
Citation: Kimak, Stefan (2016) An Investigation into Possible Attacks on HTML5 IndexedDB

and their Prevention. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:

http://nrl.northumbria.ac.uk/30260/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to

access the University’s research output. Copyright © and moral rights for items on NRL are

retained by the individual author(s) and/or other copyright owners. Single copies of full items

can be reproduced, displayed or performed, and given to third parties in any format or

medium for personal research or study, educational, or not-for-profit purposes without prior

permission or charge, provided the authors, title and full bibliographic details are given, as

well as a hyperlink and/or URL to the original metadata page. The content must not be

changed in any way. Full items must not be sold commercially in any format or medium

without formal permission of the copyright holder. The full policy is available online:

http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html

An Investigation into Possible Attacks on

HTML5 IndexedDB and their Prevention

S Kimak

PhD

2016

An Investigation into Possible Attacks on

HTML5 IndexedDB and their Prevention

Stefan Kimak

A thesis submitted in partial fulfilment of the

requirements of the University of

Northumbria at Newcastle for the degree of

Doctor of Philosophy

Research undertaken in the Faculty of

Engineering and Environment

February 2016

Abstract

This thesis presents an analysis of, and enhanced security model for IndexedDB, the

persistent HTML5 browser-based data store. In versions of HTML prior to HTML5, web

sites used cookies to track user preferences locally. Cookies are however limited both in

file size and number, and must also be added to every HTTP request, which increases web

traffic unnecessarily. Web functionality has however increased significantly since cookies

were introduced by Netscape in 1994. Consequently, web developers require additional

capabilities to keep up with the evolution of the World Wide Web and growth in

eCommerce. The response to this requirement was the IndexedDB API, which became an

official W3C recommendation in January 2015. The IndexedDB API includes an Object

Store, indices, and cursors and so gives HTML5 - compliant browsers a transactional

database capability. Furthermore, once downloaded, IndexedDB data stores do not require

network connectivity. This permits mobile web- based applications to work without a data

connection. Such IndexedDB data stores will be used to store customer data, they will

inevitably become targets for attackers.

This thesis firstly argues that the design of IndexedDB makes it unavoidably

insecure. That is, every implementation is vulnerable to attacks such as Cross Site

Scripting, and even data that has been deleted from databases may be stolen using

appropriate software tools. This is demonstrated experimentally on both mobile and

desktop browsers. IndexedDB is however capable of high performance even when

compared to servers running optimized local databases. This is demonstrated through the

development of a formal performance model. The performance predictions for IndexedDB

were tested experimentally, and the results showed high conformance over a range of

usage scenarios. This implies that IndexedDB is potentially a useful HTML5 API if the

security issues can be addressed.

In the final component of this thesis, we propose and implement enhancements that

correct the security weaknesses identified in IndexedDB. The enhancements use multi-

factor authentication, and so are resistant to Cross Site Scripting attacks. This enhancement

is then demonstrated experimentally, showing that HTML5 IndexedDB may be used

securely both online and offline. This implies that secure, standards compliant browser-

based applications with persistent local data stores may both feasible and efficient.

 II

Table of Contents

ABSTRACT	..	I	

TABLE	OF	CONTENTS	..	II	

LIST	OF	FIGURES	...	V	

LIST	OF	TABLES	..	VI	

LIST	OF	EQUATIONS	..	VII	

GLOSSARY	OF	TERMS	..	VIII	

DECLARATION	..	IX	

CHAPTER	1.	 INTRODUCTION	..	1	

1.1.	 BACKGROUND	OF	THE	RESEARCH	...	1	

1.2.	 MOTIVATION	..	10	

1.3.	 OBJECTIVES	...	11	

1.4.	 SCOPE	OF	RESEARCH	AND	TIMELINESS	OF	RESEARCH	TOPIC	...	12	

1.5.	 CONTRIBUTIONS	AND	IMPACT	..	12	

1.6.	 ORGANISATION	OF	THE	THESIS	..	12	

1.7.	 SUMMARY	...	13	

CHAPTER	2.	 LITERATURE	REVIEW	..	15	

2.1.	 INTRODUCTION	...	15	

2.2.	 RELATED	WORK	..	15	

2.3.	 HTML5	FUNCTIONALITY	...	17	

2.4.	 SERVER-SIDE	DATABASES	...	20	

2.5.	 CLIENT-SIDE	WEB	DATABASES	..	21	

2.6.	 DIFFERENCE	BETWEEN	CLIENT	AND	SERVER-SIDE	DATABASES	..	26	

2.7.	 DIFFERENCES	BETWEEN	SQL	AND	NOSQL	DATABASES	..	26	

2.8.	 INDEXEDDB	..	27	

2.9.	 SECURITY	ISSUES	..	31	

2.10.	 ONLINE	AND	OFFLINE	ATTACKS	...	34	

2.11.	 CRYPTOGRAPHY	...	42	

2.12.	 BIOMETRICS	AND	MULTIFACTOR	AUTHENTICATION	(MFA)	..	46	

2.13.	 WEB	SOCKETS	..	47	

2.14.	 CONCLUSION	...	48	

 III

CHAPTER	3.	 A	PERFORMANCE	MODEL	FOR	CLIENT-SIDE	DATABASES	50	

3.1.	 MOTIVATION	..	51	

3.2.	 QUEUING	MODEL	...	52	

3.3.	 DATABASE	REPLICATION	...	53	

3.4.	 DATABASE	FRAGMENTATION	...	54	

3.5.	 PERFORMANCE	FACTORS	..	54	

3.6.	 STRUCTURE	OF	TESTED	DATABASES	..	56	

3.7.	 DEFINE	THE	PERFORMANCE	MODEL	BASED	ON	THE	QUEUING	MODEL	57	

3.8.	 EXPERIMENT	VALIDATION	...	61	

3.9.	 EXPERIMENTAL	EVALUATION	OF	MODEL	...	62	

3.10.	 CONCLUSION	...	67	

CHAPTER	4.	 A	SECURITY	INVESTIGATION	OF	INDEXEDDB	...	68	

4.1.	 BROWSER	SECURITY	EXPERIMENTS	..	68	

4.2.	 MOBILE	DEVICES	SECURITY	EXPERIMENTS	...	79	

CHAPTER	5.	 BROWSER-BASED	LOCAL	STORAGE	SECURITY	MODEL	(BBLS)	89	

5.1.	 INTRODUCTION	...	89	

5.2.	 BACKGROUND	...	90	

5.3.	 ALGORITHM	..	91	

5.4.	 IMPLEMENTATION	..	94	

5.5.	 EVALUATION	...	99	

5.6.	 CONCLUSION	..	101	

CHAPTER	6.	 CONCLUSIONS	AND	FUTURE	WORK	..	102	

6.1.	 CONCLUSIONS	..	102	

6.2.	 FINDINGS	...	104	

6.3.	 FUTURE	WORK	..	105	

6.4.	 EXTENSIONS	TO	THE	PERFORMANCE	MODEL	..	107	

6.5.	 INDEXEDDB	USAGE	STATISTICS	..	108	

6.6.	 SUMMARY	..	108	

REFERENCES	...	110	

APPENDIX	A:	LIST	OF	PUBLICATIONS	...	132	

APPENDIX	B:	FIREFOX	EXTENSION	OF	ENCRYPTION	LIBRARY	133	

 IV

APPENDING	C:	AN	EXPERIMENTAL	ANALYSIS	AND	POSSIBLE	SOLUTION	FOR	THE	

CROSS	SITE	REQUEST	FORGERY	ATTACK	...	139	

APPENDIG	D:	AN	INVESTIGATION	INTO	POSSIBLE	ATTACKS	ON	HTML5	INDEXEDDB	

AND	THEIR	PREVENTION	..	147	

APPENDIG	D:	AN	INVESTIGATION	INTO	POSSIBLE	ATTACKS	ON	HTML5	INDEXEDDB	

AND	THEIR	PREVENTION	..	148	

APPENDIX	E:	PERFORMANCE	TESTING	AND	COMPARISON	OF	CLIENT	SIDE	

DATABASES	VERSUS	SERVER	SIDE	...	153	

APPENDIX	F:	SOME	POTENTIAL	ISSUES	WITH	THE	SECURITY	OF	HTML5	INDEXEDDB

...	160	

APPENDIX	G:	THE	ROLE	OF	HTML5	INDEXEDDB,	THE	PAST,	PRESENT	AND	FUTURE

...	167	

APPENDIX	H:	HTML5	INDEXEDDB	ENCRYPTION:	PREVENTION	AGAINST	POTENTIAL	

ATTACKS	..	174	

	

	 	

 V

List of Figures

Figure	2-1	HTML5’s	IndexedDB	functionality	..	18	

Figure	2-2	Cookie	setup	..	25	

Figure	2-3	IndexedDB	structure	...	30	

Figure	2-4	Same	Origin	Policy	..	33	

Figure	2-5	Cross	origin	resource	sharing	..	34	

Figure	2-6	XSS	attack	explained	..	35	

Figure	2-7	Man	in	the	middle	attack	...	38	

Figure	2-8	RSA	Encryption	and	decryption	process	..	43	

Figure	2-9	AES	Encryption	and	decryption	process	...	43	

Figure	2-10	Principle	for	saving	a	fingerprint	scan	..	46	

Figure	3-1	Queuing	model	Diagram	–	Define	the	structure	..	55	

Figure	 3-2	 Performance	 testing:	 Insertion	 of	 records	 into	 database	 (IndexedDB	 in	

Firefox	and	Chrome)	...	64	

Figure	 3-3	 Insertion	 of	 records	 into	 database	 (IndexedDB,	WebSQL,	 Local	 Storage,	

Mysql)	with	predictions	..	66	

Figure	4-1	Exported	deleted	database	file	..	73	

Figure	4-2	The	physical	address,	and	data	in	database	file	...	74	

Figure	4-3	Proposed	Encryption	Library	..	77	

Figure	4-4	Proposed	Encryption	Library	for	mobile	device	...	83	

Figure	4-5	Logical	extraction,	view	in	XRY	...	84	

Figure	4-6	Logical	extraction,	view	in	XACT	..	85	

Figure	4-7	Web	Application	on	mobile	..	86	

Figure	4-8	Restored	file	from	mobile	running	on	desktop	computer	87	

Figure	5-1	Overall	structure	of	the	proposed	security	model	..	96	

Figure	5-2	 Insertion	of	data	 into	 IndexedDB	with	and	without	encryption	 in	Firefox	

browser	..	100	

 VI

List of Tables

Table	3-1	Waiting	time	variables	..	58	

Table	3-2	Average	waiting	time	in	the	queue	..	58	

Table	3-3	Data	transfer	variables	...	59	

Table	3-4	The	table	is	showing	insertion	times	results	of	tested	databases	65	

Table	5-1	List	of	possible	consideration	of	JavaScript	encryption	libraries	90	

 VII

List of Equations

Equation	3-1	Calculating	queuing	system	waiting	time	...	58	

Equation	3-2	Calculating	average	waiting	time	in	the	queue	...	58	

Equation	3-3	Calculating	the	minimum	access	time	to	total	data	..	59	

Equation	3-4	Calculating	the	data	transfer	time	..	59	

Equation	3-5	Disk	speed	calculation	...	60	

Equation	3-6	Disk	latency	calculation	..	61	

Equation	3-7	Physical	disk	performance	...	61	

Equation	5-1	Big	O	Notation	...	100	

Equation	5-2	Big	O	Notation	calculating	time	...	100	

 VIII

Glossary of Terms

ACID Atomicity, Consistency, Isolation, Durability

API

BLOB

Application Programming Interfaces

Binary Large OBbject

CPU Central Processing Unit

HTML Hyper Text Markup Language which consists of markup
tags (Willard, 2013)

HTTP Hyper Text Transfer Protocol - let know the web browser
that a requested URL address is a Internet address

InnoDB Storage engine for MySQL database

Local Storage Local storage is browser-based database which has
advantages over the use of cookies (stored amount of data).

MyISAM Storage engine for MySQL database

NoSQL Not only SQL

OWASP “Open Web Application Security Project is a worldwide

free and open community focused on improving the

security of application software.” (OWASP, 2010)

RDBMS Traditional relational database management systems

SATA Serial ATA, is a computer bus interface

SOP Same origins policy

SQL Structured Query Language

URL Uniform Resource Locator – it is an address where the
page resides on the Internet.

W3C The World Wide Web Consortium

WebSQL Structured database, which uses standard SQL syntax for

storage.

 IX

Declaration

I declare that the work contained in this thesis has not been submitted for any other award

and that it is all my own work. I also confirm that this work fully acknowledges opinions,

ideas and contributions from the work of others.

Any ethical clearance for the research presented in this thesis has been approved. Approval

has been sought and granted by the Faculty Ethics Committee / Department of Engineering

and Environment on 05/07/2013.

I declare that the Word Count of this Thesis is …36579………… words

Name:

Signature:

Date:

Chapter 1. Introduction

 1

Chapter 1. Introduction

Introduction

This chapter outlines the background to the study and the importance of new

technologies; this is presented to serve as a basic foundation for the study. Additionally,

we present the arrangement of the overall thesis, along with the objectives to be

completed.

1.1. Background of the research

This thesis attempts to answer several questions. Firstly, what is HTML5 IndexedDB;

where did the technology come from and what has motivated its development; what is its

current status and what is inhibiting its take-up; and finally, what is the future of HTML5

IndexedDB?

HTML5 is the latest W3C standard for the language in which web pages are written

and for Application Programming Interfaces (API) that are expected to be provided by a

supporting web browser. The motivation behind the changes and enhancements coming

with HTML5 is that the web browser should be capable of running browser-based

applications in the same way that it supports desktop applications. That is, client-side

process will be able to avoid the ineffectiveness and network connectivity issues found in

server-side applications, and the inherent visual instability caused by their required page

refreshes. Consequently, major browsers now support the majority of the new HTML5

components and API. Therefore, HTML5 browser-based storage may contain stored data

from online services that utilise the new functionality of HTML5 (Naseem and Majeed,

2013). The process of accessing this data might be slow in some cases, due to network

latency or database query process (Zhanikeev, 2013). It is suggested that this new level

of browser-based storage will ensure that such HTML5 enabled browsers are going to be

a significant target for cyber-attacks (De Ryck et al. 2011).

Web browsers store history and other data using cookies on the client computer, which is

considered attractive for marketing purposes. The importance of being browser-based is

critical for developers, as modern browser-based web applications are able to store large

amount of data and access this faster than any server-side database. Consequently,

HTML5 opens up entirely new security challenges and issues (Anttonen et al. 2011).

User information is tracked on every move on the Internet (Castelluccia, 2012; Atterer et

al. 2006): eCommerce sites store customer details, orders and saved products, and web

Chapter 1. Introduction

 2

sites store cookies on user computers to track returning customers. The data can be used

later for marketing purposes and for targeting new customers. Sometimes consumers and

the general public do not realise the quantity of personal data that is shared over the

World Wide Web (WWW) (Rosenfeld and Morville, 2006) and how the data can be used

or misused. Data privacy and information leakage is, therefore, a serious concern (Ruiz et

al. 2015).

HTML5 is not supposed to replace Flash videos, but extends the functionality,

which works on any device without the need of installing additional software. This

means that the customer will be able to stream videos from native Web browser. Online

videos are suggested to increase on online stores popularity and sales, where video has

evolved into a powerful marketing tool that online retailers can prospect from (Xu, 2015).

Videos are gaining on popularity, where they influence online reviews on customer

perceptions and decisions to purchase products.

 In 2009 and 2010 large corporations as Apple stopped implementing Adobe

Flash to IOS devices, saying that will be instead using only HTML5 standard for mobile

devices (Prince, 2013). This has led to a dramatic expansion of HTML5 usage over

Adobe Flash by developers.

1.1.1 IndexedDB – the Past

In this section, we consider the drivers behind HTML5 IndexedDB, that is, why the

technology was considered at all and what motivates current standards? We proceed as

follows. Firstly, we provide an overview of the status of eCommerce, with particular

attention paid to its mobile variant, mCommerce. Then we consider browser-based

cookies that are IndexedDB’s intellectual antecedents.

The term ‘eCommerce’ began to be used widely in early 2000 and is defined as

commercial transactions conducted electronically on the WWW, such as purchasing

goods and services online. Business worldwide prosper from eCommerce, because is

fast-growing method for trading (Chuang et al. 2007; Pool et al. 2006). The eCommerce

market grew slowly until 2007, when its proportion of GDP was about 3%, but the

biggest expansion happened in the last decade when retails sales increased to 40%

(eMarketer, 2014). In 2012, eCommerce accounted for 18% (£492 billion) of UK

business turnover. In 2012, 21% of UK businesses made eCommerce sales to their own

country, 9% to EU countries and 7% to non-EU countries – based on Office of National

statistics (ONS) data (Jones, 2014). Of the UK's total GDP of £1.45 trillion, the Internet

value chain represented 2.6% and the eCommerce generated a further 3.1%. The UK

Chapter 1. Introduction

 3

claims 57 million Internet users and has a penetration rate of 89%. Users usually spend

nearly an hour per week browsing eCommerce stores and buying goods online. The use

of eCommerce, by both organisations and individual consumers, continues to grow as

more people are connected to the Internet and with the increased availability of fibre

broadband.

eCommerce has several advantages over offline stores and mail catalogues. The

existence of online stores eliminates the third-party costs required by wholesalers and

distributors and also removes the overheads of physical shops. Both of these aspects

lower operational costs. eCommerce stores also provide search functionality to find the

exact product a customer is looking for. Customers can easily browse through large

amounts of products and services (Reynolds, 2000). eCommerce has been expanded to

the business to business (B2B) (Vargo and Lusch, 2011) and business to consumer (B2C)

(Ta et al. 2015) markets. Many retailers took the step of investing in online sales, which

targets more customers in categories such as electronics, books and transport.

eCommerce also provides retailers a global market opportunity with minimal initial

investment (Xiaojing et al. 2012). Consumers can also see prices, allowing simple price

comparison, and can then place orders quickly. eCommerce stores allow the customer to

add products to their wish list, which can be sent to friends or family to be paid for.

Consumers can check existing online product reviews and also compare prices for

best offer before buying any goods or services. Some eCommerce stores provide a video

review of products, where the customer can observe the product without the need to

leave the house (Sunil, 2015). One of the most important advantages of eCommerce

stores is global market and creating new business opportunities (Wang et al. 2015).

Online stores are available to everyone, everywhere. For most businesses, eCommerce is

an excellent alternative supply channel that is not only cost-effective but continuous and

extensive in reaching consumers directly.

The Internet helps companies to engage in eCommerce by collecting, storing and

exchanging personal information obtained from visitors to their websites (Boritz et al.

2008). eCommerce stores can target customers in many ways; the most widely used are

email and online ads which have a cost advantage over offline stores where printed flyers

must be produced. eCommerce can target a larger number of customers in a shorter

period of time, as everything is done over the Internet. With the growth in popularity of

social media, eCommerce retailers took advantage of this to attract new customers.

Additionally, online retailers use online customer buying habits to target new and

existing customers with social media advertisements and special offers (Huang and

Benyoucef, 2013). Since the late 1990s, it was foreseen that every step on the Internet

Chapter 1. Introduction

 4

could be traced and that this information might be stored (Gehling and Stankard, 2005).

Information from web browsers is stored in computer history, and eCommerce sites store

user preferences and shop orders to understand their customers better and target them

with advertising related products. eCommerce stores use cookies (Stalker et al. 2004) to

store customers’ preferences, which makes the online buying experience more

convenient. Web technology also allows retailers to track customer preferences and to

deliver individually tailored marketing (Zhao and Lin, 2014). Security experts predicted

that user information on the Internet would be valuable for marketing and targeting

customers with special offers (Wang and Zhang, 2010; Gómez and Lichtenberg, 2007).

HTML was first focused on the desktop computer, for in 1993 when the web

started, mobile (cell) telephones did not have Internet connectivity. Tablet computers

(e.g. the Grid Compass) were a rarity and limited to specialised applications. In 2015,

mobile phones and tablets combined now account for 38% of all web pages served

around the world (StatCounter, 2016). Smart phone user penetration was 9.6% in 2011

and by 2015, it was 28% (Statista, 2016), while in UK the mobile penetration rate is

72%. The UK’s Internet ecosystem is worth £82 billion a year, with mobile devices

connections accounting for 16% of this. mCommerce sales will continue to grow where

by 2019 it is predicted to reach £37 billion and drive over 60% of online retail sales.

Since 2007, mCommerce sales have grown rapidly from less than 5% to 21% of all sales

in 2015 (eMarketer, 2014), which has opened a new market for online stores. The latter

needed to change their strategy and target the mobile market.

Businesses operating over the Internet need to maintain contact with their customers to

ensure continuity, recognise previous customers and simplify the eCommerce process.

This is achieved using cookies.

Cookies are small quantities of data stored by websites in the client browser and

sent to that web site with each Hypertext Transfer Protocol (HTTP) or Hypertext Transfer

Protocol Secure (HTTPS) request. Cookies were introduced by Netscape

Communications the in 1994. Cookies allow user to store their sessions and state with a

website. Later they provided functionality like customer shopping carts and the

recognition of returning customers (Uehara et al. 2001), whereby online stores can

display recommended products and offers.

The problem with cookies was with implications for privacy, in that third-party

applications could potentially steal information from cookies (Ayenson, 2011). There are

also several security issues with cookies, such as cookie poisoning (Buja et al. 2014;

Saha and Das, 2012) and cookie injection (Choi and Gouda, 2011). Cookie poisoning

attacks involve the modification of the contents (user IDs, passwords, account numbers,

Chapter 1. Introduction

 5

time stamps) in order to bypass security mechanisms (Saha and Das, 2012). The cookie

poisoning attacks allows attacker to impersonate as the victim with the purpose to access

information about the victim. Cookie injection attacks operate by injecting a cookie

string or code into the HTTP header to change its execution, which can lead to SQL

injection (Appelt, 2014; Shar and Tan, 2013; Lee et al. 2012).

The Cookie Law is the result of a EU directive in 2011 and enacted into law across the

majority of the European Union. It requires websites to obtain visitors agreement to store

or retrieve any kind of information on a desktop computer or mobile device (Summers et

al. 2013; Hayes, 2012). The Cookie Law was designed to protect online privacy of

consumers. When a consumers entered a website or eCommerce site and cookies has

been used, the website was required to alert them of how information about them is

collected and used online, and to give them a choice to allow this or not. From 2015 the

websites are not obligated to alert the visitor about storing cookies.

Cookies are limited in size to 4KB and therefore are rarely used to store site-specific

information directly. Rather, a typical cookie will store a unique database key which will

usually point into the web server’s customer database that is not accessible publicly. That

database may contain any amount of information about the customer, including their

personal details, transaction/purchase history, and preferences.

1.1.2 IndexedDB at present

Browser storage has been proposed to extend cookie functionality by providing web

developers and web applications with better alternatives to store data locally. With

browser-based storage, eCommerce can store user preferences, shopping cart and product

images locally. This can help eCommerce applications to speed up the process of loading

products and displaying them to end-users.

With browser-based storage, eCommerce sites can be stored locally and used

offline. The user will have the ability to add products to the shopping cart, even if the

network connection is down. The advantage of using local storage is with mobile

devices, where network connection and data quotas are concerns. Local storage could be

used when a service is limited or allows only a certain number of calls per hour, but the

data does not change that often. A web application could store the information in local

storage and prevent users from using the limit (Karthik et al. 2014). Online stores could

save new images every couple of hours, rather than every minute, which would improve

the bandwidth. Local storage keeps users from being banned from services and also

means that when a call to the application program interface (API) fails, the user will still

Chapter 1. Introduction

 6

have information to display. For example, the cart can be stored locally and synchronised

with the eCommerce site when network connectivity is restored.

The main problem with HTTP protocol as the main transport layer of the web is

that it is stateless (Fielding and Reschke, 2014). This means that when an application is

closed, its state will be reset the next time it is opened. If a desktop application is closed

and then re-opened, its most recent state is restored. Local storage has advantages over

cookies which includes better performance, storing larger amount of data, storage across

multiple windows in web browser and data persist even after the web browser is closed

(Ayenson, 2011). Therefore, local storage provides functionality similar to desktop

applications, where the state is persistently stored.

In 1995, Netscape’s vision of the future was to run multimedia applications,

spreadsheets and word processing programs from the web browser. Netscape’s main

product was a browser, which was written to run across multiple operating systems

(Windows, Linux and Macintosh). The vision was that applications would run on top of

any Operating System with their sets of APIs, so that third-party application developers

would not need to worry about the underlying Operating System and computer hardware.

Today, this vision is a reality, where applications like YouTube and Facebook run from

browsers. Also, Chrome introduced its new Operating System, which is web browser-

based, partially based on Netscape’s vision. The application can be run as a web

application but developers have introduced applications that can be run offline as well

(Gihan et al. 2011) .

As the HTML5 standard evolved, new browser-based storage was introduced and was

able to store larger amounts of data. Additionally, it provided the non-functional

requirement such as speed, because the stored data was not transmitted with every HTTP

request. Non-functional requirements are not used to perform a specific function,

sometimes also referred as quality factors or attributes (Chung et al. 2000).

HTML5 provides two new featured to store data locally. First, browser-based

storage is called local storage. It allows the storing of information locally within web

browsers in object stores (SQL databases have tables), that persists on disk. The storage

is limited to 5MB and the stored data is in name/value pair.

HTML5 browser-based storage technology is called IndexedDB, known previously

as WebSimpleDB. It is a Not only SQL (NoSQL) (Kuznetsov and Poskonin, 2014;

Atzeni et al. 2014; Zachary et al. 2013; Strozzi, 1998) key-value asynchronous browser-

based storage.

IndexedDB API offers fast access to unlimited amounts of structured data. The

current state of IndexedDB is regarded as insecure, because security was not considered

Chapter 1. Introduction

 7

in its specification. As documented in Chapter 4, we have used forensic tools and

identified security issues with IndexedDB.

NoSQL is the database solution that is not relational or object orientated. NoSQL

does store data in key/value format. The database can handle a large amount of data,

where the relational model is not needed.

IndexedDB came from the W3C specification of implementing web storage into

web browsers in 2009. IndexedDB is a persistent client-side database implemented into

browsers and is an alternative to already deprecated WebSQL. Mozilla and Microsoft

supported the change, while Oracle's Berkley DB mostly influenced this. The application

uses local data stored on a client system (Casario et al. 2011). It caches large amounts of

data from server to client-side using JavaScript Object Stores, equivalent to tables in

relational databases.

Files and data stored by the browser are retained on the user’s hard drive storage

system. The client-side database, IndexedDB, stores the data, even when the browser

terminates. IndexedDB is a persistent client-side database, which means that the data can

be retrieved even offline. Therefore, the files reside on the user file system and can be

recovered until other files overwrite them. IndexedDB treats file data just like any other

type of data. An application can write a file or a Binary Large OBject (BLOB) into

IndexedDB, as well as storing strings, numbers and JavaScript Objects. This is detailed

in the IndexedDB specifications and, so far, implemented in both the Firefox and

Chrome applications of IndexedDB. Using this, storing all information in one place and a

single query to IndexedDB can return all the data.

In Firefox and Chrome’s IndexedDB implementation, the files are stored

transparently external to the actual database; the performance of storing a file in

IndexedDB is just as good as storing it in a file system. Storing files does not extend the

database size and slow down other operations. Moreover, reading from the file means

that the implementation reads from an Operating System file; therefore, IndexedDB is

just as fast as a file system. The Firefox IndexedDB implementation is even smart

enough that if storing the same BLOB multiple files, it creates only one copy. Writing

further references to the same BLOB simply adds to an internal reference counter. This is

completely transparent to the web page; it writes data faster whilst using fewer resources.

Browser-based storage as IndexedDB (W3C, 2015) can be used on multiple browsers

and is cross-platform compatible. Web applications can take advantage of using

IndexedDB on desktop, mobile and tablet, without additional programming using APIs.

IndexedDB caches large amounts of data from server to client-side using

JavaScript Object Stores, equivalent to tables in relational databases. Files and data

Chapter 1. Introduction

 8

stored by the browser are retained on the user's hard drive. The client -side database,

IndexedDB, stores the data, even when the browser terminates.

Web applications can use browser-based storage without the need for network

connection (Gihan et al. 2011). The HTML5 standard provides all of the functionality

where data can be stored on client machines and accessed at any time. An important

aspect of HTML5 is that web applications can run offline using local storage. The

advantage of HTML5 compared to desktop programs is that web applications do not

require any installation or start-up configuration and will also run on any device that

supports HTML5, such as laptops, phones or tablets. This reduces the barrier to entry for

new customers, since clients can begin taking advantage of the web applications just by

visiting the relevant web site.

IndexedDB extends local storage by providing web application offline storage.

With this functionality, web applications such as eCommerce stores can take advantage

of storing customer preferences, which are not sent with every HTTP request.

Consequently, the request and response traffic will decrease and the preference or

information will be accessed only when requested. An important aspect of HTML5 is

that web applications can run offline using local storage. This means that client data will

be stored on the client-side and accessed any time the application requires it. Offline

storage and cached pages provide a better experience for users where the network latency

is minimal.

With the new HTML5 IndexedDB functionalities, new security issues arise

because it increases access to the computer’s resources. One of the biggest disadvantages

is that the new standard does not provide additional security. HTML5 video and audio

support replaces third-party applications as Adobe, which closes a common attack vector

with FLASH application or plug-ins. Additionally, HTML5 provides much more access

to computer resources, which includes local storage, and therefore provides new

opportunities for potential attacks.

The problem with the current browser-based storage such as IndexedDB is that

there is concern over reading offline data that another application has stored on the

client-side.

The security mechanism in web browsers that prevents web applications from

reading data from other sources is known as Same Origin Policy (SOP) (Gollman, 2011,

Ss. 2.3.2). The data can be accessed only if the hostname of web application

(www.example.com), port number (web browsers run on port 80) and protocol (HTTP

or HTTPS) match against the origin record. The same principle applies when web

application wants to access data stored on users device (browser-based storage, history).

Chapter 1. Introduction

 9

When the origin of the data and requesting origin match, the access is allowed.

From the experiments conducted, we have found that the storage of data in an

unencrypted state is not the only problem. Browser-based storage have another issue,

where the data is not fully deleted from the hard drive. With the help of forensic tools, it

is possible to restore deleted data from desktop and mobile devices.

The issue of restoring deleted data merely extends the security concern of storing data in

an unencrypted state, where the attacker could get multiple versions of browser-based

local storage. The deleted data persists on hard drive and when a request to delete the

data is executed, the data is just marked as deleted but occupies the unallocated space on

the device. New requests to store data to browser-based storage will assign new partition

space and the old data will persist on the hard drive – it will be not overwritten.

1.1.3 IndexedDB – future

The future of IndexedDB is to support secure browser-based offline usage. Existing

browser-based storage is not popular with web developers, as they face several problems.

The first is the complexity of code, where the developers need extra time to understand

the program structure. Yet, there are many examples to help developers start

implementing browser-based storage into their web applications. The second problem

with IndexedDB is security. Currently, IndexedDB stores data in an unencrypted state, so

that is neither protected, nor securely deleted. Therefore, IndexedDB cannot be

recommended for the storage of personal information. This makes it limited in

functionality. As with data stored on a desktop, or mobile device in an unencrypted state,

an attacker can access data without bypassing any protection. With a Cross Site Scripting

attack (XSS) (Elhakeem and Barry, 2013; Wassermann and Su, 2008; Vogt et al. 2007; Di

Lucca et al. 2004), such as hidden in an email link, an attacker could find the stored data.

Hence, IndexedDB is inherently vulnerable to such attacks.

Security flaws are inevitable when considering web applications and storage of

information, because no technology is 100% resistant to vulnerability.

By design, browser-based storage security is a concern, but it can be corrected. The

method is to use client-side encryption, which will mean that browser-based storage is at

least as secure as the sever-side.

We have proposed a security model that will be implemented as a browser

extension. The proposed security model extends that of the current web browser.

Furthermore, we have implemented a browser extension with a client-side encryption

library, which will help to secure the data stored on a client’s machine. When an

application requests a new transaction for IndexedDB to open the database and save data,

Chapter 1. Introduction

 10

the designed encryption library extension will encrypt the data. This way, the data will be

stored in an encrypted state and will not be readable to others. The data stored locally

will be safe even should an attacker gain access to the database, because the stored data

will be encrypted.

The security model is built around an encryption framework that will help to secure

the data. The encryption framework consists of an encryption library that is implemented

into a browser but does not provide a full security protection. This thesis argues that such

protection is not achievable in a single machine, since any single browser could be the

target of an XSS attack. Therefore, external browser functionality needs to be

implemented. In addition the encryption library, a multifactor authentication (MFA) or

two-factor authentication (2FA) (Ss. 2.12) has been implemented.

Based on our findings, we can state that there is a case for browser-based

databases. We have implemented a JavaScript encryption framework, which is a part of

the security model added to the browser in a form of an extension. The proposed security

model extension covers the security issue IndexedDB has by design. Also, the

implemented security model fulfils the security requirements.

