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Abstract 

A large body of research has shown spatial distortions in the perception of tactile 

distances on the skin. For example, perceived tactile distance is increased on sensitive 

compared to less sensitive skin regions, and larger for stimuli oriented along the medio-

lateral axis than the proximo-distal axis of the limbs. In this study we aimed to 

investigate the spatial coherence of these distortions by reconstructing the internal 

geometry of tactile space using multidimensional scaling (MDS). Participants made 

verbal estimates of the perceived distance between two touches applied sequentially to 

locations on their left hand. In Experiment 1 we constructed perceptual maps of the 

dorsum of the left hand, which showed a good fit to the actual configuration of stimulus 

locations. Critically, these maps also showed clear evidence of spatial distortion, being 

stretched along the medio-lateral hand axis. Experiment 2 replicated this result and 

showed that no such distortion is apparent on the palmar surface of the hand. These 

results show that distortions in perceived tactile distance can be characterized by 

geometrically simple and coherent deformations of tactile space. We suggest that the 

internal geometry of tactile space is shaped by the geometry of receptive fields in 

somatosensory cortex. 

 

Statement of Public Significance 

The perceived distance between touches on the skin is known to differ across body 

parts and between orientations within a single part. This study develops a novel method 

of measuring perceptual maps of touch to clarify the nature of these distortions.  
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 Several forms of perception require that immediate sensory signals be combined 

with information about the size and shape of the body. For example, using the temporal 

difference in the arrival time of sound at the two ears to localize an auditory stimulus 

requires information about the distance between the ears (Clifton et al., 1988). 

Similarly, the use of convergence angles for absolute judgments of visual distance 

requires information about inter-ocular distance (Banks, 1988).  In the classic study of 

Warren and Whang (1987), the authors showed that the perceived height of the eyes off 

the ground also structures perception. By inserting (unbeknownst to participants) a 

false floor between the participants and an aperture, and thus reducing effective eye-

height, they showed that the perception of the affordance of passability through the 

aperture was determined as a fixed proportion of perceived eye-height.  

 Warren and Whang (1987) introduced a distinction between two ways in which 

visual information specifying affordances of the environment might be coded, 

extrinsically or intrinsically. In the case of extrinsic coding, visual information is first 

used to specify the dimensions of environmental stimuli in an absolute, viewer-

independent metric, which is then subsequently compared to representations of the 

size of the viewer’s body. In intrinsic coding, in contrast, visual information is related 

directly to physical dimensions of the observer in body-scaled units. By showing that 

visual information for judgments of the possibility of apertures appears to be directly 

scaled in terms of eyeheight, Warren and Whang provided evidence in favour of the role 

of intrinsic coding for the visual perception of affordances.  This distinction between 

intrinsic and extrinsic coding is particularly intriguing in the sense of touch. Given that 

the primary receptor surface (the skin) is physically co-extensive with the body itself, 

tactile information is fundamentally intrinsic in a way that visual information need not 
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be. Touch, however, can clearly also be used to perceive the extrinsic physical 

properties of objects. 

 

Distortions of Tactile Distance Perception 

Longo, Azañón, and Haggard (2010) argued that perceiving the metric properties 

of objects touching the skin requires that immediate sensory signals be combined with 

stored representations of body size and shape, what they called a body model. Indeed, 

several recent studies have shown relations between the perceived size of the body and 

perceived tactile distance on the skin. For example, perceived tactile distance or size has 

been found to be modulated by alterations of perceived body size induced through 

manipulations such as visual magnification (Taylor-Clarke, Jacobsen, & Haggard, 2004), 

proprioceptive self-touch illusions (de Vignemont, Ehrsson, & Haggard, 2005), 

cutaneous anesthesia (Berryman, Yau, & Hsiao, 2006), sounds produced by action 

(Tajadura-Jiménez et al., 2012, 2015), the rubber hand illusion (Bruno & Bertamini, 

2010), and tool use (Canzoneri et al., 2013; Miller, Longo, & Saygin, 2014, 2017). Thus, 

in analogy with the modulation of perceived passability of apertures when apparent 

eyeheight was altered shown by Warren and Whang (1987), these results show that 

experimental manipulations of represented body size alter perceived tactile distance. 

 Perceived tactile distance is not, however, shaped only by high-level models of 

the body, but also by low-level aspects of somatosensory organization. For example, 

Weber (1834/1996) found that the perceived distance between two points of a 

compass changed as he moved them across his skin, feeling farther apart on regions of 

high tactile sensitivity compared to regions of lower sensitivity. Subsequent studies 

have replicated this pattern and suggest a systematic relation between perceived tactile 

distance and the spatial sensitivity of skin surfaces (e.g., Cholewiak, 1999; Taylor-Clarke 
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et al., 2004; Anema, Wolswijk, Ruis, & Dijkerman, 2008; Miller, Longo, & Saygin, 2016), 

an effect known as Weber’s illusion, suggesting that tactile distance perception 

preserves spatial distortions characteristic of the famous ‘Penfield homunculus’ 

(Penfield & Boldrey, 1937). 

 While Weber’s illusion shows distortions in the relative size of perceived tactile 

distance on different skin surfaces, similar illusions have also been shown within 

individual skin surfaces as a function of orientation. For example, Longo and Haggard 

(2011) asked participants to make forced-choice judgments about which of two tactile 

distances felt bigger, applying one in the medio-lateral axis of the hand dorsum (across 

the hand) and one in the proximo-distal axis (along the hand). There was a large bias to 

perceived distances oriented along the medio-lateral axis as larger. Similar results have 

also been found on the forearm (Green, 1982; Le Cornu Knight, Longo, & Bremner, 

2014), the leg (Green, 1982), and the face (Longo, Ghosh, & Yahya, 2015). Such 

anisotropies are in line with the overall pattern of Weber’s illusion given that tactile 

acuity is known to be higher in the medio-lateral than in the proximo-distal axis of the 

limbs (Weber, 1834/1996; Cody, Gaarside, Lloyd, & Poliakoff, 2008). Moreover, they 

also mirror anisotropies in the shape of tactile receptive fields (RFs) in somatosensory 

cortex, which tend to be oval-shaped, rather than circular, with the long axis oriented 

along the proximo-distal limb axis (e.g., Powell & Mountcastle, 1959; Brooks, Rudomin, 

