
1 INTRODUCTION

1.1 Framework for BIM information management
agreements

BIM information management and control are fun-
damental processes in the delivery of the benefits
enabled by the use of the BIM technologies. Current-
ly, a significant barrier for beneficial use of BIM is
the inability to efficiently and transparently agree on
data exchange workflows across the many stake-
holders of the supply chain. If expected data is miss-
ing, incorrect or misplaced then the project team has
to go through additional data correction processes
that can be time consuming and lead to critical pro-
ject delays.

buildingSMART have developed guidance and
standards that help defining a framework for BIM in-
formation management agreements; these are based
on the production of Information Delivery Manuals
(IDM) and the use Model View Definitions (MVD).
An IDM is essentially an agreement on the processes
and responsibilities of the project partners, whereas
an MVD clarifies the data implementation details.
Following the prescribed guidelines can result in
time-consuming analysis, design and specification
work that normally produces descriptive documents
that later need to be implemented in software. The
adoption of standard computer-interpretable formats,

supported by efficient editing and management tools,
would help to improve the requirement capturing
and implementation processes.

1.2 Solution approach and structure of the paper

The work presented in this paper describes how the
process of IDM/MVD development for IFC-based
data exchange can be efficiently implemented with
the use of the latest mvdXML 1.1 specification for-
mat through the adoption of a web-based require-
ments management tool called BIM-Q and the
mvdXML extension of the XBIM toolkit.

Chapter 2 will introduce the workflow supported
by the developed approach and will give an example
defined in the STREAMER research project. All
necessary steps are discussed and compared with the
state-of-the art technology. The main focus will be
on the following steps: (1) capturing data require-
ments as done by domain experts, (2) linking data
requirements to processes, (3) specifying the map-
ping to IFC by configuring predefined concept tem-
plates, (4) the generation of a checkable mvdXML
document and (5) the model checking in XBIM and
the error reporting using the BIM collaboration for-
mat (BCF).

Chapter 3 will give an introduction to mvdXML
release 1.1 being published as final version in 2016.

IFC model checking based on mvdXML 1.1

M. Weise, N. Nisbet & T. Liebich
AEC3 Ltd., Germany, UK

C. Benghi
Northumbria University, Newcastle upon Tyne, UK

ABSTRACT: A significant barrier for successful use of BIM is the ability to efficiently and transparently
agree on what data should be delivered by the many stakeholders of the supply chain and when. This requires
additional agreements and specification work on top of existing standards like IFC. Ideally, these specifica-
tions are ready for automatic model checking to ensure the exchange of required BIM data. Based on the
IDM/MVD methodology and the mvdXML 1.1 format developed by buildingSMART a web-based require-
ments management solution called BIM-Q and the mvdXML extension of the XBIM toolkit is discussed that
demonstrates how BIM exchange requirements can be configured, managed and used for automatic model
checking. All necessary steps are shown using an example from the STREAMER project, namely the Program
of Requirements (PoR) and the early design of the room layout for hospitals. Besides presenting preliminary
process implementation findings, grounded on data collected from various projects, persisting limitations for
managing requirements and in particular for model checking based on mvdXML are discussed. An outlook of
potential extensions and improvements of the different tools, mvdXML specification and the whole checking
process is presented at the end.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/80693771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The focus will be on features that are relevant for the
configuration of exchange requirements and auto-
matic model checking. It will also clarify the scope
of checking exchange requirements in order to avoid
misunderstandings about the kind of quality checks
that are in focus of the presented scenario and
mvdXML.

Chapter 4 will present a solution to capture ex-
change requirements in a web-based environment,
the BIM-Q tool. An important method for defining
and managing requirements is the use of templates;
available in the BIM-Q database as well as the
mvdXML format, templates provide a key feature to
reduce the complexity of the requirement definitions.
Through templates, technical details can be embed-
ded in preconfigured specifications files that, once
refined by skilled specialists, simplify and modular-
ize the usage and understanding of data requirements
making them easily accessible by non IT-experts.