1.2. Motivation

The motivation for the changes and enhancements coming with HTML5 is that the web

browser should be capable of running browser-based applications in the same way that

desktop applications can be used. That is, client-side process will be able to avoid the

ineffectiveness and network connectivity issues found in server-side applications.

Consequently, major browsers now support the majority of new HTML5 components and

APIs. Therefore, HTML5 browser-based storage may well contain stored data from

online services that makes use of the new functionality of HTML5 (Naseem and Majeed,

2013). The process of accessing this data might, in some cases, be slow because of

network redundancy or database query process (Zhanikeev, 2013). It is suggested that

this new level of browser-based storage will ensure that such HTML5-enabled browsers

are going to be a significant target for cyber-attacks (De Ryck, 2011). Consequently,

HTML5 opens up entirely new security challenges and issues (Anttonen, 2011).

User information is tracked with every move on the Internet, and eCommerce sites

store customer details, orders and saved products (Castelluccia, 2012). Sites store cookies

on user computers to track returning customers. The data can be used later for marketing

purposes and to target new customers. Sometimes the end customer does not even realise

how much personal data is shared over the Internet and how the data can be used. Data

privacy and information leakage is a pressing concern that needs to be addressed. Web

Chapter 1. Introduction

 11

browsers store history, cookies and data in local storage on the user’s computer, which is

considered attractive for marketing purposes.

Using browser–based storage is important for developers, because modern web

applications are able to store large amounts of data and access it much faster than any

server-side database. The importance of HTML5 (Anthes, 2012) browser-based storage

components would come in their benefit to eCommerce, as the customer could use online

store without an Internet connection to browse products and add them to their shopping

cart.

The following research questions are addressed in this thesis:

Considering the speed performance of databases, does offline storage performs faster

than online services?

How secure is running standalone applications in a web browser with browser-based

storage in its current state and development?

Considering security by design, can browser-based storage ever be secured against online

and offline attacks?

1.3. Objectives

The objectives of this project are:

1. Develop a performance model for browser-based storage which estimates the time

to perform read and write of data.

2. Perform experiments with developed performance benchmark to compare the

results. Provide a conclusion based on the results and comparisons, which shows if

there is a case for browser-based storage.

3. Critical investigation on security issues of IndexedDB.

4. Critically evaluate security on desktop and mobile devices based on previous

investigation.

5. Develop a browser-based storage security model, this will resolve the identified

security issues. 	

Chapter 1. Introduction

 12

1.4. Scope of research and timeliness of research topic

IndexedDB is still in the process of development; therefore, the problem is relevant. As the

IndexedDB database is not yet widely adopted and used, many issues and problems are

still not identified. As of early 2015, IndexedDB has gained a W3C Recommendation,

which means that is officially a web standard. The scope of the research is to develop

HTML5 applications to run IndexedDB as their backend database, undertake comparison

of performance and find possible security vulnerabilities.

1.5. Contributions and impact

This thesis presents a novel synthesis and enhanced security model for browser-based

storage. We believe that existing web security models do not protecting the end user

data, and our investigation intends to confirm this belief. The contribution consider

whether browser-based storage is still resistant to attack when a client-side security

model is applied. The data stored locally will be safe and even if an attacker accesses the

stored data, it will be encrypted. Furthermore, we implemented a web browser extension

with a client-side encryption library that will help to secure the stored data on client

machines. The security of the end user is becoming an everyday concern, as many

vulnerabilities exists with web applications, such as XSS, SQL injection, Cross - Site

Request Forgery (CSRF) (Willis, 2009; Stuttard and Pinto, 2011; Burns, 2005) and

JavaScript attacks. The main concern is how the data is secured on server or client-side.

In the case of client-side, there are many protections against attacks; but with new

technologies, these protections are not enough. We demonstrate the effectiveness of the

current client-side protections. The second contribution is ineffectiveness of IndexedDB

browser-based storage, whereby experiments show security design flaws. The third

contribution is a performance model to show that browser-based storage performs faster

than server-side databases. This model was also confirmed by our benchmarking

experiments.

1.6. Organisation of the thesis

This thesis argues that current HTML5 browser-based storage is not secure by design.

We have used an experimental research methodology to prove this and are currently

developing a supporting theory.

Chapter 2 presents an overview of existing solutions for browser-based local

storage and security issues associated with it. Additionally, we have gathered

background information of IndexedDB and performed initial investigations on possible

Chapter 1. Introduction

 13

security issues within using and storing client – side data. The initial investigation was

published in 2012 and that paper is in Appendix D.

Chapter 3 designs a speed model to demonstrate the effectiveness of using

browser-based storage (IndexedDB) in comparison to other browser-based storage or

server-side databases. We have also compared the results of browser-based storage to the

MySQL server-side database. The benchmarking experiments and the results were

published in 2013 and that paper is in Appendix E.

Chapter 4 have investigated browser-based storage and browser security. The

investigation was focused on data storage for the browser-based databases in the Operating

System file. To help analyse the results, a forensic tool called EnCase (Encase, 2004) was

used. The experiment concentrated on investigating how IndexedDB is saving the data and

how it can be retrieved after deletion. The desktop forensic investigation experiment and

results were reported in 2014 and the paper is in Appendix F. Additionally, investigations

on mobile devices based on steps included in the desktop forensic investigation were

performed. This was conducted on an Android mobile phone, with the help of the mobile

forensic tool, XRY (XRY,	2015) and EnCase 7 (Bunting and Wei, 2006; EnCase, 2004).

Chapter 5 presents a novel synthesis and enhanced security model for browser-

based storage. This model extends the current web browser security model and an

overview of the architecture is shown in Figure 5.1. Furthermore, we have implemented a

web browser extension with a client-side encryption library, which will help to secure the

stored data on client machines; the steps are described further in Chapter 5. We are also

proposing a new client-side security model that will extend the current web browser model

and we will evaluate its effectiveness.

Chapter 6 concludes the thesis by looking at each chapter. Also future work will be

discussed in areas not covered in thesis, which are out of the scope. The last part of the

chapter will make main conclusion to summarise the whole thesis and covered

contributions.

1.7. Summary

Based on these findings, it may be concluded that there is a case for browser-based

databases. The experiments in this thesis have demonstrated that all data stored on the

user’s machine is in an unencrypted state. When a web application is vulnerable to online

attacks stored data is could be compromised, retrieved or deleted by an attacker. The

same applies to offline attacks, where the attacker could get a physical access to device

Chapter 1. Introduction

 14

where the data is stored, such example implies a scenario when a user lost a mobile

device.

As a part of thesis a JavaScript encryption framework has been implemented,

which is part of the security model implemented into the browser in a form of an

extension. This extension covers the security issue that IndexedDB suffers from by

design. Also, the security model implemented fulfils the security requirements. The

model extends the current security model which is insufficient for complex HTML5

browser-based applications. Based on the evaluation, we can suggest that the model will

correct the defence ineffectiveness by protecting client-side data. In order to decrypt it

and obtain private data, an authentication and private key is required.

Browser-based databases face problems that prevent them from being widely used.

The first is the complexity of code, where the developer needs extra time to understand

the structure. However, there are many examples that can help developers to start

implementing browser-based storage in their web applications.

The second issue with browser-based storage is security. Browser-based storage is

not secure by design, which means that the storage cannot, or is not recommended to, be

used to store personal information. This limits potential functionality. Despite the issues

and concerns about storing data locally, browser-based storage has the potential to be

used widely. The main advantages are performance speed, being cross platform (desktop,

mobile, tablet), browser availability and offline usage.

Chapter 2. Literature Review

 15

Chapter 2. Literature Review

2.1. Introduction

This chapter reviews the research related to the new HTML standard functionalities and

possible security issues which might arise. Section 2 identifies related work and work

which is the thesis build on; section 3 introduces the new functionalities; section 4

identifies and discusses the research closely connected with the subject of this thesis -

while provides the main insight into security within the research.

There is a trend and a demand for moving traditional desktop applications, such as

word processors and spreadsheets, to the Internet: and replace them with web

applications. This implies a trend to where the only client software that most computers

and mobile devices will need in the future is a Web browser (Stuttard and Pinto, 2011).

However, there will most likely always be places without Internet access, and it should

be possible to use these web applications regardless of this, so offline forms (many of

which currently exist) of these applications are an important part of this development. To

enable secure use of offline web applications – even when online - security testing of

these applications is important: they should be made as secure as possible.

When looking at this from a security point of view, there are certain disadvantages

with Web applications. Making web applications secure is even more important than

with other software, as they are exposed to millions of users on the Internet (Meucci et

al. 2008).

2.2. Related work

The web browser is arguably the most security-critical component in our information

infrastructure. It has become the channel through which most of our information passes.

Integrated database in browser does not have any kind of protection, similar to server

side databases, where an authentication is required to access the stored data. At the

moment browser based databases have only Same Origin Policy (Ss. 2.3.2), which can be

bypassed with online attacks (Ss. 2.3.2) and the attacker could get all data from database

without any kind of authentication or client authorisation. Most of the studies into online

web applications security and online attacks consider the fact, that user data is stored on

web server rather than on client.

Several recent studies propose a new security model for browsers, but this do not

apply to browser based databases.

Chapter 2. Literature Review

 16

The current studies on browser based databases security suggest, that securing web

application against online attacks can also protect the end user data, as suggested by

Weissbacher et al. (2015) and Gupta et al. (2016). This can be true in most of the cases,

but data stored locally can be accesses physically, or the mobile device can be lost,

which leaves all the data unprotected and vulnerable.

As discussed by De Ryck et.al (2011) improvements to browser security are required

to protect the end user and stored data locally. The browser model is required to change, to

progress with the new technologies. The authors also suggesting, that there should be a

user authorisation for accessing local storage, and the SOP needs to be improved to prevent

against attacks which can bypass the restriction.

It has been argued that HTML standard and Web has evolved and therefore current

security measure are not sufficient to protect data stored on client (HTML5 storage). West

et. al (2012) done some work on identifying security concern and suggest that it is

necessary to constantly address modern security and privacy concerns through consistent

updates of HTML specifications.

HTML5 local storage data residues can be accessed within the memory images, and

the forensic investigation results by Matsumoto and Sakurai (2014) showed that the

acquisition of Web Storage content on the browsers were possible and revealed its formats.

Values of Web Storage was checked in the residuals that left by all of three web browsers

(Chrome, Firefox, IE). They arguing that user with the knowledge of values will be able to

find the location of the evidence to hint values.

Research has proposed a secure space for storage, with the attempt to secure user

data. The approach of Jemel and Serhrouchni (2014) proposes that the browser devote to

each user a secure space for data storage. Thus, all data will be stored safely in the client

side before their synchronization over the different machines of the same user using the

Cloud. The data protection can be applied either on PC or on smart-phone for mobile

Internet application.

The security work of Kun and Yizheng (2014) investigates the security of HTML5

Client side storage, where they argue that local storage cannot be fully controlled by the

server-side, which brings data security risk. The work presents test analysis of different

approaches of storage and potential safety hazards.

The security model for browser based database is not sufficient to protect the end

user data as suggested by Bugliesi et al. (2014) work. Therefore, this thesis proposes an

additional security model, which will help to protect the data with both encryption and

additionally with end user authentication.

Chapter 2. Literature Review

 17

2.3. HTML5 Functionality

The HTML5 standard provides new functionality that helps to develop better web

applications. These functionalities are described in more detail with both their

advantages and disadvantages. The security of HTML5 is an important aspect, and we

will look at what types of attacks could be performed to bypass the existing security safe-

guards of the new functionalities.

2.3.1 Introduction

The motivation for the changes and enhancements embedded in HTML5 is that the web

browser should be capable of running HTML5 client-side web applications (similar to

current desktop applications). Traditional desktop applications, like word processors and

spreadsheets, might be used as HTML5 client-side web applications. This means that the

client will no longer need to install any software on the computer: only a Web browser

will be needed (Stuttard and Pinto, 2011).

For example, many applications can run on multiple platforms e.g. tablets, mobiles

and others. The problem for developers is that on mobile devices there can be multiple

OSs: Android, IOS, Windows Phone. Each of the operating systems provides different

programming languages/environments for development. Therefore developing an

application to run on multiple platforms can be expensive and time consuming. HTML5

provides a functionality whereby an online application can be used on any platform and

on various browsers. That way the developers need to develop the application only in one

language and it can be used on multiple platforms, such as desktop, mobile and tablet.

HTML5’s browser-based database, IndexedDB provides a functionality whereby the web

application can run offline so the end user does not need an Internet connection. The

offline usage provides full functionality, but obviously is limited in some ways – e.g.

where some data is required from 3rd party applications, such as payment gateways for

eCommerce sites.

2.3.2 Client-side databases

Client-side data is passed to the browser's storage API which stores data on the local

device (Xu et al. 2013). The importance of client-side application usage provides user

experience and functionality of desktop applications (Maras et al. 2011), which can also

be used in the same way on mobile devices (Asif and Krogstie, 2013). This application

therefore can be customised to fit the needs and improve Web accessibility in web

browsers (Garrido et al. 2013). Therefore an HTML5 browser client-side database may

Chapter 2. Literature Review

 18

well contain stored data from online services that make use of the new functionality of

HTML5 (Naseem and Majeed, 2013). The process of accessing this data from online

sources might in certain cases be slow because of network redundancy or the database

query process (Zhanikeev, 2013). It is suggested that this new level of client-side data

storage will mean that HTML5 enabled browsers will attract security violations (De

Ryck et al. 2011). Consequently HTML5 opens up entirely new security challenges and

security issues (Anttonen et al. 2011).

An important aspect of HTML5 is that the web applications can run offline using

local storage. This means that client data will be stored on the client-side and accessed any

time that the application requires it.

Figure 2-1 HTML5’s IndexedDB functionality

When a client connects to an HTML5 web application for the first time, an API transaction

will be created. The application will ask the client to store data locally. This data will be

stored in a client-side database - IndexedDB. If a network failure occurs, the data from the

database will be read and so the client will still be able to use the application. This means

that an application can be run offline. Pictures and text from pages can be stored in

IndexedDB.

The advantage of HTML5 applications as compared to desktop programs is that web

applications do not require any installation or start-up configuration and will also run on

any device which supports HTML5 - laptops, phones or tablets. This reduces the barrier of

entry for new customers since clients can begin taking advantage of the web application

just by visiting the relevant web site (Harjono et al. 2011). The benefits of client-side

Chapter 2. Literature Review

 19

storage include the ability to deal with connectivity failure: an application can be used

even when a connection is not available. Offline content also allows access to, and creation

or modification of, data stored locally that the application can then use entirely offline.

Using this technology, websites behave like desktop applications; the application reloads

the content instantly, and without needing to reload the page. The performance

improvements include less bandwidth usage as data is stored on the client-side and the data

is transferred only when the web application requires it (Hilerio, 2011).

Web-based software is increasingly popular as applications are constantly becoming

available on the Web as services. This means that client software will increasingly be

developed using web technologies (Taivalseeri and Mikkonen, 2011). Such applications

and services consist of data and code which can be located anywhere in the world. This

allows a wide range of applications to support multiple clients and share data worldwide.

With the help of client-side storage, data can be periodically saved to the browser while the

client completes it. After the data has been processed the information is then transmitted to

the server. This will speed up application load time (Wisniewski, 2011). Further details and

examples of existing client-side databases are described in section 2.7.

2.3.3 Advantages of new HTML5 functionalities

HTML5 provides build in video playback; this radically impacts on the use of third party

programs such as Adobe Flash, Quicktime and Silverlight. HTML5 also offers offline

storage, meaning that the user can load certain elements or the whole Web page without an

active Internet connection. HTML5 will enable web designers to use cleaner code with

semantic HTML5 elements.

One of the new functionalities of HTML5 is the new local storage feature. Local

storage is an improvement over the storage facilities of cookies because it has better

performance, meaning that the data is not transmitted in every HTTP request. Local

storage can save larger amount of data, up to 5MB, where the stored data can be used

across multiple windows and persist stored once the web browser is closed (Ayenson,

2011).

The new features are available cross browser and cross platform. One of the biggest

advantages is the fact that it is mobile ready. Browsers on mobile devices fully support

HTML5 therefore creating mobile ready projects easier, which works in the same way as

on desktop computer.

Chapter 2. Literature Review

 20

2.3.4 Disadvantages of new HTML5 functionalities

One of the biggest disadvantages or disappointments is that the new standard does not

provide any additional security (West and Pulimood, 2012). HTML5 video and audio

support replaces third party applications such as Adobe; this closes a common attack

vector via FLASH application and plug-ins (Eilers, 2012). On the other hand, though,

HTML5 provides much more access to local resources, including local storage, and

therefore opens new opportunities for attacks (Taivan et al. 2014).

2.3.5 Difference between HTML5 and HTML4

The differences include new functionalities, such as streaming video and audio without

need for third party plug-ins such as flash, and local Web storage - which is a replacement

for cookies – also there are new structural elements to replace div tags for creating page

templates (Sharma, 2012). In addition, HTML5 allows the storage of data locally, on

client-side. The stored data can be accessed to support web applications when requested

(e.g., loading images stored on client-side). Stored data can even be accessed when the

user does not have a network connection. HTML5 introduces new semantic (<header>,

<nav>, <section>, <footer> etc.) and non-semantic elements <speed> and features that

allow developers to improve interoperability, whereby the new functionalities can be used

on multiple platforms.

2.4. Server-side databases

Relational databases (Martinez-Cruz et al. 2012; Ramakrishnan and Gehrke, 2002) are the

most used type of database these days according to DB engines ranking. The most

popular and widely used databases include Oracle, MySQL, MS SQL Server,

PostgreSQL and MS Access. Relational databases are computerized programs used to

store information in tables. These tables contain rows and columns used to sort and

retrieve information. The rows and columns contain related information about the subject

of the table. The database administrator can define the relationships among the various

types of data. Relational databases require data to be entered as integers, strings or real

numbers. This data must then be accessed through SQL queries (Conolly and Begg,

2004). The Entity Relationship (ER) model has been known for decades now, and is still

working for most of the current scenarios.

A relational database-management system (RDBMS) includes a collection of data

items organized as a table, with the columns representing data categories and the rows

representing the data itself (Sumathi, 2007). Relational databases are good for managing

Chapter 2. Literature Review

 21

large amounts of structured, alphanumerical data. For example, companies use them to

maintain records of transactions or personnel files. However, relational databases are

inflexible because their only data structure is tables. And they work only with limited,

simple data types, such as integers, and thus have had trouble handling complex and

user- defined data types, including multimedia (Chengjiong, 2012).

2.4.1 MySQL

MySQL (Ullman, 2012; Gehani, 2011) is one of the most widely used Open Source

Relational SQL database management system (RDBMS). MySQL is an RDBMS and is

used for developing web-based software applications. The MySQL Database system can

be used on client or server side. The database provides a wide range of APIs, provides

different back ends (MyISAM and InnoDB), administrator management tools and can be

set up on Windows, Linux or Unix environment (Kofler, 2001).

2.4.2 SQLite

SQLite is popular transactional SQL database engine. It is popular because it can be

embedded into end-user programs such as browsers or mobile phone GUIs (Patil et al.

2012).

The main advantage of SQLite is its availability (it is used on Android for mobile

applications and browsers and on iOS for mobile browsers). The main disadvantage of

SQLite is that the W3C no longer support it, and browsers such as Firefox, have removed

the SQLite support for their latest versions.

Embedding SQLite in web browsers has resulted in the addition of SQLite to the

HTML5 Web Storage standard and, after some discussion, inside the W3C Web

Applications Working Group (W3C, 2015).

Next we are going to look at client-side databases and the main reasons for using

these rather than server-side databases (in situations where this is, indeed, appropriate).

2.5. Client-side Web Databases

In this section we compare the existing databases used for web development with the

newly proposed databases. Also we look at how these new databases will impact the end

user experience and a depth comparison of client-side as opposed to server-side

databases.

Chapter 2. Literature Review

 22

2.5.1 WebSQL

WebSQL is a structured database, which uses standard SQL syntax for storage (West and

Pulimood, 2012). W3C (2010) wrote that the WebSQL database API is off active

maintenance. They cited the lack of independent implementations as being the reason -

due to the fact, at least at the time, that most browsers relied on SQLite as the underlying

database. The WebSQL database system brought a real relational database

implementation to browsers. Data could be stored in a very structured way.

2.5.2 NoSQL

NoSQL (Not only SQL, see Kuznetsov and Poskonin, 2014, Atzeni et al. 2014, Zachary

et al. 2013, Strozzi, 1998) is a database solution which is neither relational nor object

oriented. NoSQL does store data in a key/value format though. Key/value means that the

key is the identifier for the data and value can be data or pointer to file location. NoSQL

store data in unstructured records, which means that the data can be (Atzeni et al. 2014).

A NoSQL database can handle a large amount of data for which the relational model is

not needed. They came to the use when the designers of web services with large numbers

of users discovered that the traditional relational database management systems

(RDBMS) are fit either for small databases with frequent read/write transactions or for

large batch transactions with rare write accesses, but not for heavy read/write workloads

(which is often the case for these large scale web services as Google, Amazon, Facebook,

Yahoo and such)(Tudorica and Bucur, 2011).

NoSQL databases use various models - the key-value model being the simplest. Other

models include ordered key-value, document full text search, graph and big table.

The main feature of NoSQL databases is the abandonment of the relational data

model and SQL. NoSQL databases offer pieces of Atomicity, Consistency, Isolation,

Durability (ACID) (Connolly and Begg, 2014) transactions and use distributed

architecture (Kuznetsov and Poskonin, 2014).

Atomicity is related to transactions involving multiple separate pieces of data where

either all of the pieces of data are committed or none are.

Consistency of a transaction in database is the requirement that on failure a new state

is created and the data is returned to state before the failure.

The lack of support for ACID transactions leads to compromised consistency.

Banking sites use consistency in their applications; therefore usage of NoSQL databases in

that arena could be problematic (Shashank, 2011). On the other hand, NoSQL provides

better performance and scalability.

Chapter 2. Literature Review

 23

Isolation is the requirement that a transaction must remain inaccessible from other

transaction.

Durability is the condition that where any committed data remains in a valid and

consistent state, even if unexpected failure or interruption occurs.

NoSQL databases performance of data processing is faster than relational databases

(Leavitt, 2010) and this can be demonstrated, for instance by the comparison undertaken

by Zachary et al. (2013) and Van der Veen et al. (2012). Also NoSQL databases are often

faster just because their data models are simpler (Banker, 2010).

Data that is too large and complex to store, capture, analyse, process and

understand using recent methods and available tools is referred as Big Data (Barbierato

et al. 2014; Gudivada et al. 2014). NoSQL databases are used for Big Data, because of

their indexing performance advantage, consistency, and single-digit millisecond latency at

any scale (Barbierato et al. 2014; Gudivada et al. 2014). Additionally, another reason for

NoSQL database usage for Big Data is the fact that their key/value data storage regime is

often relevant to this arena (username/password, etc).

There are advantages to using NoSQL databases, but there are disadvantages and

downsides to NoSQL as well. NoSQL databases face several challenges: for instance,

overhead and complexity. Also they do not work with SQL queries, which means that they

need to be manually programmed. In cases of simple tasks they perform fast, but it is time

consuming to program for complex queries such as joins (Zacharyet al. 2013, Leavitt,

2010).

ACID is supported by relational databases, while NoSQL databases have only

partial or no support. Therefore, NoSQL databases do not offer the level of reliability

that ACID provides. With additional programming NoSQL databases can apply ACID to

data.

Most organizations are unfamiliar with NoSQL databases and thus may not feel

knowledgeable enough to choose one or even to determine that the approach might be

better for their purposes (Stonebraker, 2010). Unlike commercial relational databases,

many open source NoSQL applications do not yet come with customer support or

management tools. Each NoSQL database has its own set of Application Programming

Interfaces (API), libraries and preferred languages for interacting with the data they

contain.

Examples of document-oriented NoSQL database systems are as follows:

MongoDB, Level DB, and BerkeleyDB (IndexedDB is based on Oracle BerkleyDB

(Brooks, 2011)). The BerkleyDB database system provide persistence, replication, high

Chapter 2. Literature Review

 24

availability and transaction processing (Yubin et al. 2013). MongoDB is a cross-platform

document-oriented database. These databases use an ordered key/value store - LevelDB

also uses Bigtable. Bigtable is high performance distributed storage system designed by

Google for managing structured data. The design allows scaling large size of data

(petabytes- 250 bytes) across a large number of servers (Chang et al. 2008). These

additionally provide higher level of availability, scalability and reliability (Xu et al. 2014).

2.5.3 Web Storage (Local Storage)

Local storage (Myeong et al. 2012) is a mechanism for storing structured data on the

client-side. Web browser Local storage stores data in key/value pairs which are always

stored as strings. Local storage defines two objects, the first is the localStorage object,

and the second is sessionStorage object. LocalStorage has the same SOP restriction as

other client-side storages. Data stored in LocalStorage persists even after the web

browser is closed, while data stored in sessionStorage does not persist. SessionStorage

can run in multiple browser windows for the same web application. Local storage

provides the same functionality as cookies, but like sessionStorage, carries additional

advantages over the use of cookies (West and Pulimood, 2012). The advantages include

storing up to 5MB of key-value data per domain.

2.5.4 LevelDB

LevelDB (LevelDB, 2011, Pillai et al. 2013) is a persistent key-value store which was

formerly developed at Google. LevelDB provides sorting by keys and ordered mapping

from string keys to string values. Google Chrome uses LevelDB as an embedded

database. The DataBase Manager (Dbm) library stores arbitrary data by the use of a single

key. Like other NoSQL and Dbm stores, LevelDB does not use any relational data model,

does not support SQL queries, and has no support for indexes.

2.5.5 Cookies

Cookies (Stalker et al. 2004) are small text files (4KB) stored on the client machine.

They can have several functions in web applications as session, authentication or

personalization storage. Due to their storage limit (4KB) other methods have had to be

developed. HTML5 local storage is the standard's replacement for cookies.

Cookies used for session allow to identify the device associated with a particular

user for the web application. The user is recognised and the web application is not

treating the user as new visitor.

Chapter 2. Literature Review

 25

Cookies used for authentication are used to identify unique visitors to the web

application or website. After successful authentication the web application remember

who the user is so that web application can provide access to pages personal to that user.

Personalization cookies enable the web application to remember the user

preferences for the web application. For example, if the user has set the web application

to display specific background, layout or format these cookies will remember those

settings.

HTTP works as request-response protocol between client and server as shown in

Figure 2.7 (Stockhammer, 2011). Cookies are sent to the server with every HTTP request

- which slows down the connection.

Figure 2-2 Cookie setup

HTML5 introduces several alternatives to cookies for storing data on the client-side.

HTML5’s client-side browser-based database is part of the state of the art for web

applications but this can lead to the risk of client data being disrupted.

2.5.6 HTML5 File API

HTML5 standard provides a way where web applications can interact with files stored on

client-side, via the File API specification (Crowther et al. 2014). File API allows a web

application to save files to a temporary file location and reference the file while the user is

offline (W3C, 2013). File API is another of the new functionalities embedded in HTML5.

A directory traversal (Han, 2015) (or path traversal) is a exploiting where security

validation or sanitization of user inputted file names is insufficient. The characters, which

represent a traverse to a parent directory, are passed through to the File API. The purpose

of this attack is to allow a web application to access local files which is not intended to be

accessible. This attack exploits a lack of security, where the File API is functioning as it is

supposed to.

Chapter 2. Literature Review

 26

2.6. Difference between client and server-side databases

One of the advantages of using client-side storage over server-side storage for holding

large amounts of data is the, non-functional, requirement of speed. Speed is important in

cases where the Internet or the data connection is slow.

2.7. Differences between SQL and NoSQL databases

The difference between relational and NoSQL databases lie primarily in the storing of

data. Relational databases (Connolly and Begg, 2014) have tables with rows and columns

containing typed data. The IndexedDB NoSQL requires the creation of an object store

for a type of data and the saving of JavaScript Objects to that store. Each object (type)

can have a collection of indexes that make it faster to query and search across. NoSQL

does not support joins directly whereas relational databases do. The different types of

database system are different in scalability and performance. Comparison of query

results using joins shows that NoSQL performs this kind of query, and renders the data

faster. On the other hand, the code for NoSQL is much more complicated, as all the code

needs to be manually written in JavaScript – this logic is provided natively by SQL.

NoSQL databases have advantages over SQL databases because they allows scaling of an

application to new levels. The new data services require scalable structures which can

work in the cloud.

As has been said, NoSQL does not support SQL joins, and relations between tables

need to be manually programmed (Pokorny, 2013). SQL joins mean that data are stored in

multiple tables and are referenced by Ids. NoSQL developers turned their lack of joins into

a feature, as complex join commands take a lot of resources and time to process. Therefore

NoSQL stores everything in one place, which means that information can be obtained

much faster. The difference between relational and IndexedDB lie in the storage of the

data. Relational databases store tables with rows and columns of typed data. IndexedDB

requires creating an object store for each type of data and saving JavaScript Objects to that

store. Each object can have collection of indexes that make it faster to query and search

across (W3C, 2015). IndexedDB does not support joins, where relational database does

(W3C, 2015). The comparison of the query results using joins shows, that IndexedDB

performs the query and renders the data faster. On the other hand the code in IndexedDB is

much more complicated, as all the code needs to be manually done (W3C, 2015) in

JavaScript that is otherwise provided natively by SQL. IndexedDB can split array in

chunks of small pieces and using setTimeout, instead of loop inserted the data faster in

database (W3C, 2015).

Chapter 2. Literature Review

 27

Next we are going to look at browser-based database IndexedDB in detail.

2.8. IndexedDB

IndexedDB, previously known as WebSimpleDB came from the W3C specification for

implementing web storage into web browsers in 2009. IndexedDB is a persistent client-

side database implemented into the browser and is an alternative to the already

deprecated WebSQL. Mozilla and Microsoft supported the change: the use of Oracle's

Berkley DB in IndexedDB mostly influenced this (Forfang, 2014). The application uses

local data stored on a client system (Casario et al. 2011). It caches large amounts of data

from server to client-side using JavaScript Object Stores - equivalent to tables in relational

databases (Windows, 2011).

Files and data stored by the browser are retained on the user file storage system, on

the user's computer hard drive. The client-side database, IndexedDB, stores the data, even

when the browser terminates. IndexedDB is a persistent browser-based database, which

means that the data can be retrieved even offline. Therefore, the files reside on the user file

system and can be recovered until other files overwrite them. IndexedDB treats file data

just like any other type of data. An application can write a file or a BLOB into IndexedDB,

as well as storing strings, numbers and JavaScript Objects (Flanagan, 2011). This is

detailed in the IndexedDB specifications and implemented in both the Firefox and the

Chrome applications of IndexedDB. Via this mechanism, all the relevant information can

be stored in one place and a single query to IndexedDB can return it all.

In Firefox and Chrome’s IndexedDB implementation, the files are stored

transparently external to the actual database; in other words, the performance of storing a

file in IndexedDB is just as good as that of storing the file in a filesystem. The storing of

files does not extend the database size and slow down other operations. Moreover, reading

from the file means that the implementation reads from an OS file; therefore, IndexedDB is

just as fast as a filesystem. The Firefox IndexedDB implementation is even smart enough

that if it is storing the same BLOB multiple times, it creates only one copy. Writing further

references to the same BLOB just adds to an internal reference counter. This is completely

transparent to the web page: data is written faster while using fewer resources.

2.8.1 Structuring the database

Unlike other web-based databases such as SQL databases that use tables for storing data,

IndexedDB uses object stores. Multiple object stores use a single database. Keys are

assigned to every value in an object store within a database; keys are assigned by key path

or by a key generator. IndexedDB was created to allow local storage of data. However, it

Chapter 2. Literature Review

 28

has a somewhat limited feature set; for instance, it does not include the following features:

 1) Internationalised sorting - Internationalised sorting cannot be supported with

IndexedDB due to the wide variety of scripting languages in use in modern day web

applications. While the database can't store data in a specific internationalised order, the

client software can sort the data that is read out of the database itself.

2) Synchronising – Server-side databases currently cannot be synchronised with an

IndexedDB database because of the time-consuming development which would be

required for the implementation of this feature. Developers have to write code that

synchronises a specific browser-based IndexedDB database with a server-side database,

which is time consuming.

3) Full text searching - The API does not have an equivalent of the LIKE operator in

SQL. The LIKE operator is used to search for a specified pattern in a column.

Clearly it is believed that these limitations are tolerable and do not counteract the

lightweight system's real advantages. For instance in security terms, IndexedDB is a

NoSQL database, which means that is not possible to perform an SQL injection.

IndexedDB is built on a transactional database model. Everything the client does in

IndexedDB always happens in the context of a transaction. A transaction is an atomic and

durable set of data-access and data-modification operations on a particular database. It is

how the browser interacts with the data in a database. Any reading or changing of the

data in the database must happen within a transaction (MSDN, 2012). The IndexedDB

API provides lots of JavaScript Objects that represent indexes, tables, cursors, etc., but

each of these is tied to a particular transaction: applications cannot execute commands or

open cursors outside of a transaction. Transactions have a defined lifetime, so if someone

attempts to use a transaction after it has completed the process the API will throw out an

exception error. One of the transaction advantages is to prevent user to run multiple

instances of a web application at the same time. The purpose is prevention for database

issues and affecting functionality.