& Slayman, 1961; Alloway, Rosenthal, & Burton, 1989). Intriguingly, the magnitude of 

this perceptual anisotropy is reduced or eliminated on the glabrous skin of the palm 

(Longo & Haggard, 2011; Le Cornu Knight et al., 2014; Longo, Ghosh, et al., 2015), a 

surface with more circular receptive fields than the dorsum (DiCarlo, Johnson, & Hsiao, 

1998; DiCarlo & Johnson, 2002). 
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 To account for this overall pattern of results, we proposed a ‘pixel’ model of 

perceived tactile distance (Longo & Haggard, 2011; Longo, 2017). The key idea of this 

model is that tactile space consists of a two-dimensional array, with the RFs of neurons 

in a somatotopic map being treated as the pixels comprising this array. Judging distance 

would then involve counting the number of pixels separating two touched locations. 

Because RFs are smaller on sensitive skin surfaces than on less sensitive surfaces 

(Powell & Mountcastle, 1959; Sur, Merzenich, & Kaas, 1980), a given tactile distance will 

cover more pixels on a sensitive surface, consistent with Weber’s illusion. Similarly, 

where RFs are oval-shaped, tactile distances oriented along the shorter axis of the ovals 

will cover more pixels than those oriented along the longer axis, consistent with the 

anisotropies described in the previous paragraph. 

 A central prediction of the pixel model is that distortions of tactile distance 

perception should be geometrically coherent. Where RFs differ in size, the model 

predicts a relative magnification of the skin surface with smaller RFs. Where RFs are 

oval-shaped, the model predicts stretch along the short axis of the ovals. In either case, 

the pixel model predicts that the distortion induced should reflect a geometrically 

simple stretch of tactile space. A century ago, D’Arcy Thompson (1917) argued that 

many differences in biological form, whether between species or as a function of 

developmental change, could be characterized by geometrically simple transformations. 

Thompson asked how one form would need to be deformed, or stretched, to transform 

it into another, finding that even visually-dramatic differences could be achieved 

through geometrically-simple transformations, such as stretches and skews. The pixel 

model, similarly, predicts that tactile space, while distorted, should nevertheless be 

related to the true structure of the skin in a geometrically straightforward way. While 

previous studies have revealed the existence of distortions of perceived tactile distance, 
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we aimed here to characterize these distortions in a more holistic manner than is 

possible with forced-choice comparisons. We thus constructed perceptual maps of the 

skin surface reflecting perceived distance between different locations and asked how 

these maps deform the true structure of the skin. 

 

Mapping Representational Structure with Multidimensional Scaling 

 Several previous studies have attempted to construct perceptual maps of the 

body, for example by measuring patterns of proprioceptive localization of body parts 

(e.g., Longo & Haggard, 2010, 2012), localization of individual somatic stimuli in both 

skin-centred (e.g., Rapp, Hendel, & Medina, 2002; Mancini, Longo, Iannetti, & Haggard, 

2011) and external (e.g., Trojan et al., 2006; Longo, Mancini, & Haggard, 2015) frames of 

reference, and localization of body parts relative to an anchor part (e.g., Fuentes, Longo 

& Haggard, 2013; Fuentes, Pazzaglia, Longo, Scivoletto, & Haggard, 2013). In each of 

these cases, perceptual maps were constructed directly, in the sense that participants 

were asked to make overt judgments of perceived location in some external frame of 

reference. Thus, the tasks were extrinsic in the sense of Warren and Whang (1987). 

Here, we adopted a different, and more indirect approach, asking only for judgments of 

perceived distance between pairs of touches, rather than the perceived location of 

individual landmarks. We then reconstructed perceptual maps from the pattern of 

distance judgments using multidimensional scaling (MDS). MDS is a method for 

reconstructing the latent spatial structure underlying a set of items given a matrix of 

pairwise distances or dissimilarities between items (Shepard, 1980; Everitt & Rabe-

Hesketh, 1997; Cox & Cox, 2001). As with principal components analysis, it is frequently 

possible to preserve a large proportion of the variance in the data using a small number 
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of dimensions. We aimed to use MDS to reconstruct the internal geometry of tactile 

space. 

Consider the standard textbook example of MDS, which involves the distances 

between each pair of a set of cities, usually in the author’s home country. For example, 

we might start with the shortest driving distance between each pair of ten American 

cities (e.g., New York to Boston, Boston to Los Angeles, Los Angeles to Chicago, etc.). The 

resulting 10x10 distance matrix is symmetrical (i.e., the distance from San Diego to 

Chicago is the same as from Chicago to San Diego) and with zeros on the diagonal (i.e., 

the distance from Philadelphia to Philadelphia is 0 km). MDS applied to this distance 

matrix yields coordinates for each of the ten cities in a space of up to ten dimensions 

such that the distances between the cities in the high-dimensional space are as 

proportional as possible to the actual distances. Given that the data reflect distances 

between cities, we clearly expect that the best two dimensions should account for a very 

large percentage of the total variance in the data. A two-dimensional solution will not 

perfectly reconstruct the distances, given factors such as measurement error, curvature 

of the Earth, differences in elevation of the cities, and idiosyncrasies of the road 

network. Nevertheless, the first two dimensions of the MDS solution will produce a 

configuration very similar to a map of the United States (though the configuration 

produced may need to be reflected and rotated to match our familiar map). 