The following chapter presents the implementa-
tion of mvdXML model checking developed as a
plugin for the xBIM Xploerer IFC viewer; it will
present implementation objectives and details intro-
ducing options in the user interface that has been de-
signed to support a goal oriented interaction with re-
quirement specifications on the foundation provided
by the structure of mvdXML.

Usage of the presented solution is shown in chap-
ter 6 where examples from the STREAMER project
are discussed to highlight different aspects of the so-
lution provided along with an overview of its limita-
tions. In addition to this, the conclusion in chapter 7
is discussing potential development directions.

2 EXAMPLE –
SPACE REQUIREMENTS FOR HOSPITALS

2.1 Introduction to the STREAMER case studies

STREAMER is an industry-driven collaborative re-
search project on Energy-efficient Buildings (EeB)
that aims to reduce the energy use and carbon emis-
sion of new and retrofitted buildings in mixed-use
healthcare districts. An important task in that scenar-
io is to achieve unequivocal clarity about the client
requirements.

In this particular case, for hospitals, this is
achieved starting from the definition of space re-
quirements, which need to be translated to space
layouts following given design rules that take into
account the constraints of the building site and exist-
ing buildings. In case of STREAMER the space lay-
out is generated by an optimization algorithm, the
Early Design Configurator, which produces a set of
solutions that are evaluated against a set of KPIs, in-
cluding energy consumption indicators. This simple
workflow includes four processes and three data ex-
changes (see Figure 1).

In order to make sure that each process has a
complete set of information the minimum exchange
requirements are specified as an MVD using the
mvdXML format. This enables to control IFC-based
data exchange by checking existence of required in-
formation. This will ensure a certain level of quality.

Program of Requirements

Early Design Configuration

Decision Support

1

2

3

Energy Simulation
(Trnsys, SBEM, Energy+, Vabi, ISO 52016)

ER1-PoR

ER2-EDC

ER3-EST

Figure 1 showing the workflow and exchange requirements
comprising of (1) client requirement definitions, (2) the space
layout, (3) energy simulation using various tools and (4) deci-
sion support.

2.2 IDM/MVD methodology and state-of-the-art

According to the Information Delivery Manual
(IDM, ISO 29481-1) and Model View Definition
(MVD) methodology the specification work follows
subsequent steps and involves different stakeholders
starting with a high-level view on the business pro-
cesses down to software implementation details. The
result of each step is a custom documented agree-
ment or technical specification that forms the basis
for further communication and refinements.

The work presented in this paper starts with the
definition of Exchange Requirements. Accordingly,
relevant processes, involved actors and the data flow
as for instance presented in Figure 1 are already
available as a reference. One out of the three men-
tioned data exchanges is the data defined by the Pro-
gram of Requirements (PoR). Domain experts, in
that case mainly the client, have to describe what in-
formation is captured in the PoR and ensure there’s
agreement on terms used, their meaning and the
planned arrangement of required data. In case of
PoR this results in a set of space types that are classi-
fied by criteria such as comfort, safety, hygiene

class, accessibility and others (Di Giulio 2015). For
each of those classification criteria allowed ranges
have to be defined including terms of parameter con-
straints, applicable design rules or required technical
specifications (a space classified as “A4” means for
instance that it should be accessible for staff only).
Such classification systems are likely already availa-
ble for the client and thus need only to be referenced.

The structure of defined requirements may par-
tially fit to other processes. Therefore, it is reasona-
ble to harmonize specifications by reusing them in
other processes. If the room type information is
needed for space layout but also for energy estima-
tion it should be linked as a requirement to both pro-
cesses. Traditionally, the main purpose of this step is
to prepare implementation of software interfaces,
which means to translate the terms of domain ex-
perts to a data structure like IFC. This step is done
by modelling experts who are familiar with the rele-
vant data structure. For IFC-based MVD develop-
ments it means to switch to the ifcDoc tool that ena-
bles to work on an mvdXML specification, but will
lose the link to the exchange requirements defined
by the domain expert.