2.8.2 Value in IndexedDB

Each record has a value which can include anything that can be expressed in JavaScript:

including Boolean values, numbers, strings, dates, general objects, arrays, regexp,

undefined, and null. IndexedDB enables the storage of structured data. Unlike cookies and

DOM Storage, IndexedDB provides features that enable the grouping, iteration, search,

and filtering of JavaScript Objects (MSDN, 2012). Each record consists of a key path and a

matching value. These can be of a simple type, such as string or date; or more advanced,

such as JavaScript Objects and arrays. Records can include indexes for faster retrieval of

Chapter 2. Literature Review

 29

(other) records and can store large amounts of objects. IndexedDB is a key-value store in

the same way that Local storage is. Local storage retains just a string only key; therefore,

the usual approach with local storage is to JSON.stringify all data to be stored.

JSON.stringify (Ihrig, 2013) is a method that converts a JavaScript value to a JavaScript

Object Notation (JSON) string. The JSON.parse method parses a string as JSON; this is

suitable for finding an object with a unique key. However, the only way to retrieve the

properties of myObject from local storage is to JSON.parse the object and then examine it.

This is appropriate if the database only has one, or a few, objects. For example, if the

database contains a thousand objects, all of which have a property b, and the user wants

only to search values where b==2, it is necessary, using local Storage, to loop the entire

store and check b on each item.

IndexedDB can store data other than strings in the value; this includes simple types

such as DOMString and Date as well as Object and Array instances (Mehta, 2012).

Furthermore, it can create indexes on object property values. Thus, IndexedDB can hold

the same one thousand objects but then create an index on the b property and use that to

retrieve only the objects where b==2 without having to scan every object in the store.

IndexedDB is aware of ranges; therefore, it can search and retrieve all records

beginning with 'ab' and ending with ‘abd' in order to find 'abc' etc. IndexedDB is

implemented differently across browsers. Firefox uses SQLite and Chrome, LevelDB.

The need for IndexedDB comes from the need to store more complex data on the client-

side. One of the main reasons for using client-side databases is to reduce an application's

the dependence on a good Internet connection. Running a web application that requires a

lot of reading and writing data from/to a server-side database depends on continuous

Internet connectivity: if the connection is lost, parts of the data may get corrupted. The

browser-based database standard was proposed in order to fulfil these needs and solve

the issues mentioned. W3C, Mozilla and Chrome state that their new browser-based

database systems do not have storage limits (MDN, 2012). The implementations merely

ask for user permission to store larger amounts of data after a certain threshold has been

reached, and what this threshold is, depends on the browser implementation. In this

connection, it should be noted that where IndexedDB is used in Firefox, it is implemented

via SQL-backed technology (MDN, 2014).

Chapter 2. Literature Review

 30

Figure 2-3 IndexedDB structure

Google Chrome, can have up to 5 MB of storage for IndexedDB, by default. Installed

apps can make use of unlimited IndexedDB storage if the manifest file is set to have

unlimited storage and the user grants that permission to the application. When web

application request to store larger amount of data then the default, web browser alert the

user. By permitting, unlimited quote of data such as text, videos, images can be stored on

client-side.

 JSON-formatted manifest file provides important information such as the

name of the application, its description and the URLs that the application uses (Google

developers, N/A). An application with a manifest.josn file can be hosted on any website.

The manifest file can specify the storage size of the application - the data storage can be

unlimited. JSON is a lightweight data-interchange format (Crockford, 2008).

The values (in IndexedDB) can be complex structured objects and keys can be

properties of those objects. Indexes use properties of the objects for quick searching and

sorted enumeration. A key is a data value by which stored values are organized and

retrieved in the object store.

IndexedDB does not use SQL; it uses queries on an index that produces a “cursor”,

which is used to iterate across the result set. An index is a data structure (a way of storing

and organizing data) that improves the retrieval of data from the database. The structure

of an IndexedDB database can only be modified during a version change transaction.

This means that the only time ObjectStores or indexes can be created or removed is

during a version change transaction. Basically, the IndexedDB API automatically creates

a versionchange transaction whenever a database is opened through the open method and

one of the following two conditions occur:

• The requested database does not exist.

Chapter 2. Literature Review

 31

• The requested database version number is greater than the version number of the

database on the client machine.

2.8.3 Disadvantages of IndexedDB

IndexedDB has significant disadvantages which have been identified and discussed in the

literature. These include the lack of browser support (Opera) or partial support (IE, Edge,

Safari) as well as difficulties with complex queries, also the fact that the data is stored in a

non-encrypted form, and that older, deleted versions of a database can exist on a disk and

can be accessed with forensic tools. The code is too complex to implement (currently) a

fully working web version and it has no BLOB support in Chrome browsers older than

v.37. Browsers such as Chrome, Firefox, IE and Safari 8 support IndexedDB (2015). As

the database is NoSQL, there is a problem when constructing complex queries (Zachary,

2013) such as joint tables.

2.9. Security Issues

This section describes the security issues which have been identified in relation to the

new HTML5 functionalities. Additionally it describes how the current security attacks

can impact the end user and their data via the new HTML5 functionalities.

2.9.1 Origin of the problem

With the new HTML5 functionalities, new security issues arise because it provides more

access to the computer’s resources (Taivan et al. 2014). In addition, with local storage

and offline caching available in HTML5, the web browser might store sensitive data,

such as that originating from the client's email account (De Ryck et al. 2014).

The client-side security model is basically the Web browser security model. On the

release of the new standard, it was found that the security had not been updated to reflect

the new functionalities (De Ryck et al. 2012). Therefore, browser vendors will need to

develop a richer security model, much like those that exist for operating systems

(Livshits et al. 2013). The majority of attacks in relation to HMTL5 have their effect on

the browser and the end user, and thus do not have a direct impact on the server (Tian et

al. 2014).

Web browser security operates by using the same-origin policy (SOP) (Gollman,

2011, Ss. 2.3.2), which involves linking stored data to a particular domain or sub-domain,

and ensuring that the data cannot be accessed from any other source.

SOP applies to any storage in the browser. When SOP is implemented, the web browser

checks the hostname (www.someurl.com), port number (web browsers run on port 80)

Chapter 2. Literature Review

 32

and protocol (HTTP or HTTPS) against the origin record of stored data. Only when they

match, the web application will be allowed to access the data. The SOP is the only form

of browser-based protection against potential security threats, available in the standard.

SOP even disallows access to client data from sources that could be deemed to be the

original source, perhaps by the use of cross-site scripting (XSS) for example. That is, if

applications in multiple windows or frames are downloaded from different servers, they

should not be able to access each other’s data and scripts (Takesue, 2008). Thus, the

prevention of data or attacks coming from a different domain is possible. Web browsers

use this preventative technique against untrusted site attacks. Attackers use multiple

techniques which make use of the ease with which browser history can be inspected

(Weinberg et al. 2011). These techniques include “sniffing”, which is where web

browsers render web pages with malicious JavaScript code (Barua et al. 2011). The code

needs to be placed on the attacker's web page; this will trigger the code to “sniff “ the

history. Based on this fact, we can assume that the attacker might get access to other

stored information via the browser. SOP weaknesses have led to attacks such as Cross-

Site Request Forgery (CSRF), Cross-Site Scripting (XSS), and Web cache poisoning.

Using HTML5 localStorage to replace session data stored in cookies improves the

application’s scalability and prevents simple CSRF attacks because, unlike a cookie, data

in localStorage is not automatically sent.

2.9.2 Same origin policy (SOP)

The only existing security mechanism for browsers is this Same Origin Policy (SOP).

SOP restricts loading content or script from one origin which is not the same as the

origin requesting the content (Huang et al. 2010). When the data is stored on the client-

side, the only point of access for that data is through the user's local machine. (Saiedian

and Broyle, 2011) does not consider SOP to be the appropriate security mechanism,

because a cross site scripting attack might bypass the mechanism, executing a malicious

script, similar to CORS (Ss. 2.9.3). Stored data on the client is more likely to be

compromised than data stored on server (Hanna et al. 2010).

HTML5’s new functionality allows attackers to access untrusted sites, even if they

are on a different domain, meaning that the SOP will not apply to this situation. Security

vulnerability and potential attacks might be possible here since the attacker will be able

using hacking techniques to reach and access the database from a different domain

(Stuttard and Pinto, 2011). If the website or application is vulnerable to XSS attacks,

then the attacker could steal the user's data from the client-side database. When the SOP

is not correctly configured, then content from different web sites will allow attackers to

Chapter 2. Literature Review

 33

manipulate the data through their code's access.

Figure 2-4 Same Origin Policy

The SOP security measure is not enough to prevent an attacker from getting data from a

different domain (Stamm et al. 2010). When data is stored on the local machine in the

database, the applications are limited to access only data created by particular

applications on a domain. This is a security vulnerability of web browsers, where the

client database is situated: an attacker might compromise the client data (Stuttard and

Pinto, 2011).

Since the current Same Origin Policy is not secure, other solutions might include

using an entirely different policy. Potential policies might include Content Security Policy

(CSP). The CSP restricts common attack vectors in the client browser. The CSP employs a

set of directives that define the security policy for all types of Web page content (Saiedian

and Broyle, 2011).

2.9.3 Cross origin resource sharing (CORS)

Cross origin resource sharing (CORS) is a specification that gives JavaScript on a web

page the ability to make XMLHttpRequests (XHR) (Rauti & Leppänen, 2012, Fang et al.

2011) to another domain, not the originated from. XHR is defined as API that can be

used by JavaScript to make transfers between the client and server. Normally, Web

browsers would forbid such ‘cross-domain’ requests. CORS defines a way in which the

browser and the server can interact to determine whether or not to allow the cross-origin

request (Zakas, 2010). Letting third party applications access the data created by another

domain's application can lead to security issues such as information leakage. Therefore

user agents must implement CORS with IndexedDB in mind. Also, CORS expands on

	

	

	

	

http://www.first-site.co.uk

http://www.second-site.co.uk

Chapter 2. Literature Review

 34

the design of the Same Origin Policy. Each resource declares a set of origins which are

able to issue various kinds of requests (such as DELETE, INSERT, UPDATE) to, and

read the contents of, the resource. CORS is a “blind response” technique controlled by an

extra HTTP header (origin) which, when added, allows the request to reach the target.

This means that if an application creates an IndexedDB database, which is saved with the

domain name, another application cannot access the database files, as the access is

restricted for the particular domain. One possible attack is based on bypassing the Same

Origin Policy and establishing cross-domain connections to allow the deployment of a

Cross-site Request Forgery attack vector (Stuttard and Pinto, 2011). This is just to

mention one possible CORS based attack which can be used to bypass the restrictions

and so read data from other domains.

Figure 2-5 Cross origin resource sharing

2.10. Online and offline attacks

2.10.1 Cross-site scripting (XSS)

XSS is one of the most popular web application attacks - third on the OWASP list

(OWASP, 2013). WhiteHat (WhiteHat, 2014) security has provided statistics whereby

XSS regains the position of the number one web application vulnerability. XSS is a

popular attack because even where the web application is secure, the attack can rely on

the end users who can be tricked to click a link and therefore authorize the attack.

2.10.1.1 Definition

XSS (Elhakeem et al. 2013; Wassermann and Su, 2008; Vogtet al. 2007; Di Lucca et al.

2004) is a security vulnerability where the attacker injects malicious JavaScript code into

web application. Victim’s web browser executes the code with victim’s privileges and the

code can modify or transmit any data through the victim’s browser to the attacker.

	Origin	
CORS	Aware	Browser	

Cross-site	XHR	

CORS	aware	web	server	

http://somesite.co.uk	

	

Servers	the	original	

document/application	context	

	 http://remote-service.co.uk	

	

Servers	cross-site	HTP	requests	

	

	

X	

	 	

Chapter 2. Literature Review

 35

In order to bypass access controls, such as the SOP, attackers may use a cross-site scripting

vulnerability.

Di Luccaet al. (2004) identified a number of cross-site scripting vulnerabilities in

web applications, in which the attacker takes the dynamic analysis approach. XSS is the

most best known advanced threat to offline web applications and web databases

according to the Open Software Security community (OWASP).

2.10.1.2 Types of XSS attack

Stored XSS (Persistent) attacks (Wang et al. 2011) generally occur when user input is

stored on the target server database. The attack consists of storing potentially dangerous

scripts to this database which get executed every time a user makes a request to access data

on it.

A reflected XSS (Non-Persistent) attack (Pelizzi and Sekar, 2012) occurs when user

input is instantly returned by the web application in a form such as search result or error

message. Reflected attack is engineered to trick a user to click a link which will trigger a

script. Figure 2.4 shows the XSS attack principle.

Figure 2-6 XSS attack explained

1. The attacker can use one of the web application forms (login, search) to insert a

malicious code formed as a string into the web application back database.

2. The victim requests a web page from the web application.

3. The web application includes the malicious code from the database in the response

and sends it to the victim browser.

4. The victim's web browser executes the malicious code inside the response, which

will send the victim's cookies to the attacker's server.

Chapter 2. Literature Review

 36

Document Object Model (DOM) Based XSS (Lekies et al. 2013) is a form of XSS where

the attack where the malicious code is being executed in the DOM rather than HMTL. If a

page contains a script which writes the data requested from a URL, the attacker can simply

add dangerous script to the URL, which gets executed. The script gets written to DOM,

and thus the attacker can get access to cookies or change the page behaviour.

Server XSS occurs when the manipulated data comes from the server HTTP

response.

Client XSS occurs when malicious data includes JavaScript code to update the

DOM.

2.10.1.3 Cause of the attack

XSS takes advantage of web applications where the user input is not filtered properly.

XSS filtering is a process of filtering out parameter values that look suspicious (Pelizzi

and Sekar, 2012) - this includes special characters. XSS attack can be used to manipulate

not only direct form (search or login form) but also session cookies or data stored in

database. Bates et al. (2010) argues that many XSS exploits are possible not because

implementation but design errors. Most XSS attacks can be prevented by sanitizing or

validating user input (Shar and Tan, 2012).

2.10.1.4 Structure of the attack

XSS makes use of the fact that attackers can input html code or other client-side scripts

like JavaScript. Using XSS an attacker can create cookies which are used to bypass

access control. In most cases malicious code is added to a hyper-link which is added to a

website to which the user has legitimate access. Via this mechanism, the hyper-link is

executed, so parsing also the malicious code, and thus the attacker might obtain sensitive

data from the victim. XSS can enable the attacker to, for instance, steal authentication

information and hijack accounts, and of course this will allow the attacker to change user

settings and/or information (Malviya et al. 2013). Other attacks might be to damage the

site or to steal cookies. This might lead to the accessing of the admin account.

HTML Inline Frame (IFrame) allows the embedding of content from sources other

than the main page (Mansfield-Devine, 2010). An IFrame is an HTML embedded inside

another HTML on a website. Main purpose of IFrame is to insert content from other source

into web pages, usually used to embed advertisements.

Based on these XSS vulnerabilities, an attacker can inject a script, or any file, an

html file, a css file, a script etc. via the IFrame element in HTML (Liu et al. 2013). Using

Chapter 2. Literature Review

 37

this, an attacker can change the appearance and/or behaviour of a web application, adding

malicious content or otherwise controlling the web application and/or server database.

Mewara et al. (2014) identified remaining cross-site scripting vulnerabilities in web

applications where a dynamic analysis approach is chosen as the protective mechanism.

Protection via the dynamic analysis approach uses a mechanism on the server which

removes any script in the input that is not intended by the web application.

2.10.1.5 Preventions against XSS attacks

There are preventions against XSS attack such as encoding output, filtering and

validating user input. Encoding output based on input parameters (Lan et al. 2013) uses a

web proxy to prevent execution of URL links which contain binary encoded characters.

Another prevention is to filter the input parameters (Yusof and Pathan, 2014),

where any data from the input is filtered so that it is not executed in the browser. To

avoid XSS attacks developers must sanitize the user input before the input data is stored

in the database.

Validating user input is another important step to secure web applications. The web

application should always check that the user input is in the correct format (string, integer)

and the right length. Without validating user input the web application could be vulnerable

and the attacker could change the site content or get data from database.

2.10.1.6 XSS impact on client-side databases (IndexedDB)

The new client-side database facility provides the functionality to store data on the user's

machine. Stored data might contain information which is considered sensitive such as

user personal information. If a web application is vulnerable to XSS attack, then an

attacker could get access to this client-side storage. The client-side storage data can be

accessed through the browser, so the execution of an XSS attack might output the stored

data.

When the attacker has gained access to information on the Web server via a XSS

vulnerability, there are many things that they can do. Once they have access to the

information, the attacker can copy it to a different location, change the data, delete the

data or inject malware into it, etc.

It is important to secure the Web servers on which web applications exist against

XSS vulnerabilities. A real example of this includes Google Docs where the user can

choose to use the application offline. If there were even one XSS vulnerability anywhere

on the Google Docs web-site pages, an attacker would be able to access and steal or

modify the user data of anyone who logs in to the application (Liu, 2012).

Chapter 2. Literature Review

 38

2.10.2 Man in the middle attack

The man-in-the middle attack (MITM, MitM, MIM, MiM or MITMA) intercepts a

communication between two systems. MITM attack alters and listens to the

communication between two systems or people (routers, server-client, server-server,

client-client) (Lyubashevsky and Masny, 2013).

When a user sends a public key to another user and the attacker is able to intercept it,

a man in the middle attack is possible. A MITM attacks allows the attacker to intercept,

send and receive the data from the intercepted communication. MITM is an eavesdropping

attack, where the attacker is inserted into a communication session between systems or

people. A MITM attack exploits the immediate processing of conversations, transactions or

other transfers of data. MITM attacks allow attackers to intercept, send and receive data,

without the end system knowing.

Figure 2-7 Man in the middle attack

MITM is a method of session hijacking. Other methods of session hijacking similar to

MITM are sidejacking, sniffing and evil twin.

Sidejacking (Vishwakarma et al. 2015; Borders et al. 2012; Riley et al. 2011) is an

attack that involves the attacker to sniff data packets with the purpose to steal session

cookies. Session cookies can contain login or user information in unencrypted form, even

if the site is secure and the attacker can hijack a user’s session.

Chapter 2. Literature Review

 39

Evil Twin (Lanze et al. 2014; Nikbakhsh et al. 2012) is a rogue Wi-Fi network that

looks and acts as legitimate. The attacker controls the evil twin network and therefore if a

victim joins the network, the attacker launches a MITM attacks. All data on the network is

intercepted and captured by the attacker.

Sniffing (Pandey et al. 2014; Barua et al. 2011) involves a attacker using available

software to intercept data being sent from, or to, user device.

There are 2 types of attacks, intentional and unintentional. The intentional attacks

tries to trick the user into clicking a link which will redirected the user to a malicious site.

An unintentional attack happens when the site is vulnerable to malicious attacks, such as

those associated with insufficient input validation (Alkhalaf et al. 2012).

There are two types of developer: friendly and hostile. Each type can be further

categorized into competent and incompetent.

When using a site or application constructed by a friendly and competent developer

we can assume that the web application will be secure and that the end user will be

protected against online attacks, such as XSS. The main issue to be borne in mind when

constructing a security regime is that XSS attacks can, and often do, succeed. The end user

can be tricked into allowing XSS, for example, by clicking a link in an email. The email

could have been sent from a known address, therefore the end user would not be wary of

malicious code included in the link. When the end user clicks the link, an authorization to

perform the attack will proceed.

2.10.3 Social engineering attacks

Social engineering, in this context, is a method of tricking and manipulating people so that

they give up confidential or personal information. The attackers usually trick people into

giving them passwords or bank information. Alternatively they might, in this way, gain

access to the user's computer to secretly install malicious software with the purpose of

accessing information or controlling the computer (Huber et al. 2011). Attackers use social

engineering methods because it is usually easier to exploit human nature than it is to

discover ways to hack web applications or software. For example, it is easier to trick a

victim into providing the attacker with login details than it is to try to hack their password

(Krombholz et al. 2011).

An example of social engineering might be an email from a known sender. If an

attacker succeeds to socially engineer victims email password, then that attacker will have

access to the victim's contact list. The attacker can then send emails or messages to

members of the victim’s contacts list with a link. If this link is then clicked on, then the

result could be that the next victim's computer will be infected by malware or that they are

Chapter 2. Literature Review

 40

redirected to the attackers site (Kotenko et al. 2011). The link might also contain a

download, such as a picture, movie, document or audio file which has malicious code

embedded in it. When the victim downloads the file, the victim’s computer will be infected

and the attacker may then have access to the victim's computer, emails, accounts and

contacts.

2.10.3.1 Types of social engineering attacks

Phishing is when an attacker or malicious group sends a fake email, looking like a

legitimate email from a trusted source, with a message which is capable of installing

malware on the victim’s computer or sharing financial or personal information.

 Baiting involves leaving a malware infected physical device unattended for

someone to find and use it. If a victim loads the device (usb flash device, external drive

or CD-ROM disk) they may then unintentionally install malware.

Pretexting is when one side lies to another to obtain access to personal confidential

data. Example of pretexting could involve a scam where the attacker call a victim

pretending to be a bank representative, but the victim needs to confirm the identity first.

Attacker then gets financial and personal information about the victim.

A quid pro quo is when one side tries to obtain login details from other side in

exchange for a desirable gift.

Spam is considered to be unwanted junk email.

Spear phishing is a kind of phishing which is personalized for a specific person or

company.

Tailgating is when someone who is not authorized to access a secure location

follows an authorised person when passing through a door. The purpose is to gain access

to secure location where confidential or valuable items are stored.

2.10.4 SQL Injection

An injection attack is defined as any attempt to threaten the web application database by

submitting unsupported or unexpected data as user input. SQL injection is a common

type of injection attack (Clarke, 2012). SQL injection attack occurs when the SQL query

is altered with illegal characters by not sanitising the user input. The query is passed on

to the database server where the query is executed. Illegal characters might be

semicolons, apostrophes or commenting characters, which can result in dangerous and

unexpected queries (Shema, 2012). Any unchecked user input is considered unsanitised

and can lead to dangerous and incorrectly formed queries. For example if the query

expects a textual input and receives numeric input, the database can misinterpreted the

Chapter 2. Literature Review

 41

query as numeric command. Usanititised user input is considered to be a security

vulnerability that must be corrected (Shulman, 2006).

Injection attacks differs from traditional attacks on the web server, where the attack

is no attempting to gain access to server. Injection attack takes advantages of

vulnerabilities in web application, such us usanitised or unchecked user input with the

purpose to use or alter the data in database. Because JavaScript is an interpreted

language, there is the potential for injection attacks related to this as well.

2.10.5 Physical access

Physical access (Szefer et al. 2012) is possible when the attacker can gain physical

access to the user's machine. When a device, or stored data therein, is unencrypted, the

attacker may be able to access all its data. The security solutions which prevent physical

access attacks include physical access controls.

 To gain access to restricted areas only personnel with authorisation should be

allowed using access cards. In terms of physical access, the attacker or any person with

access to the filesystem could potentially get the file and the data, which would mean that

it could be transferred to an external drive and used via an the appropriate application.

A possible solution to this, to prevent an unauthorized person gaining access to a

filesystem, is to lock the screen so that a password has to be entered before any of the files

can be viewed. Mobile devices could be secured with two-factor authentication something

the user knows with something the user have. For example mobile device could be locked

with password or pin lock, but have a fingerprint scan as well. This way the authentication

will be harder for an attacker to pass.

Security experts and security researchers do not recommend that users or web

developers save any sensitive data on the client-side, and user machine. The

recommendation is to store any sensitive data on the server.

2.10.6 Tracking privacy

With the new HTML5 functionalities new attacks are possible. For instance, HTML5

provides the functionality to track a user's physical/geographical location, which can

cause a loss of their privacy (Mayer and Mitchell, 2012). This means that web

applications can track user location and store it in their systems. Social networks provide

a functionality whereby the user can check in to a particular location, and this location is

stored on the system. Based on the check-in the user location can be obtained and can

cause a loss of privacy (Wernke et al. 2014). Before the user location is stored the user is

Chapter 2. Literature Review

 42

notified by the browser that the application would like to access the user's physical

location.

2.10.7 Cross-site request forgery

Cross Site Request Forgery (CSRF) (Barth et al. 2008, Käfer, 2008, Jovanovic et al. 2006)

is web application vulnerability where a malicious web site can make legitimate requests to

a vulnerable web site under the cover of a logged-in user without that user’s knowledge. If

a user can send email to his friend, then a malicious web site can do the same. This

vulnerability has been rated as one of OWASP (Open Web Application Security Project)

Top 10 vulnerabilities.

A CSRF hole is when a malicious site can cause a visitor's browser to make a request

to server that causes a change on the server. The server thinks that because the request

comes with the user's cookies, the user wanted to submit that form.   CSRF flaws exist in

web applications with a predictable action structure and which use cookies, browser

authentication or client side certificates to authenticate users. CSRF are often GET requests

collected and sent through the use of an automatic load (such as img or script tag).

The user typically thinks that are performing a different task but using HTTP

requests that have side effects the attacks use the user's own browser to send HTTP attacks

to the target site.

CSRF attacks can be prevented by not relying only on cookies. In secure

applications, session’s tokens are submitted via hidden fields in HTML forms. When the

form is submitted the application verifies that the correct token is received. The attacker

will be not able to perform attack without knowing the session token (Stuttard and Pinto,

2011)  . The session token must be randomly generated unique number. So the application

will send the cookie session with attached session token. After the form is submitted, the

token will be checked and if is valid the action will be performed. Requiring a secret, user-

specific token in all form submissions and side-effect URLs prevents CSRF so the

attacker's site can't put the right token in its submissions.

In the next section we are going to identify client and server-side databases, and the

main differences between them. Additionally, we are going to perform an investigation

of which security issues, vulnerabilities and attacks can harm these kinds of databases.

2.11. Cryptography

Cryptography (Stallings, 2013; Katz, 2008; Konheim, 2007) is a method of using

algorithms to transmit data in a non-readable and secure way. Cryptography has two

parts, encryption and decryption.

Chapter 2. Literature Review

 43

Encryption (Stallings, 2013; Stinson, 2006) is an essential tool to protect sensitive

information. The purpose of using encryption is to provide privacy in order to prevent

disclosure and breaches of confidentiality during communications. Encryption is the

process where original data (plaintext) will be transformed to encrypted data (ciphertext).

The original data is the user input and ciphertext is the encrypted original data output, as

shown in Figure 2.9 and Figure 2.10.

A cipher is a pair of algorithms that create the encryption and the reversing

decryption. Many modern encryption systems use two keys, one is called the Private Key

and the other one is called the Public Key (Stallings, 2013). The public key encrypts the

message so that it can be sent to the recipient for decryption using the private key.

Figure 2-8 RSA Encryption and decryption process

Figure 2-9 AES Encryption and decryption process

Chapter 2. Literature Review

 44

Plaintext is any information that a sender wishes to transfer to a receiver. It can be

thought of as the input to any encryption algorithm or as information to be transmitted

before an algorithm encrypts it. Examples of plaintext include email messages, word

processor files, images, or ATM and credit card transaction information. This plaintext is

converted to ciphertext, which is data that has been encrypted and is unreadable until it

has been decrypted with a key (Thakur & Kumar, 2011).

Client-side encryption is still not mature, compared to server-side. Many of the

client-side encryption libraries cannot yet deal with the complexity of all the case

scenarios. It is relatively easy for an attacker to bypass client-side encryption in

comparison to server-side. This also will depend on the depth of encryption and the

location of public and private keys. Client-side encryption is essential when storing data

on the client-side machine. It provides security for user data and prevents people from

viewing the content of the user's files. Basharat (2012) discusses the importance of

database encryption but suggests that strong encryption might reduce performance, but

he also argues that encryption reduces the attack risk and protects sensitive data.

The salt is 64 bits (binary digits) of random data which is added to the key (before

the use of the pass-phrase) in order to make it less predictable (Mechanic et al. 2007). A

salt could be used on client-side for hashing (for server-side encryption), but it offers no

additional security. Usual way for storing hash value is to combine salt and the

password (OWASP, 2014). When using hashing on client-side, the salt would need to be

sent from client to server. Then server sends back salt to user where the same would be

generated. There is, therefore, the possibility of a MITM attack because the salt would

be sent from server to client. However, hashing should be used for all client-side

authentication and encryption. When the encrypted content is transmitted a MITM

attack could get the encrypted content, but without the password the decryption would

be not possible. The password would be stored on client-side and therefore not shared

with the server.

The W3C working draft of its Web Cryptography API is intended to help web

developers secure their web applications using encryption and hashing. This

specification does not explicitly provide any new storage mechanisms for CryptoKey

objects. Instead, by allowing CryptoKey objects to be used with the structured clone

algorithm, any existing or future web storage mechanism that support storing structured

clone-able objects can be used to store CryptoKey objects. This means, that the key can

be stored in IndexedDB with additional meta data.

There are proposed solutions to the problem of protecting sensitive information on

the client-side. One of these solutions includes the concept of CRYPTONS, which is a

Chapter 2. Literature Review

 45

software framework for remote storage whereby the remote server has no knowledge of

what is being stored. It implements a database-abstraction layer that provides support for

most major systems. Dong et al. (2013) and Xu et al. (2013) discuss the issue that storing

sensitive data on client-side is not secure and the existing protection is not enough.

2.11.1 Cryptography Algorithm

An algorithm (Stallings, 2013) is a set of instructions intended to perform a specific

operation or set of functions. There are many different ways to perform a specific

operation or action. Therefore, algorithms serve to make the operation or action more

efficient (Cormen et al. 2009). Algorithm functions accomplish a task as a small

program that can be a part of a larger program. Based on the type of key being used,

cryptography algorithms are classified into symmetric and asymmetric key algorithms.

Symmetric key algorithms (e.g., Advanced Encryption Standard or Rijndael

Algorithm (AES), Data Encryption Standard (DES), Rivest Cipher (RC5), Blowfish, etc.)

and Asymmetric key algorithms (e.g., Rivest-Shamir-Adleman (RSA), Message-digest

algorithm (MD5), Secure Hash Algorithm (SHA), etc.).

Symmetric key algorithms use one, the same symmetric key for encryption and

decryption as shown in Figure 2.10. Asymmetric key algorithms use different keys,

public key for encryption and private key for decryption as shown in Figure 2.9.

Advanced Encryption Standard (AES) or Rijndeal is an encryption algorithm where

with encryption and decryption a single symmetric key is used. AES encryption replaces

the DES and Institute of Standards and Technology (NIST) released the specification for

AES. AES algorithm has block ciphers with 128, 192 or 256 bits. AES is very secure

(Stallings and Brown, 2008) and provides flexible and fast functionality. For encryption

the user needs to enter a password, where a random salt for new password is added. User

can decide how secured password should be, by choosing the key size (128, 192, 256).

2.11.2 Difference between hashing and encryption

Hashing is used when checking the validity of input data. For example, when we have

two input values and want to check to see if they are the same. This is mostly used for

passwords and authentication (Park et al. 2010).

Encryption is used to transform data to make it not visible to others in plain text.

Encryption is used when we want to store data and later retrieve the data (read).

Encryption is mostly used when storing data, long term. When encrypting plaintext into

ciphertext a key is generated. This key is required when decrypting ciphertext back into

plaintext.

Chapter 2. Literature Review

 46

2.12. Biometrics and Multifactor authentication (MFA)

Nowadays, our lives are surrounded by electronic systems whose access is normally

protected with simple authentication methods, such as passwords, pins or patterns. These

traditional authentication methods are generally vulnerable to development mistakes or

other issues: spy-ware, brute force and dictionary attacks.

Biometrics (Dozono et al. 2014, Yang et al. 2014, Yampolskiy et al. 2014) is a

interesting future option, particularly for use with touchscreen devices. Biometrics is not

considered to be a single, sufficient, authentication mechanism: it must be used alongside

other factors in order to create a sufficiently secure system.

Existing mobile and tablet devices provide basic biometrics, and these can be used to

extend the authentication process (Chuda et al. 2015). Instead of using something a person

has (like a card or a physical key) or something a person knows (like a password),

biometrics uses physical or behavioral characteristics to identify the person. Physical

characteristics might include fingerprints, face identity, vein geometry, palm or eye iris

scans. Behavioral characteristics can include voice, handwriting or type rhythm (Ramya et

al. 2014).

Biometrics systems use three steps: enrollment, storage and comparison. Enrollment

is the first step, at which the biometric characteristics are recorded as shown in Figure

2.11. The system will get an image of a fingerprint and then specific characteristics such as

the pattern of ridges and valleys from the image are filtered and saved in binary form;

these are used for verification. The algorithmic result cannot be reconverted to an image,

therefore it should not be possible to duplicate fingerprints.

Figure 2-10 Principle for saving a fingerprint scan

Biometrics provide a convenient level of security, reducing fraud and attacks. They

eliminate the problem caused by lost IDs or passwords by using psychological or physical

Chapter 2. Literature Review

 47

attributes. Prevention against unauthorized access is at a much higher level when using

biometrics because their use make it possible to know who has accessed a restricted area.