Within psychology, the use of MDS has been related to the idea that the judged 

similarity between two concepts, or the extent to which learning will generalize 

between them, is related to their proximity in some ‘psychological space’ (Shepard, 

1987; Gärdenfors, 2000). Given data on the similarity or confusability of stimuli or 

concepts, MDS can be used to reconstruct the geometric structure of the underlying 

psychological space. This method has been widely used to explore the psychological 
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spaces underlying domains such as colour (e.g., Shepard & Cooper, 1992; Bosten, 

Robinson, Jordan, & Mollon, 2005), visual space perception (Aznar-Casanova, 

Matsushima, Ribeiro-Filho, & Da Silva, 2006), facial appearance (e.g., Byatt & Rhodes, 

2004; Rhodes, 2013), object categorization (e.g., Nosofsky, 1986), visual shape 

perception (e.g., Cutzu & Edelman, 1996), emotion (e.g., Feldman Barrett & Fossum, 

2001; Kring, Feldman Barrett, & Gard, 2003), mathematics (e.g., Griffiths & Kalish, 

2002), odors (e.g., Carrie, Scannell, & Dawes, 1999), music (e.g., Krumhansl  & Kessler, 

1982; Shepard, 1982; Kendall & Carterette, 1991), tactile texture perception (e.g., 

Hollins, Bensmaïa, Karlof, & Young, 2000), pain (e.g., Clark, Carroll, Yang, & Janal, 1986; 

Clark, Ferrer-Brechner, Janal, Carroll, & Yang, 1989), perception of risks (e.g., Johnson & 

Tversky, 1984), verb semantics (e.g., Wolff & Song, 2003), and even the perception of 

letters in pigeons (Blough, 1982). MDS has been used similarly in neuroscience, for 

example to reveal representational structure in the ventral visual pathway (e.g., Young 

& Yamane, 1992; Kriegeskorte et al., 2008), categorical representations of speech in 

auditory cortex (e.g., Chang et al., 2010), and global patterns of functional brain 

connectivity (e.g., Friston, Frith, Fletcher, Liddle, & Frackowiak, 1996). 

 

The Present Study 

 Here we used MDS to reconstruct the internal geometry of tactile space. We 

asked participants to judge the perceived distance between pairs of touches and applied 

MDS to the resulting matrix of perceived distances to construct perceptual maps of the 

representation of the skin. The logic is exactly analogous to the textbook example of 

MDS described above to reconstruct a map of the United States from a matrix of driving 

distances between pairs of American cities. The only difference is that we use a matrix 

of perceived, rather than actual distances. The advantage of this method is that it 
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produces an overall map of the geometry of tactile space, allowing us to investigate the 

way in which tactile space deforms the true spatial layout of the skin. In Experiment 1 

participants made verbal judgments of the perceived distance between touches applied 

to each pair of a 4x4 grid on the dorsum of their left hand. We show that two-

dimensional perceptual maps can be constructed which show good fit to the actual 

shape of the skin, but are also clearly distorted, showing stretch along the medio-lateral 

hand axis in comparison to the proximo-distal axis. Experiment 2 replicated this finding 

and extended it to the palm of the hand, showing that while similarly clear perceptual 

maps can be constructed on both surfaces, distortion is apparent only on the dorsal and 

not on the palmar hand surface. 

 

Experiment 1 

Methods 

Participants 

 Twelve members of the Birkbeck community (six female) between 18 and 51 

years of age (M: 28.0 years; SD: 9.1) participated for payment or course credit. All were 

right-handed as assessed by the Edinburgh Inventory (Oldfield, 1971). Participants 

were naïve to the experimental hypotheses and provided written informed consent. 

Procedures were approved by the local ethics committee and were in line with the 

principles of the Declaration of Helsinki. 

 

Procedure 

 To identify stimulus locations, a 4x4 grid of points was marked with a pen on the 

back of the participant’s left hand using a plastic template (see Figure 1). Adjacent 

points on the grid were separated by 1.5 cm. The four rows of points ran along the 
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medio-lateral hand axis, while the four columns ran along the proximo-distal axis. The 

proximo-distal axis was operationalized by the tendon connecting the extensor 

digitorum muscle to the middle finger. Tactile stimulations were applied using a von 

Frey hair (1765 milliNewtons). The use of a von Frey hair ensures that the amount of 

pressure applied at each location was constant across stimulations. 

 

 

Figure 1: Example of the 4x4 grid of stimulation locations. 

 

During testing, the participant sat at a table with their left hand lying palm-down. 

The experimenter sat at the table across from the participant to apply tactile stimuli. 

The participant was blindfolded throughout the experiment and was not allowed to see 

the grid drawn on their hand until after the experiment. On each trial, two locations 

were stimulated in sequence by the experimenter. Each location was stimulated for 
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approximately one second with a one second inter-stimulus interval. After each trial, 

participants made unspeeded verbal estimates of the perceived distance between two 

stimulus locations by giving a number in millimeters. Participants were instructed to be 

as precise as possible in their estimates, but also to not spend a lot of time thinking 

about responses and to report whichever distance felt immediately intuitive. 

Participants were allowed to give a response of 0 mm if they felt like the same location 

had been stimulated twice, though in fact two different locations were stimulated on 

each trial. 

There are 120 possible pairs of 16 stimulus locations and two stimulus orders 

for each pair, making 240 types of trials. Each trial type was presented twice, resulting 

in 480 trials. These were divided into four blocks of 120 trials separated by short 

breaks. The trials were presented in random sequence subject to the restriction that 

each of the 240 trial types occurred exactly once in blocks 1-2 and once in blocks 3-4. 

 At the end of the experiment, a photograph was taken of each participant’s hand 

showing the locations of the landmarks.  Pixel coordinates of each landmark were coded 

offline. A ruler appeared next to the hand in each photograph, allowing conversion 

between distances in pixels and cm. 

 

Multidimensional Scaling 

 The four repetitions of each stimulus pair for an individual participant were 

averaged (collapsing across order of stimulation), resulting in a symmetric matrix 

reflecting the pairwise perceived distance between pairs of points, with zeros on the 

diagonal. Classical multidimensional scaling was applied to the distance matrix for each 

participant using the cmdscale command in MATLAB (Mathworks, Natick, MA). The 
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output of MDS is a set of eigenvalues for each dimension and coordinates for each 

landmark in each dimension. 