Today, an MVD even if available as mvdXML is
defined mainly for documentation purposes. The
ifcDoc tool for instance enables to generate the
HTML documentation as known from the IFC4
specification. This is expected to change if
mvdXML-based model checking becomes available
as presented in this paper. If such MVD specification
enables to validate an IFC dataset, then it would not
only support software implementation but also the
everyday data quality control in real projects. If some
requirements are not met the sender could be noti-
fied and pointed to the missing data. This can be
done via the BIM collaboration format (BCF), which
enables to report and visualize identified issues. Ide-
ally, issues are reported using the terms from the
original requirements definition and not the attribute
or class name of IFC. This would improve commu-
nication.

The next chapter will highlight the checking and
configuration features of mvdXML, while chapter 4
will detail how it can be generated by our require-
ments management environment to supports pro-
cess-specific configurations.

3 MVDXML 1.1

3.1 Overview and main use cases

After a two year review period the mvdXML 1.1
specification was published in spring 2016 (Chip-
man et al.). Besides a couple of minor improvements
and simplifications the most notable change is the
extended capability for model checking. Although
this feature of mvdXML received bigger attention
lately the focus is still on MVD documentation pur-

poses, for instance for creating the HTML documen-
tation of the new Design Transfer and Reference
View of IFC4. It might also be used for generating
an IFC subset schema or data filtering, but both sce-
narios seem to be less important at the moment.

Although each of those usages has specific re-
quirements the definition of an MVD is always simi-
lar. Main elements of each MVD are:
 ModelView: one or more of those elements are

normally included in an mvdXML file. It is part
of the View element and is the main container for
exchange requirements and root concepts.

 ExchangeRequirement: represents the data that is
relevant for a use case, either for import, export
or both.

 ConceptRoot: represents a class of objects for
which the same constraints apply. They are nor-
mally linked to entities that are derived from
IfcRoot, i.e. being a main testable element of an
IFC model.

 Concept: is part of a root concept and defines a
constraint on applicable objects and how it is
used in exchange requirements.

 ConceptTemplate: defines a unit of functionality
that is used and configured by ConceptRoot and
Concept elements. It is a selection and basic con-
figuration of IFC definitions that are required to
implement a specific functionality such as support
of property sets, material layer definition or more
complex data like brep geometry.

Each of those elements is able to carry additional
meta-data and descriptive text including multilingual
support.

3.2 Concept templates and their configuration

An important feature in terms of reducing the
maintenance effort is the use of configurable concept
templates. A concept template defines one or more
applicable entities and includes a set of rules that
each specifies a sub graph of instantiable attributes.
Such sub graph is defined by attribute and entity
rules and always starts with an attribute of the appli-
cable entity.

The concept template shown in Figure 2 is de-
fined for all instances of IfcRoot entities and con-
tains two rules for the attributes Name and Descrip-
tion. Both rules define an additional (optional) rule
identifier (RuleID), which is a unique name used for
further configuration. The figure also shows that an
AttributeRule is followed by (one or more) Enti-
tyRule that expand the sub graph.

The rule identifier is later used as a parameter in a
logical expression to check existence, values, types,
size of sets or uniqueness. Accordingly, above
shown example enables to configure both attributes,
for instance to check for a specific name or existence
of a description. However, logical expressions in

mvdXML are limited in their expressiveness in order
to be as clear as possible both for definition and pro-
cessing.

<ConceptTemplate

 uuid="c19ec186-9cfd-47fc-a4d4-9fb35008d04a"

 name="User Identity" applicableSchema="IFC4"

 applicableEntity="IfcRoot">

 <Definitions><Definition>

 <Body><![CDATA[Code 020- ...]]></Body>

 </Definition> </Definitions>

 <Rules>

 <AttributeRule RuleID="Name"

 AttributeName="Name">

 <EntityRules>

<EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="Description"

AttributeName="Description">

 <EntityRules>

<EntityRule EntityName="IfcText" />

 </EntityRules>

 </AttributeRule>

 </Rules>

</ConceptTemplate>

Figure 2 showing the ConceptTemplate “User Identity” and its
visual representation as instantiation diagram.