The disadvantages of biometrics include the expense of the machinery which provides

state of the art sensing – e.g. retina or iris.

Multifactor authentication (MFA) (Fleischhacker et al. 2014, Bruun et al. 2014, Bell et

al. 2014) is a security system that requires more than one method of authentication from

independent categories of credentials to verify the user's identity for a login or other

transaction. This means that to be able to access a user account or certain data, the user is

required to input additional security beyond basic authentication such as username and

password. MFA generally uses an external device or software to generate a token - which

is one time use only.

Methods for generating a token:

• SMS

• Mobile device application

MFA uses three basic elements, something the user knows (password, pattern or PIN),

something the user owns (access card or mobile device) plus something the user is (voice,

eye retina or fingerprint) (Singh and Chatterjee, 2015). To reduce the risk of exposure data

a strong authentication process should be applied. Facebook and Google have users

confirm their identity when accessing their account from an unrecognized device.

2.13. Web Sockets

The WebSocket protocol enables the server to communicate to the client-side code

when the user requests to change the server-side data or other server-side action occurs.

For existing Web Sockets the handshake is based on session cookies.

Webix is an existing Web Socket which supports IndexedDB saving and retrieving

of data. The protocol doesn't handle authorization and/or authentication (Jemel and

Serhrouchni, 2014).

The current problem with web sockets is cross-site WebSocket hijacking, as Web

Sockets is not restrained by the SOP.

When a server does not check and validate the origin header from a Web socket

request (i.e. handshake) then server might accept the connection. The WebSockets

Chapter 2. Literature Review

 48

connection, same as with CORS can originate from different origin. Because the

connection is regular HTTP or HTTP request the cookies is being sent, even if cross site.

Attacker can begin a WebSocket request from a malicious site targeting a web

application, where the victim is authenticated. The browser sends the victim cookie in

WebSocket, where the attacks scenario is similar to CSRF attack. The difference is that

attacker can perform reads and writes in the WebSocket connection.

2.14. Conclusion

HTML5 provides new functionalities for web developers, including the local storage

standard (Jemel and Serhrouchni, 2014). With local storage all of the data from web

applications can be stored locally instead of on the server (Jemel and Serhrouchni, 2014).

Storing data locally allows web applications to respond faster since the data is retrieved

locally as well.

In addition to these new functionalities it is suggested that new security issues will

arise (De Ryck et al. 2011). Storing data locally has a performance advantage, but in

terms of security there are possible problems XSS (Hydara et al. 2015; Liu et al. 2015),

and saved data encryption (Jemel and Serhrouchni, 2015). This thesis then builds on work

in number key areas, security of browser based databases and browser model De Ryck et.al

(2011) and database performance work by Van der Veen (2012).

It can be concluded that attacks such as XSS, or physical access could impact the

data stored in browser-based databases (You et al. 2015; West and Pulimood, 2012).

Browser-based database technology is new and therefore not much is currently known

about its associated security issues. Considering the fact that personal information could

be stored in IndexedDB databases locally, security is a significant factor. As HTML5’s

new functionalities and API do not provide any additional security mechanisms but

additionally does open the door to new, previously unknown attacks (such as File API

attacks (You at al. 2015), Web Sockets attacks (Choo et al. 2015), bypassing SOP with

CORS (Smith, 2015), the issues need to be addressed before IndexedDB, become widely

adopted and used.

Existing solutions such as encryption are not sufficient on their own to protect

against XSS attacks (Liu and Gong, 2013); methods such as Multifactor authentication

(Tirumala, 2015) or biometrics (Gupta and Gupta, 2014) could make the situation more

secure. Considering that the data can be stored on many different kinds of device such as

tablets or phones, physical access attacks are likely from which sensitive information

could be retrieved (Shin et al. 2015). Such attacks do not follow any particular steps,

therefore it is nearly impossible to produce a methodology to describe these attacks, but

Chapter 2. Literature Review

 49

rather only some use case scenarios. The thesis builds on work of De Ryck et.al (2011)

and Jemel and Serhrouchni (2014), where the thesis is proposing new browser based

security model.

According to the W3C documentation (W3C, 2015), IndexedDB was not designed

to be a secure browser-based database, and therefore could be considered vulnerable.

From the database area this work is build on Bagade and Dhende (2012) where the

thesis is proposing and designing s performance model to theoretically measure the

performance of client and server side databases.

Based on this research, we conclude that browser-based databases should perform,

in theory, faster than server-side databases, but there is no existing model which can

verify that. One of the principles in relation to identifying the performance of browser-

based storages is to find out the effectiveness of using IndexedDB in contrast to server-

side databases.

A model for measuring the performance of browser-based databases will be

designed and tested in Chapter 3. The following chapter will consider the, non-

functional, requirement, speed, and a performance model will be compared to the

experimental results.

Chapter 3. A Performance Model for Client-side Databases

 50

Chapter 3. A Performance Model for Client-side Databases

The aim of this chapter is to investigate the speed, effectiveness, and the possible

advantages of using an IndexedDB client-side browser-based database as opposed to a

server-side database. In this section a performance model will be proposed, for which the

main objective is to identify the effectiveness of client-side databases. This chapter

demonstrates the effectiveness of client-side databases by comparing theoretical results

against experimental. The scope of the model is to show that client-side databases have

significant performance advantage over server-side databases.

Simulations of the model have been completed with the purpose of comparing the

results of simulation to a real life experiment. Based on the results and the comparison,

the conclusion outlines the effectiveness of using client-side databases over server-side

database.

The experiment will seek to compare the performance of traditional SQL databases

(Van der Lans, 2006) on server to a NoSQL database (see section 2.6.2) (Kuznetsov et al.

2014, Atzeni et al. 2014, Zachary et al. 2013, Strozzi, 1998) on client-side.

In the literature review sections 2.8.1 and 2.8.2 we discussed the structure and the

storage strategy for values in IndexedDB. The data which can be stored in IndexedDB

can be a generic JavaScript Object such as a string, a number or a BLOB. The

IndexedDB documentation defines the data storage limits for any IndexedDB database to

be unlimited. This means that IndexedDB may use all the available space on the user's

computer file system or mobile's internal memory.

One approach to testing the storing and reading limits of IndexedDB was via

experiments. These experiments were important because they allowed us to see

IndexedDB in action, and this helped us to understand the whole structure of how the

data is saved and how the transaction functionality works.

We started the experiments with the purpose of overloading IndexedDB with data

in order to find out its limits. The purpose was to find out how much data can be stored

in IndexedDB in one query and to see if storing large amounts of data can break it. We

performed the experiments using a tool developed to test reads and writes of data. This

tool was automated: we could specify which database we wanted to test and how much

data was to be inserted into this database. The results were shown in a table, with the

time of insertion and any possible errors.

Chapter 3. A Performance Model for Client-side Databases

 51

The experiment lead to the development of a performance model so that the experimental

results could be compared to simulation experiments, in terms of storing and retrieving

data from IndexedDB.

For the performance model we used a queuing model as a base. The model can be

applied to any browser-based or server based database where variables such as disk

speed, bandwidth and queuing time must be considered.

The conclusion of the experiment confirm that IndexedDB performs faster than any

other existing database, when storing large numbers of records – e.g. more than 50,000

record in one insert query. Additionally, from the results (Ss. 3.9.2) it can be seen that

IndexedDB performed faster in the Firefox browser, where the combination of back end

databases is SQLite and IndexedDB (SQL and NoSQL).

3.1. Motivation

Client-side databases are assumed, by their very nature, to perform faster (Pokorny,

2013) than server-side databases, and the demonstration of the performance model, and

the experimental results supplied this assumption. Additionally, client-side databases are

considered to be a good solution for storage (Walker and Chapra, 2014), because of their

speed, effectiveness and offline usage.

The key difference between a server and a client-side database is how the data is

served to the user. On the client-side, this is from a local file - the data is not served over

an external network - but on the server-side data is served from a server over an external

network (McFarland and Nicholson, 2007).

Another notable difference between a server and a client-side database is the

structure and the file access time.

There are advantages of using NoSQL (Ss. 2.6.2) over SQL, such as low latency, high

performance and high scalability. NoSQL low latency means that the data is better

cached which provides faster access (Konstantinou et al. 2011). NoSQL databases are

highly scalable, which means that they can handle higher volumes of read and write

operations (Tauro et al. 2012).

A database Index (Van der Lans, 2006) is a data structure which improves the

efficiency and time of data retrieval operations (SQL statement or procedure) on a database

table. The downside of database index is additional writes and increased storage space.

The high performance depends on a number of aspects of the database structure, such as

the indexing of data (Ayabakan and Kilimci, 2014).

Joins (Van der Lans, 2006) combine records from two or more tables. One of the

disadvantages of using a NoSQL database is the lack of an embedded join operation:

Chapter 3. A Performance Model for Client-side Databases

 52

complex queries must be handled by complex application code (Tendulkar and Phalak,

2011).

The security in the browser, i.e. SOP (SS. 2.3.2) make IndexedDB only work for

web applications using the Hypertext Transfer Protocol (HTTP) or Secure Hypertext

Transfer Protocol (HTTPS) (Clark, 2003).

3.1.1 Distributed Databases

A Distributed Database (Özsu and Valduriez, 2011) is a database where parts of the

database are stored at multiple locations (multiple servers or computers). Analytical and

simulation performance studies of distributed databases generally use queuing systems

(Jain, 1991, Gross and Harris, 1985) as underlying models. The advantage of using

distributed database is that they are secure by design, providing local storage with

increased performance by running queries locally so there is no network bottleneck

(Chen and Greenfield, 2013). A bottleneck can be defined as a stage in a process that

causes the whole process to slow down or stop (Sevilla et al. 2014).

This section outlines the motivation for this work, as client-side databases are

considered to perform faster (Pokorny, 2013) than server-side databases. The work

described in this chapter was that of using a queuing model to design a theoretical

performance model; the predicted results will then be compared to experimental results.

3.2. Queuing model

The use of a queuing model for both the server and the client-side was decided on in

order to demonstrate the effectiveness, and the results were compared in terms of how

latency and queuing time impact on performance.

(Medhi, 2003; Bunday 1996) defines Queuing theory as a mathematical study of

queues or waiting lines. Therefore, a simple queuing model can be explained in terms of

the user arriving at a busy server and joining the queue on that single server. (Whitt,

2000) classifies the queuing processes as either standard (light traffic) or growing (heavy

traffic) and summarises limit theorems for each. In theory, as data from the server takes

longer in processing because of the network latency and queuing time, as shown in the

queuing model (Walker and Shan, 2015; Vilaplana et al. 2014), client-side data can be

processed much faster as the latency and queuing time is minimal.

The aim of queuing theory is to get queuing or waiting time of a system, which can

be applied to simulations to achieve performance results (Wang et al. 2012; Hohn, 2004;

Kalashnikov, 1994).

Chapter 3. A Performance Model for Client-side Databases

 53

It is important to realise that server-side databases always have network latency

(Ghosh and Rau-Chaplin, 2006) and therefore the queuing time will apply. However, in

client-side databases the network latency is minimal and the queuing time will be zero –

especially since IndexedDB can handle only one transaction at a time (W3C, 2015). This

transaction operation can be a read or a write.

3.3. Database Replication

Database replication (Yadav et al. 2013; Zhou and Wei, 2013) is the process of copying

(duplicating) part of database from one database server to another server. Therefore

duplicated copies of database are available to be used by users and share equal level of

information.

The advantages of using data replication include increased performance and

availability (Minhas et al. 2013; Zhou and Wei, 2013). Application reliability can be

improved by spreading the data across multiple machines. Also, spreading the data reads

across multiple machines can improve reading operation performance (Yadav et al. 2013).

3.3.1 Methods of performing Database Replication

Database replication can be performed via snapshot replication, merging replication or

transactional replication. Snapshot replication (Elnikety et al. 2005) (isolation) is when the

latest snapshot of one database server is duplicated to another database, which can be on

the same or different server.

Merging replication (Mazilu, 2010) is when data from multiple databases are merged

into a single database.

Transactional replication (Mazilu, 2010) is when users obtain complete initial copies

of the database, with additional frequent updates as data changes, which means that

changes are sent to users as they happen.

Database replication involves frequent updates of existing records with a large

amount of data. This experiment will seek to compare the replication of data in server

databases to that for client-side databases and look at how the frequent update operations

will impact on performance.

This section describes an important method which is used to optimise the

performance of databases. Another important method is database fragmentation, described

in the next section.

Chapter 3. A Performance Model for Client-side Databases

 54

3.4. Database fragmentation

Data can be stored on multiple computers by fragmenting (Khan and Hoque, 2012) where

the whole database can be split up into several pieces called fragments. These fragments

are logical data pieces stored in a distributed database system (Khan and Hoque, 2010;

Gibbs et al. 2005; Tamhankar and Ram, 1998). The objective of planned fragmentation is

to minimise the data transfer time acquired to execute multiple queries, by locating the

required fragments (Abdalla and Amer, 2012). Fragmentation is used to improve database

performance (Gorla et al. 2012) with one of three strategies, which includes Vertical

Fragmentation, Horizontal Fragmentation and Mixed Fragmentation (Runceanu and

Popescu, 2013; Gorla et al. 2012). Horizontal Fragmentation (Abdalla and Amer, 2012;

Ezeife, and Zheng 1999) splits tables by row, whereas the tables remain the same as they

were. Vertical Fragmentation (Goli e al. 2012; Lim and Ng, 1997) splits tables by column,

i.e. one table splits into two or more tables.

3.5. Performance factors

There is a performance difference between server and client-side databases which

depends on several factors, such as network latency, as described in 3.5.1 and 3.5.2.

These factors played an important in proposing the performance model, which is

specified in two parts.

Chapter 3. A Performance Model for Client-side Databases

 55

Figure 3-1 Queuing model Diagram – Define the structure

3.5.1 Factors for DB Performance on server

Factors for database performance on the server are as follows: the client network interface,

the network bandwidth, the server network interface, server CPU loading, server memory

usage, server disk bandwidth and configuration effects.

The client network interface factor can be described as the time taken when due to

configuration errors such as network interface (bottlenecks) or hardware malfunction the

user is not capable to send or receive packets (Biondi et al. 2014).

External server

hosting the web

application

Client browser

Server Database Client-side

database

Storing data over

the network

Client-side database

• Writes all data to memory,

from where is then written to
file

Server-side database

• Writes the data over the network-

considering network latency here
• On the serve we are considering

the arrival time

Web Application

Chapter 3. A Performance Model for Client-side Databases

 56

Network bandwidth of an overly overfilled network (a network which is too busy)

with packets slows down both server replies and client transmissions (Totok and

Karamcheti, 2011).

Server network interface delays occur when a server is overwhelmed with packets

that cannot receive any more. Interrupt service routine influence the capability of the

server to receive packets from the network (Bourke, 2001).

Server CPU loading refers to the server when the server has sufficient CPU cycles,

and the summary of processes currently running in queue.

Server memory usage is the performance factor associated to the server memory size

and availability (Van der Mei et al. 2001).

Server disk bandwidth delays or bottlenecks occur when the data is not available in

memory and the server cannot read the data from the drives quickly (Biondi et al. 2014).

Configuration effects occur with misconfigured settings in which all server services

run correctly but unproductively (Biondi et al. 2014).

3.5.2 Factors for DB Performance in local files

The factors for database performance (Bezemer et al.2014; Garrett, 2013) in local files

include disk speed, and that can be broken down into average seek time, rotation speed,

controller time, average latency, CPU load, memory usage and disk transfer rate.

3.6. Structure of tested databases

In this section, the varying characteristics of different types of databases will be explored.

The section will focus on the tested browser-based database, IndexedDB.

As it can be see from Figure 2.8 the structure of IndexedDB (Ss. 2.8.2) consist of Object

store, which can contain multiple objects. NoSQL database can contain any number of

object stores. The value stored in object store is associated with a key. The object store can

store objects as well. First the web application needs to open a connection to database and

current version. Then an object store is created which will store the values. Lastly a new

record is added in transaction.

For the purpose of testing we have used IndexedDB, LocalStorage (Ss. 2.7.3) (both

key/value) and WebSQL (Ss. 2.7.1) (SQL database).

var request = indexedDB.open(DB_Name, 3);

var objStore = db.createObjectStore("name of OS", { autoIncrement

: true });

Chapter 3. A Performance Model for Client-side Databases

 57

The person data will consist of these variables and each variable will be added as a

separate value into database. ssn:"111-11-1115",name:"Donna ",age:12,email:"

donna123@gmail.org (Ss.3.9.1.1).

var request = objectStore.add(personData[i]);

The structure of WebSQL consists of tables and rows where the data is saved.

Compared database on the server was MySQL (Ss.2.6.1) which is a SQL relational

database. To insert data into MySQL database table a single query can be used.

INSERT INTO table_name (column1, column2, ...) VALUES (value1, value2, ...)

3.7. Define the performance model based on the queuing model

This section describes and analyses the proposed performance model. The main purpose

of the model is to show the effectiveness of using client-side over server databases.

Additionally, the performance model will apply to both client and server-side

performance measurements. The proposed performance model is based on a queuing

model which, in turn, is based on the Markov model (Shi, 2013).

3.7.1 Model description

The model takes into account the variables and constants which will be applied to it. The

model will show the performance effectiveness, where the variable added to the speed

model is an average figure for the amount of data. In addition, latency will also be

considered for the situation where it is necessary to use over 10 queries for insert and

read operations. For the number of queries lower than 10, the latency is considered to be

minimal, as there is no queue. Web servers, such as Apache start by default with multiple

threads. Where the server can keep multiple copies of itself to server multiple user at the

same time.

Based on the theoretical research, it can be expected that it will be more efficient to store

data locally after a certain number of queries.

The queuing model will provide the solution for the performance model. Based on

the model variables, the experimental results can be further examined in order to evaluate

the results.

The M/M/1 queue is the classic, single queue model and M/M/1/N is queuing model with a

finite queue. The letter M refers to a memoryless (or Markovian) arrival process

distribution, that is, to the exponential distribution or Poisson process. The number 1

Chapter 3. A Performance Model for Client-side Databases

 58

represents single server. The letter N represents customers only. The (N+1)th customer will

not join the queue. N-1 represents the maximum number of customers in the queue.

3.7.2 Performance measures of M|M|1|N queuing system.

In order to highlight different aspects of database performance, a model has been

identified. Initially, the queuing system waiting time is calculated. This is important, as

there can be many concurrent users who will be performing insert, update or delete

actions. Secondly, the average waiting time in the queue is calculated by using data from

the previous result. Equation 3.1 is calculating queuing system waiting time.

�� 	= 	
��

� �)	��
	+ 	

�

�
Equation 3-1

Table 3-1 Waiting time variables

W/	 Average queuing system waiting time

�1 Average number of customers

P3	 Represents the probability for the user of not joining the system

µ	 Service rate per server = 1/E[s]

λ	 The arrival rate = 1/E[τ]

E	 Represents amount of times of arriving at state n, and L represent amount of

times of leaving state n. Ε	 − � 	�	 0,1

�	 Inter-arrival time which represents time between two succeeding arrivals.

s	 Represents service time per operation.

�1 	= 	�D			 −	
1

�

Table 3-2 Average waiting time in the queue

WF Average waiting time in the queue

W/: Average queuing system waiting time

µ	 Service rate per server = 1/E[s]	

Equation 3.2 is calculating average waiting time in the queue. Traffic modelling is

(3.2)

(3.1)

Chapter 3. A Performance Model for Client-side Databases

 59

concerned with the packet arrival process or Poisson process. The Poisson process is an

important model used in queuing theory. Often a Poisson process can describe the arrival

behaviour of customers (Kalashnikov, 1994).

3.7.3 Speed model of network transfer

The proposed performance/speed model will have set variables, and can be calculated as

show in equation 3.3 (Calculating the minimum access time to total data) and equation

3.4 (Calculating the data transfer time).

�	 = max � ∗
�

�
,
�

� ∗ �
,
�

� ∗ �
,
�

� ∗ �

�	 =
�

�
= min

�

�
, � ∗ �,� ∗ �, � ∗ �

Table 3-3 Data transfer variables

Value Description Inserted Value

c	 The CPU time to compute each byte 10ms

D	 The total of data 100000MB

I	 Network speed 100 MB/s

M	 The number of I/O nodes 1

N	 The number of clients 10

P	 The number of disks in parallel 1

R	 Disk speed 7200rpm

T	 The minimum access time to total data 1s

S	 The maximum aggregate bandwidth

(Limitation: P/M >=1)

1 machine * (1 gigabit *

2) = 40gbps

3.7.3.1 Other factors to consider

Causes of end-to-end delay described by (Gettys and Nichols, 2012) include

processing delays, buffer delays, transmission delays and propagation delays.

(3.3)

(3.4)

Chapter 3. A Performance Model for Client-side Databases

 60

The processing delay (Pinto et al. 2013) is the time it takes routers to analyse the

packet on network system before it is send. The processing delay is an important factor in

the total network delay.

The queuing (or buffer) delay (Xue et al. 2013) is the time a packet waits in a queue

before requested packet could be transmitted. Packets which needs to be processed and

transmitted arrive at a router and can only be processed one packet at a time.

Transmission delay (Hu et al. 2013) is the amount of time that all the bits of packet

leave the sending point.

The propagation delay (Chitre et al. 2012) is the amount of time it takes for the first

bit of packet to travel from the sending point to the receiving point.

The time required to insert a row is determined by the time taken to connect to the

database, send the query to the server, parse the query, insert the row, update the relevant

indexes and then close the connection (Connoly and Begg, 2014).

3.7.4 Hard drive speed

To calculate the disk speed, we can use the equation 3.5 as shown:

� = 	8	 ∗ 	
�	
Y	
Z
	
	+ 	8	 ∗ 	

�

�

Where:

c Speed of light = 299792458 m / s

S Bits per second

B Block Size

D Distance in meters

C Connect Speed

(3.5)

Chapter 3. A Performance Model for Client-side Databases

 61

Also the disk latency can be calculated as shown in equation 3.6:

�	 = 	1000	 ∗ 	
�

�
	

Where:

c Speed of light = 299792458 m / s

L Latency in milliseconds

D Distance in meters

The physical disk performance must also be considered, as disks can be of different types

and models. IOPS are used to define the performance of a given disk or disk array,

shown in equation 3.7.

	

����	 = 	
1

�^ 	+ 	�_
	

	

Where:

�^ Average Latency

�_ Average Seek

	

	

3.8. Experiment Validation

For the validation of the performance model, one user will be considered as the default

server configuration. This section takes the performance model and applies the set

variables to simulate the predicted results. These results will be later compared to

experiments results, and then a conclusion of the effectiveness of the databases will be

made.

3.8.1 Simulation of the performance model

For the simulation, the computational software program Wolfram Mathematica (Wellin,

2013), was used.

(3.6)

(3.7)

Chapter 3. A Performance Model for Client-side Databases

 62

The first calculation to be performed was to find the value of T (the minimum access

time to total data), with different sets of D (total amount of data). This variable is then

applied to a second model, which calculates the speed to transfer and save the data.

The presumption of variable I (network speed) is 100 MB/s, c (CPU) is 10-9 seconds

= 1 ns. The transferred and to be stored data is in range from 10 MB to 30k MB. Variables

as N (number of I/O nodes), M (number of clients) and P (number on disks in parallels) are

set to 1. The speed of disk is 200 MB/s. The results of the proposed model are shown in

Figure 3.3.

3.9. Experimental Evaluation of model

This section describes the experimental evaluation which assessed the following:

(1) Experimental Evaluation of performance comparison between client and server-side

databases

(2) Experimental Evaluation of different kinds of client-side databases

(3) IndexedDB performance in different browsers.

Also, this section evaluates the theoretical performance model and compares the results to

the experimental results.

3.9.1 Experimental Environment

The database was, on the client-side, IndexedDB. This browser-based database supports

BLOB and JavaScript Objects. The application was tested in Firefox (v.15) and Chrome

(v.22). Both of these browser fully support the IndexedDB API and its functionality. The

application was set up on the server because IndexedDB does not support local servers.

While Firefox uses the latest W3C specifications onupgradeneeded event to determine if

a database should be created or upgraded, Chrome still uses the older, and now obsolete,

setVersion method.

For the experiments, a Western Digital 7200rpm 40 GB hard drive was used. All

the experiments and the conclusions are based on the use of the same SATA HDD.

3.9.1.1 Data model (Size of web record)

The data model consists of a query which saves and reads data from one simple table.

The experiment consists of a functionality which adds records to a database. The records

are randomly generated as per the following example: ssn:"111-11-1115",name:"Donna

",age:12,email:" donna123@gmail.org". The records are all objects of size 151 Bytes.

Chapter 3. A Performance Model for Client-side Databases

 63

The ssn is the key of the object stored in the database, which is also randomly

generated. The generator is a JavaScript random number generator. The purpose of the

ssn key is as a keyPath (Atzeni et al. 2014) that is the property that makes an individual

object in the store unique. The experiment measures the time needed to generate the

values and the time needed for insertion. For the experiment evaluation and comparison

the insertion is the only important part. The experiment firstly opens a database

connection, and creates an object store for storing the generated records.

3.9.1.2 Experiments for the Server-side Database

For the server-side database a JavaScript function will generate a random name and

surname and insert these data into the database. The JavaScript function consists of an

array of names which will be randomly put together and inserted as one array into the

database. The scenario is based on a real application where the information concerning a

set of people is stored and retrieved to or from a database. The scenario is based on this

specific experimental work; it does not consider the security of browser side databases.

The code calls the onsuccess function for every record, as the cursor pointing to the

records retrieves them one by one and then displays them. All the retrieved data is stored

in memory and from there output to the browser; there is no other way to get all the

records from the database - this way might be slow in some cases where the database

contains lots of data. For the insert operation the experiment is, measure the time from

request for insertion to time of response. For retrieval operation, the experiment is,

measure time from request to actual data appearing on the screen. This code structure is

not optimal, as the retrieving of records to actual output of the screen might take longer

than just measuring the time of the response.

3.9.2 Results and analysis of performance

The performance testing of IndexedDB has been compared to other alternatives

such as Local storage (Ss. 2.7.3) and WebSQL (currently deprecated) (Ss. 2.7.1). The

tests performed were inserting data in a client-side database to show the time of actual

insertion. IndexedDB has shown, that it can insert the data fast, in most cases faster than

the other alternatives. This has shown that IndexedDB was chosen by W3C as a client-

side database because of the potential of fast inserting and reading of the data. The tables

below show insertion of records into MySQL with MyISAM and InnoDB types.

Comparison between SQL and IndexedDB databases are visibly different and the results

show the big potential of client-side storage.

Chapter 3. A Performance Model for Client-side Databases

 64

Databases were tested on the web server and on the local machine. They show

different times for the insertion of data. The results in the tables show the storage size of

data in the databases, and it can be seen that IndexedDB uses more storage than a

traditional relational SQL database.

In addition, the experiments examined the performance of IndexedDB client-side

databases in multiple browsers. From the results it can be seen that IndexedDB performs

faster in Firefox, but in Chrome the performance is lacking. Chrome still uses WebSQL,

notwithstanding its deprecation since its performance is fast when compared to

IndexedDB.

Additionally, the back-end technology in Firefox uses SQLite to implement

IndexedDB, which supports SQL queries and indexes for search optimisation. In

contrast, Chrome uses its own backend, LevelDB, which does not support SQL queries

and indexes. It can be concluded that the Firefox implementation of IndexedDB is a

better solution. The performance depends on the browser, as the Firefox implementation

of the IndexedDB API is much more developed than that of Chrome or Internet Explorer

(IE). Firefox uses SQLite as a back-end database, and IndexedDB is implemented on top

of it. Researchers and developers note that IndexedDB performs faster with SQL as a

back-end. In comparison, the Chrome implementation, where IndexedDB is implemented

on top of LevelDB (which is NoSQL), is much slower than Firefox. On the other hand

WebSQL (deprecated) (W3C, 2010) performs well in Chrome (v.22), whilst Firefox

(v.15) support for WebSQL has ceased.

Figure 3-2 Performance testing: Insertion of records into database (IndexedDB in Firefox and

Chrome)

0.050.070.110.150.210.270.360.40.420.450.51
0.971.081.151.171.21.241.271.31.311.33

1.571.831.94
2.9

0.310.56
0.91.25

1.592.12
2.232.39

3.45
4.044.164.44.52

5.04
5.986.226.47

7.07

8.99.13
9.99

11.8612.212.39
13.02

0

2

4

6

8

10

12

14

1000 3000 5000 7000 9000 12000 16000 20000 25000 30000 36000 45000 50000

T
im
e
	o
f	
in
se
r
ti
o
n
	(
s)

Amount	of	inserted	records	(1	record	=	151	Bytes)

Number	of	records	inserted	vs	insertion	time	in	

different	browsers

Indexeddb	Firefox IndexedDB	Chrome

Chapter 3. A Performance Model for Client-side Databases

 65

From the results, it can be seen that IndexedDB performed, by the end, four times faster

in Firefox. The reason is that Firefox implements and maintains the newest code

architecture: Chrome is still behind. The results show a significant difference in time,

and the possible reason is the use of a back-end database (WebSQL).

Table 3-4 The table is showing insertion times results of tested databases

Test number Amount of data WebSQL/Chrome

(Insertion time)

LocalStorage/Chrome

(Insertion time)

IndexedDB/FF

(Insertion time)

MySQL	 MYISAM	

(Insertion	time)	

Test1 1,000 0.09s	 0.05s	

0.06s	 1.09s

Test2 2,000 0.17s 0.2s 0.09s	

2.05s

Test3 5,000 0.37s 0.75s

0.15s	 5.58s

Test4 10,000 0.81s 1.38s

0.35s	 12.178s

Test5 20,000 1.73s 2.93s

0.77s	 23.47s

Test8 30,000 2.24s 5,1s

1.25s	 31.84s

Test 9 50,000 3.45s *	 1.89s	

*	

Test 10 100,000 7.35s *	 2.21s

*	

Test9 200,000 20.45s *	

4.57s *	

Test10 500,000 50s *	

12s *	

Test11 600,000 76s *	

21.2s *	

Test12 700,000 80s *	

34s *	

Test13 800,000 91s *	

45s	 *	

Test 14 1,000,000 Failed *	

113s	 *	

*Length limit of table exceeded.

Chapter 3. A Performance Model for Client-side Databases

 66

Figure 3-3 Insertion of records into database (IndexedDB, WebSQL, Local Storage, Mysql) with

predictions

3.9.3 Discussion of Analysis

The comparison results of inserting records into the databases in Chrome and Firefox can

be seen in Figure 3.2. This is that IndexedDB in Firefox handles the insertion of data

faster than Chrome. In many forums and support discussion groups developers have

noted that the performance is slower in Chrome because the support and code

architecture is not updated to fully support IndexedDB. From the results it can be seen

that the IndexedDB performs faster than the SQLite database. The insertion size of object

data into the database started at 1K, goes up to 500K. The insertion of the objects

comparison between the databases is shown in the table.

3.9.3.1 Network Latency

Client-side database process the data on the client-side where the network latency is

minimal. All of the data is stored and retrieved from the client machine disk, based on

0.06 0.09 0.15 0.35 0.77 1.25 1.89 2.21 4.57
12

21

34

45

113

0.09 0.17 0.37 0.81 1.73 2.24 3.45
7.35

20

50

76
80

91

0.05 0.2 0.75 1.38 2.93 5.1
0.03 0.07 0.2 0.4 1 1.5 2.2 2.4 5

20

35

50

70

150

1.09 2.05
5.58

12.17

23.47

31.84

1.5 3
7.4

15
22.5

45

0

20

40

60

80

100

120

140

160

T
im
e
	f
o
r
	i
n
se
r
ti
o
n
	(
s)

Amount	of	inserted	records	(1	record	=	151	Bytes)

Number	of	inserted	records	vs	insertion	time

Indexeddb	Firefox WebSQL/Chrome

LocalStorage/	Chrome Indexeddb	prediction

MySQL	(MYISAM) MySQL	(MYISAM)	prediction

Chapter 3. A Performance Model for Client-side Databases

 67

the web application coding. Comparing the results of experiments, the client-side

database handles the data much faster.

3.9.3.2 Scalability

Data scalability is important for any web-based business. The web applications are

becoming more scalable to fit the current market, so there is need for a database which

will handle this requirement. Client-side databases may have an advantage as they avoid

communications costs and other overheads that server-side databases may incur.

3.10. Conclusion

This chapter demonstrated the theoretical performance model and compared its results with

experimental results and so analysed the performance behaviours. The purpose of the

performance model is to prove that client-side databases have performance advantages.

This can be stated as being true, based on the findings regarding network latency,

propagation delay, queuing delay and transfer time.

Based on the theoretical performance model predictions and experimental results, it

can be concluded that client-side databases perform faster than server-side databases. Also,

by comparing the predictions against the experiment results, the final conclusion is that

client-side databases perform faster, where IndexedDB was the fastest in read and write

operations. Client-side performance efficiency was the main motivation for proposing the

performance model. Based on the results there is a strong motivation for using client-side

database to store large amount of data (as opposed to storing on server-side databases). The

technological implementation differs in browsers (Firefox and Chrome) and the Figure 3.2

shows that browser-based IndexedDB performs four times faster in Firefox browser.