As there are 16 landmarks, MDS attempts to position the landmarks in 16-

dimensional space such that the distances between them are as proportional as possible 

to the perceived distances. In most real datasets, however, it will not be possible to find 

a configuration which perfectly preserves these distances. This is due to violations of 

the triangle inequality, which states that the distance between landmarks A and C 

cannot be greater than the sum of the distances between landmarks A and B and 

between B and C. As an example, if the distance between London and Oxford is 100 

miles, and the distance between Oxford and Manchester is 200 miles, then the distance 

from London to Manchester cannot be greater than 300 miles, since we know at least 

one route (via Oxford) of that distance. It is, of course, perfectly possible for participants 

to produce patterns of perceptual judgments which violate this inequality 

(mathematically, this implies that the distance matrix is not positive semi-definite), in 

which case the MDS solution will not perfectly reconstruct the perceived distances. In 

this case, MDS will produce a configuration with a dimensionality less than 16, the 

missing dimensions being associated with negative eigenvalues. Therefore, to calculate 

the percentage of variance in the data accounted for by each dimension, we compared 

the absolute value of each eigenvalue to the sum of the absolute values of all 16 

eigenvalues. 

In order to create a null distribution for comparison with our data, we conducted 

MDS on simulated random data. For each simulation, 120 random numbers were 

generated and placed into a distance matrix, as with the actual data. MDS was applied to 

each simulation and the eigenvalues and coordinates extracted. One million such 

simulations were conducted. 



Mapping Tactile Space 

 14 

 

Procrustes Alignment 

Procrustes alignment (Rholf & Slice, 1990; Goodall, 1991) superimposes two 

spatial configurations of homologous landmarks by translating, scaling, and rotating 

them to be as closely aligned as possible. First, the two configurations are translated so 

that their centroids (i.e., the centre of mass of all landmarks) are in the same location. 

Second, the configurations are normalized in size so that the centroid size, the square 

root of the sum of squared distances between each landmark and the centroid, is equal 

to 1. Third, the configurations are rotated to minimize the sum of squared distance 

between pairs of homologous landmarks. Note that in the present study mirror 

reflections of the configurations were allowed, though in other contexts this may not be 

desirable. At this point, the configurations are in the best possible spatial alignment, 

with all non-shape differences removed (Bookstein, 1991).  

We used Procrustes alignment in two ways, both as a way to quantify 

dissimilarity in shape and as a visualization tool. First, the residual sum of squared 

distances between pairs of homologous landmarks which is not removed by Procrustes 

alignment provides a measure of the dissimilarity in shape between the two 

configurations, called the Procrustes Distance. If two configurations have exactly the 

same shape, they will lie on top of each other following Procrustes alignment and thus 

have a Procrustes distance of 0. In contrast, two configurations with no shared spatial 

structure at all will have a Procrustes distance of 1, given that the size normalization 

results in a total sum of squared variance within each configuration of exactly 1. Second, 

Procrustes alignment provides a natural way to visually display configurations, making 

differences in shape clearly apparent. 
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Results and Discussion 

 The left panel of Figure 2 shows a scree plot depicting the mean percentage of 

variance in the data explained by each dimension in participants’ judgments (in blue) 

and in one million simulations of random data (green). As described above, the lines are 

not monotonically decreasing (as in familiar scree plots from principal component 

analysis) because violations of the triangle inequality result in non-real variance, and 

thus negative eigenvalues. There was clear support for a two-dimensional solution in 

terms of the traditional scree test, as there is a clear drop-off in the amount of variance 

explained after the second dimension, but only modest drop-offs thereafter. A two-

dimensional solution was also strongly supported by comparing the actual data to the 

simulations, since the first two dimensions were the only ones in which the amount of 

variance explained in the data exceeded that in the stimulated random data. The first 

two dimensions accounted on average for 28.7% and 17.7% of the variance in the data, 

for a sum of 46.4%. By comparison, none of the simulations had a first dimension 

explaining as much as the average of our data (i.e., p < 0.000001), while only 10 

simulations had a second dimension explaining as much as the average of our data (i.e., 

p = 0.00001).  

 
Figure 2: Left panel: Scree plot showing the mean percentage variance explained by each of the 
16 MDS dimensions for perceived distance judgments in Experiment 1 (blue) and for one million 
simulations of random distance matrices (green). The blue error bars indicate one standard error 
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of the mean for perceptual judgments. The green error bars, in contrast, show the range of the 
center 95% of values from individual simulations (note that this is a much wider interval than 
the usual 95% confidence interval which concerns the location of the mean, rather than 
individual values). The results provided strong support for a two-dimensional solution, both by 
the traditional scree test and as the amount of variance explained in the perceptual data 
exceeded that for the simulations only in the first two dimensions. Right panel: Histogram 
showing the distribution of Procrustes distances between two-dimensional MDS solutions from 
simulations and a perfectly square 4x4 grid. Blue vertical lines indicate the corresponding 
Procrustes distance for the perceptual judgments of each participant. These values were much 
smaller than the simulations, showing that perceptual maps mirror the actual spatial layout of 
the skin. 

 

 The preceding analysis shows the participants’ perceptual maps are two-

dimensional, mirroring the dimensionality of the stimulated skin region itself. This, 

however, does not imply that these maps accurately reflect the true spatial organization 

of the skin. To investigate this, we calculated the dissimilarity in shape (i.e., the 

Procrustes distance) between a perfectly square 4x4 grid and the first two dimensions 

from each MDS configuration. These results are shown in the right panel of Figure 2. 

The green bars show a histogram of the Procrustes distances of the simulations with the 

square grid, while the vertical blue lines reflect the Procrustes distance for each 

participant’s perceptual map. Eleven participants had a smaller Procrustes distance 

than any of the simulations. Only one fell within the range of the simulations, having a 

value larger than 134 of one million simulations (i.e., p = 0.000134). These results 

clearly demonstrate that the perceptual maps of tactile space preserve the true spatial 

structure of the skin. The maps themselves are shown in Figure 3. 
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Figure 3: Perceptual maps of the hand dorsum in Experiment 1. Pale blue dots are landmarks 
from individual participants’ maps, each put into Procrustes alignment with an ideal square grid. 
The pale grey dots are the same but for the actual locations of the landmarks on participants’ 
hands. The dark dots and lines reflect the grand average shape for perceptual maps (blue) and 
the actual configuration of landmarks (grey). 

 

 To assess distortions in the perceptual maps, we calculated the distance between 

pairs of landmarks that differed in location in either the medio-lateral axis (i.e., on the 

same row of landmarks) or the proximo-distal axis (i.e., on the same column of 

landmarks). Three types of distance were calculated: small distances, between adjacent 

stimulus locations; medium distances, between locations separated by one location; and 

large distances, separated by two locations (see left panel of Figure 4). There were 12 

small, 8 mid, and 4 large distances in each orientation, which were averaged to yield one 

value for each combination of distance type and orientation for each participant. 