3.3 Checking of exchange requirements

The principle for defining constraints is based on IF
THEN statements. The IF-part is defined in Concep-
tRoot nodes and determines the selection of instanc-
es in the IFC model. The THEN-part is defined by
Concept nodes and defines the constraints that shall
be applied to all selected instances. In addition to a
“selection by type” (through the applicableEntity
field) it is possible to define additional constraints.
For instance if all load bearing walls shall be
checked then all instances of IfcWall with a property
Pset_WallCommon.Load-Bearing = TRUE must be
selected. Such additional constraints are defined in
the <Applicability> section of ConceptRoot. The
mvdXML snippet shown in Figure 3 is selecting in-
stances of IfcBeam with the Name “Beam-206”. It is
configuring the concept template of Figure 2.

The configuration of constraints works in a simi-
lar way; a concept refers to a concept template using
its uuid. The <Requirements> section then defines
the link to exchange requirements and its expected
usage. The configuration of rule identifiers starts
thereafter, which may be using nested statements
logically combined by Boolean operators. Figure 4

shows the configuration of a mandatory space prop-
erty where only the two values “A1” and “A3” are
allowed.

<ConceptRoot

 uuid="00000035-0000-0000-2000-000000067001"

 name=" Beam-206"

 applicableRootEntity="IfcBeam">

 <Applicability><Template

 ref="c19ec186-9cfd-47fc-a4d4-9fb35008d04a"/>

 <TemplateRules operator="and">

 <TemplateRule

Parameters="Name[Value]='Beam-206'"/>

 </TemplateRules>

 </Applicability>

Figure 3 showing the configuration of “User Identity” for the
selection of an IfcBeam instance.

<Concept

 uuid="00000003-0000-0000-0000-000000349910"

 name="Accessibility Labels">

 <Template

 ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import"

 exchangeRequirement="00000003-0000-0000-

 0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

<TemplateRule Parameters=

"Set[Value]='STREAMER_Labels_PoR' AND

Property[Value]='AccessSecurity' AND

Value[Value]='A1'"/>

<TemplateRule Parameters=

"Set[Value]='STREAMER_Labels_PoR' AND

Property[Value]='AccessSecurity' AND

Value[Value]='A2'"/>

 </TemplateRules>

 </TemplateRules>

</Concept>

Figure 4 showing the constraint for the “Accessibility Labels”
defined by the PoR for spaces.

4 CAPTURING REQUIREMENTS WITH BIM-Q

4.1 Need for a shared, web-enabled requirements
management tool

As outlined in chapter 2.2 exchange requirements
are a means for communication and thus need to be
agreed and shared between involved participants.
Also, many requirements are applicable for several
processes so that a lot of definitions can and should
be reused.

Today, exchange requirements are typically cap-
tured in a spreadsheet format. For each physical or
conceptual thing it captures relevant properties, its

meaning and use in design processes (IDM). It is
simple and straight forward but the more infor-
mation is captured and shared, the more difficult it is
to keep consistency and maintain the content. There
are also limitations to evaluate and export require-
ments, in particular for generating various reports
and producing an mvdXML file for checking pur-
poses. Accordingly, there is a need for better tool
support which was leading to the development of the
presented web-based solution called BIM-Q.

4.2 Scope related to the IDM/MVD methodology

Before collecting exchange requirements an initial
set-up of the database is necessary. The first step is
to define a template guideline that shall group all
definitions. This might later be used to configure
project requirements. Next to this, the selection of
involved stakeholders, covered stages and processes
as well as relevant mappings is necessary. Mappings
include links to classification systems, translations to
other languages and the representation in data struc-
tures like IFC. In this initial step it means to set-up
the boundaries for the discussed use cases in terms
of definitions and standards that becomes relevant to
clarify the meaning of terms and to be used for data
exchange. Each of those settings can be changed or
extended in later stages, but it defines the starting
point for defining relevant terms, which is the first
main step of capturing domain knowledge.

4.3 Set-up of reusable concepts

Definition of exchange requirements follows the ob-
ject-oriented modelling principle, but with less re-
strictive rules. Everything is a concept. Each concept
can be described, typed, mapped to other definitions
and arranged to each other in order to form more
complex concept definitions. A concept can for in-
stance represent a class of beam objects whereas an-
other concept represents a simple datatype property
for fire rating.