From the results of the performance model for client-side browser-based databases

can be seen that IndexedDB browser-based databases perform faster than other comparable

client-side databases. It can be also seen from Figure 3.3, that IndexedDB insertion of data

was faster even with a great deal of data. Comparing the experimental results to the

theoretical model, the results shown in Figure 3.2 indicates that the proposed model v.1 has

the insertion time close to the experimental results. From the 3.3 graph can also be seen

that the insertion time start to rapidly grow at 200k records. Based on these results, it may

be concluded that there is a case for IndexedDB because of its superior performance. A

practical usage of InedexedDB is to target mobile devices, where the network connection

is not reliable (4G, WIFI).

Chapter 4. A Security Investigation of IndexedDB

 68

Chapter 4. A Security Investigation of IndexedDB

In the chapter 2 we identified the security issues associated with the use of IndexedDB,

and this chapter will describe experiments which were performed to look deeper at these

issues. First we present the experiments which were performed on desktop computers

with web browsers Firefox, and Chrome. Second we present the experiments which we

performed on mobile devices - which were procedurally the same as the ones carried out

on the desktop computer. For these experiments, we used the forensic tools Encase, and

XRY (Ss 4.3.9).

The main objective of these investigations was to uncover and examine the security

issues associated with the use of IndexedDB. The experiments were motivated by the

work described in Chapter 3 which identified possible issues that might impact the

security of browser-based databases and the data they hold. Previous chapter have

outlined the necessary information on how data is structured and processed within

IndexedDB.

The identified experimental steps were based on those used in forensic

investigations: the way security professionals would perform the investigation.

The first of these steps was to forensically wipe the hard drive and then restore a

previously created Windows 7 x86 SP1 image to ensure consisted results. The second

step consisted of running a web application which used IndexedDB as a back-end

database. The information stored in IndexedDB by the application is then deleted in a

number of different ways: clear browser cache, send to recycle bin, and hard – delete

(holding SHIFT +Delete keys). Each deletion method was then subject to a separate

investigation. After each deletion process, a forensic acquisition was performed.

'Acquisition,' in this context, means that all relevant data, even that which has been

marked as deleted, is made available to be viewed and potentially recoverable.

The result of these experiments was the conclusion that IndexedDB saves the data

on the filesystem, and when this data is deleted it is marked as deleted but still physically

persists on the media. When web applications run a query and saved new data the old -

deleted data - is not overwritten.

4.1. Browser Security Experiments

4.1.1 Introduction

HTML5 reached the official Recommendation stage on 28 October 2014 (W3C, 2014).

This means that the World Wide Web Consortium recommended HTML5 as an official

Chapter 4. A Security Investigation of IndexedDB

 69

standard. HTML5 was in use by developers and in browsers even as the technology was at

specification stage (as a standard). HTML5 adoption will greatly help developers resolve

recognized problems such as media and online-data handling; thereby providing a more

robust method for handling data (Sarris, 2014). Furthermore, the enhanced functionalities

of HTML5, for instance a client-side database called IndexedDB (which is embedded

within the web browser), will provide additional benefits such as reducing the web server

load. However, while client-side databases have the advantage of reducing load on the web

server, their performance will be dependent on the user’s web browser - particularly how

the browser implements the new client-side database API which is otherwise known as the

IndexedDB API.

This chapter will focus on the security of this new browser-based storage

capability, and a series of experiments will show how vulnerable the IndexedDB API is

to attacks. These attacks will be described in more detail, after which we will propose

methods of protection against such attacks. We also investigated how the web application

will store the data in the client-side database, and a series of tests were conducted to

retrieve deleted database files. A possible solution for storing and retrieving data in a

secure manner is proposed and described in further detail.

The testing used the Firefox and Chrome web browsers, as they currently support

the IndexedDB client-side database. The investigation will focus on the data storage

mechanism of the client-side database. For analysis the results, a forensic tool called

EnCase will be used; EnCase is an industry standard computer forensics tool, used in the

majority of criminal cases involving the collection and presentation of digital evidence

(Encase, 2004). EnCase is a software tool for accessing raw data and providing the

functionality to create disk images, which is used to investigate acquired media.

4.1.2 Background

The development of new Web technologies involves compromise between stronger

security (thereby protecting the user), and increased functionality (thereby helping the

user). Unfortunately, consideration of this trade-off may have resulted in the

development and implementation of an insecure API, the IndexedDB API. It should be

noted that the current implementations of IndexedDB in existing Web browsers is mostly

fully completed. However, it is to be hoped that existing security risks may not persist in

future implementations of the IndexedDB API. The security issue resulting from the

storage of unencrypted data by IndexedDB has a considerable structural flaw: The

database is designed to store all of its data in an unencrypted state.

Chapter 4. A Security Investigation of IndexedDB

 70

4.1.2.1 Problem identification

IndexedDB stores data in an unencrypted state. Not all the data stored is sensitive in its

own right (as for instance, username and password information is) but it can often

include items such as client name, address, place and/or date of birth. If these

components are put together, then identity theft is possible.

To prevent the wholesale leakage of data via this security 'hole', we propose an

algorithm to secure the information and thus protect the end user from identity theft.

IndexedDB also works on mobile devices, where the data is stored in internal phone

storage. Therefore, the problem also exists on mobile devices, and this is an even more

serious matter as compared to the situation with desktop PCs. The deleted data can be

retrieved from any mobile device. As the data is unencrypted, and considering the

situation where the mobile phone is lost or stolen, the security issue is, in fact, much

more acute - it is possible to retrieve the deleted data, thus the risk of data exposure, due

to the fact that the data stored via IndexedDB is not encrypted, is even higher. Also,

compared to storing data on the server-side, where the data is not available to recover

after deletion, client-side data storage is less secure.

4.1.2.2 IndexedDB Structure

Files and data stored by the browser are retained on the file storage system, on the device

permanent storage. The client-side database, IndexedDB, is a persistent browser-based

database, consequently the files reside on the user file system and can be recovered until

they are overwritten by other files.

IndexedDB treats file data just like any other type of data. An application can write

a file (or BLOB), into IndexedDB, or store strings, numbers or JavaScript Objects

(Flanagan, 2011). This is as detailed in the IndexedDB specifications and included in

both the Firefox and Chrome implementations of IndexedDB. In Firefox and Chrome’s

IndexedDB implementation, the files are stored transparently, external to the database;

the performance of storing a file in IndexedDB is as good as storing it on filesystem. It

does not bloat the database and slow down other operations. Moreover, reading from the

file means that the implementation reads from an OS file; therefore, it is just as fast as a

filesystem and results in faster retrieve.

The Firefox IndexedDB implementation will, if it is storing the same BLOB in

multiple files, create only one copy. Writing further references to the same BLOB just

adds to an internal reference counter. This is completely transparent to the web page; the

data is written faster to the filesystem using fewer resources.

Chapter 4. A Security Investigation of IndexedDB

 71

IndexedDB is implemented in the browser on top of another database (Ss. 3.9.2).

IndexedDB is stores the values/objects in the local filesystem which means that the limit

of storage is that of the available space on the user's hard drive. When compared to other

databases, IndexedDB updates the whole data object rather than just specific data

values/fields.

4.1.3 Forensic Tools used

EnCase v.6.11.1 and v.7 (Bunting and Wei, 2006; EnCase, 2004) is a software

application available for the Windows Operating System; It enables the forensic

examination and extraction of data from a computer and wide range of mobile devices

(only in v.7). It provides, efficient and secure method for analysing a wide range of

mobile phones through a secure examination process -recovering data in a forensically

secure manner. EnCase uses ADB (Android Debug Bridge) to communicate with the

mobile device through an USB connection to access device file system. ADB is part of

Android Software Developer Kit (SDK). EnCase provides physical and logical extraction

of files. Physical extraction operates at a much lower level than Logical and gives access

to protected and deleted data such as deleted SQL databases. The extraction dumps the

content of the mobile devices' memory. Physical extraction or acquisition gives a bit-by-

bit copy of the entire internal flash memory, which allows investigator to conduct

analysis.

XRY v.6.7 (XRY, 2015) is a mobile devices forensic software application available

for the Windows Operating System. XRY provides SIM card readings, mobile device

logical examination and fast recover of live mobile data. XRY allows performing a secure

forensic extraction of data from a wide range of mobile devices, e.g., smartphones, tablets,

music players, modems and satellite navigation devices.

4.1.4 Potential attack vector

This section considers an unauthorised physical access attack on an IndexedDB file from

outside the user's device.

4.1.4.1 Cross-origin resource sharing (CORS) attack.

CORS (Ss. 2.3.3) is a mechanism that can bypass SOP. CORS allows a JavaScript code

on a web page from one domain to make XMLHttpRequests to another domain.

Scenario 1: Unauthorised physical access to the OS file system where the data from the

browser database (IndexedDB) is stored, unencrypted.

Chapter 4. A Security Investigation of IndexedDB

 72

Scenario 2 (Data Breach): Unauthorised access from an external machine, bypassing the

SOP (SS. 2.3.2) to read the data and retrieve the information stored in the IndexedDB

files.

Why is the ability to read and retrieve data stored in the IndexedDB files an issue?

In order to highlight the problems which this causes, we shall first conduct an analysis of

the IndexedDB database file.

4.1.4.2 Analysis of IndexedDB Database File

The first step in conducting this analysis was to build a ‘clean’ Hard Disk Drive (HDD)

on a PC [HP Pavilion 8680 Desktop PC with a Dual Core processor and 4GB Ram,

including an Operating System (Windows 7, 32-bit) and web browsers (Firefox v.20.0.1,

Chrome v.29.0.1547.620)]. After this, initial Internet browsing was conducted. The HDD

was then ‘acquired’ using EnCase v.6.11.1. This was the starting point for each

investigation. After each experiment, the disk image needed to be restored to a ‘clean’

state, and so following each experiment the disk was forensically wiped and then the

same components (operating system, web browsers) re-installed.

The aim of these experiments was to investigate and show how the data is deleted

from an IndexedDB (local file) and also to discover whether the data is held in an

unencrypted state. We also performed a re-use of a recovered file to see if that could be

successfully achieved.

4.1.4.2.1 Experiment 1: Recovery of deleted IndexedDB SQLite database file

In this experiment, the SQLite database (Ss 2.6.2) file was deleted from a Hard Disk

Dive (HDD), on a PC [HP Pavilion 8680 Desktop PC with a Dual Core processor and

4GB Ram running the Windows 7 32-bit Operating System]. Then, using EnCase

v.6.11.1, the device was acquired to an image file for analysis of the content of the disk.

A write-blocker was used at all times to ensure data writing did not occur during data

recovery. The structure of the web browsers (Firefox v.20.0.1 and Chrome

v.29.0.1547.62) was also examined to assess how the data is stored.

Experiment 1: Results

Firefox stores all data in a temporary table (SQLite database) from where the data is

copied into an Object Store, complete with key/value link. After the data has been copied

successfully, the temporary table is dropped. The browsers always store the SQL file in

Chapter 4. A Security Investigation of IndexedDB

 73

the same location in the file system. For Firefox, this location is C:\Users\[user-

name]\ApplicationData\Mozilla\Firefox\Profiles\[profilename.default]\

indexedDB\[domain-name]\[database-name], and for Chrome, C:\Users[user-

name]\AppData\Local\Google\Chrome\UserData\Default\IndexedDB.

Consequently, any previously stored data is always overwritten, although when the data

is deleted from the application (using the delete function), the location within the file

system, for that deleted file, is still reserved. Operating system maintains the reserved

location because the deleted file still persists on the HDD. So when running the

application again, the browser always allocates a different location for the newly created

Object Store.

Allocation of file storage in Chrome is slightly different; all of the databases are

stored in the same file. Consequently, it was assumed that Chrome is using compression

for storing browsing data.

In EnCase the option Copy/UnErase to recover the deleted file was executed an to

export the file for further analysis. The option exported the deleted file with all the data.

Although the deleted file data can be read from EnCase; instead, we chose to export the

file and open it with SQLite Manager (Figure 4.1). The SQLite Manager tabulated the

data in a readable way and the field values in the BLOB could be exported unencrypted.

Figure 4-1 Exported deleted database file

4.1.4.2.2 Experiment 2: Clearing the browser cache

Experiments with Firefox included deleting the data by clearing the browser cache

(deleting offline data option). Each experiment consisted of storing 300K records with a

file size of 127MB. Experiments in Chrome also included deleting the data by clearing

the browser cache (clearing browsing data/Hosted app data). Again, each experiment

stored 300K records with a file size of 128MB.

Chapter 4. A Security Investigation of IndexedDB

 74

4.1.4.2.3 Experiment 2: Results

Clearing the browser cache in Chrome clears the database and deletes the file where it is

stored. In Firefox clearing the cache does not delete the database file from the local file

system.

4.1.4.2.4 Experiment 3: Re-use of a recovered IndexedDB database

In this experiment the possibility of reusing a recovered IndexedDB database in a

different web browser was investigated. This involved identifying the location (physical

address on the HDD) of the file after it had been deleted. In addition, this experiment

also considered whether the database name was changed after it has been deleted - to see

if the web application can read a deleted file with a different filename. When deleting a

database from the application, everything in the folders is deleted; including data

components that can be stored locally (images, documents, videos, audio). SQLite is not

a typed database, which means that any data type can be put into any cell, regardless of

the data type declared for the column; the database will attempt to convert it. Similarly, if

a different type, other than the column type is requested/retrieved, SQLite will also

convert this value.

Figure 4-2 The physical address, and data in database file

4.1.4.2.5 Experiment 3: Results

Figure 4.2 displays the physical addresses of the file before and after deletion, which are

the same. Deleted files are marked with a red cross. The file was recovered with EnCase

Chapter 4. A Security Investigation of IndexedDB

 75

and exported to another hard drive; the file was then copied into a database folder, and

the application was run to check if the data could be accessed. The result was that the

application read the file and all of the data (in an unencrypted state) which was thus

available publicly.

4.1.5 Analysis and Possible Solution

The results of the experiment were as expected; the deleted data has been marked as

deleted, and so they can be exported and all the information inside the database, viewable

for inspection. Moreover, exported data that has been imported to another PC which is

running Windows 7 can be accessed and re-used. However a possible solution to this

security issue is presented below.

4.1.5.1 A Proposed Solution to Security issue in IndexedDB

In this section we are going to propose a solution to the IndexedDB storage security issue.

A preventative measure against the kind of scenarios which have been described might be

the encryption of the files stored by the browser on the file system. All the data stored by

the browser would be encrypted first. When retrieving the data, a secure key will be

required to read the data from the file system. An encryption library will generate this key

to permit access to read the data. Without this key, the data cannot be decrypted and so is

impossible to read. The encryption key will be downloaded dynamically and the key (i.e.

the password) will be stored in 'session key.' Once the key has been secured, it can be used

to encrypt data. When a user closes the browser, the key is overwritten in RAM. This will

help to prevent any attacker from getting access to the secure key when reading data from

RAM.

The following are the steps required for writing or updating data to the database, also Ss

5.3.1 for algorithm steps.

1. Ensure a secure connection through OAuth2 (Hardt, 2012)- The first step is to provide a

secure login functionality for the web application. The web application will use the

login functionality to authenticate the user and securely log the user into the system.

2. Open a connection to the database - When an application requests a new transaction,

requiring IndexedDB to open the database and save data, the encryption library based

extension, which we have designed and implemented, will encrypt the data. This way

the data will be stored in an encrypted state and thus is not readable to others.

3. The encryption library generates a secure (symmetric) key from the user entered

password. Salt is added to the password. Before the data can be encrypted a key must be

Chapter 4. A Security Investigation of IndexedDB

 76

generated and stored with the user information on the server. The client-side encrypts

sensitive data using the the key, which will be generated and stored on the server-side.

This key is used when encrypting information using the JavaScript library.

4. The key is created using Advanced Encrypotion Satndard (AES) algorithm.

5. Encrypt data. When client-side encryption is enabled, an AES key is generated and the

user will be given a session cookie with the key identifier. AES is the algorithm that is

used to encrypt data with a key to produce a digital signature (Barth et al. 2011). The

key, however, should not be revealed to anyone else. The key is used to decrypt data

that has been previously encrypted (Bugiel, 2012). This process uses the AES (Ss

2.11.1) algorithm at 128, 192 or 256 bits with the keyed-hash message authentication

code (HMAC) and the SHA256 hash function (Daemen and Rijmen, 2013).

6. Save the file and close the connection to the database.

When reading the data, the following steps need to be fulfilled:

1. Check user credentials. When the user asks to read the data from the database, the web

application will first check user credentials (if the session is active) and get the key from

the server to allow the decryption of data.

2. Get the key to decrypt the data. Upon successful authentication the user will be given a

the key, which will then be used for the decryption of the data. The key will be stored

on the server-side, along with all the other user information which is used for

encrypting/decrypting the data. OAuth2 was used, which is an open standard for

identity authorisation. This standard was used to transfer the key to the server, securely.

3. Decrypt data. The encryption library will check for a matching key, and if this is found,

perform the decryption of the data.

4. Display the decrypted data to the user.

5. Close the connection.

To ensure secure authentication (with the server), OAuth2 was used. This provides

authentication between the application and the web server using a security token. We do

not consider security issues with Oauth2, here, because this will be done in later chapters

when the implementation is described.

The stored data in IndexedDB is stored, unencrypted, to the file system (which can

be accessed by the web application). When the application sends a request to the web

browser to store the data on the local file system, the cryptography library is used to

encrypt the data so that it can be stored in a secure fashion. A secure key will be also be

Chapter 4. A Security Investigation of IndexedDB

 77

generated and stored on the web server. Reading the data from the local file system will be

possible only once a secure key has been provided and the authentication between web

application and server is established. Assuming all of these conditions are met and the

connection is securely established, the data is decrypted by the cryptography library and

displayed through the web browser to the user. In Figure 4.3we highlight the proposed

solution, showing how the cryptography library will be used. The library will be

implemented on top of the web browser API. The algorithm will consist of the following

components, which are built into the browser (Figure 4.3).

• Mechanism for generating asymmetric key

• Mechanism to salt the password

• Encryption

• Decryption

Figure 4-3 Proposed Encryption Library

The cryptography library encrypts readable text into unreadable data. This data can be

accessed by using an encryption key. Examples of encryption libraries are listed in

Appaendix B. All of these were considered for implementation into the browser. The

library chosen provides the functionality to encrypt on the client-side, and also it is

available, open source.

Another possible solution to the problem at hand might be to use an external device

to store data from the browser. That is, a user could specify a location to which any

IndexedDB files should be stored when browsing the web or running web applications.

This would include an option whereby the data could be written to, and read from an

Chapter 4. A Security Investigation of IndexedDB

 78

external source, such as an USB. The USB key would need to be secured with access

encryption and restricted to only accessing data when the master password is entered.

4.1.6 Conclusion

In this chapter, security related flaws within IndexedDB have been demonstrated. While

the browser can delete IndexedDB files stored on the local filesystem, these files can still

be retrieved by EnCase. Unfortunately, the retrieved data is in an unencrypted format;

thus, given the nature of the data held within the IndexedDB API, a potential security

issue exists.

All the data stored by IndexedDB is exposed. A solution for this security issue,

which includes a security library has been shown, located between the browser and the

filesystem. All the data stored by the Indexed DB application will be encrypted and

saved via the library. The application needs to read the data, an encryption key is

required and without the key, data cannot be decrypted, and so the reading of these data

will not be possible. This will help to secure data stored on the client-side and prevent

any retrieval of it in an unencrypted state.

New section is going to investigate the security of mobile devices in forensic way,

where forensic tools will be used to determine any possible vulnerabilities or security

issues.

Chapter 4. A Security Investigation of IndexedDB

 79

4.2. Mobile Devices Security Experiments

4.2.1 Introduction

Data storage on mobile devices is not new. People frequently use their smart

phones, on the move, to help with everyday tasks - not just for making phones calls.

Browsing the Web via mobiles devices is becoming an easier task – the availability of

network connections is an important factor in this. Smart phones are powerful pieces of

technology wrapped up into small packages; they are capable of tracking the

communications, location, and contacts of their users. Everyone is looking to perform the

same tasks on their mobile as they do on their computer. Storing data is a significant part

of accomplishing these tasks. New web standards have started to define functionalities

which extend the basic storage requirements of cookies. There is, therefore, a need for

storing larger files on the user's device (file system). This need has resulted from a

requirement for faster application response via decreased use of the network. Thus W3C

introduced the HTML5 standard, which will help developers to resolve the storage and

therefore network latency problem. With the new HTML5 standard come new

functionalities, such as the client-side browser-based database called IndexedDB. This

will be a standard for storing data on client computer or mobile device.

The requirement for a new client-side database came from developers' feedback

highlighting the need for better storage. The web developers and users require more

storage space which persists beyond page refresh and is not transmitted to the server.

This applies also to mobile devices (smartphones and tablets) where the data can be

stored on permanent storage.

Storing data on permanent storage can entail security risks. Based on previous tests

and research we found that the stored data is in an unencrypted form. This is potentially

dangerous when storing sensitive data: for instance, user personal information, bank or

credit card details.

The work described in this chapter was focused on investigating the security of

browser-based storage on mobile devices. The storage functionalities of new

technologies such as HTML5 are vulnerable to attacks i.e. XSS (Ss. 2.4) and social

engineering attacks (Ss. 2.5.2).

We investigated how web application will store the data in the client-side database

and performed tests to retrieve ostensibly deleted database files. The possible solution to

these security issues, involving storing and retrieving data in a secure manner, is

described in further detail.

Chapter 4. A Security Investigation of IndexedDB

 80

The testing encompassed both the Firefox and Chrome mobile browsers. These

support IndexedDB client-side databases and storing offline data to phone memory.

IndexedDB is implemented in mobile browsers in a similar way to that in which it is

implemented for computer browsers. The main reason for these tests was to investigate

client-side database and mobile browser security, and so the investigation was focused on

data storage for the client-side database in the phone memory. To analyse the results and

mobile device structure, a forensic tool called XRY was used. The XRY forensic tool is

described in more details in section 4.3.9. The investigation's results indicate whether

certain actions can be performed, and so show us the potential risks involved such as the

retrieving of deleted data from a database. The tests which we decided to perform

concentrated on investigating how IndexedDB saves the data and also how the data can be

retrieved after deletion. The following section is going to describe the background

information on cryptography (relating to storing the data in a secure way). The experiments

showed how the data from the client-side could be retrieved with forensic tools. Results

will be described in section 5 for Firefox and Chrome browsers.

Mobile applications are another possible means via which stored information on

mobiles filesystems can be compromised. An attack can occur when the user downloads

an application and installs it because, unknown to the user, the application might include

built-in code which can access the user's filesystem. The application might send some of

the data to an attacker; the code could be programmed (or could have a function) to

search for some specific data such as stored usernames, passwords or personal

information. Other possible attacks could be relevant when a web application is using

IFrame.

4.2.1.1 Motivation for Work

The new features of web browsers, and new technologies such as HTML5 bring database

technology to web browsers. We believe that these features are important for the future

of upcoming technologies, especially where the performance for the end user is

paramount. This is the motivation for this investigation into mobile security, and storage

within the browser-based database system, IndexedDB.

4.2.2 Related Work

In this section we describe related work on mobile forensics and data storage. Also we

discuss the limitations of new web technologies in terms of their security aspects.

The Koll (2012) study shows, that only a small amount of data stored on mobile

devices is securely deleted. This means that the data can be retrieved from a device after it

Chapter 4. A Security Investigation of IndexedDB

 81

has been deleted. The Koll (2012) study also showed that a higher security risk exists when

the data is stored in an unencrypted state. This can lead to the theft of sensitive data.

4.2.3 Background

This section describes background information related to the storage of data in a client

file system, in an encrypted fashion, and the possible encryption libraries which might be

implemented at browser/file system layer. Possible attacks are described in Section 2.4.

These attacks are considered to be possible and are known by the HTML5 security

community and security researchers (Abgrall et al. 2014). As Abgrall et al. (2014) states,

new technologies bring new security risks which need to be countered in order to protect

the user.

Because of the increasing number of security vulnerabilities and attacks in the global

communication environment, IT security engineers and researchers are constantly trying to

developed new or improve existing secure algorithms. Algorithms should provide secure

storage of data and made the data easily available for authenticated users (Chaitanya,

2012). One way to provide the secure storage is cryptography (Ss. 2.11). Cryptography is

using a key to encrypt stored data on the storage device (Tang et al. 2012), and so the

content will remain encrypted even after deletion.

4.2.3.1 Android Internal Memory and Removable Flash.

Android uses the Linux Memory Technology Device (MTD) subsystem to access flash

memory storage.

NAND flash (Grupp et al. 2012) memory is a type of long-term persistent storage

that retains data without requiring power. NAND flash memory is best suited for flash

devices which require large capacity data storage.

The Samsung device uses Robust File System, Samsung (RFS), which supports

larger files and journaling. With this, each time a new database is saved onto the file

system, a journal file is created. It does this by keeping the file in the cache until the

change is finalised. If the process gets interrupted while the file is being saved (for

instance, if the battery is pulled or the phone is hard-rebooted), the file system doesn't get

corrupted. In Android the SQLite databases are stored under /data/data/appname

/databases.

4.2.4 Smartphone database file systems

The database files are stored in internal memory. By default the application data and

Chapter 4. A Security Investigation of IndexedDB

 82

database files are stored in /data/data directory, and normal user can not access or view

them. The files for any file system application are hidden. To access these directories and

files, the mobile device needs to be rooted (Bunting and Wei, 2006). Rooting alters the

device settings and acquire full administrator or super user privileges. Forensic tools, such

as EnCase provide rooting option, which does not delete or alter any data when performed.

Rooting a mobile device puts a ‘su’ binary file into the /system/bin or /system/xbin

directory. The benefits of rooting include unlocking hidden features, removing preinstalled

applications, boost the performance speed and battery life, installing custom versions of

Operating System.

4.2.5 Attack Scenario- cracking the key storage

The first scenario involves unauthorised physical access to a smartphone file system,

where the data from the browser database (IndexedDB) is stored unencrypted. The

attacker can read the data and get all the information stored in the files, at will.

The second scenario involves unauthorized access from an external machine

(running software which is able to bypass the SOP) which reads the data and so retrieves

the information stored in the files.

4.2.6 Possible Prevention

The preventative measures against attacks might include the encryption of files

stored by the browser on the file system. A browser extension can be built and located

between the browser and the file system. This browser extension is built on top of the

existing API enable faster implementation. All the data stored by the browser is encrypted

before being stored in the file system. When retrieving the data, a secure key is needed in

order to read the data from the file system. An encryption library will generate this key.

Without this key, the data remains encrypted, making it impossible to read. For testing

purposes, an encryption library was attached to a C++ read/write program. Data access was

first tested without, and then with encryption in place.

First the data was stored unencrypted in the file system so that it can be accessed by

all program.

 Next, the encryption library was attached to the program which caused the data to be

written in encrypted form - when reading the data, it is decrypted by the library.

Chapter 4. A Security Investigation of IndexedDB

 83

Figure 4-4 Proposed Encryption Library for mobile device

4.2.7 Testing

The testing was done in a number of stages. First we stored distinctive data and created a

disk image. Then we deleted the data and obtained the disk image again. This last image

was then used to recover the deleted data for comparison with the original image. The

steps are described below in more detail.

4.2.7.1 Execute the Following in the Forensic Lab

The tests were done on an Android phone (v 4.3), which does not need to be rooted. This

means that the tool can then have access to all system folders and files. The mobile

device was a Samsung Galaxy Ace S5830. The EnCase software will root devices

automatically (if the option is selected).

 The data from browsers is stored in the /data/data/ folder which by default is not

possible to access or view. It is possible to do so only by using forensic tools described in

section 4.2.4. Without the use of a forensic tool an export of data can be made but

sensitive data might need root access privileges. In Firefox the IndexedDB database is

stored in a file with a .sqlite extension. The database file pathname is:

data/data/org.mozzilla.firefox/files/Mozilla/[randomnumber].default/inde

xedDB/[domain name]/idb

4.2.7.2 Storing Data

The first step was to run the application and store the data. The data consisted of email

addresses, integers, and text. This helped us cover each possible data format. Data was

stored in a random order in mobile storage.

Write data

Browser

Mobile file system

Read data

Encrypt

Unencrypt

Chapter 4. A Security Investigation of IndexedDB

 84

4.2.7.3 Acquisition

Acquisition is process of creation of a complete, physical bit-by-bit image of a

mobile device (Ambhire and Meshram, 2012). The EnCase or XRY evidence file is an

exact duplicate of the data, as on the mobile device and during the acquisition. Extracted

data as shown in Figure 4.5 can be categorised in section, such as files (videos, images,

databases), messages, contacts etc.

Before starting with the acquisition of the device, all network connections (WIFI

and cellular) has been disabled and removed the SIM card. We performed the acquisition

of the RAM disk, and we selected physical acquisition. This meant that more data was

accessible– e.g. deleted SQL database files. The result of the acquisition was a full

device image.

On mobile devices applications (i.e. browsers) save persistent application or

temporary data into the directories /data/data. These directories are hidden - by default.

Root permission allows access to this directory's files. Mobile phone memory will be

“acquired” with EnCase and this becomes the starting point of the investigation.

Figure 4-5 Logical extraction, view in XRY

Chapter 4. A Security Investigation of IndexedDB

 85

4.2.7.4 Recovering Data

There are number of tools available for displaying deleted or destroyed data. XRY

provides a tool called XACT, as show in Figure 4.6. XACT is a viewer which allows us

to examine extracted raw hexadecimal data from the physical dump of a mobile device.

4.2.7.5 Analysing Results (Evidence)

With XACT we can examine the data and see where exactly the data is in the

mobile device file structure as shown in Figure 4.6.

After each experiment, the disk image needed to be restored to a 'clean' state in

order to ensure continuity between tests. We used Android recovery mode to backup and

restore a clean install.

The experiments included deleting the data from the phone memory and then,

EnCase, locate the deleted data and performing a data recovery. We looked at the

structure of browsers (Firefox and Chrome) to see how the data is stored.

Figure 4-6 Logical extraction, view in XACT

4.2.8 Results

This section provides the test results relating to both, Firefox and Chrome browsers on

the mobile devices.

IndexedDB stored file

Chapter 4. A Security Investigation of IndexedDB

 86

4.2.8.1 Firefox

The stored database file is located in data/data/org.mozzilla.firefox/

files/Mozilla/[randomnumber].default/indexedDB/[domain name]/idb.

From the tests conducted, it was discovered that clearing the cache and offline data, does

not delete the database files on any mobile devices. The only possible option for deleting

these files is to manually explore the structure, locate the files, and then explicitly delete

them using an appropriate Operating System function. The investigation recovered the

deleted files and restored the file to perform further testing.

4.2.8.2 Chrome

Deleting IndexedDB files in Chrome is possible by opening Content settings/Website

settings and then checking the domain name. By checking the domain name an option to

clear stored data will be displayed. After successful confirmation of clearing all data the

domain name along with all the data will be deleted. The stored database file is located in

data/data/com.android.chrome/app_chrome/default /indexedDB/[domain name]

.indexeddb.leveldb. All databases are included in the same log file- filename.log;

also there are current, lock, and manifest files – the latter providing a pointer to a specific

database. Restoring the deleted data from the disk image shows us that all of the deleted

database information can be retrieved and used. Deleted data does not differ from the

original content in the .sqlite file. This confirms our theory that the deleted data can be

retrieved, accessed and used with the help of forensic tools.

Figure 4-7 Web Application on mobile

Chapter 4. A Security Investigation of IndexedDB

 87

Figure 4-8 Restored file from mobile running on desktop computer

4.2.9 Results of extracted data

For the purpose of testing a web application was run to store data on mobile device as

shown in Figure 4.7. The stored data has been deleted using the browser functionality to

remove any stored offline data. The device has been connected to desktop computer and

forensic tool XRY has been used to extract the data from the mobile device internal

storage. The extraction of deleted data on mobile device is using the same structure as on

desktop computer, therefore we could reuse the data running the same application on

desktop computer as shown in Figure 4.8.

4.2.10 Conclusion

From the tests executed it can be concluded that database data on mobile devices is stored

in a format which makes it initially meaningful. The file requires further processing and

parsing in order to make the associated content accessible.

The test also showed that restoring the deleted data and accessing it with the

application in order to read the data, works. The only significant difficulty discovered

when performing these tests was that the file content could not be read just by opening the

file.

To delete the data from the mobile device file system a manual file delete approach

was needed, as just clearing the browser cache and offline data did not work.

Chapter 4. A Security Investigation of IndexedDB

 88

Future work might include further experiments where, for instance, the data from the

browser will be store to an external medium. For security reasons a user could specify a

location (e.g. a memory card) at which IndexedDB files should be stored when browsing

the web or running web applications.

Chapter 5. Browser-based local storage Security Model (BBLS)

 89

Chapter 5. Browser-based local storage Security Model (BBLS)

The previous chapter identified security issues related to the use of IndexedDB and in

this chapter we describe a solution to these problems - in terms of a proposal, and an

implementation of this proposal.