Distances in the medio-lateral orientation were farther apart than in the proximo-distal 

orientation for small (M: 0.191 vs. 0.161 Procrustes normalized units), t(11) = 9.37, p < 

0.0001, dz  = 2.71, medium (M: 0.344 vs. 0.284 Procrustes normalized units), t(11) = 

4.39, p < 0.002, dz = 1.27, and large (M: 0.504 vs. 0.401 Procrustes normalized units), 

t(11) = 4.06, p < 0.002, dz = 1.17, distances. We obtained an overall measure, 
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aggregating across the three sizes, by calculating the average distance per step, treating 

small distances as one step, medium distances as two steps, and large distances as three 

steps. With this aggregate measure there was a clear overestimation of distances in the 

medio-lateral orientation (M: 0.173 vs. 0.141 Procrustes normalized units per step), 

t(11) = 4.86, p < 0.001, dz = 1.40. 

 
Figure 4: Left panel: Examples of pairs of landmarks forming small, medium, and large distances. The 
small and large distances are in the medio-lateral orientation, while the medium distance is in the 
proximo-distal orientation. Within each orientation there were 12 small, 8 mid, and 4 large distances, 
which were averaged. Right panel: Mean distance in Procrustes normalized space between pairs of 
landmarks of each distance in the medio-lateral and proximo-distal orientations. There was clear 
overestimation of distances in the medio-lateral orientation, compared to the proximo-distal orientation. 
Error bars are one standard error of the mean. 
 

 Because the preceding analysis focuses entirely on pairs of landmarks exactly 

aligned with either the medio-lateral or proximo-distal axis, we aimed to assess spatial 

distortion also in a more holistic manner. We therefore adapted a procedure we 

recently applied to quantifying distortions in position sense (Longo & Morcom, 2016). 

Accordingly, we stretched a square grid reflecting the locations of the 16 points by 

different amounts to find the stretch that minimized the Procrustes distance with each 

participant’s perceptual map, as well as with the actual configuration of points on their 

hand. Stretches were defined by the multiplication of the x-coordinate (reflecting 
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location in the medio-lateral hand axis) by a stretch parameter. Thus, a stretch of 1 

indicated a perfectly square grid, stretch of less than 1 indicated a tall thin grid, and 

stretch of more than 1 indicated a squat fat grid. Note that because Procrustes 

alignment normalizes size, a stretch applied to the medio-lateral axis is identical to the 

inverse stretch being applied to the proximo-distal axis (i.e., multiplying the x-

coordinates by 2 is identical to multiplying the y-coordinates by 0.5). Thus, while 

distortions are described in terms of the medio-lateral axis, this method cannot indicate 

which specific axis is affected by distortions in the sense that stretch of one axis is 

formally identical to compression of the other. Values between 0.33 and 3 were tested 

by exhaustive search with a resolution of 0.0005 units in natural logarithm space (i.e., 

4,415 steps). Note that we report mean stretch values as ratios, the statistical tests we 

report compare the mean logarithm of the ratios to 0, since ratios are not symmetrical 

around 1. 

Figure 5 shows Procrustes distance as a function of stretch for both perceptual 

and actual hand maps. For the perceptual maps, the mean best-fitting stretch parameter 

was 1.252, significantly greater both than 1, t(11) = 4.23, p < 0.002, d = 1.22, and than 

parameters for the actual map, t(11) = 5.19, p < 0.001, dz = 1.50. In contrast, for the 

actual configuration of points, the mean best-fitting stretch parameter was 0.957, 

significantly less than 1, t(11) = -3.47, p < 0.01, d = 1.00. This stretch in the proximo-

distal axis is presumably due to the curvature of the hand being greater in the medio-

lateral than the proximo-distal hand axis. This would have the result that distances 

between points in the medio-lateral orientation would be slightly smaller than distances 

in the proximo-distal orientation both in three-dimensional Euclidean space and in the 

two-dimensional projection onto the picture plane of the camera. Critically, to the 

extent that participants are sensitive to distance in 3-D space as opposed to distance 
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along the skin surface, this would work against our finding a bias for stretch in the 

medio-lateral axis. 

 
Figure 5: Mean Procrustes distance between actual (grey) and perceptual (blue) maps and 
idealized grids stretched by different amounts. A stretch of 1 indicates a square grid; stretches 
greater than 1 indicate stretch in the medio-lateral axis, while stretches less than 1 indicate 
stretch in the proximo-distal axis. The shaded regions indicate one standard error of the mean. 
The dotted vertical lines indicate the mean of the best-fitting stretches for perceptual maps 
(blue) and actual maps (grey). The stretch that minimized the Procrustes distance was 
substantially larger than 1. Thus, there was clear evidence for stretch in the medio-lateral hand 
axis for perceptual maps. 

 

These results show that MDS can be used to construct perceptual maps of tactile 

space which show clear isomorphism with the actual configuration of the skin. These 

maps, however, also showed clear evidence of distortion, being stretched along the 

medio-lateral axis of the hand. This pattern of distortion is consistent with previous 

results that have directly compared the perceived distance between pairs of touches 

aligned with the proximo-distal and medio-lateral axes (e.g., Green, 1982; Longo & 

Haggard, 2011; Longo & Sadibolova, 2013). The current results show that this 

anisotropy can be characterized in terms of a geometrically coherent stretch of tactile 

space. On the pixel model (Longo & Haggard, 2011; Longo, 2017), this distortion is 
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related to the oval shape of somatosensory RFs on the hand dorsum (e.g., Alloway et al., 

1989), which results in a pixel map which is stretched along the short axis of the RFs 

(i.e., the medio-lateral axis). Given that perceptual anisotropy in tactile distance 

perception is reduced or eliminated on the palm of the hand (e.g., Longo & Haggard, 

2011; Le Cornu Knight et al., 2014; Longo, Ghosh, et al., 2015) and that somatosensory 

RFs on the palm are more circular than on the dorsum (e.g., Di Carlo & Johnson, 2002), 

Experiment 2 aimed to replicate the results from the first experiment and to extend 

them to the palm. 

