resources, as well as their teaching and 

research activities. The other is the Higher Education Business and Community 

Interaction (HEBCI) survey, which collects information about universities’ 

knowledge transfer infrastructures, strategies and engagement. The survey includes a 

broad range of activities spanning collaborative research and regeneration 

programmes, contract research, consultancies, intellectual property protection and 

licensing, spin off activities, courses for professional development, equipment and 

facilities-related services, and various forms of community engagement (such as 

public lectures and other events). Currently, it is the broadest systematic survey of 

universities’ knowledge transfer activities (Rossi and Rosli, 2013), and as such it 

measures a wide variety of knowledge transfer outputs.  

The choice of inputs and outputs for this kind of exercise depends on the type of 

production process we are interested in. In this study, we focus not only on the 

process of transformation of research results into intellectual property, or of 

intellectual property into commercialized licenses and licensing income, but on the 

broader transformation process through which university institutions employ their 

financial and human resources to produce knowledge, and in turn transfer it to 

external stakeholders. This process can involve knowledge produced in the social 

sciences and the humanities, as well as in the natural, technical and medical sciences. 
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In line with this approach, we use as inputs a number of general resources that 

universities use in the production and transfer of knowledge (amount of research and 

teaching grants from funding councils2; number of staff employed in knowledge 

transfer functions, number of academic staff in the natural sciences and medicine, in 

technical and engineering subjects, in the social sciences and business and in the arts 

and humanities)3, and a broad range of activities as outputs (number of intellectual 

property disclosures, number of research and consultancy contracts, number of days 

of courses for professional development (CDP) delivered, number of academic days 

employed to deliver public events).  

As we want to focus on the process of transformation of the university’s generic 

resources into outputs that are suitable to be transferred to the economic system, 

rather than on the specific process of commercialization and dissemination of such 

outputs, we do not include outputs that emerge from a process of further exploitation 

of the outputs already considered, such as IP licenses and spinoffs emerging from 

university disclosures, joint university-industry patents and publications emerging 

from research contracts, and so on (what has been termed “second stage knowledge 

transfer outputs” in Figure 1). Moreover, we do not consider all of the possible 

outputs that can emerge from knowledge transfer activities, due to data limitations. 

Information about facilities and equipment-related services is collected in the HEBCI 

survey, but it is not possible to distinguish between knowledge-based services (such 

as prototyping, certification and quality assessment) and services that just exploit the 

university’s infrastructure like the rental of equipment and rooms, so we leave these 

activities out too. Other activities (such as the number of student placements, various 

types of engagement with the local community, with the public sector and with 

policymakers) are not measured in the survey (Rossi and Rosli, 2013). Furthermore, 

we have chosen to focus on activities through which the university attempts to 

                                                
2 It has been pointed out that the DEA technique is formulated on the quantity space of outputs and 
inputs (Färe et al., 2012), while research funds are not directly defined in physical terms. However the 
choice to include measures of funding is well established in the line of research on the efficiency of 
knowledge transfer activities (Thursby and Kemp, 2002; Siegel et al., 2003; Chapple et al., 2005; 
Anderson et al., 2007; Berbagal-Mirabent et al., 2012). It could be argued that although research funds 
are not directly mappable onto physical space, they are usually constrained to be spent onto the 
purchase of physical inputs (hours of research labour, scientific equipment) and as such they provide a 
proxy for the inputs acquired. 
3 A similar set of inputs has been adopted by Thursby and Kemp, 2002, who have also included a 
measure of faculty quality, by subject area. The subject areas they considered are only biology, 
engineering and physical sciences, in line with a “science based” view of knowledge transfer. 
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transfer knowledge to specific stakeholders in the economic, political and social 

community; we have not included therefore scientific publications and other forms of 

dissemination of academic results, which do not presuppose an attempt to transfer 

knowledge to specific users (these are in fact usually considered as outputs of 

research activities rather than as part of knowledge transfer activities). 

Since there may be a lag between the use of inputs (i.e. research funds) and the 

production of outputs, we use five-year averages of the period 2006-2011 (averages 

over several years have also been used by Thursby and Kemp, 2002; Anderson, Daim 

and Lavoie, 2007; Daraio, Curi and Llerena, 2012). Our dataset includes 160 

universities, however the estimates of efficiency are done on a reduced sample of 80 

universities that employ strictly positive quantities of all the inputs and outputs 

considered in the estimations4.  