In this chapter a security model is presented - which has been built into the Firefox

browser as an extension. The chapter fulfils firstly client-side encryption and hashing;

existing encryption libraries are considered as the base of the framework and use one for

the implementation. Secondly, the framework is extended with Multifactor authentication

(Ss 2.12). Lastly the effectiveness of the model is explored by performing attacks, such as

XSS (Ss 2.4) from the browser-based local storage.

Based on the issues identified previously in Chapter 4 and in the literature review

(Chapter 2), the security issues with IndexedDB can be corrected. This chapter proposes a

security model, which will correct the build – in security issue that IndexedDB has by

design and make it secure. The security model consists of an encryption library and

Multifactor authentication (which is used to secure the database against XSS attacks).

5.1. Introduction

It appears that data stored by IndexedDB on the client file system is unencrypted

(Chapter 4). Therefore, any stored data might be at risk of exposure. This means that

IndexedDB is not secure by design. This is potentially dangerous when storing sensitive

data, such as a user’s personal information, bank or credit card details (Ma, 2008).

IndexedDB treats file data just like any other type of data. An application can write a

file (or BLOB), into IndexedDB, as well as store strings, numbers and JavaScript

Objects (Flanagan, 2011).

This thesis intends to design and implement an algorithm that will contain the

main components of the JavaScript Encryption Library, which will be a browser-based

extension. With this extension, the data will be stored encrypted, and therefore there

will be no security risk.

Several encryption libraries are available, which will be brought into consideration

for the implementation as shown in Section 5.2.1. The steps of implementation will be

described in more detail in section 5.3. An algorithm’s steps will be described, which

will help structure the functionality and show how the extension will work in several

cases of use.

With the implementation of the encryption library in the browser (Firefox v. 29) the

Chapter 5. Browser-based local storage Security Model (BBLS)

 90

thesis intends to address the ineffectiveness brought about by storing data in an insecure

way. Proposing and developing an algorithm which will be implemented into the

Mozilla Firefox browser in an extension format. The algorithm will also ensure that the

database transaction for storing or retrieving data will only granted when a secure and

valid authentication process is completed. This also relies upon providing the key to

encrypt/decrypt data.

5.2. Background

The current concern with browser-based local storage is that it stores data on the client-

side unencrypted. In this section possible solutions are explored to minimise the risk of

sensitive data being accessed inappropriately.

5.2.1 Client-side Encryption

As described on section 2.11, client-side encryption (encryption in the browser) is not

developed as encryption on the server-side, therefore the number of encryption libraries

that can be selected is limited. Below is a list of considered client-side encryption

libraries.

Table 5-1 List of possible consideration of JavaScript encryption libraries

Library name Available at Description

WebCryptoAPI http://www.w3.org/TR/

WebCryptoAPI/

• A JavaScript API for performing basic

cryptographic operations in web

applications, such as hashing, signature

generation and verification, and encryption

and decryption.	

PolyCrypt
• http://polycrypt.net/

Pure JavaScript implementation of the

WebCrypto API.

crypto-js https://github.com/glynr

ob/client-encryption

gwt-crypto Google Web Toolkit (GWT)

Chapter 5. Browser-based local storage Security Model (BBLS)

 91

jscrypto
• https://code.google.com/

archive/p/crypto-js/

Growing collection of standard and secure

cryptographic algorithms implemented in

JavaScript.

Stanford

JavaScript

Crypto library

(SJCL)

http://bitwiseshiftleft.git

hub.io/sjcl/doc/

(Stark et al. 2009)

5.2.2 Consideration Results

The decision to choose an encryption library, which could be implemented into browser

consist of those factors:

• Size of the library

• Multi browser and multi platform availability and implementation

• Different variable key length of 128, 192, or 256 bits

• Hash functions

• Keyed-hash message authentication codes (HMAC)

• Salt

SJCL offers SHA256 for digesting and AES for encryption with three bit lengths, at 128,

192 or 256 bits. Also provides the SHA256 hash function, the HMAC authentication code,

the PBKDF2 password strengthener and the CCM and OCB authenticated-encryption

modes. SJCL strengthens the passwords by a factor of 1000 and salts them to protect

against rainbow tables, and it authenticates every message it sends to prevent it from being

modified. SJCL provides the best security which is practically available in JavaScript.

Unfortunately, this is not as great as in desktop applications because it is not feasible to

completely protect against code injection, malicious servers and side-channel attacks.

5.3. Algorithm

The algorithm used to save data in this secure way was implemented using a JavaScript

library, the proposed Stanford JavaScript Crypto library (SJCL) (Stark et al. 2009).

In the following, the required steps are described for read, write and update the

data, using an algorithm in pseudocode.

Chapter 5. Browser-based local storage Security Model (BBLS)

 92

5.3.1 Algorithm steps to secure data

We are going to propose an algorithm, where initial steps need to be completed to enable

the encryption/decryption of data, this will provide functionality with the steps, as

described below.

Algorithm 1 Encryption of data
procedure Authenticate

if authenticate = TRUE then
 action login

else

 action error
end if

procedure write/read

if success = TRUE then
 action open DB

else

 action error
end if

procedure connect to db

if success = TRUE then
 action generate key
 action save key

else if

 action regenerate key
else

 action terminate
end if

procedure encrypt
if key != NULL then

while Not end do
 action encrypt

end while

action success message
else

 action key not found
end if

Algorithm 2 Decryption of data
procedure Authenticate

if authenticate = TRUE then
 action login

else

 action error
end if

procedure read

if success = TRUE then
 action get key

else if

 action retry
else

 action terminate
end if

procedure request key

if success = TRUE then
 action keep key

else

 action close
end if

procedure decrypt
if key1 = key2 then

while Not end do
 action decrypt

end while

action success message
else

 action key not found
end if

Chapter 5. Browser-based local storage Security Model (BBLS)

 93

5.3.1.1 Obtain a secure Login

The first step is to provide a secure login functionality, which can be provided by the web

application. The web application will use the login process to authenticate a user and

securely log the user into the system.

5.3.1.2 Encrypt data

When an application requests a new transaction for IndexedDB to open the database and

save data, the designed encryption library extension will encrypt the data. This way the

data will be stored in an encrypted state and will not be readable by others.

If connecting over HTTPS, then connection is more secure as the browser will

detect a modified JavaScript file. The Secure Sockets Layer (SSL) of HTTPS protocol

handles this.

5.3.1.3 Store the symmetric key

When the data is encrypted a key will be generated and stored with the user information

on the server. The client-side encrypts sensitive data using the the key, which will be

generated and stored on the server-side. This key is used when encrypting information

using the JavaScript library. When client-side encryption is enabled, AES key is

generated and the user will be given a session key, which can be used until the web

browser is not closed. AES is the algorithm that is used to encrypt and decrypt data with

the same key (Burnett, 2001). The key, however, is never revealed anyone else. The

data is decrypted using the secure key. (Bernett, 2001)

The symmetric key is generated form the user password, which is also salted by

AES algorithm.

5.3.1.4 Decryption of data

When the user makes a request to read the data from the database, the web application

will check the user’s credentials (if the session is active) and get the key from the server

to allow decryption of data. The HTTPS protocol is always the preferred method of

exchanging any confidential information.

5.3.1.5 User Authentication

Upon successful authentication, the user will be given a session key, which will be used

for the encryption or decryption of the data until the browser is not closed. Then the

session key will be destroyed. The key key will be stored on the server-side, with all the

Chapter 5. Browser-based local storage Security Model (BBLS)

 94

user information which is used for decrypting the data. We are going to use OAuth2,

which is an open standard for authorisation. This will be used to securely transfer the

key from the server to the encryption library on the user device.

5.3.1.6 Deletion of data

Secure deletion of data will be required – i.e. the overwriting of the data with zeros.

This means that the data cannot be read again, as all of the values are set to zero in place

of the original data.

5.3.2 Proposal

Hashing (Ss.2.11.2) and encryption (Ss. 2.11) can be done within browsers through the

JavaScript encryption library. Our algorithm will use a JavaScript encryption library

(proposed SJCL), where the library will be implemented into the browser (Firefox) as

an extension. This extension supplement the existing IndexedDB API and therefore

every time during the reading or writing of data, the data will be encrypted. The library

consists of encryption with symmetric keys. The key will be saved on the server. The

session key identifier will be given to the user and stored on the user’s machine in the

same way as a cookie is. The proposed extension will provide encryption/ decryption of

data on the user’s machine; this will resolve the issue of storing data in an unencrypted

state. It will also provide better security for potential attacks, in which the attacker uses

user specific data.

• Cryptography: Encryption is the process of encoding original text (plaintext) into an

unreadable ciphertext. The encryption key (secret key) specifies how a plaintext is

to be encoded.

• Authorised: able to decode the ciphertext using the decryption algorithm that requires

the secret key.

• Unauthorised: Must not have access to the key. By viewing the ciphertext, the

unauthorized user should not be able to determine anything about the original

plaintext, as it has not been decoded.

5.4. Implementation

The overall structure of the proposed model can be seen in Figure 5.1. The model will add

an extra layer between the web browser and IndexedDB API. The security model consists

of an algorithmic framework which adds extra protection against issues identified -

reading other’s data via XSS vulnerabilities.

Chapter 5. Browser-based local storage Security Model (BBLS)

 95

The proposed encryption model consists of the JavaScript encryption library

(proposed JSCL); this library is implemented into the browser (Firefox) as an extension.

This extension is placed on the top of IndexedDB API and therefore every time during

the reading or writing of data, the data will be encrypted.

When decrypting the data, a secure key will be required to read the data from the

file system. The encryption library will generate this key to permit access to read the

data. Without this key, the data cannot be decrypted and so is impossible to read. The

encryption key will be downloaded dynamically and the key (i.e. the password) will be

stored in 'session key.' Once the key has been secured, it can be used to encrypt data.

When a user closes the browser, the key is overwritten and destroyed in RAM. This will

help to prevent any attacker from getting access to the secure key when reading data

from RAM.

The library consists of encryption and decryption using the same key. As might be

expected, the key will be saved on the server. The session key will be given to the user

and stored on the user’s device, in the same way as a cookie. The extension will provide

encryption/decryption of data on the user’s device, which will resolve the issue of storing

data in an unencrypted state. It will also provide better security for possible attacks,

where the attacker can manipulate with user data.

The browser-based local storage security model (BBLS) is relying on the web

browser security model (WBSM), which uses SOP (Ss 2.3.2). This security mechanism,

on its own, is not enough to preserve security confidence amongst end users.

The BBLS security model differs from WBSM in a number of ways; these include the

security mechanism. The main difference is that the BBLS security model is trying to

secure the data between browser and the end user file system, whereas the WBSM, which

is securing the data between web applications and user browser.

The goal of BBLS security model is to secure the data which is stored in the client-side

database; the user should be able to visits other websites without their databases being

compromised.

The current WBSM is not sufficient protection for complex web applications, and

stored data on the client-side is becoming more important.

5.4.1 Structure of the library/ encryption

In order to encrypt and decrypt a predefined function sjcl.decrypt("password",

"encrypted-data") is called. The library uses the AES (Ss 2.11.1) algorithm at 128, 192 or

256 bits, HMAC authentication code and the SHA256 hash function. Also the library can

be used with numerous versions of Chrome, Firefox, Internet Explorer Safari and Opera

Chapter 5. Browser-based local storage Security Model (BBLS)

 96

on Windows, Macintosh and Linux. (Stark et al. 2009).

Figure 5-1 Overall structure of the proposed security model

5.4.2 Algorithm implemented

The AES used in the encryption library differs from typical AES implementations in that

it uses a different approach, explained by Stark et al. (2009). The implementation speeds

up encryption and decryption while keeps the code small.

Chapter 5. Browser-based local storage Security Model (BBLS)

 97

The Advanced Encryption Standard (AES)

The source code is available for the AES algorithm, also called the Advanced

Encryption Standard or the Rijndael algorithm (Daemen and Rijmen, 2013; Hoang,

2012).

The benchmarking tests performed by (Stark et al. 2009) have shown that the

SJCL performs faster than other current client-side encryption libraries. The benchmark

has been conducted in multiple browsers on Windows, Mac and Linux Operating

Systems. One of the reasons we proposed to use and implement the library into our

algorithm was the speed and its cross-platform usage.

The algorithm contains this JavaScript encryption library, implemented into the

browser. The algorithm will consist of steps which, nevertheless, achieve much higher

security. This will allow the end user to save and retrieve data from IndexedDB. The data

will be encrypted with the JavaScript library and a asymmetric key will be used to

encrypt/decrypt this data.

The Firefox extension file (XPI) file consists of Resource Description Framework

(RDF) (it is like an Extensible Markup Language (XML) file with structure, Web Data)

and the JavaScript library file. Also there is an installation file, which makes it possible

for users to install the extension into browser automatically.

When an application sends a request to the web browser to store the data onto the local

file system, the cryptography library will encrypt the data to be stored securely. A

secure key will be also generated and stored on the web server.

Reading the data from the local file system will be possible only when a secure key is

provided and the authentication between web applications and the server is established.

Considering all of the points a connection is securely established, the data is decrypted by

the cryptography library and displayed through the web browser to the user.

5.4.3 Implemented Multifactor Authentication

For implementation with the existing encryption library (Figure 5.1) we will use

Multifactor authentication (MFA) (Ss 2.12). MFA is used to make the authentication

process more secure by adding an extra layer of security. Mobile phones are used as a

multi-factor authentication and replace token generated from software applications or

physical secure key device for authentication. The extra layer will add something what

the user have, for example a code sent to a mobile phone. Web applications such as

Facebook or Twitter are using MFA when the user wants to sign in. This is used to verify

the user when signing in with sending a verification code to phone via SMS message or

Chapter 5. Browser-based local storage Security Model (BBLS)

 98

automated phone call. The user can sign in with password (something he know) and

verification code from mobile device (something he have).

The extra authentication will need to be passed to make sure the encryption library

decrypts the data.

5.4.4 Possible problems with IndexedDB

There are two major problems with the data storage mechanism within IndexedDB;

1. The data is stored in an unencrypted state on the disk. This allows for anyone

with access to the device, potentially, to get access to that data.

2. The data remains on the disk until either the site removes it or until the user tells

the browser to remove it (e.g. when the user clears the browser cache). That

means the data may remain on the disk indefinitely.

Web applications can be used offline with the browser-based local storage, but without a

secured connection to the server and an encryption key, a user will not be able to decrypt

the database file. This might be an issue, because sometimes a user does not have an

Internet connection, but has access to the database files (which, remain encrypted).

Several issues arise with any encryption undertaken by the browser. Firstly, if the

encryption library stores the key on the client-side (which is necessary for offline use),

can be read via XSS and by any malware on the client. Secondly, if the encryption

library stores the key on the server-side, XSS attack code will still be able to read the

decrypted data during its usage.

5.4.4.1 Same origin policy attack (spoofing)

A brief overview of the attack:

1. The user would land on an infected page.

2. The page would load a legitimate website by making a request from the attacker’s

server where Same Origin Policies are not applied.

3. The attacker would inject code in the response to monitor the victims activity.

4. After the victim’s credentials were stolen attacker would stop the attack and

redirect the user to the original requested page.

Below is an example of using JSON Padding (JSONP) with jQuery code.

Chapter 5. Browser-based local storage Security Model (BBLS)

 99

 $.ajax({

url: "http://website.com/file.json

dataType: 'jsonp',

success: function (data) {

// Manipulate the response here

}

});

JSONP allows setting url in the header, which is then sent to server and allowing to bypass

the Same origin policy.

5.5. Evaluation

In order to evaluate the security model, it was necessary to conduct a number of tests on its

implementation(s). The kind of tests which were considered included security attacks – e.g.

XSS attacks which bypass the browser's SOP mechanisms.

First an attack on existing security was executed, without applying the new security

model and then, with the enhanced and encrypted security model, executed the attack

again. The thesis suggests that the model will prevent an attacker, from reading data,

because of the authentication process in place. Also the data stored is now encrypted,

which means that even if the authentication process is compromised, the data will not be

readable in an unencrypted state.

5.5.1 Cost of adding encryption

To analyse the algorithm running, Big O notation (Rutanen, 2013; Danziger, 2010) will be

used. The notation determines the amount of steps which needs to be taken to perform a

certain function, the complexity of the particular function and the running time. The

number of operations can be calculated as the number of basic steps. A basic step is one

which is a major part of the algorithm. If O(f(n)) is a time bound for the number n of basic

step, then O(f(n)) is also a bound for the total number of operations, and the running time

of the algorithm is O(f(n)).

AES is a symmetric block cipher with block length of 128 bits. It allows three

different key lengths 128,192 and 256 bits. In encryption process processing of 128 bit

keys required for 10 rounds, 192 bit keys required for 12 rounds and 256 bit keys required

for 14 rounds. AES is a round based algorithm. In a brute force attack on a cipher with

128-bit keys, we have to check all 2abc key combinations by decrypting the ciphertext with

each of these values. For encryption and decryption each round has four functions

Chapter 5. Browser-based local storage Security Model (BBLS)

 100

excepting last round. Last round required three functions. The encryption algorithm has

four round functions SubByte(), ShiftRows(), MixColumn()and AddRoundKey(). The

decryption, also has the same number of rounds with reverse transformation, order of

round function is different, InvShiftRow(), InvSubByte(), AddRoundKey() and

InvMixColumn().

The algorithm will take different amounts of time with the same inputs depending on

factors such as processor speed, instruction set, disk speed, brand of compiler. The way

around is to estimate efficiency of each algorithm asymptotically. The measured time T(n)

is the number of elementary steps, considering that each step takes constant time.

Each pair of users will then have two symmetric keys, where only one key is

necessary. The number of keys required will therefore be 0.5n(n-1) keys. This sum is a

quadratic in n which is described in big O notation as show in equation 5.1.

�	 = (�b) (5.1)

The algorithm inner loop is iterating (rounds), therefore the time can be calculated as show

in equation 5.2.

T(n) = O(n2) (5.2)

O(�b) represents an algorithm whose performance is directly proportional to the square of

the size of the input data set.

Figure 5-2 Insertion of data into IndexedDB with and without encryption in Firefox browser

0	

50	

100	

150	

200	

250	

1000	 2000	 5000	 10000	 20000	 30000	 50000	 100000	 200000	 500000	 600000	 700000	 800000	 1000000	

Amount	of	inserted	records	(1	record	=	151	Bytes)	

Number	of	records	inserted	vs	inser9on	9me	with	and	without	encryp9on	

Indexeddb	Firefox	withput	encryp<on	 Indexeddb	Firefox	with	encryp<on	

Chapter 5. Browser-based local storage Security Model (BBLS)

 101

The thesis examined the performance impact of adding an encryption/decryption step

to the key-value stores of IndexedDB. The results have shown, that enabling encryption

slows the process down to 10-40% of its original time as seen in experimental result Figure

5.1. The consequences for the systems read/write latency reach from almost minimal

impact (IndexedDB write latency for single read/write operations) to a double increase of

latency. Conclusively, it can be said that there is indeed a price to pay in terms of increased

latency when applying encryption and decryption to data. However, when using a stronger

AES encryption with longer key length (changed from 128 to 256bits) does not gain more

overhead than using a weaker encryption with shorter key length. Additionally, the latency

of the encryption/decryption process depends on the hardware configuration and

optimization. Computers with improved multicore CPU and higher RAM can process the

data faster. New CPU has already built in AES functionality, which help to decrease the

time of encryption and decryption.

5.6. Conclusion

We have implemented a JavaScript encryption library within the browser in the form of

an extension. This extension covers the security issue, that have been identified by the

design of IndexedDB. Using the newly developed extension, all data stored on user’s

device is in an encrypted state, and in order to decrypt, an authentication key is required

to obtain private data.

The thesis not considered non-functional requirements, such as speed, at this

stage. The algorithm, together with the JavaScript library, will resolve the design issues

that IndexedDB has – i.e. the storing of data in an unencrypted state. The steps

undertaken in testing showed the functionality of the algorithm. This algorithm must be

performed whenever data is to be saved or read in an encrypted form, locally. It will

also resolve the issue whereby the data is deleted and then can be read in an

unencrypted form afterwards, since the data will be saved in an encrypted state.

Chapter 6. Conclusions and Future Work

 102

Chapter 6. Conclusions and Future Work

This chapter concludes the thesis by summarising the presented work and assessing the

research aims and objectives set in Chapter 1. Firstly, a summary of the thesis is presented,

then the significance of the contributions and the limitations issues are suggested for future

work.

6.1. Conclusions

The Web, or World Wide Web (WWW) (Gauntlett, 2011), is a network of online content,

formatted in Hypertext Markup Language (HTML) and accessed via the Hypertext

Transfer Protocol (HTTP), where people can share information, photos and videos, buy

and sell products or services and participate in online marketing. Therefore, in short, it

provides a way of connecting people to information. However, aligned with sharing are

concerns about privacy and how personal information is stored and secured.

Web technologies (Feizollahi et al. 2014; Stevens and Owen, 2014) and standards

(Fink and Flatow, 2014; Jemel and Serhrouchni, 2014; Lim, 2014) have evolved,

especially where different requirements such as local storage and cross-platform

availability have been essential. Requirements for new standards arose from Web browser

developers, when existing standards were unable to keep pace with rapidly evolving Web

technologies (Baloian et al. 2013; Johansson and Andersson, 2013; Andersson and

Johansson, 2012). One of these requirements involved finding a better way to store data

locally, meaning that web applications (Karthik et al. 2014) could be used offline, without

the need for a network connection. Another requirement was browser-based local storage,

which would work on multiple browsers and have cross-platform compatibility (Mao and

Xin, 2014; Heitkötter et al. 2013). Additionally, local storage or browser-based local

storage provides a better alternative for storing data, which in turn reduces network

latency (Rumble et al. 2011), reduces network traffic from the server, makes web

applications available when a network or server is inaccessible and provides faster

response times for web applications.

One HTML5 browser-based storage technology is called IndexedDB (W3C, 2015),

which is an asynchronous client-side storage API. IndexedDB offers fast access to large

amounts of structured data. The current state of IndexedDB can be considered insecure,

as security was not considered in the original specification (W3C, 2015; Chapter 4.). The

primary security issue associated with the use of browser-based local storage

(IndexedDB) is that data stored locally is in an unencrypted state and readable

immediately (Chapter 4). The existing security mechanisms do not provide sufficient

Chapter 6. Conclusions and Future Work

 103

security protection for storing data locally especially since such data may include

personal or of sensitive information. This investigation focused on browser-based data

storage in operating system files. The analyses described was performed with forensics

tools EnCase (Bunting and Wei, 2006; EnCase, 2004) and XRY (XRY, 2015). The

experiments focused on an investigation of how IndexedDB saves the data, and also how

the data can be retrieved after deletion. Additionally we performed an investigation on a

mobile device based on the steps we took for the forensic investigation of the desktop

computer. The investigation was conducted on an Android mobile phone and we found

the same security issues as on the desktop personal computer. Despite these security

issues, browser-based local storages has significant advantages. The primary advantage is

the non-functional requirement as speed, which was the principal reason for the

development of browser-based local storage (Chapter 3). We designed a model which

demonstrates the effectiveness of using the IndexedDB browser-based storage as

compared to other browser-based storage and server-side databases. The results of

browser-based storage to MySQL server-side databases, restricted WebSQL, and

LocalStorage were compared.

IndexedDB browser-based local storage still has issues: although its standardisation

is completed (W3C, 2015). One of these issues is the complexity of code required to

implement IndexedDB; another is the security implications of browser-based storage. The

first concern is not as significant as the second: the code can be adopted from existing

examples, and it is then cross browser and multi-platform compatible.

We believe that the existing Web security model does not protect end user data

sufficiently and Chapter 4 in this thesis supports this belief. As discussed in Chapter 4,

potential security vulnerabilities in web applications can affect the data which is stored via

browser-based storage. The existing literature, and Chapter 4 experiments provide

evidence for the existence and importance of this problem.

The current state of browser-based local storage design is currently insecure, but

this thesis indicates that this can be remedied. An improved security model was proposed

then implemented as a browser extension (Chapter 5). This proposed security model

enhances the current Web browser security model; the Web browser extension has been

implemented with a client-side encryption library (a JavaScript encryption framework).

This helps to secure the data stored on the client's machine via the steps described in

Section 5.3.1.

We demonstrated that the client-side database is resistant to attacks when our client-

side security model is used. The data stored locally will be now remain safe since, even if

an attacker gets to the data stored in the database because this data is now in an encrypted

Chapter 6. Conclusions and Future Work

 104

form.

Based on the presented findings, there is a case for browser-based databases,

provided that the data security issue is adequately addressed. Conducted experiments

show that the enhanced security model implemented fulfilled this requirement. When

using the presented security model, all the data stored in the user’s machine is in an

encrypted state, so that that in order to decrypt, an authentication key is required (to

obtain private data).

To protect the data in the browser-based local storage against attacks such as XSS,

the encryption library has been extended with Multifactor Authentication (MFA). Using

MFA, data in the browser-based storage will be encrypted after successful authentication

.The advantage of MFA is that it is resistant to XSS attacks since it is not in the browser.

The proposed model extends the current security model which is not sufficient for

complex HTML5 browser-based applications. Based on the implemented evaluation,

security model will correct the defence weaknesses in the current model, by protecting

the client-side data. It will also resolve the issue of deleted data being available to be

read in an unencrypted form, as the data will be saved in an encrypted state. This thesis

argues that with the use of the proposed security mechanism, browser-based local storage

will be at least as secure as server-side databases.

Existing browser-based local storage security uses the Same Origin Policy (SOP)

(Gollman, 2011; Ss 2.3.2) as the main security mechanism. SOP prevents one web page

with malicious code to read or obtain access to data on another web page if does not have

the same origin. The method checks to see if a request has come from the requesting

domain as it is in the list of domain created. If the request domain matches the stored

domain value then the application allows the retrieval of the data. The SOP method can be

spoofed (Cao et al. 2013; Ss 5.4.4); it is not bullet proof. An attacker can use a third party

application which may be programmed to bypass the SOP. Using an XSS attack the

attacker can obtain all the data stored in the local database (Ss 5.4.4). Additionally, as data

is stored in an unencrypted state, the attacker can easily read the data without using an

extra method to decrypt it. Thus SOP is not sufficient to protect the data stored locally.

6.2. Findings

From the experiments performed we have found that the storage of data in an unencrypted

state is not the only problem. Browser-based storage faces another issue when deleted

data is not fully removed from the hard drive. When utilising forensic and data recovery

tools and techniques the recovery restoration of previously deleted data from a computers

Chapter 6. Conclusions and Future Work

 105

and from mobile devices was achieved.

Consequently, these issues which are related to the possible restoration of deleted

data by storing data in an unencrypted state - whereby the attacker can get hold of multiple

versions of browser-based local storage. Deleted data persists on the hard drive; when a

request to delete is executed, the data is merely marked as deleted but still occupies disk

space until overwritten. New requests to store data to the browser-based storage will

generally result in new partition space being assigned; the old data will persists on the hard

drive: it will not be overwritten.

Browser-based local storage has a significant advantage over server-side database

storage since the data can be read and written much faster. As part of thesis, we developed

a performance model was developed which proved this speed advantage, and the results of

the performance model was then compared to experimental results. There is a need for

faster browser- based storage, and this study demonstrated that IndexedDB provides it.

The main contribution of this thesis is in terms of a novel synthesis: a new security

model for client-side web databases. This security model includes an encryption

framework which helps to secure the data. The encryption framework consists, mostly, of

an encryption library which is implemented into the browser. This, however, does not

provide full security protection. In addition, an external functionality was required. As well

as the encryption library, a multifactor authentication (MFA), or two factors authentication

(2FA) (Fleischhacker et al. 2014; Banyal et al. 2013) had to be implemented to prevent

XSS (Ss 2.4) attacks; (Ss 5.4.3) for more details on this implementation.

Encrypting the browser-based storage data prevents information from compromise

even if the hard disk drive is physically removed, or alternatively if the mobile phone or

tablet is stolen.

The encryption used by the security model presented in Chapter 5 was tested from

a speed perspective. The proposed performance model includes variables such as

encryption and decryption speed, which have an impact on accessing browser-based

storage while saving or retrieving data.

In practice the encryption libraries for client-side encryption are not as mature as

server-side encryption.

6.3. Future Work

Although the proposed security framework was successfully applied, here, to encrypt

browser-based local storage, further improvements could be made to extend it. For

instance, biometrics such as fingerprints, retina scans could be used (Chuang and Chen,

2014; Haghighat et al. 2013; Rane et al. 2013; Tresadern et al. 2013), which would be

Chapter 6. Conclusions and Future Work

 106

useful in relation to mobile devices (Meng et al. 2015), particularly since they provide

existing hardware which can be used for biometrics. Additionally, present limitations in

the performance model could be removed; it could be extended to cover the IE and Safari

browsers. Future work might also include implementing a methodology for obtaining

usage statistics.

6.3.1 Extensions to the Security Model's Encryption

For encryption, the Stanford JavaScript Crypto library (SJCL) was utilised which

provided, an advanced and fully - functional encryption library. Additionally this library

could be used across multiple browsers platforms: e.g. Chrome, Firefox, Internet

Explorer, Safari and Opera on Windows, Macintosh and Linux. The SJCL library uses

the industry standard AES (Ss 2.11.1) algorithm with the SHA256 hash function and the

HMAC. SJCL library differs from typical AES implementations in that it uses an

alternative approach which keeps the code small while speeds up encryption/decryption.

The source code for the AES algorithm, also called Advanced Encryption Standard or the

Rijndael algorithm, is available (Daemen and Rijmen, 2013; Hoang, 2012).

One limitation of using client encryption relates to offline storage. When an

application is using browser-based local storage for offline usage without a secure

connection to the server (and thus access to the encryption key) the user may not be

decrypt the database file.

Therefore storing the key on the server-side may be an issue because sometimes a

user does not have an Internet connection but has access to database files (in which the

files are encrypted): the user will not be able to read or use the files (data).

The problems associated with implementing encryption in the browser include:

• If the encryption library stores the key on the client-side (which is necessary for offline

use), then it can be read via XSS and by any malware present on the client.

• If the encryption library stores the key on the server, and the server is vulnerable to an

XSS attack, then the attacker will be able to read and decrypt data whilst the key is in

use. More details are available in Section 5.4.4.

6.3.2 Biometrics (Ss. 2.11)

The use of biometrics (Ss. 2.11) is an interesting option: particularly in the case of touch-

screen devices as they have integrated sensors. Biometrics based verification should not be

used independently but rather as an extension of existing password protection. Existing

mobile and tablet devices often provide basic biometrics which can extend the

Chapter 6. Conclusions and Future Work

 107

authentication process. Biometrics includes finger or face scanning - extending pattern or

pin input. Dynamic biometrics provides better security than static biometrics; the latter

can be easily circumvented. Static biometrics are difficult to use within a session-based

security scheme where several levels of privacy and security policy are required – for

more details Ss 2.11. Using dynamic biometrics, the security of stored data, especially on

mobiles and tablets, could be significantly enhanced (Bo et al. 2013); this would be a

valuable extension to the proposed security model. Such an extension might include

biometrics as a way to authenticate web application requests to retrieve data from local

storage - in the same way that biometrics are used for authenticating the action of

unlocking the mobile or tablet device.

Mobile and tablet devices are gaining in popularity (Liu et al. 2012), and it is

suggested that they will, in future, take precedence over computers in terms of usage.

 Mobile and tablet devices have built in sensors so they are more suitable for biometrics.

6.3.2.1 How will biometrics work - future improvements

Existing research is focusing on improving authentication for systems. One of the solutions

is biometrics. Static biometrics authentication is not secure and does not provide an

adequate security mechanism for modern devices in relation to the level of authentication

required. Therefore dynamic biometrics provides a better and much more reliable solution,

which is an extension to authentication already in use, such as pin or pattern lock. Existing

work on biometrics for mobile devices (Xu et al. 2014; Tresadernet al. 2013; Angulo and

Wästlund, 2012; Choraś and Kozik, 2012) suggests that biometrics provide better security

for personal data stored on mobile and tablet devices.

6.3.3 Automated attack (penetration) tests

The proposed security model has been tested for resistance to attacks - an automated

attack test could be developed for XSS attacks. The security model was tested in relation

to XSS attacks (Ss 5.5), but with the further development of current browser-based local

storage other attacks could be possible, such as JavaScript injection. Automated attacks

tests could be designed as a framework, which will run a series of tests to check the

security of browser-based local storage systems. The attacks could include bypassing

SOP with CORS (Ss. 2.3.3), XSS attacks, and CSRF (Ss. 2.5.6) attacks.

6.4. Extensions to the performance model

The limitations of this thesis include the lack of experiments on a wide range of web and

Chapter 6. Conclusions and Future Work

 108

mobile browsers. The speed model was applied only to the Chrome and Firefox web

browsers. To extend this work, Internet Explorer and Safari web browsers could be used.

At the stage when the experiments were done, the functionality of Internet Explorer and

Safari was limited: browser-based local storage was not developed to full functionality.