 

Experiment 2 

Methods 

Participants 

Twenty-four members of the Birkbeck community (17 women) between 19 and 

54 years of age (M: 32.5 years; SD: 7.9) participated for payment or course credit. All 

but four were right-handed as assessed by the Edinburgh Inventory. Two of the 

participants were excluded from analyses due to experimenter error, resulting in some 

stimulus pairs being duplicated and others not being presented at all. 

 

Procedure 

 The procedures were similar to Experiment 1, except that stimuli were applied 

either to the dorsum of the left hand (as in Experiment 1) or to the palm, in separate 

blocks. There were two blocks of trials on each surface, with ABBA counterbalancing, 

and with the first condition counterbalanced across participants. As in Experiment 1 

there were 120 trials per block. For each surface, there was one trial of each of the 240 

combinations of stimulus locations and stimulation order. 
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Results and Discussion 

 The left column of Figure 6 shows scree plots depicting the mean percentage of 

variance in the data explained by each dimension for the dorsum (top left, in blue) and 

palm (bottom left, in red), as well as for the simulations (in green). As in Experiment 1, 

there was clear support for two-dimensional solutions on both skin surfaces, both in 

terms of the traditional scree test and in that the first two dimensions were the only 

ones in which the percentage of variance explained exceeded that of the simulations. On 

the dorsum, the first two dimensions accounted for an average of 26.4% and 17.5% of 

the variance in the data, for an average total of 43.9%. On the palm, they accounted for 

an average of 25.7% and 19.6%, for an average total of 45.3%. None of the simulations 

had a first dimension explaining as much variance as the average of our data for either 

the dorsum or the palm (p < 0.0000001). For the second dimension, there were no 

simulations that explained as much variance as the average of our data on the palm (p < 

0.0000001) and only 28 on the dorsum (p = 0.000028). There was no significant 

difference between the amount of variance explained by the first two dimensions on the 

palm and on the dorsum, t(21) = 1.02, n.s. 
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Figure 6: Left panels: Scree plots showing the mean percentage of variance explained by each of 
the 16 MDS dimensions for perceptual maps on the hand dorsum (top left, in blue) and palm 
(bottom left, in red) in Experiment 2. Results from one million simulations are shown in green in 
both panels. The blue and red error bars indicate one standard error of the mean. The green 
error bars show the range of the centre 95% of values from individual simulations. Right panels: 
Histograms showing the distribution of Procrustes distances between two-dimensional MDS 
solutions from simulations and a perfectly square 4x4 grid. The vertical lines show the 
corresponding values for individual participants for the dorsum (blue) and palm (red). These 
value were much smaller on average than the simulations, showing that perceptual maps mirror 
the actual spatial layout of the skin. 

 

 The right column of Figure 6 shows the dissimilarity in shape between 

perceptual maps from individual participants and a perfectly square grid assessed by 

the Procrustes distance. For the dorsum, only one of the participants had a perceptual 

map within the range of the simulations, having a value larger than 9,534 simulations 

(i.e., p = 0.0095). For the palm, three participants had perceptual maps within the range 

of the simulations. For two of these participants, their perceptual maps nevertheless 

showed reasonable similarity with the square grid, having Procrustes distances larger 

than 59 and 6 simulations, respectively (i.e., p = 0.000059 and 0.000006). One 



Mapping Tactile Space 

 24 

participant, however, had a perceptual map with a Procrustes distance (0.929) very 

similar to the mean (0.898) and median (0.912) of the simulations. As there was no 

evidence that this map had any similarity at all with the true structure of the skin, this 

participant was removed from subsequent analyses. The maps themselves are shown in 

Figure 7. The mean Procrustes distance did not differ significantly between the dorsum 

and palm, t(20) = 0.02, n.s. 

 
Figure 7: Perceptual maps of the hand dorsum (left panel, blue) and palm (right panel, red) in 
Experiment 2. Pale dots are landmarks from individual participants’ perceptual maps (blue, red) 
or actual hand (grey), each put into Procrustes alignment with an ideal square grid. The dark dots 
represent the grand average shape for each type of map. 

 

 We assessed distortions in perceptual maps as in Experiment 1 by calculating the 

distance between pairs of landmarks differing in location in either the medio-lateral or 

proximo-distal axis. These data are shown in Figure 8. On the dorsum, distances in the 

medio-lateral orientation were farther apart than those in the proximo-distal 

orientation for small (M: 0.188 vs. 0.168 Procrustes normalized units), t(20) = 3.26, p < 

0.005, dz = 0.71, medium (M: 0.329 vs. 0.293 Procrustes normalized units), t(20) = 2.88, 

p < 0.01, dz = 0.63, and large (M: 0.490 vs. 0.420 Procrustes normalized units), t(20) = 

4.31, p < 0.0005, dz = 0.94, distances, as well as in the aggregate measure (M: 0.168 vs. 

0.147 Procrustes normalized units per step), t(20) = 3.86, p < 0.001, dz = 0.84, 
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replicating the distortions reported in Experiment 1. In contrast, no such differences 

were found on the palm, whether for small (M: 0.177 vs. 0.179 Procrustes normalized 

units), t(20) = -0.40, n.s., dz = 0.09, medium (M: 0.313 vs. 0.310 Procrustes normalized 

units), t(20) = 0.23, n.s., dz = 0.05, or large (M: 0.456 vs. 0.452 Procrustes normalized 

units), t(20) = 0.24, n.s., dz = 0.05, distances, or overall (M: 0.158 vs. 0.157 Procrustes 

normalized units per step), t(20) = 0.14, n.s., dz = 0.03.  

To compare distortions in the two orientations, we ran a 2x2 repeated-measures 

analysis of variance (ANOVA) on overall distance per step with skin surface (dorsum, 

palm) and orientation (medio-lateral, proximo-distal) as factors. There was a significant 

main effect of orientation, F(1, 20) = 5.53, p < 0.03, ηp2 = 0.217, which was modulated by 

a significant interaction, F(1, 20) = 12.61, p < 0.002, ηp2 = 0.387. 