An exchange requirement is typically defined for
a property of some object class. A fire safety calcula-
tion may requires the fire rating property for all
loadbearing building elements. It is a simple and
natural way of expressing requirements that can be
defined by non-IT experts.

Experiences have shown that a lot of concepts are
reused for requirement definitions, in particular in
case of generic properties. This is leading to a lot of
copied content that is later difficult to maintain.
Therefore, the first step is to collect reusable concept
definitions that can be arranged in any level of com-
plexity. In that way, a pool of concepts is defined
that later can be arranged to any requirement setting
that needs to be described. Each reusable concept is
linked to default definitions, such as a description or

the mapping to IFC, which however can be overrid-
den in a requirement setting if necessary.

The pool of reusable concepts can be organized
according to own preferences. Our recommendation
based on experiences is to organize similar concepts
in groups like classes, properties and geometry.
STREAMER is using a labelling approach and thus
is using the structure as shown in Figure 5. Further
subgroups are recommended, but should be kept as
simple as possible. If properly arranged it later helps
to find the right concept and to configure the re-
quirement settings.

Figure 5 Reusable concepts as defined in the STREAMER pro-
ject.

4.4 Configuration of exchange requirements

The next step is to link objects with properties in or-
der to express requirements. This is done by drag-
ging reusable concepts to a new requirements tree as
shown in Figure 6. Both trees provide independent
search capabilities so that concepts can easily be
found and arranged in the requirements tree. In order
to speed-up the set-up process it is also possible to
drag and drop a concept with all child elements. If
reusable concepts are properly arranged it supports
an easy and fast set-up process.

Differently to reusable concepts there are some
constraints regarding the organization of the re-
quirements tree. Those constraints exist mainly due
to the fact that some meaningful reports or an
mvdXML file shall be generated out of this tree. By
following the idea of having a property of some ob-
ject class the structure should follow the rule of hav-
ing a property concept, marked as a simple datatype,
always as a child element of an object concept. In
between there might additional group concepts for
better organization of requirements, which are ig-
nored for later model checking. There are special so-

lutions for enumeration datatypes having allowed
values as child concepts, which however do not
break described general rule. Nevertheless, a risk of
configuring a requirements tree that cannot be
properly exported to mvdXML checking file remains
so that this step should carefully done.

Objects

Properties

Figure 6 Set-up of the requirements tree by dragging reusable
concept from templates (left) to the requirements tree.

Once the requirements tree is defined the usage

settings for the different processes can be config-
ured. It basically means to make a decision what data
is required, optional or not allowed. Additionally, an
owner of a data concept has to be defined who is re-
sponsible to deliver that information (Figure 7).

4.5 IFC mapping definitions

Each concept can have any number of mapping defi-
nitions to whatever data structure is of interest. In
our case the focus is on the open IFC-BIM format
that can be formalized by mvdXML definitions.

There are basically two types of mapping defini-
tions:
 Object concept mappings: For mvdXML it means

to configure a ConceptRoot element comprising
of the selection of an IFC entity (applicable-
RootEntity) and, optionally, additional Applicabil-
ity settings.

 Property concept mappings: This requires the
configuration of a Concept element, which needs
to identify and configure an appropriate Con-
ceptTemplate.

The BIM-Q tool supports a simple syntax to easi-

ly configure most frequently needed mapping defini-
tions. An object concept for instance maps either 1:1
to an IFC entity, or is additionally restricted by the
PredefinedType attribute or some property values.
The expression IfcWall.IfcWallTypeEnum.SHEAR is
for instance applicable for all IfcWall instances hav-

ing the PredefinedType attribute set to “Shear”.
Similar solutions are available for property concepts,
where for instance the configuration of properties
and quantities is often needed. Uncommon mapping
definitions have to go through a more complex con-
figuration process. This however shouldn’t be a
problem as this step has to be done by an IFC expert
who is familiar with the IFC specification and avail-
able mvdXML concept templates.