Additionally, mobile browsers were not tested for performance. Future improvements of

the performance model could include extensions of the model for SDD drives, both

client-side and server-side.

6.5. IndexedDB usage statistics

Finally, in terms of future work, there is a lack of usage statistics for browser-based

storage. The statistics could be constructed via a survey form, which might show the

current usage of IndexedDB by web applications. Additionally, this information could be

obtained from the number of API calls from each browser. Based on the statistics results,

it could be deduced whether IndexedDB gained the expected popularity or not.

6.6. Summary

In this thesis the effectiveness of browser-based storage, and a solution to its associated

security concerns was demonstrated and highlighted the speed advantage of the current

browser-based local database IndexedDB. As a research contribution a proposed a model

for evaluating this speed advantage in Chapter 3 was designed. The results predicted

from this model were compared to experimental results, and the outcome showed that

browser-based storage performs faster than server-side databases - even when other

factors remain the same (CPU, disk speed, bandwidth, etc.). Additionally the

experimental tests demonstrated that browser-based storage can generally store

significantly more data for one query than can existing server-side databases without

requiring additional resources.

The security issues which have been identified in Chapter 5 were addressed; this

thesis primarily focused on correcting these security concerns. Browser-based local

storage, such as IndexedDB is insecure by design, due to the stored data being

unencrypted. In this thesis the first version of a prototype security model for browser-

based storage was been proposed and implemented which helps to protect stored data.

This security model corrects the aforementioned security issue, improving the security of

the browser-based storage as a typical server-side database security.

The Web holds a great deal of information which needs to be secured in order to

protect the privacy of users. Browser-based local databases such as IndexedDB provide a

Chapter 6. Conclusions and Future Work

 109

better methodology for the implementation of web applications since their performance

and speed is considerably better than that of server-side databases. Browser-based

storage provides for the storage of data from web applications, and the data persists even

when the browser session is terminated. Additionally, the browser provides storage

which can be used offline, and enable program functionality to be run from the browser

without additional installation. Therefore offline storage provides a better user

experience, especially on mobile and tablet devices with limited network connectivity

and data limitation.

References

 110

References

Abdalla, H.I. Amer, A.A. (2012) Dynamic horizontal fragmentation, replication and

allocation model in DDBSs. 2012 International Conference on Information

Technology and e-Services (ICITeS), pp.1,7.

Abgrall, E. Le Traon, Y. Gombault, S. and Monperrus, M. (2014) Empirical investigation

of the web browser attack surface under cross-site scripting: An urgent need for

systematic security regression testing. 2014 IEEE Seventh International Conference

on Software Testing, Verification and Validation Workshops (ICSTW), pp. 34-41.

Alkhalaf, M. Bultan, T. Gallegos, J.L. (2012) Verifying client-side input validation

functions using string analysis, 34th International Conference on Software

Engineering (ICSE), pp.947, 957.

Ambhire, V.R. Meshram, B.B. (2012) Digital Forensic Tools. IOSR Journal of

Engineering, 2(3), pp.392-398.

Andersson, K. Johansson, D. (2012) Mobile e-services using HTML5. 2012 IEEE 37th

Conference on Local Computer Networks Workshops (LCN Workshops), pp. 814-

819.

Angulo, J. Wästlund, E. (2012) Exploring touch-screen biometrics for user identification

on smart phones. Privacy and Identity Management for Life, pp. 130-143.

Anthes, G. (2012) HTML5 leads a web revolution. Magazine Communications of the

ACM, 55(7). pp. 16-17.

Anttonen, M. Salminen, A. Mikkonen, T. Taivalsaari, A (2011) Transforming the web

into a real application platform: new technologies, emerging trends and missing

pieces. ACM Symposium on Applied Computing. pp. 800-807.

Appelt, D. Nguyen, C. D. Briand, L. C. Alshahwan, N. (2014) Automated testing for SQL

injection vulnerabilities: An input mutation approach. Proceedings of the 2014

International Symposium on Software Testing and Analysis, pp. 259-269.

Asif, M. Krogstie, J. (2013) Mobile client-side personalization. 2013 International

Conference on Privacy and Security in Mobile Systems (PRISMS) 1(4). pp. 24-27.

Atterer, R. Wnuk, M. Schmidt, A. (2006) Knowing the user's every move: user activity

tracking for website usability evaluation and implicit interaction. Proceedings of the

15th international conference on World Wide Web (ACM). pp. 203-212

Atzeni, P. Bugiotti, F. Rossi, L. (2014) Uniform access to NoSQL systems, Information

Systems, 43, pp. 117-133.

Ayabakan, I. Kilimci, P. (2014) Moving Object Databases-Indexing Algorithms.

References

 111

International Journal of Computer Theory and Engineering, 6(6).

Ayenson, M. Wambach, D. J. Soltani, A. Good, N. Hoofnagle, C. J. (2011) Flash cookies

and privacy II: Now with HTML5 and ETag respawning. Computer and Information

Systems Abstracts. [Online]. Available at: http://dx.doi.org/10.2139/ssrn.1898390

[Accessed: 10 February 2015].

Bagade, P. Chandra, A. Dhende, A.B. (2012) Designing performance monitoring tool for

NoSQL Cassandra distributed database. In Education and e-Learning Innovations

(ICEELI), 2012 International Conference on (pp. 1-5).

Baloian, N. Gutierrez, F. Zurita, G. (2013) An architecture for developing distributed

collaborative applications using HTML5. 2013 IEEE 17th International Conference

on Computer Supported Cooperative Work in Design (CSCWD), pp.213-220.

Banker, K. (2010) MongoDB and e-commerce. [online] Available at:

http://kylebanker.com/blog /2010/04/30/mongodb-and-ecommerce. [Accessed 17

March 2012].

Banyal, R. K. Jain, P. Jain, V. K. (2013) Multi-factor Authentication Framework for Cloud

Computing. 2013 Fifth International Conference on Computational Intelligence,

Modelling and Simulation (CIMSim), pp.105-110.

Barbierato, E. Gribaudo, M. Iacono, M. (2014) Performance evaluation of NoSQL big-

data applications using multi-formalism models. Future Generation Computer

Systems, 37, pp.345-353.

Barth, A. Jackson, C. Hickson, I. (2010) The web origin concept. [online] Available at:

http://tools.ietf.org/html/draft-abarth-origin-09. [Accessed 17 March 2012]

Barua, A. Shahriar, H. Zulkernine, M. (2011) Server-side Detection of Content Sniffing

Attacks. 22nd International Symposium on Software Reliability Engineering

(ISSRE), pp. 20-29.

Basharat, I. Azam, F. Muzaffar, A.W. (2012) Article: Database Security and Encryption: A

Survey Study. International Journal of Computer Applications. 47(12). pp. 28-34.

Bates, D. Barth, A. Jackson, C. (2010) Regular expressions considered harmful in client-

side XSS filters. 19th international conference on World wide web (WWW '10), pp.

91-100.

Bell, S. Vasserman, E. Andresen, D. (2014) Developing and Assessing a Multi-Factor

Authentication Protocol for Revocable Distributed Storage in a Mobile Wireless

Network. Proceedings of the International Conference on Security and Management

(SAM), pp. 1.

Bernett, S. Paine, S. (2001) RSA Security’s Official Guide to Cryptography. New York:

Osborne/McGraw-Hill.

References

 112

Bezemer, C. Milon E. Zaidman A. Pouwelse J. (2014) Detecting and analyzing I/O

performance regressions, Journal of Software: Evolution and Process, 26(12),

pp.1193-1212.

Biondi, A. Melani, A. Bertogna, M. (2014) Hard Constant Bandwidth Server:

Comprehensive formulation and critical scenarios. 2014 9th IEEE International

Symposium on Industrial Embedded Systems (SIES), pp.29-37.

Bo, C. Zhang, L. Li, X. Y. Huang, Q. Wang, Y. (2013) Silentsense: silent user

identification via touch and movement behavioral biometrics. Proceedings of the

19th annual international conference on Mobile computing & networking, pp. 187-

190.

Borders, K. Springer, J. Burnside, M. (2012) Chimera: A Declarative Language for

Streaming Network Traffic Analysis. In USENIX Security Symposium, pp. 365-379.

Boritz, E. Gyun, W. Sundarraj, P. (2008) Internet privacy in E-commerce: Framework,

review and opportunities for future research. Proceedings of the 41st Hawaii

International Conference on System Sciences, pp.204-256.

Bourke, T. (2001) Server load balancing. Sebastopol: O'Reilly.

Brooks, J. (2011) Oracle Gives NoSQL Market a Boost. Eweek, 28(17), pp.8.

Bruun, A. Jensen, K. Kristensen, D. (2014) Usability of Single-and Multi-factor

Authentication Methods on Tabletops: A Comparative Study. Human-Centered

Software Engineering, pp. 299-306.

Bugiel, S. Davi, L. Dmitrienko, A. Fischer, T. Sadeghi, A. R. Shastry, B. (2012)

Towards taming privilege-escalation attacks on Android. 19th Annual Network &

Distributed System Security Symposium (NDSS), 17, pp.18--25).

Bugliesi, M. Calzavara, S. Focardi, R. Khan, W. (2014) Automatic and robust client-side

protection for cookie-based sessions. In Engineering Secure Software and Systems

(pp. 161-178). Springer International Publishing.

Buja, G. Jalil, K. B. A. Ali, F. B. Mohd, H. Rahman, T. F. A. (2014) Detection model for

SQL injection attack: An approach for preventing a web application from the SQL

injection attack. 2014 IEEE Symposium on Computer Applications and Industrial

Electronics (ISCAIE), pp. 60-64.

Bunday, B.D. (1996) An introduction to queuing theory. London : Arnold.

Bunting, S. Wei, W. (2006) Encase computer forensics: the official EnCE EnCase

certified examiner study guide. San Francisco: Wiley & Sons.

Burns, J. (2005) Cross Site Request Forgery: An Introduction to A Common Web

Application Weakness, [Online] Available at: https://www.nccgroup.trust/us/our-

References

 113

research/cross-site-request-forgery-an-introduction-to-a-common-web-application-

weakness/ [Accessed on 4 March 2012].

Cao, Y. Rastogi, V. Li, Z. Chen, Y. Moshchuk, A. (2013) Redefining web browser

principals with a configurable origin policy. 2013 43rd Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), pp.1-12.

Casario, M. Elst, P. Brown, Ch. Wormser, N. Hanguez,C. (2011) HTML5 Solutions:

Essential Techniques for HTML5 Developers. New York: Apress.

Castelluccia, C. (2012) Behavioural tracking on the internet: a technical perspective.

European Data Protection: In Good Health? pp. 21-33

Chaitanya, K. S. K. Ashutosh, K. Ravi, K. (2012) SECURE STORAGE OF DATA

USING CRYPTOGRAPHY FOR NETWORK. International Journal of

Engineering Science and Technology (IJEST).

Chang, F. Dean, J. Ghemawat, S. Hsieh, W.C. Wallach, D.A. Burrows, M. Chandra, T.

Fikes, A. and Gruber, R.E (2008) Bigtable: A Distributed Storage System for

Structured Data. CM Transactions on Computer Systems (TOCS), 26(2), p.4.

Chen, S. NG, A. Greenfield, P. (2013) A performance evaluation of distributed database

architectures. Concurrency and Computation: Practice & Experience, 25(11), pp.

1524-1546.

Chengjiong, W. (2012) The design of the tree data structure based on relational database,

World Automation Congress (WAC), pp.1-3.

Chitre, M. Motani, M. Shahabudeen, S. (2012) Throughput of Networks With Large

Propagation Delays. IEEE Journal of Oceanic Engineering, 37(4), pp.645-658.

Choi, T. Gouda, M. G. (2011) HTTPI: An HTTP with integrity. 2011 Proceedings of 20th

International Conference Computer Communications and Networks (ICCCN), on pp.

1-6.

Choo, H.L. Oh, S. Jung, J. Kim, H. (2015) The Behavior-Based Analysis Techniques for

HTML5 Malicious features. In Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS), 2015 9th International Conference on (pp. 436-440).

Choraś, M. Kozik, R. (2012) Contactless palmprint and knuckle biometrics for mobile

devices. Pattern Analysis and Applications, 15(1), 73-85.

Chuang, M. C. Chen, M. C. (2014) An anonymous multi-server authenticated key

agreement scheme based on trust computing using smart cards and biometrics.

Expert Systems with Applications, 41(4), 1411-1418.

Chuang, T. T. Nakatani, K, Chen, J. C. H. Huang, I. L. (2007) Examining the Impact of

Organisational and Owner's Characteristics on the Extent of E-commerce Adoption

in SMEs. International Journal of Business and Systems Research, 1(1), pp. 1751-

References

 114

2018

Chung, L. Nixon, B.A. Yu, E. Mylopoulos, J. (2000) Non-functional requirements in

software engineering. 5th ed. New York: Springer Science & Business Media.

Chuda, D. Kratky, P. Tvarozek, J. (2015) Mouse Clicks Can Recognize Web Page

Visitors!. In Proceedings of the 24th International Conference on World Wide Web

Companion, pp. 21-22.

Clark, M.P. (2003) Data Networks, IP and the Internet: Protocols, Design and Operation.

Chichester: Wiley-Blackwell.

Clarke, J. (2012) SQL injection attacks and defense. 2nd ed. Waltham: Elsevier.

Connoly, T.M. Begg, C.E (2014) Database Systems: A Practical Approach to Design,

Implementation and Management. 6th ed. Boston: Addison Wesley.

Cormen, T. H. Leiserson, C. E. Rivest, R.L. Stein, C. (2009) Introduction to Algorithms.

3 ed. Cambridge: MIT Press.

Crockford, D. (2008) JSON in JavaScript. [online] Available at: http://www.json.org.

[Accessed on 17 March 2012]

Crowther, R. Lennon, J. Blue, A. Wanish, G. (2014) HTML5 in Action. Shelter Island:

Manning Publications.

Daemen, J. Rijmen, V. (2013) The design of Rijndael: AES-the advanced encryption

standard. New York: Springer Science & Business Media.

Dai, W. (2004) Cryptoo++ Library. Available at: http://www.cryptopp.com. Last

Accessed : 20 May 2014

Danziger, P. (2010) Big O Notation. Available at: http://www.scs.ryerson.ca/~mth110

/Handouts/PD/bigO.pdf. Last Accessed : 20 July 2016

De Ryck, P. Desmet, L. Piessens, F. Johns, M. (2014) The Browser as a Platform. Primer

on Client-Side Web Security. Springer International Publishing. pp. 25-32.

De Ryck, P. Desmet, L. Piessens, F. Joosen, W. (2012) A security analysis of emerging

web standards-extended version. Informatics Section, CW Reports. [online].

Available at: https://lirias.kuleuven.be/bitstream/123456789/349398/1/CW622.pdf

[Accessed 10 October 2009].

De Ryck, P. Desmet, L. Philippaerts, P. Piessens, F. (2011) A Security Analysis of Next

Generation Web Standards, (ENISA). European Network and Information Security

Agency. [online] Available at: https://distrinet.cs.kuleuven.be/projects/HTML5-

security/ [Accessed 2 February 2016].

Di Lucca, G. A. Fasolino, A. R. Mastoianni, M. Tramontana, P. (2004) Identifying cross

site scripting vulnerabilities in web applications. 26th Annual International Energy

Conference In Telecommunications INTELEC.pp. 71-80.

References

 115

Dong, X. Chen, Z. Siadati, H. Tople, S. Saxena, P. Liang,Z. (2013) Protecting sensitive

web content from client-side vulnerabilities with CRYPTONS. In Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security (CCS

'13).

Doxygen (2009) BeeCrypt C++ API Documentation. Availabe at: http://beecrypt.

sourceforge.net/doxygen/c++/index.html. Accessed : 20 May 2014

Dozono, H. Yamasaki, N. Nakakuni, M. (2014) A Method for Authentication using

Behavior Biometrics on WEB. Proceedings of the International Conference on

Security and Management (SAM), pp.1.

Eilers, C. (2012) HTML5 Security. [ebook], Developer Press.

Elhakeem, Y. F. G. M. Barry, B. I. (2013) Developing a security model to protect websites

from cross-site scripting attacks using ZEND framework application. International

Conference on Electrical and Electronics Engineering In Computing (ICCEEE). pp.

624-629.

Elnikety, S. Pedone, F. Zwaenepoel, W. (2005) Database replication using generalized

snapshot isolation. 24th IEEE Symposium on Reliable Distributed Systems (SRDS),

pp.73-84.

eMarketer (2014) Worldwide Ecommerce Sales to Increase Nearly 20% in 2014. [online]

Available at: http://www.emarketer.com/Article/Worldwide-Ecommerce-Sales-

Increase-Nearly-20-2014/1011039. [Accessed 20 September 2015].

Encase (2004) EnCase Forensic Edition User Manual. v.4 [online] Available at:

http://www. guidancesoftware.com. [Accessed 5 January 2014]

Engelschall, R. S. (1999) About the OpenSSL Project. [online]Available at: https://www.

openssl.org/about. [Accessed 17 March 2012].

Ezeife, C.I. Zheng, J. (1999) Measuring the performance of database object horizontal

fragmentation schemes. Database Engineering and Applications, 1999. IDEAS '99.

International Symposium Proceedings, pp.408-414.

Fang, W. Zhang, J. Hu, B., Zhang, Q. Ha, X. (2011) Graphics and data web publishing for

local thermal power plant management information system. 2011 International

Conference on Multimedia Technology (ICMT), pp. 337-340.

Feizollahi, S. Shirmohammadi, A. Kahreh, Z. S. Kaherh, M. S. (2014) Investigation the

effect of Internet Technology on Performance of services organizations with e-

commerce orientations. Procedia-Social and Behavioral Sciences, 109, pp.605-609.

Fielding, R. Reschke, J. (2014) Hypertext Transfer Protocol (HTTP/1.1): Message Syntax

and Routing. [online] Available at: http://tools.ietf.org/html/rfc7230 [Accessed 7

December 2014].

References

 116

Fink, G. Flatow, I. (2014) Introducing Single Page Applications. Pro Single Page

Application Development, pp. 3-13.

Flanagan, D. (2011) JavaScript: The Definitive Guide Activate Your Web Pages. 6th

edition, Beijing: O'Reilly.

Fleischhacker, N. Manulis, M. Azodi, A. (2014) A Modular Framework for Multi-Factor

Authentication and Key Exchange. Security Standardisation Research, pp. 190-214.

Forfang, C. (2014) Evaluation of High Performance Key-Value Stores. MsC, Norges

teknisk-naturvitenskapelige universite

Garrett, P. H. (2013) Advanced Instrumentation and Computer I/O Design : Defined

Accuracy Decision, Control, and Process Applications. 2nd ed. [e-book], Wiley-

Blackwell.

Garrido, A. Firmenich, S. Rossi, G. Grigera, J. Medina-Medina, N. Harari, I. (2013)

Personalized Web Accessibility using Client-Side Refactoring. Internet Computing,

IEEE. 17(4). pp.58,66.

Gauntlett, D. (2011) Making is connecting. Cambridge: Polity Press.

Gehani, N. (2011) The Database Book: Principles & Practice Using MySQL. 2nd edn.

Summit: Silicon Press.

Gehling, B. Stankard, D. (2005) eCommerce security. Proceedings of the 2nd annual

conference on Information security curriculum development, pp. 32-37.

Gettys, J. Nichols, K. (2012) Bufferbloat: dark buffers in the internet. Communications of

the ACM, 55(1), pp.57-65.

Ghosh, P. Rau-Chaplin, A. (2006) Performance of Dynamic Web Page Generation for

Database-driven Web Sites. 2006. NWeSP 2006. International Conference on Next

Generation Web Services Practices, pp.56-63.

Gibbs, M.R., Shanks, G. Lederman, R. (2005) Data quality, database fragmentation and

information privacy. Surveillance and society, 3(1), pp. 45-58.

Gihan, D. Karunarathna, D.G.M. Udantha, G.P.D.M. Gunathilake, J.A.I.M. Pathirathna,

P.S.P. Rathnayake, R.A.T.L (2011) Database based and RESTful email system

with offline web based email client. Advances in ICT for Emerging Regions

(ICTer), 2011 International Conference.

Google developers (N/A) Hosted Apps. [online] Available at:

https://developers.google.com/ chrome/apps/docs/developers_guide. [Accessed on

17 March 2012]

Goli, M. Rankoohi, R. S. Taghi, M. (2012) A new vertical fragmentation algorithm based

on ant collective behavior in distributed database systems. Knowledge and

Information Systems, 30(2), pp. 435-455.

References

 117

Gollmann, D. (2011) Problems with Same Origin Policy. Security Protocols XVI SE, pp

86-92

Gómez, J. M. Lichtenberg, J. (2007) Intrusion Detection Management System for

Ecommerce Security. Journal of Information Privacy and Security, 3(4), 19-31.

Gorla, N. NG, V. LAW, D.M. (2012) Improving database performance with a mixed

fragmentation design. Journal of Intelligent Information Systems, 39(3), pp. 559-

576.

Gross, D. Harris, C.M. (1985) Fundamentals of Queueing Theory. New York: John

Wiley & Sons.

Grupp, L. M. Davis, J. D. Swanson, S. (2012) The bleak future of NAND flash memory. In

Proceedings of the 10th USENIX conference on File and Storage Technologies, pp.

2-2.

Gudivada, V.N. Rao, D. Raghavan, V.V. (2014) NoSQL Systems for Big Data. 2014

IEEE World Congress on Management. Services (SERVICES), pp.190-197.

Gupta, B.B. Tewari, A. Jain, A.K. Agrawal, D.P. (2016) Fighting against phishing

attacks: state of the art and future challenges. Neural Computing and Applications,

pp.1-26.

Gupta, S. Gupta, B.B. (2014) BDS: browser dependent XSS sanitizer. In: Book on Cloud-

Based Databases with Biometric Applications, IGI-Global's Advances in Information

Security, Privacy, and Ethics (AISPE) series, pp. 174-191. IGI-Global, Hershey.

Haghighat, M. Zonouz, S. Abdel-Mottaleb, M. (2013) Identification using encrypted

biometrics. Computer Analysis of Images and Patterns, pp. 440-448).

Han, E. E. (2015) Detection of Web Application Attacks with Request Length Module and

Regex Pattern Analysis. Genetic and Evolutionary Computing, pp.157-165.

Hanna, S. Shin, R. Akhawe, D. Saxena, P. Boehm, A. Song, D. (2010) The Emperor's

New APIs: On the (In) Secure Usage of New Client-side Primitives. 31st IEEE

Symposium on Security and Privacy.

Harjono, J. Ng, G. Kong, D. Lo, J. (2011) Building smarter web applications with

HTML5. Proceedings of the 2010 Conference of the Center for Advanced Studies

on Collaborative Research (CASCON '10), pp. 402–403.

Hayes, J. (2012) 'Cookie law': a hostage to fortune?. Engineering & Technology, 7(8), 66-

69.

Heitkötter, H. Hanschke, S. Majchrzak, T. A. (2013) Evaluating cross-platform

development approaches for mobile applications. Web information systems and

technologies, pp. 120-138.

Hilerio, I. (2011) Building offline access in Metro style apps and websites using HTML5.

References

 118

[online] Available at: http://channel9.msdn.com/Events/BUILD/ BUILD2011

/PLAT-376T. [Accessed 20 February 2012].

Hoang, T. (2012) An efficient FPGA implementation of the Advanced Encryption

Standard algorithm. 2012 IEEE RIVF International Conference on Computing and

Communication Technologies, Research, Innovation, and Vision for the Future

(RIVF), pp.1-4.

Hohn, N. Veitch, D. Papagiannaki, K. Diot, C. (2004) Bridging router performance and

queuing theory. Proceedings of the joint international conference on Measurement

and modeling of computer systems (SIGMETRICS '04/Performance '04).

Hoog, A. (2011) Android Forensics - Investigation, Analysis and Mobile Security for

Google Android. Syngress Publishing.

Hu, H. Zhang, H. Yu, H. Xu, Y. Li, N. (2013) Minimum transmission delay via spectrum

sensing in cognitive radio networks. Wireless Communications and Networking

Conference (WCNC), 2013 IEEE , pp.4101-4106.

Huang, L-S. Weinberg, Z. Evans, C. Jackson, C. (2010) Protecting browsers from cross-

origin CSS attacks. Proceedings of the 17th ACM conference on Computer and

communications security (CCS '10), pp. 619-629.

Huang, Z. Benyoucef, M. (2013) From e-commerce to social commerce: A close look at

design features. Electronic Commerce Research and Applications, 12(4), 246-259.

Hydara, I. Sultan, A.B.M. Zulzalil, H. and Admodisastro, N. (2015) Current state of

research on cross-site scripting (XSS)–A systematic literature review. Information

and Software Technology, 58, pp.170-186.

Ihrig, C. (2013) JavaScript Object Notation. Pro Node.js for Developers, SE, 17, pp. 263-

270.

Jain, R. (1991) The Art of Computer Systems Performance Analysis of Techniques for

Experiment Design, Measurement, Simulation and Modeling. New York:John

Wiley & Sons.

Jemel, M. Serhrouchni, A. (2014) Content protection and secure synchronization of

HTML5 local storage data. 11th Consumer Communications and Networking

Conference (CCNC), pp. 539-540.

Jemel, M. Serhrouchni, A. (2014) Security enhancement of HTML5 Local Data Storage. In

Network of the Future (NOF), 2014 International Conference and Workshop on the

(pp. 1-2).

Jemel, M. Serhrouchni, M. (2014) Security assurance of local data stored by HTML5 web

application, 10th International Conference on Information Assurance and Security

(IAS), Okinawa, 2014, pp. 47-52.

References

 119

Jemel, M. Serhrouchni, A. (2015) Toward user's devices collaboration to distribute

securely the client side storage. In 2015 International Conference on Protocol

Engineering (ICPE) and International Conference on New Technologies of

Distributed Systems (NTDS) (pp. 1-6).

Johansson, D. Andersson, K. (2013) 4th generation e-services–requirements for the

development of mobile e-services. eChallenges e-2013 Conference Proceedings,

IIMC International Information Management Corporation.

Jones, J. (2014) E-commerce: measuring, monitoring and gross domestic product. ONS.

[online] Available at: http://www.ons.gov.uk/ons/rel/gva/national-accounts-articles

/e-commerce--measuring--monitoring-and-gross-domestic-product/index.html

[Accessed 10 January 2015]

Jovanovic, N. Kirda, E. Kruegel, C. (2006) Preventing Cross Site Request Forgery Attacks,

IEEE International Conference on Security and Privacy in Communication Networks

(SecureComm).

Käfer, K. (2008) Cross site request forgery. [online] Available at: http://dump.kkaefer.com

/csrf-paper.pdf [Accessed 15 March 2014]

Kalashnikov, V. (1994) Mathematical Methods in Queuing Theory. Springer Science.

Karthik, R. Patlolla, D. R. Sorokine, A. White, D. A. Myers, A. T. (2014) Building a

secure and feature-rich mobile mapping service app using HTML5: challenges and

best practices. Proceedings of the 12th ACM international symposium on Mobility

management and wireless access, pp.115-118.

Katz, J. (2008) Introduction to modern cryptography. London: Chapman & Hall/CRC.

Katz, R. (2000). Netscape and the Law in the Information Age+. Yale Journal of Law &

Technology Yale Journal of Law & Technology, 2, pp.4-5.

Khan, S.I. Hoque, A.S.M.L. (2010) A New Technique for Database Fragmentation in

Distributed Systems. International Journal of Computer Applications (0975 –

8887), 5(9).

Khan, S.I. Hoque, A.S.M.L. (2012) Scalability and performance analysis of CRUD

matrix based fragmentation technique for distributed database. 2012 15th

International Conference on Computer and Information Technology (ICCIT),

pp.567-562.

Koch, W. (1999) GPGME – The GNU Privacy Guard. [online] Available at:

https://www.gnupg. org/index.html. [Accesed 20 May 2014]

Koch, W. (2003) Libgcrypt. [online] Available at: http://www.gnu.org/software/libgcrypt.

[Accesed 20 May 2014]

Kofler, M. (2001) What Is MySQL? Berkeley: Apress.

References

 120

Koll, U. T. (2012) Increased Risk by Unsecured Data on Used Storage Devices. [online]

Available at: http://ww2.laplink.com/documentation/pdf/safeerase/Increased_Risk

_ WhitePaper.pdf. [Accessed on: 17 March 2012].

Konheim, A. (2007) Computer security and cryptography. New York: Wiley-

Interscience.

Konstantinou, I. Angelou, E. Boumpouka, C. Tsoumakos, D. Koziris, N. (2011) On the

elasticity of nosql databases over cloud management platforms. Proceedings of the

20th ACM international conference on Information and knowledge management, pp.

2385-2388.

Kotenko, I. Stepashkin, M. Doynikova, E. (2011) Security analysis of information systems

taking into account social engineering attacks. 2011 19th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 611-

618.

Krombholz, K. Hobel, H. Huber, M. Weippl, E. (2015) Advanced social engineering

attacks. Journal of Information Security and applications, 22, pp.113-122.

Kuznetsov, S.D. Poskonin, A.V. (2014) NoSQL data management systems.

Programming and Computer Software, 40(6), pp. 323-332.

Lan, D. ShuTing, W. Xing, X. Wei, Z. (2013) Analysis and prevention for cross-site

scripting attack based on encoding. 4th International Conference on Electronics

Information and Emergency Communication (ICEIEC), pp.102,105.

Lanze, F. Panchenko, A. Ponce-Alcaide, I. Engel, T. (2014) Undesired relatives: protection

mechanisms against the evil twin attack in IEEE 802.11. Proceedings of the 10th

ACM symposium on QoS and security for wireless and mobile networks pp. 87-94.

Leavitt, N. (2010) Will NoSQL Databases Live Up to Their Promise? IEEE Computer.

43(2), pp.12 - 14

Lee, I. Jeong, S., Yeo, S. Moon, J. (2012) A novel method for SQL injection attack

detection based on removing SQL query attribute values. Mathematical and

Computer Modelling, 55(1), pp.58-68.

Lekies, S. Stock, B. Johns, M. (2013) 25 million flows later: large-scale detection of

DOM-based XSS. Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security (CCS '13). pp.1193-1204.

LevelDB (2011) A fast and lightweight key/value database library. [online] Available at:

https://github.com/google/leveldb [Accessed 24 November 2014]

Lim, S-J. Ng, Y-K. (1997) Vertical fragmentation and allocation in distributed deductive

database systems. Information Systems, 22(1), pp.1-24.

Lim, S. H. (2014) Design and Implementation of HTML5 based Hybrid Application for

References

 121

Mobile Social Networking Service. In 8th International Conference on Future

Generation Communication and Networking.

Liu, H. Gong Y. (2013) Analysis and Design on Security of SQLite. International

Conference on Computer, Networks and Communication Engineering: Beijing.

Liu, Q. Zhang, Y. Yang, H. (2013) POSTER: trend of online flash XSS vulnerabilities. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications

security (CCS '13), pp.1421-1424.

Liu, W. (2012) Research on cloud computing security problem and strategy. 2012 2nd

International Conference on Consumer Electronics, Communications and Networks

(CECNet), pp. 1216-1219.

Liu, Y. Li, F. Guo, L. Shen, B. Chen, S. (2012) A server's perspective of internet streaming

delivery to mobile devices. 2012 Proceedings INFOCOM, IEEE, pp. 1332-1340.

Liu, Y. Zhao, W. Wang, D. Fu, L. (2015) A XSS Vulnerability Detection Approach Based

on Simulating Browser Behavior. 2nd International Conference on Information

Science and Security (ICISS), (pp. 1-4).

Livshits, B. Bace, R. Neville-Neil, G. (2013) Browser security: appearances can be

deceiving. Communications of the ACM, 56(1).

Lyubashevsky, V. Masny, D. (2013) Man-in-the-middle secure authentication schemes

from LPN and weak PRFs. In Advances in Cryptology–CRYPTO 2013, pp. 308-325.

Malviya, V.K. Saurav, S. Gupta, A. (2013) On Security Issues in Web Applications

through Cross Site Scripting (XSS), Software Engineering Conference (APSEC),1,

pp.583,588.

Mansfield-Devine, S. (2010) Divide and conquer: the threats posed by hybrid apps and

HTML 5. Network Security, 2010(3), pp.4-6. [Online]. Available at:

http://dx.doi.org/10.1016/S1353-4858(10)70033-7 (Accessed: 12 January 2015).

Mao, X. Xin, J. (2014) Developing Cross-platform Mobile and Web Apps. CIGR

Proceedings, 1(1).

Maras, J. Carlson, J. Crnkovic, I. (2011) Client-side web application slicing. 26th

IEEE/ACM International Conference on Automated Software Engineering (ASE),

pp.504-507.

Martinez-Cruz, C. Blanco, I. J. Vila, M. A. (2012) Ontologies versus relational databases:

are they so different? A comparison. Artificial Intelligence Review, 38(4), 271-290.

Mayer, J. R. Mitchell, J. C. (2012) Third-party web tracking: Policy and technology. 2012

IEEE Symposium on Security and Privacy (SP), pp. 413-427.