 
Figure 8: Mean distance in Procrustes normalized space between pairs of landmarks in the 
medio-lateral and proximo-distal orientations in Experiment 2 on the dorsum (left panel, blue) 
and palm (right panel, red). As in Experiment 1, there was clear overestimation of distances in 
the medio-lateral orientation on the dorsum; no such effect, however, was apparent on the palm. 
Error bars are one standard error of the mean. 

 

Figure 9 shows mean Procrustes distances of maps with square grids stretched 

by different amounts. For the dorsum, the mean best-fitting stretch parameter was 

1.185, significantly greater than both 1, t(20) = 3.58, p < 0.002, d = 0.78, and the mean 
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parameter from the actual configuration, t(20) = 5.05, p < 0.0001, dz = 1.10. In contrast, 

the best-fitting stretch on the palm (0.999) did not differ significantly either from 1, 

t(20) = -0.01, n.s., d = 0.00, nor from the mean parameter of actual maps, t(20) = 1.13, 

n.s., d = 0.25. The best-fitting stretch parameter was significantly greater on the dorsum 

than on the palm, both for raw parameters, t(20) = 2.40, p < 0.05, dz = 0.52, and the 

difference between parameters for judged and actual maps, t(20) = 2.60, p < 0.02, dz = 

0.57. Thus, the distortion was larger on the hairy skin of the hand dorsum than on the 

glabrous skin of the palm, consistent with other results (e.g., Longo & Haggard, 2011). 

As in Experiment 1, best-fitting stretch parameters for the actual configuration of 

landmarks were slightly, though significantly, less than 1, both for the dorsum (M: 

0.933), t(20) = -10.12, p < 0.0001, d = 2.21, and the palm (M: 0.949), t(20) = -4.46, p < 

0.0005, d = 0.97. 

 
Figure 9: Mean Procrustes distance as a function of stretch in Experiment 2 between perceptual 
maps on the dorsum (left panel, blue) and palm (right panel, red) and actual maps (grey in both 
panels). A stretch of 1 indicates a square grid; stretches greater than 1 indicate stretch in the 
medio-lateral axis, while stretches less than 1 indicate stretch in the proximo-distal axis. The 
shaded regions indicate one standard error of the mean. As in Experiment 1, the best-fitting 
stretch was greater than 1 for perceptual maps on the dorsum, indicate stretch in the medio-
lateral axis. In contrast, no such deviation from a perfectly square grid was apparent on the palm. 

 

General Discussion 
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 We constructed perceptual maps of the internal geometry of tactile space using 

MDS. We showed that the two-dimensional structure of the skin can be reconstructed 

from the matrix of perceived distances between touches applied to pairs of locations. In 

Experiment 1 we showed that tactile space is stretched along the medio-lateral axis of 

the hand dorsum. Experiment 2 replicated this finding, and showed that no similar 

distortion is apparent on the glabrous skin of the palm. Our method provides a novel 

tool to map the mental representation of the body and to explore spatial distortions of 

tactile space. 

 

Body-Scaled Information for Tactile Perception 

 The paper by Warren and Whang (1987) drew attention to the role of body-

scaled information in the visual perception of affordances. As discussed in the 

introduction, numerous studies have shown that manipulations of perceived body-part 

size produce corresponding changes in the perception of tactile distance (e.g., Taylor-

Clarke et al., 2004; de Vignemont et al., 2005; Tajadura-Jiménez et al., 2012; Miller et al., 

2014). Such manipulations are analogous to the classic use of a false floor to manipulate 

apparent eyeheight in Warren and Whang’s paper, and demonstrate the importance of 

body-scaled information in the sense of touch.  

According to the pixel model (Longo & Haggard, 2011; Longo, 2017), the 

distortions we describe here result from the anisotropic geometry of RFs in 

somatosensory cortex (e.g., Alloway et al., 1989; Brooks et al., 1961) rather than from 

higher-order body representations. How then does body-scaled information affect the 

perception of tactile distance? One potential source of insight into this question comes 

from the fact that distortions of tactile distance perception are much smaller than would 

be predicted purely on the basis of differences in RF size and shape. In owl monkeys, for 
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example, the magnification levels on different skin surfaces differ by two orders of 

magnitude (e.g., Sur, Merzenich, & Kaas, 1980). While the differences in perceived 

tactile distance across skin surfaces seen in Weber’s illusion parallel these differences, 

they are dramatically smaller in magnitude (Taylor-Clarke et al., 2004; Longo, 2017). 

Similarly, the long axis of RFs in somatosensory cortex is frequently 4-5 times the length 

of the small axis (e.g., Brooks et al., 1961), yet the magnitude of perceptual anisotropy is 

again only a small fraction of that (e.g., Green, 1982; Longo & Haggard, 2011; this study). 

Higher-level body representations may thus influence tactile perception at processing 

stages beyond primary somatosensory cortex to correct for homuncular distortions, a 

form of tactile size constancy. Linkenauger and colleagues (2015) recently suggested 

that such constancy might be achieved by integrating distorted homunculus signals 

with a representation of the body with exactly opposite distortions, what they call 

‘reverse distortion'. Alternatively, information about true body size may be embedded 

in a set of scaling parameters which result in body maps in posterior parietal cortex  

having more proportional representations of the skin than those in primary 

somatosensory cortex (Longo, 2017).  

 

Distortions of Tactile Space are Geometrically Coherent 

 The pixel model (Longo & Haggard, 2011; Longo, 2017) proposes that tactile 

space is comprised of a two-dimensional array in which each unit is a single 

somatosensory RF. Where RFs differ in size on different skin surfaces, this will produce 

a perceptual magnification on the surface with smaller RFs. Where individual RFs are 

anisotropic (e.g., oval-shaped), this will produce a perceptual stretch along the shorter 

axis of the RF. In each case, the distortions induced can be characterized by 

geometrically coherent deformations (i.e., stretches) of tactile space. The current results 
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are consistent with this model in showing that the anisotropies previous reported for 

tactile distance on the hand (e.g., Green, 1982; Longo & Haggard, 2011) can be 

characterized as a simple stretch of tactile space along the medio-lateral hand axis (or, 

equivalently, as compression of the proximo-distal axis). This pattern is consistent with 

the predictions of the pixel model given that somatosensory RFs on the hairy skin of the 

limbs tend to be oval-shaped with the long-axis aligned with the proximo-distal limb 

axis (e.g., Brooks et al., 1961; Alloway et al., 1989). 