Table 2 describes the input and output variables used in order to compute the 

institutions’ efficiency and reports their main descriptive statistics. 

 

 

 

 

 

Table 2. Inputs and outputs used in the computation of DEA efficiency scores, and their main 

descriptive statistics 

Variable name Description N 
Mean Standard 

Deviation 
Maximum 
value 

Minimum 
value 

                                                
4 The 80 universities included in the sample do not have a significantly different geographical 
distribution from the 80 universities that have not been included in the computation. However, they 
differ in respect to several institutional characteristics. When universities are categorized according to 
their historical origins, we find that historical universities, founded before the mid-20th century, and 
universities that were formerly polytechnics (institutions providing technical and vocational education 
that changed their status to universities in 1992) are more likely to be included while modern 
universities, founded after the mid-20th century, and university colleges (institutions that are only 
allowed to award undergraduate degrees) are more likely to be excluded. This can be explained with 
the fact that many modern universities and university colleges are specialized in the social sciences and 
humanities and do not have staff in all subjects (university colleges include art schools, conservatories 
and institutes of performing arts, for example) and/or do not produce all outputs (many of these 
universities do not patent). In fact, the universities that have been included have a significantly higher 
average share of academic staff in the natural sciences, medicine and engineering and technical 
subjects, and a significantly lower average share of academic staff in the arts and humanities, 
suggesting that institutions that are strongly specialized in the humanities have been excluded. 
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Inputs:       

FCGRANTS Public (non industry) 
funding for research and 
teaching: total grants from 
funding councils received 
by the institution (£000) 

80 80716.9 48436.2 249417.4 18409.7 

KTSTAFF Number (headcount) of 
staff specifically 
employed in a knowledge 
transfer capacity 

80 57.3 42.9 207.6 8.8 

SCIMEDSTAF
F 

Number (full time 
equivalent, FTE) of 
academic staff in the 
natural sciences and 
medicine 

80 855.5 1042.6 4518.8 0.2 

ENGTECHST
AFF 

Number (FTE) of 
academic staff in 
technical and engineering 
subjects 

80 286.0 236.2 1047.8 
9.4 

SOCBUSSTA
FF 

Number (FTE) of 
academic staff in the arts 
and humanities 

80 316.6 
 
174.4 991.4 35.4 

ARTHUMSTA
FF 

Number (FTE) of 
academic staff in the 
social sciences and 
business 

80 329.1 238.7 
1468.0 

11.4 

Outputs:       

IPDISCL Number of IP disclosures 
and patent applications 
filed 

80 40.0 59.4 315.6 0.2 

RESCONSUL
T 

Number of research and 
consultancy contracts 
(excluding any already 
returned in collaborative 
research involving public 
funding & Research 
Councils) 

80 957.7 2056.4 15944.8 29.0 

CPD Learner days of CPDs 
delivered 80 35772.8 44456.6 303030.0 46.8 

EVENTS Number of academic days 
employed to deliver 
public events 

80 879.9 1731.1 11126.0 6.6 

 

Many of the inputs used for knowledge transfer activities are used, at the same time, 

for research and teaching – for example, the time of academic staff and the resources 

provided by government funding. Therefore, it is not possible to precisely identify 

how much of these inputs actually goes in the production of knowledge transfer 

outputs; as Thursby and Kemp (2002) note, we would not be able to say whether a 

university that has a higher research commercialization output (for example, number 

of patent applications) than another, vis-à-vis a given amount of inputs, is more 

efficient than the latter or is simply allocating more of its inputs to activities that are 

more likely to produce commercializable outputs. However, our broad definition of 

knowledge transfer should dampen this problem to some extent; since we consider a 
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range of knowledge transfer activities that draw upon a wide variety of university 

resources, we suppose that universities could allocate their inputs differently across 

teaching and research, or the social and natural sciences, and still enjoy similar 

opportunities for knowledge transfer. If that is the case, we should observe that some 

universities that allocate more inputs to activities that do not fit well in the standard 

“science based” technology transfer model, may increase their relative efficiency 

when outputs are measured in terms of a broad range of activities rather than just in 

terms of patents and disclosures. 