Figure 7 Definition of usage settings and assignment to a con-

cept owner

4.6 Reporting and mvdXML export

The final step in the requirements capture process is
to produce some sort of evaluable result. This might
be a specific PDF report that could act as an contract
annex, an mvdXML file for checking purposes or
some template documents. In case of mvdXML it is
possible to export all settings to a single file. Alter-
natively, it is also possible to export settings of spe-
cific processes or a single owner only.

The export feature itself is translating the used
mapping syntax to an mvdXML, which for instance
in case of properties expands to a check of proper-
ties on occurrences and properties on types. At the
time of this writing there is no consistency check
against the IFC specification so that spelling errors
are not identified. However, testing a valid file
should quickly show wrong mapping definitions.

5 MODEL CHECKING WITH XBIM

5.1 mvdXML implementation

In order to test the adoption of mvdXML-based re-
quirement specifications against the model data ex-
changed between different stakeholders of the
STREAMER project, an implementation of the vali-
dation features of mvdXML 1.1 has been developed
using the infrastructure offered by the open source
xBIM toolkit.

The implementation is mainly designed to allow
individual stakeholders to independently verify the
conformity of received and produced IFC models
against the agreed exchange requirements and con-
cept roots in a user friendly visual 3D environment.

To maximize the reusability of the developed
components in other validation scenarios the imple-
mentation has been divided into two software com-
ponents:

1. the mvdXML validation library (mvdLib) is a
.NET dynamic link library providing validation ca-
pabilities that can be consumed in multiple deploy-
ment scenarios (e.g. Xplorer UI, web services, cloud
environments, command line applications, etc.)

2. the XbimXplorer mvdXML Plugin (mvdUi)
is an extension plugin for the pre-existing XbimX-
plorer IFC viewer that provides the User Interface
for interactive validation of models against specifi-
cation files.

Both modules have further development activities
planned in response to feedback from the
STREAMER project as well as from scheduled in-
novations in the underlying xBIM toolkit.

5.2 User interface development and collaboration
workflow

To enable a complete collaboration workflow be-
tween stakeholders of the established IDM processes
the mvdUI component has been designed to allow
the interactive analysis of models according to arbi-
trary combinations of exchange requirements, con-
cept roots and IFC classes, the UI allows immediate
feedback on the validation status of selected ele-
ments as well as whole models; this filtering strategy
also helps to improve the responsiveness of the ap-
plication which can become relevant if thousands of
requirements need to be checked for large IFC mod-
els. Visual color coding styles have been developed
to allow rapid traffic-light model inspection in the
3D viewer of passing and failing requirements.

The development of features for the semi-
automatic production of validation reports in the
BIM collaboration format (BCF) have required the
redesign of the XbimXplorer plugin API in order to
allow integration of the MVD plugin with the exist-
ing BCF plugin; the designed features allow stake-
holders to exchange communication threads on the
result of validation tests across different BIM plat-
forms while retaining complete reference of the in-
volved IDM, MVD and IFC background.

6 PROOF OF CONCEPT

6.1 Preparing client requirements (ER1-PoR)

Much of the client requirements is shared through
informal spreadsheets. In the current case the PoR

was prepared using BriefBuilder and the information
was shared as a simple CSV file. In order to make
this information available for formal checking prior
to incorporation into the design process, it is neces-
sary to add the semantic meaning of the individual
rows and columns. This was achieved through the
use of the AEC3 BimServices Transform1 utility.

The semantic meaning of the rows is by default
unknown. The transformation takes a single extra
parameter ‘topic’ which identifies the semantic ob-
ject represented by the rows. The choices include
‘project’, ‘site’, ‘building’, ‘storey’, ‘zone, ‘compo-
nent’, ‘system’, ‘type’ or in this case ‘space’. The
transformation then creates a complete IFC model
with the minimum number of other objects necessary
to give context for the objects.

Each data field is mapped to a property grouped
in a default property set ‘Default_SpaceProperties’.
However, the transformation makes use of a global
dictionary which contains hints which can add value
to the outcome by associating the column headers to
specific IFC attributes (Figure 8). The global dic-
tionary can also hold pointers to the expected parent,
for example a property set, any synonyms, and any
expected values.