 Interestingly, the degree of geometric coherence seen in the present study in the 

case of tactile distance does not appear to characterize spatial anisotropy in vision. 

Howe and Purves (2002) compiled data from a number of studies of the visual 

horizontal-vertical illusion to investigate perceived size not just for perfectly vertical 

and horizontal lines, but across a full range of orientations. In fact, lines were perceived 

as longest not when exactly vertical, but when rotated approximately 20° in either 

direction from the vertical. Such a dual-peak pattern is inconsistent with perceived 

length reflecting a simple stretch of visual space, in which case the function relating 

orientation to perceived size should be sinusoidal. To our knowledge, no study has 

investigated perceived tactile distance similarly as a function of orientation. On the 

basis of the present results, we would predict that unlike in vision, perceived tactile 

distance should change smoothly as a function of orientation. 

 

Tactile Distances in 2-D and 3-D Space 

 The dorsum of the hand is largely a flat, two-dimensional surface, but not 

perfectly. For most people, there is some degree of curvature, particularly in the medio-

lateral hand axis. Resting one’s hand on a flat surface, the centre of the hand is a bit 

higher off the surface than the sides towards the little finger or thumb. This curvature 
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was apparent in the present study in terms of the actual configuration of locations on 

participants’ hands being best fit by a grid stretched slightly in the proximo-distal axis 

(i.e., a stretch parameter less than 1). This is because the curvature of the hand (convex 

on the dorsum; concave on the palm) results in points along the medio-lateral axis being 

slightly closer together ‘as the crow flies’ in their projection onto the plane of the 

photograph taken.  

This raises the point that there are two ways in which the distance between two 

stimulated points on the skin might be conceived. First, distance could be thought of in 

terms of distance along the surface of the skin (i.e., the distance that an ant walking on 

the skin between the two points would traverse). Second, distance could be thought of 

in terms of the 3-D Euclidean distance of the shortest path between the stimulated 

points (i.e., going through the flesh of the hand). Participants in the present study were 

given no specific instructions about how to conceive of distance, and are unlikely to 

have thought about these two potential meanings. We have previously interpreted the 

fact that the magnitude of anisotropy is different on the two sides of the hand as 

evidence that tactile distances are interpreted in 2-D skin space (Longo, 2015). The 

present results are consistent with this interpretation, since the distortion on the two 

sides of the hand is different. If it were the representation of the hand as a volumetric 

object that were stretched, this distortion should be apparent on both sides of the hand. 

Instead, the distortion is only apparent on the dorsal hand surface, suggesting that it is a 

2-D representation of each skin surface which is distorted, rather than a 3-D 

representation of the hand as a volumetric object. 

 

MDS as a Tool for Mapping Perceptual Spaces 
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 Several previous studies have attempted to construct perceptual maps of the 

body surface. Trojan and colleagues (2006, 2009) applied nociceptive stimuli to the 

forearm with a CO2 laser and asked participants to localize each stimuli in external 

space using a stylus. They reported patterns of mislocalisation along the proximo-distal 

axis which were consistent within individuals, but differed idiosyncratically between 

people. Longo and Haggard (2010, 2012) developed a procedure for mapping 

representations of the hand underlying position sense. Participants placed their hand 

flat on a table underneath an occluding board and used a long baton to judge the 

perceived location of the tip and knuckle of each finger. By comparing the relative 

location of judgments of each landmark, they constructed perceptual maps of hand 

structure which they then compared to actual hand form. A highly consistent pattern of 

distortions was apparent across participants, including overestimation of hand width, 

and underestimation of finger length. Longo, Mancini, and Haggard (2015) conducted a 

similar study, but asked participants to judge the location of tactile stimuli applied to 

the hand dorsum, finding overestimation of distances in the medio-lateral hand axis, 

compared to the proximo-distal axis. It is interesting to note that this pattern of 

distortions is quite similar to that described in the present study for judgments of tactile 

distance. This is consistent with the possibility that a similarly distorted body model 

may underlie body position sense and tactile distance perception (cf. Longo et al., 2010), 

although a recent study from our lab showed that the magnitude of distortions in the 

two maps was not correlated across participants (Longo & Morcom, 2016). 

 Other studies have constructed perceptual maps in a body-centered, rather than 

an external, frame of reference. Rapp, Hendel, and Medina (2002), for example, asked 

participants to localize tactile stimuli by pointing to the perceived location of touch on 

their hand. They found that two individuals with damage to the left cerebral 
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hemisphere showed systematic patterns of mislocalisation, which preserved the 

relative topography of locations, but were translated and compressed compared to 

healthy controls. Mancini and colleagues (Mancini, Longo, Iannetti, & Haggard, 2011) 

asked participants to judge the perceived location of stimuli by clicking the mouse 

cursor on the corresponding location on a silhouette image of their hand. They found a 

highly-consistent pattern of distal biases on the hairy skin of the hand dorsum, which 

did not appear at all on the glabrous skin of the palm. The present approach differs from 

all these previous methods in that it does not involve any form of localization judgment. 

MDS allows perceptual maps to be constructed from the pattern of judgments of 

distance between pairs of stimuli, rather than the perceived location of individual 

stimuli.  

 The present use of MDS also differs from most previous uses in the psychological 

literature, in which the distance in psychological space between two stimuli or concepts 

is taken metaphorically to reflect perceived similarity or degree of generalization 

(Shepard, 1980). Our use is, in this sense, much less metaphorical since distance in the 

MDS solution is related directly to perceived distance, rather than to some more 

abstract relation between stimuli (see Aznar-Casanova et al., 2006, for a somewhat 

similar approach to visual stimuli). It is exactly this which allowed us to quantify spatial 

distortions in perceptual maps, since we have access to the ground truth of the true 

spatial layout, which does not exist when using MDS to investigate, to take just one 

example, the mental representation of musical instruments (Kendall & Certerette, 

1991). MDS may be a useful tool for mapping the geometric structure of other types of 

perceptual spaces as well. 
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