Our empirical strategy is the following. First, we investigate whether adopting a 

broader approach to the knowledge transfer transformation process (considered as a 

multi-output process that includes other activities beyond patenting and licensing) 

produces appreciably different results from the adoption of a narrower approach 

according to which knowledge transfer only refers to the creation of new intellectual 

property that can be commercialized. To do so, we compute the efficiency scores of 

universities under two different model specifications (a narrow model which includes 

six inputs – FCGRANTS, KTSTAFF, SCIMEDSTAFF, ENGTECHSTAFF, 

SOCBUSSTAFF, ARTHUMSTAFF – and only one output – IPDISCL, and a broad 

model which includes the same six inputs and four outputs - IPDISCL, 

RESCONSULT, CPD and EVENTS). The efficiency scores, in both models, are 

computed using the output-oriented5 data envelopment analysis linear programme 

with variable returns to scale6 implemented in the R package FEAR (Wilson, 2008). 

We then check whether the universities’ ranking in terms of efficiency differ in the 

two models, and what are the different characteristics of the universities that improve 

their relative rank position when moving from the narrow to the broad model of 

knowledge transfer.  

                                                
5 We use the output-oriented approach because universities are more interested in maximizing 
knowledge transfer outputs than in minimizing the inputs used in the knowledge transfer production 
process: in fact, most inputs are concomitantly deployed in the production of research and teaching, so, 
for the purpose of knowledge transfer, they can be considered as exogenously determined and (almost) 
fixed in the short term. 
6 The null hypothesis of constant returns to scale versus the alternative hypothesis of variable returns to 
scale was tested using the F-statistic test proposed by Banker (1996). The null hypothesis was rejected 
at 1% significance level, for both the narrow and the broad models. Using the bootstrap test of returns 
to scale proposed by Simar and Wilson (2002) also led us to reject the null of CRS at 1% significance, 
for both models. Both tests were implemented in R. 
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Second, just focusing on the broad (multi-output) model7, we analyse the 

characteristics of efficient and inefficient universities, and we explore the institutional 

determinants of efficiency. We measure inefficiency using an indicator variable that 

takes on value 1 if the university is inefficient and zero otherwise (as in Thursby and 

Kemp, 2002). We compare the characteristics of efficient and inefficient universities, 

and examine the relationship between inefficiency and the variables denoting inputs 

and outputs. We then compute the impact on efficiency of a varied range of 

institutional and environmental factors, including: the overall scale of knowledge 

transfer operations of the university (proxied by the university’s overall knowledge 

transfer income); several characteristics of the university (age of the institution, 

whether the university is a former polytechnic or a historical university, number of 

students per academic staff, research intensity, subject diversity of academic staff) 

and of its TTO (age of the TTO, share of knowledge transfer staff to academic staff, 

diversity of sources of knowledge transfer income) and of the region where it is 

located (regional gross value added per capita). The regressors refer to 2006/07 

because we aim to test the effect of institutional and environmental variables, which 

affect the universities’s inputs and outputs, on the efficiency measured with respect to 

the subsequent five years. As a robustness check, we also perform the same regression 

using as a dependent variable, instead of the indicator variable, the actual efficiency 

scores obtained (we use the bias-corrected efficiency scores, and the relative 

bootstrapped confidence intervals and standard errors, proposed by Simar and Wilson, 

20078).  

 

 

 

4. Empirical results 

                                                
7 The narrower model, being of a lower dimensionality, is likely to have greater level of statistical 
precision as well as greater discriminatory power among DEA estimates. It is for this reason that, for 
example, Curi, Daraio and Llerena (2012), in their analysis of the efficiency of French universites’ 
TTOs, prefer to estimate a narrower model. However, it is the main purpose of this paper to explore the 
efficiency implications of adopting a broader approach to knowledge transfer, beyond patenting and 
licensing. This requires us to explore the multi-output model in greater detail. 
8 These were obtained by implementing Algorithm 2 proposed by Simar and Wilson (2007) in R, with 
the support of the FEAR package (Wilson, 2008). 
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4.1. Comparisons of rank positions of universities under the narrow and broad 

models of knowledge transfer 

When comparing the rank positions of universities in terms of efficiency9, under the 

narrow (only one output) and the broad (four different outputs) models of knowledge 

transfer, we find that 30 universities (37.5%) improve their rank position in the broad 

model, while 50 universities (62.5%) do not improve their rank position (their rank 

either remains the same or worsens).  