<concept type="property">

 <term context="BriefBuilder">Room type</term>

 <term context="PoR">RoomType</term>

 <term context="IFC">ObjectType</term>

 <term context="en-GB">

Space or Component Type</term>

</concept>

Figure 8 Example from the global dictionary to control the

CSV to IFC mapping.

6.2 Checking requirements

Checking of the resulting IFC model in XBIM is
straight forward and shown in Figure 9. After im-
porting both the IFC and the mvdXML file the ex-
change requirement can be selected and checked
(right top view). All constraints that passes or fails
are shown with traffic lights in the window below.
Each test result is linked with the object in question
and can be browsed in the 3d viewer and the proper-
ties window. For supporting the communication
within the design team a BCF issue can also be gen-
erated to point to failures.

Various filter options enable to focus on specific
objects or constraints. It is for instance possible to
select specific object types or properties of an ex-
change requirement only. It is also possible to select
elements in the 3D view that shall be checked by se-
lected requirement definitions. This feature also
helps to improve performance in case of very big
IFC files and/or constraints.

Figure 9 Checking result of an example space layout generated from space requirements.

7 CONCLUSION AND OUTLOOK

An integrated approach for checking exchange re-
quirements based on the mvdXML 1.1 format has
been presented. Requirements management is an es-
sential element and is supported by a novel web-
based solution called BIM-Q, which not only enables
to capture, maintain and easily configure exchange
requirements but also allows to specify its mapping
to IFC and the generation of an mvdXML file. The
mvdXML-based model checking was implemented
as a plugin for the open source XBIM viewer and
has been validated with examples from the
STREAMER project.

Current implementation shows the overall poten-
tial of that development. It enables to improve the
quality of BIM-based data exchange. However, fur-
ther research is necessary to develop best practices
and more templates in order to reduce the specifica-
tion effort. Instead of starting from scratch the user
can then reuse available requirement definitions and
can focus on project specific configurations. Another
field of development is to provide consistency
checks of configured requirements. And last not
least it has to discussed if and how to extend the
checking capabilities of mvdXML in order to go be-
yond yet available fundamental checks.

ACKNOWLEDGMENT

The presented research was done in the frames of the
European FP7 Project STREAMER and the build-
ingSMART Norway BIM Guide developments. We
acknowledge the kind support of the European
Commission, bS Norway and the project partners.

REFERENCES

BCF.
http://www.buildingsmart-tech.org/specifications/bcf-
releases

BriefBuilder.
http://www.briefbuilder.nl/

Chipman, T. Liebich, T. & Weise, M. 2016. mvdXML – Speci-
fication of a standardized format to define and exchange
Model View Definitions with Exchange Requirements and
Validation Rules. buildingSMART International Ltd.
15.02.2016.

Di Giulio, R. Quentin, C., van Nederpelt, S. Traversari, R. Nauta, J. &

Turillazzi B. 2015. D1.2: Semantic typology model of exist-
ing buildings and districts. Deliverable of the STREAMER
project.

IDM.
http://iug.buildingsmart.org/idms/

IFC4 Design Transfer View.
HTML documentation: http://www.buildingsmart-
tech.org/mvd/IFC4Add1/DTV/1.0/html/

IFC4 Reference View.
HTML documentation: http://www.buildingsmart-
tech.org/mvd/IFC4Add1/RV/1.0/html/

ifcDoc tool.
http://www.buildingsmart-
tech.org/specifications/specification-tools/ifcdoc-
tool/ifcdoc-beta-summary

ISO 29481-1:2010. Building information modelling - Infor-
mation delivery manual - Part 1: Methodology and format.
Published by ISO/TC 59/SC 13.

MVD.
http://www.buildingsmart-tech.org/specifications/mvd-
overview/mvdxml-releases/mvdxml-1.1

Nisbet, N. 2010. BimServices – Command-line and Interface
utilities for BIM. http://www.aec3.com/en/6/6_04.htm

STREAMER website.
http://www.streamer-project.eu/

XBIM websites.
http://www.openbim.org/, https://github.com/xBimTeam