As shown in Table 3, universities that improve their position have on average a higher 

share of staff in the social sciences and business and a lower share of staff in medicine 

and the natural sciences, than those that do not improve their position. This confirms 

our initial conjecture that some universities that allocate more inputs to activities that 

do not fit well in the standard “science based” technology transfer model, may do 

better when outputs are measured in terms of a broad range of activities rather than 

just in terms of patents and disclosures. As the patent-based model best fits a narrow 

range of fields in the natural and applied sciences, particularly chemistry, pharmacy, 

biotechnology and engineering and technology, it is not surprising to find that it is 

universities with a greater share of staff in the social sciences and business that 

improve their position when a broader definition of knowledge transfer is considered. 

We also find that former polytechnics are more likely to improve their position, while 

all other types of universities are less likely to do so. Former polytechnics have on 

average a greater share of staff in the social sciences and business and in the arts and 

humanities than historical universities, and evidence suggests that they engage in a 

broad range of knowledge transfer activities (D’Este and Patel, 2007) whose 

efficiency is better reflected when a broader approach to outputs is used.  

Finally, considering the differences across mean amounts of inputs and outputs in the 

two groups, the universities that have improved their position have delivered 

significantly more days of CPDs and public events, while generating no less 

intellectual property disclosures and research contracts and consultancies and while 

using no more inputs than the others. This confirms that their improved efficiency is 

due to their ability to produce a varied portfolio of activities that is not taken into 

account when considering only a narrow model of knowledge transfer.  
                                                
9 We cannot directly compare the universities’ efficiency scores under the two models, as their 
magnitude is only meaningful in a relative sense. 
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Table 3. Characteristics of institutions that have improved or not improved their rank position 

when moving from a narrow to a broad model of knowledge transfer 

Mean share of 
academic staff  

Not 
improved (50 
universities) 

Improved (30 
universities) 

t-test p-value 

Medicine and natural 
sciences 

42.0 35.0 1.836 0.070 

Technical subjects 
/engineering  

17.0 17.0 -0.140 0.888 

Social sciences and 
business 

21.0 25.0 -1.941 0.056 

Arts and humanities 20.0 23.0 -0.888 0.377 
Type of instititution % Not 

improved (50 
universities) 

% Improved 
(30 

universities) 

Chi2(1)  p-value 

Historical 38.0  23.3 9.273 0.010 
Former polytechnic 26.0 60.0   
Modern 36.0 16.7   
Mean amounts of 
inputs and outputs 

Not 
improved (50 
universities) 

Improved (30 
universities) 

t-test p-value 

FCGRANTS 79360.2 82978.2 -0.316 0.732 
KTSTAFF 55.3 60.8 -0.559 0.578 
SCIMEDSTAFF 947.1 702.8 1.060 0.292 
ENGTECHSTAFF 274.9 304.4 -0.522 0.603 
SOCBUSSTAFF 292.8 356.3 -1.553 0.126 
ARTHUMSTAFF 314.6 353.2 -0.743 0.460 
IPDISCL 45.3 31.3 1.019 0.311 
RESCONSULT 942.5 983.0 -0.090 0.928 
CPD 22416.5 58033.4 -3.042 0.005 
EVENTS 532.1 1459.6 -1.910 0.065 

 

4.2. Inputs, outputs and their relationship with efficiency 

In the rest of our analysis, we focus on the broader (four-output) model of knowledge 

transfer, and we explore the institutional and external determinants of efficiency. 

We build an indicator variable INEFFICIENT that takes on value 1 if the university is 

inefficient (its efficiency score is less than one) and value 0 if it is efficient (its 

efficiency score is equal to one)10. We have 32 efficient universities (40%) and 48 

inefficient ones (60%). On average, inefficient institutions use more inputs and 

produce less outputs than efficient ones. To explore the relationship between inputs, 

outputs and efficiency we regress the entire set of inputs and outputs combined the 
                                                
10 The reason why we construct this variable to represent inefficiency, rather than efficiency, is for 
consistency with our later analysis of efficiency scores, whose bias-correction procedure has been 
developed using the Farrel-Debreu distance measure (Simar and Wilson, 2007). 
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indicator variable INEFFICIENT. The correlation matrix between input and output 

variables is reported in Appendix A. From the logit regression shown in Table 4 

(column (1)) we can see that inputs have, as expected, a positive effect on 

inefficiency, although several of them are insignificant. As observed by Thursby and 

Kemp (2002) the insignificance of several inputs is probably due to their being 

imperfect measures of the effort expended in knowledge transfer activity, since they 

are used in the production of other university outputs at the same time. Outputs all 

have, as expected, a negative and significant effect on inefficiency.  As a robustness 

check, we have run the same regressions only using the significant variables in 

models (1) (column (2)) which confirms their significance. Including the squared 

terms does not change the results and the squared terms themselves are not 

significant.  

Table 4. Regression of inputs and outputs on the INEFFICIENT variable  

VARIABLES (1) (2) 
FCGRANTS 0.000  

 
(0.000)  

KTSTAFF 0.025+ 0.009 

 
(0.015) (0.009) 

SCIMEDSTAFF 0.002  

 
(0.002)  

ENGTECHSTAFF 0.016*** 0.012*** 

 
(0.006) (0.004) 

SOCBUSSTAFF 0.008* 0.005+ 

 
(0.004) (0.003) 

ARTHUMSTAFF 0.005+ 0.005** 

 
(0.003) (0.002) 

RESCONSULT  -0.001  

 
(0.000)  

IPDISCL -0.102*** -0.060*** 

 
(0.034) (0.017) 

CPD 0.000* 0.000+ 

 
(0.000) (0.000) 

EVENTS -0.002** -0.001** 

 
(0.001) (0.001) 

Constant -2.828** -2.401*** 

 
(1.193) (0.912) 

Observations 80 80 
Wald Chi-Square 53.67*** 48.85 *** 

Pseudo R2 0.661 0.618 
Standard errors in parentheses 
+ p<0.15, *** p<0.01, ** p<0.05, * p<0.1 

 

4.3. The impact of institutional and external factors on efficiency 
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We also regress the variable capturing the institution’s inefficiency on some 

institutional and external factors. We have estimated two versions of the model, one 

with the binary dependent variable INEFFICIENT (model 1), and one where the 

dependent variable are the efficiency scores themselves (model 2). In model 2, the 

efficiency scores have been corrected to take into account the bias arising from the 

serial correlation of the errors, following the methodology proposed by Simar and 

Wilson (2007), and the estimates have been obtained through a truncated regression. 

The standard errors and confidence intervals of the coefficients have been computed 

following the bootstrap method proposed Simar and Wilson (2000 and 2007); 

following these authors, we have computed 2000 repetitions to obtain a bootstrapped 

sample from which to derive the parameters’ distribution. The efficiency scores are 

measured using the Farrell-Debreu distance, with 1 indicating efficient units and 

values greater than 1 indicating progressively less efficient units. 

Both models use the same regressors11. The total income accrued from knowledge 

transfer activities (TOTKTINCOME) aims to test whether the scale of the knowledge 

transfer operations of the institution affects its efficiency; we also consider the square 

of this variable (SQTOTKTINCOME). The diversity of the sources of knowledge 

transfer income (KTINCOMEDIV)12 aims to test whether engaging in a more diverse 

portfolio of activities has a bearing on efficiency. Several variables capture 

institutional characteristics: HIST is a dummy that captures whether the university 

was founded before the mid-Twentieth century; POLY is dummy that captures 

whether the university is a former polytechnic (the reference category are universities 

founded after the mid-Twentieth century that are not former polytechnics); 

PSCIMED, PTECH, PSOC and PARTHUM are the shares of academic staff in, 

respectively the natural sciences and medicine, technical and engineering subjects, the 

social sciences and business, and the arts and humanities; ACADDIV is the subject 

diversity of academic staff13; AGE is the age of the institution, and TTOAGE is the 

age of its TTO. Several variables try to capture the orientation of the institution 

towards teaching, research and knowledge transfer activities: RES_INTENSITY is the 
                                                
11 To ensure convergence of the truncated regressions, we have rescaled all regressors to be comprised 
between zero and 1, as recommended by Wilson (2008).  
12 Measured as the inverse of the Herfindahl index on the shares of income from each source of 
knowledge transfer. 
13 Measured as the inverse of the Herfindahl index on the shares of academic staff in each subject area 
(considering four main areas: natural sciences and medicine, engineering and technology, social 
sciences and business, arts and humanities). 
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research intensity of the institution, measured as the ratio between funding for 

research and funding for teaching, STUDPP is the number of students per academic 

staff, KT_OR is the ratio between knowledge transfer staff and academic staff, and 

SRES_STUD is the ratio of research students to undergraduates. Finally we control for 

regional gross value added per capita in 2006 (variable GVAREG, available from the 

UK’s Office for National Statistics (ONS), 2006). We do not control for ownership as 

the universities in our sample are all public. The correlations between the regressors 

are reported in Appendix B. The analyses are performed on 78 universities, having 

manually removed two outliers. 

In model 1, the logit regression focuses on the likelihood to be inefficient in 

knowledge transfer. Universities that have greater overall knowledge transfer income 

(as measured by TOTKTINCOME) are more likely to be inefficient, and the quadratic 

term SQTOTKTINCOME is significant with a negative sign, suggesting both 

universities with very small and very large knowledge transfer income are less likely 

to be inefficient. Former polytechnics, universities with a greater share of academics 

in natural sciences and medicine, engineering and technical subjects and the arts and 

humanities, and universities with diverse subject composition (ACADDIV) are more 

likely to be inefficient, while universities with a greater share of academics in the 

social sciences and business are more likely to be efficient. The ratio of students on 

academic staff (STUDPP) has a negative effect on the likelihood to be inefficient, 

suggesting that teaching and knowledge transfer activities are not necessarily in 

competition with each other. Unexpectedly, universities in regions with greater GVA 

per capita are more likely to be inefficient; this may reflect the more intense 

competition between universities for knowledge transfer engagements such as 

research and consultancy contracts and CPDs, as universities tend to concentrate in 

historically more prosperous regions. 

 

 

 

Table 5. Regression analysis on various specifications of inefficiency using institutional and 

external factors 

Variables Model (1a) Model (1b) Model (2a) Model (2b) 
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HIST 0.213 0.213 1.302 1.313 

 (1.278) (1.278) (1.686) (1.755) 

POLY  1.698+ 1.698+ 1.510 1.487 

 (1.125) (1.125) (1.456) (1.519) 

PSCIMED 16.736**  20.326**  

 (6.850)  (9.293)  

PSOC  -16.736**  -19.326** 

  (6.850)  (8.974) 

PTECH  15.983** -0.753 9.015 -11.665 

 (7.013) (4.978) (9.939) (8.707) 

PARTHUM  18.643*** 1.908 21.213** 0.656 

 (7.202) (3.513) (9.521) (6.237) 

ACADDIVR   15.560*** 15.560*** 25.451*** 25.623*** 

 (5.008) (5.008) (6.788) (7.254) 

TOTKTINCOMER  13.078** 13.077** -1.644 -2.079 

 (6.376) (6.376) (8.656) (8.928) 

SQTOTKTINCOMER  -14.713** -14.713** -2.324 -1.446 

 (7.286) (7.286) (11.413) (11.925) 

KTINCOMEDIVR  2.093 2.093 2.280 2.472 

 (2.653) (2.653) (3.399) (3.693) 

RES_INTENSITYR  -4.564 -4.564 -9.050 -9.498 

 (5.821) (5.821) (8.644) (9.430) 

STUDPPR -6.666* -6.666* -3.761 -4.268 

 (3.830) (3.830) (4.627) (4.895) 

SRES_STUDR  4.714 4.714 13.608 13.570 

 (5.991) (5.991) (10.027) (10.351) 

KT_ORR  -3.823 -3.823 1.291 1.078 

 (3.287) (3.287) (4.219) (4.211) 

AGER  -5.730 -5.730 -3.101 -3.230 

 (5.231) (5.231) (5.043) (5.436) 

TTOAGER  0.387 0.387 3.416 3.189 

 (2.521) (2.521) (4.576) (4.785) 

GVAREGR 3.638** 3.638** 6.194*** 6.415*** 

 (1.713) (1.713) (2.134) (2.279) 

Intercept -20.653*** -3.917 -30.694*** -10.615+ 

 (7.175) (3.762) (10.245) (6.864) 

Observations 78 78 78 78 

LR Chi2 43.85 25.830 43.85 23.250 

d.f. 16 16 16 16 

Pr(> chi2)  0.0002 <0.1 0.0002 <0.1 

Standard errors in parentheses; + p<0.15, *** p<0.01, ** p<0.05, * p<0.1 

In Model 2, a truncated regression is performed on a continuous dependent variable 

(the bias-corrected efficiency scores), and the standard errors are computed through a 
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bootstrap procedure in order to account for the bias arising from the serial correlation 

of the error terms. With this approach, we are focusing on the determinants of relative 

inefficiency rather than on the simple probability to be inefficient. The signs of the 

coefficients do not change in Model 2 (apart from the coefficient of KT_OR, which is 

however never significant), but the significance of some coefficients does. In 

particular, the scale of a university’s knowledge transfer operations 

(TOTKTINCOME), its squared term (SQTOTKTINCOME) and the ratio of students on 

academic staff (STUDPP) are no longer significant. Like in Model 1, having a higher 

share of academic staff in the natural sciences and medicine and in the arts and 

humanities increases inefficiency, and so does having a diverse subject composition; 

the share of academic staff in the social sciences and business reduces inefficiency, 

and regional GVA has a positive effect on inefficiency. 

We do not find evidence that a larger scale of knowledge transfer operations, proxied 

by the institutions’ income from knowledge transfer, is linked to greater efficiency, 

rather there seems to be a U-shaped relationship so that very small and very large 

institutions are more likely to be efficient. As can be seen from Figure 3, where the 

scores here are reported as efficiency rather than inefficiency (efficient universities 

have a score of 1), many efficient universities operate on a small scale, although some 

universities operating on a very large scale are efficient, and many universities 

operating on a small scale are very inefficient.  

Interestingly, in the United Kingdom the Higher Education Funding Council for 

England (HEFCE) has recently (2001) established a permanent stream of funding to 

reward the institutions that achieve the best knowledge transfer performance; while 

funds were initially allocated competitively, they are now distributed according to a 

formula that rewards the universities that have accrued the highest amount of income 

from several knowledge transfer activities. Our findings do not suggest that 

institutions that achieve greater income from knowledge transfer activities are more 

efficient than smaller ones – that is, a unit of input employed in institutions with a 

larger scale of knowledge transfer operations does not necessarily generate more 

output than a unit of input employed in institutions with smaller operations. Hence, 

while larger income from knowledge transfer activities may signal larger impact 
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(HEFCE, 2011)14, it is not per se a measure of efficient knowledge transfer 

performance. 

Figure 3. Plot of efficiency scores vs. total income from knowledge transfer 

 

Figure 4 plots diversity in subject composition against the inefficiency scores. We can 

see that more diverse institutions tend to be more inefficient. 

 

                                                
14 That income of knowledge transfer is an accurate measure of impact is actually debatable, as the 
prices paid for university services often do not reflect their actual economic and social value (a point 
made, for example, by the UK’s University Alliance in response to a HEFCE consultation in 2011). It 
is however very difficult to quantify the impact of knowledge transfer activities using other indicators: 
there is no clear theory of how to measure the impact of the various types of universities’ knowledge 
transfer activities, and data to support this are rarely collected. In this paper, we do not deal with the 
issue of measuring the “impact” of knowledge transfer, rather we focus on the efficiency implications 
of adopting different ranges of outputs of the knowledge transfer process, and on the determinants of 
efficiency. 
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Figure 4. Plot of inefficiency scores vs. subject diversity of academic staff 

 

5. Conclusions 

The current literature on the efficiency of universities’ knowledge transfer activities 

adopts a rather narrow view of knowledge transfer, mainly interpreted as the 

transformation of research results into intellectual property or as the transformation of 

patents into licenses. This model of knowledge transfer is appropriate to a small set of 

academic disciplines and institutions. In this analysis we have adopted a broader 

approach to knowledge transfer, focusing on a range of outputs that comprises 

intellectual property disclosures, research and consultancy contracts, continuing 

professional development courses, and public events. We find that universities that 

have a greater share of staff in the social sciences and business, and former 

polytechnics, which perform a variety of knowledge transfer activities, display 

relatively greater efficiency when outputs are measured in terms of a broad range of 
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activities. Adopting a broader view of knowledge transfer allows us to appreciate that 

some universities that do not focus mainly, or exclusively, on the filing and 

commercialization of intellectual property, are efficient in deploying their generic 

inputs in order to produce knowledge transfer outputs.  

When efficiency is measured in terms of a broad range of outputs, universities with a 

greater share of staff in the social sciences and business are more efficient. We find 

that specialization (in terms of subject composition) increases efficiency in 

knowledge transfer, while the scale of knowledge transfer operations has no 

significant bearing of relative efficiency, although some universities that have very 

small and very large scales of operations are efficient. We find no evidence of a 

reduction in knowledge transfer efficiency due to having a larger number of students 

per academic staff (indeed, this variable has a weakly negative impact on the 

likelihood to be inefficient), or of performing a larger amount of research relative to 

teaching, suggesting that knowledge transfer is not competing with teaching and 

research activities. 

The present analysis has several limitations, mainly related to the difficulty in finding 

ways to identify precisely the inputs that are used in knowledge transfer, and in 

finding reliable data on the full range of knowledge transfer activities that universities 

engage in; while this study considers a broader range of activities than previous 

research, it still omits numerous important areas of engagement (for example, 

providing certification, testing and prototyping services; organizing student 

placements in industry; many types of interactions with the local community and the 

general public). Moreover the measurement of efficiency is only focused on the 

amount of activities performed and not on their importance, or value. The use of SFE 

techniques could enrich our understanding of the universities’ efficiency in this 

regard: by focusing on the set of knowledge transfer activities for which information 

about monetary income exists, it would be possible to study the relationship between 

use of inputs and generation of income from knowledge transfer activities. Further 

research should also seek to improve the treatment of outliers, for example by 

focusing on the computation of order-m efficiency scores and the effect of 

institutional and environmental variables.  
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Appendix A. Correlation matrix between inputs and outputs 
 
 FCGRANTS KTSTAFF SCIMEDSTA

FF 
ENGTECHST
AFF 

SOCBUSSTA
FF 

ARTHUMSTA
FF 

IPDISCL RESCONSUL
T 

CPD 

FCGRANTS 1.00         
KTSTAFF 0.15 1.00        
SCIMEDSTAFF 0.87 0.12 1.00       
ENGTECHSTAF
F 

0.75 0.18 0.68 1.00      

SOCBUSSTAFF 0.64 0.09 0.51 0.53 1.00     
ARTHUMSTAFF 0.64 0.18 0.42 0.29 0.50 1.00    
IPDISCL 0.15 0.15 0.17 0.09 0.17 0.08 1.00   
RESCONSULT 0.69 0.14 0.82 0.72 0.53 0.24 0.18 1.00  
CPD 0.07 0.08 -0.03 -0.06 0.16 0.29 -0.01 -0.06 1.00 
EVENTS 0.52 0.06 0.47 0.49 0.46 0.51 0.10 0.49 0.10 
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Appendix B. Correlation matrix between regressors 
 
 

HIST POLY PSCIME
D 

PSOC 
PTECH  PARTH

UM 
ACADD
IV 

TOTKTI
NCOME 

SQTOT
KTINC
OME 

KTINC
OMEDI
V 

RES_IN
TENSIT
Y 

STUDP
P 

 
SRES_S
TUD 

KT_OR AGE TTOAG
E 

HIST 1.00                
POLY -0.55 1.00               
PSCIME
D 

0.69 -0.46 1.00              

PSOC -0.54 0.46 -0.58 1.00             
PTECH  -0.39 0.26 -0.42 0.16 1.00            
PARTH
UM 

-0.25 0.10 -0.60 -0.2 
 

-0.29 1.00           

ACADD
IV 

-0.61 0.55 -0.64 0.65 0.45 0.08 1.00          

TOTKTI
NCOME 

0.60 -0.35 0.59 -0.45 -0.15 -0.36 -0.53 1.00         

SQTOT
KTINC
OME 

0.54 -0.33 0.55 -0.43 -0.14 -0.33 -0.52 0.95 1.00        

KTINC
OMEDI
V 

-0.27 0.13 -0.19 0.21 0.16 -0.02 0.30 -0.31 -0.31 1.00       

RES_IN
TENSIT
Y 

0.67 -0.57 0.67 -0.52 -0.24 -0.35 -0.64 0.79 0.81 -0.41 1.00      

STUDP
P 

-0.68 0.54 -0.69 0.47 0.29 0.37 0.63 -0.67 -0.60 0.27 -0.81 1.00     

 
SRES_S
TUD 

0.66 -0.54 0.65 -0.50 -0.18 -0.39 -0.61 0.81 0.84 -0.39 0.96 -0.79 1.00    

KT_OR -0.28 0.36 -0.29 0.09 0.22 0.16 0.12 -0.23 -0.22 0.04 -0.35 0.36 -0.35 1.00   
AGE 0.42 -0.21 0.35 -0.26 -0.20 -0.14 -0.29 0.49 0.61 -0.27 0.60 -0.39 0.65 -0.22 1.00  
TTOAG
E 

0.23 -0.12 0.30 -0.29 0.04 -0.22 -0.29 0.22 0.17 -0.17 0.24 -0.30 0.28 -0.08 0.14 1.00 

GVARE
G 

-0.04 -0.07 0.00 0.06 -0.12 0.05 -0.10 0.12 0.14 -0.31 0.19 -0.01 0.12 -0.15 0.08 -0.08 