Mazilu, M.C. (2010) Database replication. Database Systems Journal, 1(2), pp.33-38.

McFarland, D. Nicholson, D. B. (2007) Client/Server Computing Basics. Handbook of

References

 122

Computer Networks: Distributed Networks, Network Planning, Control,

Management, and New Trends and Applications, 3, pp.1-15.

Mechanic, A. Rubbelke, L. Kornellis, H. (2007) Expert SQL Server 2005 Development.

Berkley: Apress.

Medhi, J. (2003) Stochastic Models in Queueing Theory. 2nd ed. San Diego: Elsevier

Science.

Mehta, N. Sicking, J. Graff, E. Popescu, A. Orlow, J. (2012) Indexed Database API.

[online] Available at: http://www.w3.org/TR/IndexedDB. Accessed on: 17 March

2012 [Accessed 10 January 2016]

Meng, W. Wong, D.S. Furnell, S. Zhou, J. (2015) Surveying the Development of

Biometric User Authentication on Mobile Phones. Communications Surveys &

Tutorials, IEEE , 99, pp.1-1.

Meucci, M. Keary, E. Cuthbert, D. (2008) Open Web Application Security Project

(OWASP) Testing Guide. [online] Available at: https://www.owasp.org/images

/5/56/OWASP_Testing_Guide_v3.pdf [Accessed 20 February 2014]

Mewara, B. Bairwa, S. Gajrani, J. (2014) Browser's defenses against reflected cross-site

scripting attacks. International Conference on Signal Propagation and Computer

Technology (ICSPCT), pp.662,667.

Minhas, U. Rajagopalan, S. Cully, B. Aboulnaga, A. Salem, K. Warfield, A. (2013)

RemusDB:transparent high availability for database systems. The VLDB Journal,

22(1), pp.29-45.

MSDN (2012) IndexedDB. [online] Available at: http://msdn.microsoft.com/en-us/library

/ie/hh673548(v=vs.85).aspx. [Accessed 5 January 2014]

Mozilla developer network (MDN) (2012) IndexedDB. [online] Available at:

https://developer.mozilla.org/en/IndexedDB [Accessed 15 February 2013].

Mozilla developer network (MDN) (2014) Web Storage API. [online] Available at:

https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API [Accessed 15

February 2015].

Myeong, H. W. Paik, J. H. Lee, D. H. (2012) Study on implementation of Secure HTML5

Local Storage. Journal of Internet Computing and Services, 13(4), 83-93.

Naseem, S.Z. Majeed, F. (2013) Extending HTML5 local storage to save more data;

efficiently and in more structured way. Eighth International Conference on Digital

Information Management (ICDIM), pp.337-340.

Nikbakhsh, S. Manaf, A. B. A. Zamani, M. Janbeglou, M. (2012) A novel approach for

rogue access point detection on the client-side. 2012 26th International Conference

on Advanced Information Networking and Applications Workshops (WAINA), pp.

References

 123

684-687.

OWASP (2010) OWASP. [online] Available at: https://www.owasp.org/index.php

/Main_Page [Accessed 10 October 2014].

OWASP (2013) Top 10 2013-Top 10. [online] Available at: https://www.owasp.org

/index.php/Top_10_2013-Top_10 [Accessed 8 April 2014].

OWASP (2014) Password Storage Cheat Sheet. [online] Available at:

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet [Accessed 12

October 2014].

Özsu, M.T. Valduriez, P. (2011) Principles of Distributed Database Systems. 3rd ed. New

York: Springer Science & Business Media.

Pandey, S. Chauhan, A. S. (2014) An Efficient RC4 Based Secure Content Sniffing for

Web Browsers Supporting Text and Image Files. Advanced Computing, Networking

and Informatics, 2, pp. 325-332.

Park, J-Y. Yi, O. Choi, J-S. (2010) Methods for practical whitebox cryptography,

International Conference on Information and Communication Technology

Convergence (ICTC), pp.474-479.

Patil, P. Bhutkar, S. Ashtaputre, N. Kumar, A. (2012) Amanda Back-up of SQLite.

International Conference on Communication, Information & Computing Technology

(ICCICT), pp.1-6.

Pelizzi, R. Sekar, R. (2012) Protection, usability and improvements in reflected XSS

filters. Proceedings of the 7th ACM Symposium on Information, Computer and

Communications Security (ASIACCS '12), pp. 5-5.

Pigott, D.J. Hobbs, V.J. (2011) Complex knowledge modelling with functional entity

relationship diagrams 2011) VINE, 41 (2), pp. 192-211.

Pillai, T.S. Chidambaram, V. Hwang, J-Y. Arpaci-Dusseau, A.C. Arpaci-Dusseau, R.H.

(2013) Towards efficient, portable application-level consistency. 9th Workshop on

Hot Topics in Dependable Systems (HotDep '13), 8 , pp.6.

Pinto, P. Pinto, A. Ricardo, M. (2013) End-to-end delay estimation using RPL metrics in

WSN. Wireless Days (WD), pp. 1-6.

Pokorny, J. (2013) NoSQL databases: A step to database scalability in web environment

(2013) International Journal of Web Information Systems, 9 (1), pp. 69-82.

Pool, P. W. Parnell, J. A. Spillan, J. E. Carraher, S. Lester, D. L. (2006) Are SMEs

Meetings the Challenge of Integrating E-commerce into Their Businesses? A Review

of the Development, Challenges and Opportunities, International Journal

Information Technology and Management, 5(2/3), pp.97-113.

References

 124

Prince, J. D. (2013) HTML5: Not Just a Substitute for Flash. Journal of Electronic

Resources in Medical Libraries, 10(2), pp.108-112.

Ramakrishnan, R. Gehrke, J. (2002) Database management systems. 3rd edn. New York:

Osborne/McGraw-Hill.

Ramya, T. Malathi, S. Pratheeksha, G. R. Kumar, V. D. (2014) Personalized authentication

procedure for restricted web service access in mobile phones. 2014 Fifth

International Conference on the Applications of Digital Information and Web

Technologies (ICADIWT), pp. 69-74.

Rane, S. Wang, Y. Draper, S. C. Ishwar, P. (2013) Secure biometrics: Concepts,

authentication architectures, and challenges. Signal Processing Magazine, IEEE,

30(5), 51-64.

Rauti, S. Leppänen, V. (2012) Browser extension-based man-in-the-browser attacks

against Ajax applications with countermeasures. Proceedings of the 13th

International Conference on Computer Systems and Technologies, pp. 251-258.

Reynolds, J. (2000) eCommerce: a critical review. International Journal of Retail &

Distribution Management, 28(10), 417-444.

Riley, R. D. Ali, N. M. Al-Senaidi, K. S. Al-Kuwari, A. L. (2011) Empowering users

against sidejacking attacks. ACM SIGCOMM Computer Communication Review,

41(4), 435-436.

Rosenfeld, L. Morville, P. (2006) Information architecture for the world wide web. 3rd ed.

Sebastopol: O'Reilly Media.

Ruiz, R.D.S. Amatte, F.P. Park, K.J.B. Winter, R. (2015) Overconfidence: Personal

Behaviors Regarding Privacy that Allows the Leakage of Information in Private

Browsing Mode. International Journal of Cyber-Security and Digital Forensics,

4(3), pp.404-417.

Rumble, S. M. Ongaro, D. Stutsman, R. Rosenblum, M. Ousterhout, J. K. (2011) It’s time

for low latency. Proceedings of the 13th USENIX conference on Hot topics in

operating systems, pp.11.

Runceanu, A. Popescu, M. (2013) Innovations and Advances in Computer, Information,

Systems Sciences, and Engineering. Lecture Notes in Electrical Engineering, 152,

pp.839-847.

Rutanen, K. Gómez-Herrero, G. Eriksson, S.L. Egiazarian, K. (2013) A general definition

of the big-oh notation for algorithm analysis. CoRR. Available at:

http://kaba.hilvi.org/homepage/publications/big-oh/bigoh-slides.pdf. Last Accessed:

20 July 2016

References

 125

Saha, A. Das, A. (2012) A detailed analysis of the issues and solutions for securing data in

cloud. Journal of Computer engineering (IOSRJCE), 4(5), pp.11-18.

Saiedian, H. Broyle, D. (2011) Security Vulnerabilities in the Same-Origin Policy:

Implications and Alternatives. Computer Journal, 44(9), pp.29 – 36.

Sarris, S. (2013) HTML5 Unleashed. Indianapolis: Sams.

Sevilla, M. Nassi, I. Ioannidou, K. Brandt, S. Maltzahn, C. (2014) SupMR: Circumventing

Disk and Memory Bandwidth Bottlenecks for Scale-up MapReduce. 2014 IEEE

International Parallel & Distributed Processing Symposium Workshops (IPDPSW),

pp.1505-1514.

Shar, L. K. Tan, H. B. K. (2013) Defeating SQL injection. Computer, (3), 69-77.

Shar, L.K. Tan, H. B. K. (2012) Auditing the XSS defence features implemented in web

application programs. Software, IET, 6(4), pp.377-390

Sharma, T. N. Bhardwaj, P. Bhardwaj, M. (2012) Differences between HTML and

HTML5. International Journal Of Computational Engineering Research, 2(5).

Shashank, T. (2011) Professional NoSQL. Indianapolis: John Wiley & Sons.

Shema, M. (2012). Hacking web apps: detecting and preventing web application security

problems. 1st ed. Waltham: Syngress.

Shi, C.G. (2013) Analysis of Markov Models. Applied Mechanics and Materials, 462,

pp. 243-246.

Shin, H. Kim, D. Hur, J. (2015) Secure pattern-based authentication against shoulder

surfing attack in smart devices. Seventh International Conference on Ubiquitous and

Future Networks (pp. 13-18).

Shulman, A. (2006) Top Ten Database Security Threats. [online]. Available at: http://

www.schell.com/Top_Ten_Database_Threats.pdf. [Accessed 16 Februart 2013]

Singh, A. Chatterjee, K. (2015) A secure multi-tier authentication scheme in cloud

computing environment. 2015 International Conference on Circuit, Power and

Computing Technologies (ICCPCT), pp. 1-7.

Smith, B. (2015) X-Origin Resources. In Beginning JSON (pp. 133-158). New York:

Apress.

Sunil, (2015) Trends and practices of consumers buying online and offline: An analysis of

factors influencing consumer’s buying. International Journal of Commerce and

Management, 25(4), pp.442-455.

Stalker, J. Gibbins, B. Meidl, P. Smith, J. Spooner, W. Hotz, H. R. Cox, A. V. (2004) The

Ensembl Web site: mechanics of a genome browser. Genome research, 14(5), 951-

955.

References

 126

Stallings, W. (2013) Cryptography and Network Security: Principles and Practice, 6 ed.

New York: Prentice Hall.

Stallings, W. Brown, L. (2008) Computer Security: Principles and Practice. New York:

Prentice-Hall,

Stamm, S. Sterne, B. Markham, G. (2010) Reining in the web with content security policy.

Proceedings of the 19th international conference on World wide web, pp. 921-930).

Stark, E. Hamburg, M. Boneh, B (2009) Symmetric cryptography in Javascript.

, ACSAC'09, pp. 373-381.

Statcounter.com, (2016) StatCounter - Free Invisible Web Tracker, Hit Counter and Web

Stats. [online] Available at: https://statcounter.com [Accessed 24 February 2016].

Statista (2016) Statistics portal. [online] Available at: http://www.statista.com/statistics

/203734/global-smartphone-penetration-per-capita-since-2005 [Accessed 10 January

2016].

Stevens, L. Owen, R. J. (2014) The Truth About HTML5 Web Apps, Mobile, and What

Comes Next. In The Truth About HTML5, pp. 153-164.

Stinson, D. R. (2006) Cryptography: theory and practice. London: Chapman &

Hall/CRC.

Stockhammer, T. (2011) Dynamic adaptive streaming over HTTP--: standards and design

principles. Proceedings of the second annual ACM conference on Multimedia

systems, pp.133-144.

Stonebraker, M. (2010) SQL Databases v. NoSQL Databases. Communications of the

ACM, 53(4), pp.10-11.

Strozzi, C. (1998) NoSQL A Relational Database Management System. [online]

Available at: http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page

[Accessed 17 March 2012].

Stuttard, D. Pinto, M. (2011) Web Application Hacker’s Handbook: Finding and

Exploiting Security Flaws. 2nd ed. Indianapolis: Wiley Publishing.

Sumathi, S. Esakkirajan, S. (2007) Fundamentals of Relational Database Management

Systems. Springer Berlin Heidelberg.

Summers, S. Schwarzenegger, C. Ege, G. Young, F. (2014) The emergence of EU criminal

law: cyber crime and the regulation of the information society. Oxford: Bloomsbury

Publishing.

Szefer, J. Jamkhedkar, P. Chen, Y. Y. Lee, R. B. (2012) Physical attack protection with

human-secure virtualization in data centers. 2012 IEEE/IFIP 42nd International

Conference on Dependable Systems and Networks Workshops (DSN-W), pp. 1-6.

References

 127

Ta, H. Esper, T. Hofer, A. R. (2015) Business to Consumer (B2C) Collaboration:

Rethinking the Role of Consumers in Supply Chain Management. Journal of

Business Logistics, 36(1), 133-134.

Taivalseeri, A. Mikkonen, T. (2011) The Web as an Application Platform: The Saga

Continues. Software Engineering and Advanced Applications (SEAA), 37th

EUROMICRO Conference, pp. 170-174.

Taivan, C. José, R. Silva, B. (2014) Understanding the use of web technologies for

applications in open display networks. IEEE International Conference on Pervasive

Computing and Communications Workshops (PERCOM Workshops), pp. 500-505.

Takesue, M. (2008) A Protection Scheme against the Attacks Deployed by Hiding the

Violation of the Same Origin Policy. Second International Conference on Emerging

Security Information, Systems and Technologies, SECURWARE '08, pp.133-138.

Tamhankar, A.M. Ram, S. (1998) Database fragmentation and allocation: an integrated

methodology and case study, Systems, Man and Cybernetics, Part A: IEEE

Transactions on Systems and Humans, 28(3), pp.288-305.

Tang, Y. Lee, P.P.C. Lui, J.C.S. Perlman, R. (2012) Secure Overlay Cloud Storage with

Access Control and Assured Deletion. IEEE Transactions on Dependable and

Secure Computing, 9(6), pp.903-916.

Tauro, C. J. Aravindh, S. Shreeharsha, A. B. (2012) Comparative study of the new

generation, agile, scalable, high performance NOSQL databases. International

Journal of Computer Applications, 48(20), 1-4.

Tendulkar, D. M. Phalak, C. (2011) Proactive performance testing using SQL

performance assurance services (SQL-PASS). Proceedings of the International

Conference & Workshop on Emerging Trends in Technology (ICWET '11), pp.541-

547.

Thakur, J. Kumar, N. (2011) DES, AES and Blowfish: Symmetric key cryptography

algorithms simulation based performance analysis. International journal of emerging

technology and advanced engineering, 1(2), 6-12.

Tian, Y. Liu, Y. C. Bhosale, A. Huang, L. S. Tague, P. Jackson, C. (2014) All your screens

are belong to us: attacks exploiting the html5 screen sharing api. IEEE Symposium on

In Security and Privacy (SP), pp. 34-48.

Tirumala, S.S. Sathu, H. Naidu, V. (2015) Analysis and prevention of account hijacking

based incidents in cloud environment. In 2015 International Conference on

Information Technology (ICIT) (pp. 124-129).

Totok, A. Karamcheti, V. (2011) Exploiting Service Usage Information for Optimizing

Server Resource Management. ACM Transactions on Internet Technology, 11(1).

References

 128

Tresadern, P. Cootes, T. F. Poh, N. Matejka, P. Hadid, A. Levy, C. Marcel, S. (2013)

Mobile biometrics: Combined face and voice verification for a mobile platform.

IEEE pervasive computing, (1), 79-87.

Tudorica, B.G. Bucur, C. (2011) A comparison between several NoSQL databases with

comments and notes. 10th Roedunet International Conference (RoEduNet), pp.1-5.

Uehara, S. Mizuno, O. Kikuno, T. (2001) An implementation of electronic shopping cart

on the Web system using component-object technology. Proceedings. Sixth

International Workshop on Object-Oriented Real-Time Dependable Systems, pp.77-

84.

Ullman, L. (2012) PHP and MySQL for dynamic web sites. 4th edn. Berkeley: Peachpit

Press.

Van der Lans, R. F. (2006) Introduction to SQL: mastering the relational database

language. 4 ed. Harlow: Addison-Wesley.

Van der Mei, R. D. Hariharan, R. Reeser, P. K (2001) Web Server Performance

Modeling. Telecommunication Systems, 16(3-4), pp.361-378.

Van der Veen, J.S. Van der Waaij, B. Meijer, R.J. (2012) Sensor Data Storage

Performance: SQL or NoSQL. 2012 IEEE 5th International Conference on

Physical or Virtual Cloud Computing (CLOUD), pp.431-438.

Vargo, S. L. Lusch, R. F. (2011) It's all B2B… and beyond: Toward a systems perspective

of the market. Industrial Marketing Management, 40(2), 181-187.

Vilaplana, J. Solsona, F. Teixido, I. Mateo, J. Abella, F. Rius, J. (2014) A queuing theory

model for cloud computing. Journal of Supercomputing, 69(1), pp. 492-507.

Vishwakarma, S. Samant, P. K. Sharma, A. (2015) Attacks in a PKI-Based Architecture

for M-commerce. 2015 IEEE International Conference on Computational

Intelligence & Communication Technology (CICT), pp. 52-56.

Vogt, P. Nentwich, F. Jovanovic, N. Kirda, E. Kruegel, C. Vigna, G. (2007) Cross Site

Scripting Prevention with Dynamic Data Tainting and Static Analysis. In NDSS,

pp.12.

W3C (2010) Web SQL Database. [online] Available at: https://www.w3.org/TR

/webstorage [Accessed 10 December 2015].

W3C (2013) File API. [online] Available at: http://www.w3.org/TR/file-upload/ [Accessed

10 April 2015].

W3C (2014) HTML5. [online] Available at: http://www.w3.org/TR/html5/ [Accessed 20

November 2015]

W3C (2015) Indexed Database API. [online] Available at: http://www.w3.org/TR/

IndexedDB/ [Accessed 10 April 2015].

References

 129

W3C (2015) Web SQL Database. [online] Available at: https://www.w3.org/TR/

webstorage/ [Accessed 10 January 2016].

Walden, D. (2014) The Arpanet IMP Program: Retrospective and Resurrection. Annals of

the History of Computing, IEEE, 36(2), 28-39.

Walker, J. D. Chapra, S. C. (2014) A client-side web application for interactive

environmental simulation modeling. Environmental Modelling & Software, 55(0),

pp.49-60.

Walker, S. M. Shan, J. (2015) Using the DIMMACSS-PSG Intelligent Robotic

Middleware to Control Real-World and Simulated Multi-Agent Systems. AIAA

Modeling and Simulation Technologies Conference, pp.404

Wang, D. Zhang, Z. H. (2010) Research and design of E-commerce component. Computer

Engineering and Design, 31(2), 374-377.

Wang, Y. Li, Z. Guo, T. (2011) Program Slicing Stored XSS Bugs in Web Application.

Fifth International Symposium on Theoretical Aspects.

Wang, J. P. Li, X. M. Jiao, C. L (2012) The Network Traffic Management Based on

Queuing Theory. Applied Mechanics and Materials, 121-126, pp.191-194.

Wang, N. Cheng, X. Gou, Q. (2015) Four Express Service Cooperation Modes for B2C E-

Commerce: Models and Analysis. International Journal of Knowledge-Based

Organizations (IJKBO), 5(4), pp.1-18.

Wassermann, G. Su, Z. (2008) Static detection of cross-site scripting vulnerabilities. 30th

International Conference on Software Engineering, ICSE'08. pp. 171-180.

Weinberg, Z. Chen, E.Y. Jayaraman, P.R. Jackson, C. (2011) I Still Know What You

Visited Last Summer: Leaking Browsing History via User Interaction and Side

Channel Attacks. IEEE Symposium on Security and Privacy (SP), pp.147-161.

Weissbacher, M. Robertson, W. Kirda, E. Kruegel, C. and Vigna, G. (2015) ZigZag:

automatically hardening web applications against client-side validation

vulnerabilities. In 24th USENIX Security Symposium (USENIX Security 15) (pp.

737-752).

Wellin, P. (2013) Programming with Mathematica. Cambridge: Cambridge.

Wernke, M. Skvortsov, P. Dürr, F. Rothermel, K. (2014) A classification of location

privacy attacks and approaches. Personal and Ubiquitous Computing, 18(1), 163-

175.

West, W. Pulimood, S. M. (2012) Analysis of privacy and security in HTML5 web

storage. Journal of Computing Sciences in Colleges, 27(3), 80-87.

References

 130

WhiteHat (2014) 2014 Website Security Statistics Report. [online] Available at:

http://info.whitehatsec.com/rs/whitehatsecurity/images/statsreport2014-

20140410.pdf [Accessed 22 April 2015[.

Whitt, W. (2000) An overview of Brownian and non-Brownian FCLTs for the single-

server queue. Queuing Systems, 36, pp.39-70.

Willard, W. (2013) HTML: a beginner's guide. 5th ed. San Francisco : McGraw-Hill.

Willis. Ch. (2009) Preparing for the Cross site request forgery defense. [online]

Available at: http://www.blackhat.com/presentations/bh-dc-08/Willis/Whitepaper/

bh-dc-08-willis-WP.pdf [Accessed 7 February 2013]

Windows (2011) IDBDatabase. [online] Available at: http://msdn.microsoft.com/en-

us/library/windows/apps/hh441231.aspx. [Accessed 21 September 2013]

Wisniewski, J. (2011) HTML5. Online journal, 35(6), pp.53-56.

Xiaojing, L. Liwei, Z. Weiqing, W. (2012) The mechanism analysis of the impact of

ecommerce to the changing of economic growth mode. 2012 IEEE Symposium on

Robotics and Applications (ISRA), pp. 698-700.

XRY (2015) XRY Mobile Forensic Tool. [online] Available at: https://www.msab.com

/products /xry. [Accessed 20 February 2016].

Xu, J. Chang, E. C. Zhou, J. (2013) Weak leakage-resilient client-side deduplication of

encrypted data in cloud storage. Proceedings of the 8th ACM SIGSAC symposium on

Information, computer and communications security, pp. 195-206.

Xu, C. Xia, F. Sharaf, M.A. Zhou, M. Zhou, A. (2014) AQUAS: A quality-aware

scheduler for NoSQL data stores. 2014 IEEE 30th International Conference on

Data Engineering (ICDE), pp.1210-1213

Xu, H. Zhou, Y. Lyu, M. R. (2014) Towards continuous and passive authentication via

touch biometrics: An experimental study on smartphones. In Symposium On Usable

Privacy and Security, SOUPS (Vol. 14, pp. 187-198).

Xu, P. Chen, L. Santhanam, R. (2015) Will video be the next generation of e-commerce

product reviews? Presentation format and the role of product type. Decision Support

Systems, 73, 85-96.

Xue, L. Kumar, S. Cui, C. Kondikoppa, P. Chiu, C-H. Park, S-J. (2013) AFCD: An

Approximated-Fair and Controlled-Delay Queuing for High Speed Networks. 22nd

International Conference on Computer Communications and Networks (ICCCN),

pp.1-7.

Yadav, S. K. Singh, G. Yadav, D. S. (2013) Analysis of Database Replication Algorithm

in Local and Global Networks. International Journal of Computer Applications

(0975 – 8887), 84(6).

References

 131

Yampolskiy, R. V. Ali, N. D'Souza, D. Mohamed, A. A. (2014) Behavioral Biometrics:

Categorization and Review. International Journal of Natural Computing Research

(IJNCR), 4(3), 85-118.

Yang, B. Chu, H. Li, G. Petrovic, S. Busch, C. (2014) Cloud Password Manager Using

Privacy-Preserved Biometrics. 2014 IEEE International Conference on Cloud

Engineering (IC2E), pp. 505-509.

You, W. Qian, K. Lo, D.C.T. Bhattacharya, P. Chen, W. Rogers, T. Chern, J.C. Yao, J.

(2015) Promoting mobile computing and security learning using mobile devices. In

Integrated STEM Education Conference (ISEC), (pp. 205-209).

Yubin, G. Liankuan, Z. Fengren, L. Ximing, L. (2013) A Solution for Privacy-Preserving

Data Manipulation and Query on NoSQL Database. Journal of Computers, 8(6),

pp. 1427.

Yusof, I. Pathan, A. S. K. (2014) Preventing persistent Cross-Site Scripting (XSS) attack

by applying pattern filtering approach. The 5th International Conference on

Information and Communication Technology for The Muslim World (ICT4M),

pp.1-6.

Zachary, P. Poe, S. Vrbsky, S.V. (2013) Comparing NoSQL MongoDB to an SQL DB.

Proceedings of the 51st ACM Southeast Conference (ACMSE '13). pp.5-6.

Zakas, C. N. (2010) Cross-domain Ajax with Cross-Origin Resource Sharing. [online].

Available at: http://www.nczonline.net/blog/2010/05/25/cross-domain-ajax-with-

cross-origin-resource-sharing [Accessed 10 April 2014].

Zhanikeev, M. (2013) A Practical Software Model for Content Aggregation in Browsers

Using Recent Advances in HTML5. 37th Annual Computer Software and

Applications Conference Workshops (COMPSACW). pp.151-156

Zhao, Y. Lin, H. (2014) WEB data mining applications in e-commerce. 2014 9th

International Conference on Computer Science & Education (ICCSE), pp. 557-559.

Zhou, T. Wei, Y. (2013) Database replication technology having high consistency

requirements. 2013 International Conference on Information Science and

Technology (ICIST), pp.793-797.

Appendix A: List of Publications

 132

Appendix A: List of Publications

Kimak, S. Ellman, J. Laing, C. (2012) An Investigation into Possible Attacks on HTML5

IndexedDB and their Prevention. In The 13th Annual Post-Graduate Symposium on The

Convergence of Telecommunications, Networking and Broadcasting (PGNet 2012),

Liverpool, UK. (Appendix D)

Kimak, S. Ellman, J. (2012) CSRF attacks and their prevention. 6th International

Conference on Software, Knowledge, Information Management and Applications (Skima

2012), Chengdu, China. (Appendix C)

Kimak, S. Ellman, J. (2013) Performance Testing and Comparison of Client-side

Databases Versus Server-side. Northumbria University. In The 14th Annual Post-Graduate

Symposium on The Convergence of Telecommunications, Networking and Broadcasting

(PGNet 2013), Liverpool, UK. (Appendix E)

Kimak, S. Ellman, J. Laing, C. (2014) Some Potential Issues with the Security of HTML5

IndexedDB. 9th IET System Safety and Cyber Security, Manchester, UK (Appendix F)

Kimak, S. Ellman, J. (2015) The role of HTML5 IndexedDB, the past, present and future.

The 10th International Conference for Internet Technology and Secured Transactions

(ICITST-2015), London, UK (Appendix G)

Kimak, S. Ellman, J. (2015) HTML5 IndexedDB encryption: Prevention against potential

attacks. International Journal of Intelligent Computing Research (IJICR), Volume 6,

Issue 4, December 2015 (Appendix H)

Appendix B: Firefox extension of encryption library

 133

Appendix B: Firefox extension of encryption library

The Firefox extension needs to be first compressed to xpi format and then copied over to

extension fielder. When the browser is restarted the user is prompted to install the

extension, as shown in the image below. Firefox changed it regulations, so only validated

extensions from the Firefox store can be installed. There is a workaround to disable the

security measures for installing unknown extensions.

Above image is a security warning when installing, as it is not listed in Android store.

The IDB Encryption tab can be found in tools menu in Firefox browser after installing

the package.

 134

Above image is displaying different options, which can be chosen to generate new key

when encrypting IndexedDB stored on local disk.

Above image displays successful generation of key, which means that the files on local

disk are encrypted.

Below are helper functions for EAS encryptions, which are included in IDB Encryption

Firefox extension.

ar t = void 0, u=!1;

var sjcl = {

 cipher: {},

 135

 hash: {},

 keyexchange: {},

 mode: {},

 misc: {},

 codec: {},

 exception: {

 corrupt: function(a) {

 this.toString = function() {

 return "CORRUPT: " + this.message

 };

 this.message = a

 },

 invalid: function(a) {

 this.toString = function() {

 return "INVALID: " + this.message

 };

 this.message = a

 },

 bug: function(a) {

 this.toString = function() {

 return "BUG: " + this.message

 };

 this.message = a

 },

 notReady: function(a) {

 this.toString = function() {

 return "NOT READY: " + this.message

 };

 this.message = a

 }

 }

};

"undefined" != typeof module && module.exports && (module.exports = sjcl);

sjcl.cipher.aes = function(a) {

 this.j[0][0][0] || this.D();

 var b, c, d, e, f = this.j[0][4], g = this.j[1];

 b = a.length;

 var h = 1;

 4 !== b && (6 !== b && 8 !== b) && q(new sjcl.exception.invalid("invalid aes key size"));

 136

 this.a = [d = a.slice(0), e = []];

 for (a = b; a < 4 * b + 28; a++) {

 c = d[a - 1];

 if (0 === a%b || 8 === b && 4 === a%b)

 c = f[c>>>24]<<24^f[c>>16 & 255]<<16^f[c>>8 & 255]<<8^f[c & 255], 0 === a%b

&& (c = c<<8^c>>>24^h<<24, h = h<<1^283 * (h>>7));

 d[a] = d[a - b]^c

 }

 for (b = 0; a; b++, a--)

 c = d[b & 3 ? a: a - 4], e[b] = 4 >= a || 4 > b ? c : g[0][f[c>>>24]]^g[1][f[c>>16 &

255]]^g[2][f[c>>8 & 255]]^g[3][f[c &

 255]]

};

sjcl.cipher.aes.prototype = {

 encrypt: function(a) {

 return y(this, a, 0)

 },

 decrypt: function(a) {

 return y(this, a, 1)

 },

 j: [[[], [], [], [], []], [[], [], [], [], []]],

 D: function() {

 var a = this.j[0], b = this.j[1], c = a[4], d = b[4], e, f, g, h = [], l = [], k, n, m, p;

 for (e = 0; 0x100 > e; e++)

 l[(h[e] = e<<1^283 * (e>>7))^e] = e;

 for (f = g = 0; !c[f]; f^=k || 1, g = l[g] || 1) {

 m = g^g<<1^g<<2^g<<3^g<<4;

 m = m>>8^m & 255^99;

 c[f] = m;

 d[m] = f;

 n = h[e = h[k = h[f]]];

 p = 0x1010101 * n^0x10001 * e^0x101 * k^0x1010100 * f;

 n = 0x101 * h[m]^0x1010100 * m;

 for (e = 0; 4 > e; e++)

 a[e][f] = n = n<<24^n>>>8, b[e][m] = p = p<<24^p>>>8

 }

 for (e =

 0; 5 > e; e++)

 a[e] = a[e].slice(0), b[e] = b[e].slice(0)

 137

 }

};

Sent from the page to the add-on, when the user clicks an element in the page.

var pageModScript = "window.addEventListener('click',
function(event) {" +
 " self.port.emit('click',
event.target.toString());" +
 " event.stopPropagation();" +
 " event.preventDefault();" +
 "}, false);" +
 "self.port.on('warning', function(message) {"
+
 "window.alert(message);" +
 "});"

var pageMod = require('sdk/page-mod').PageMod({
 include: ['*'],
 contentScript: pageModScript,
 onAttach: function(worker) {
 worker.port.on('click', function(html) {
 worker.port.emit('warning', 'Do not click this again');
 });
 }
});

Helper functions to include an array of strings in the payload.

var pageModScript = "self.port.emit('loaded'," +

 " [" +

 " document.location.toString()," +

 " document.title" +

 "]" +

 ");"

var pageMod = require('page-mod').PageMod({

 include: ['*'],

 contentScript: pageModScript,

 onAttach: function(worker) {

 worker.port.on('loaded', function(pageInfo) {

 console.log(pageInfo[0]);

 console.log(pageInfo[1]);

 });

 }

});

var element = document.createElement("MyExtensionDataElement");

 element.setAttribute("application_state", "ready");

 document.documentElement.appendChild(element);

 138

 //create a custom event and dispatch it

 // using the custom element as its target

 var ev = document.createEvent("Events");

 ev.initEvent("MyExtensionEvent", true, false);

 element.dispatchEvent(ev);

The Firefox extension of IDB Encryption can be downloaded from

https://github.com/stefankim/IDB-Encryption

 139

Appending C: An Experimental Analysis and Possible

Solution for the Cross Site Request Forgery Attack

6th International Conference on Software, Knowledge, Information

Management and Applications (Skima 2012), Chengdu, China.

Appending C: An Experimental Analysis and Possible Solution for the Cross Site Request Forgery

Attack

 140

Appending C: An Experimental Analysis and Possible Solution for the Cross

Site Request Forgery Attack

Stefan Kimak, Jeremy Ellman

CEIS, Northumbria University
Newcastle upon Tyne, UK

Stefan.kimak@Northumbria.ac.uk

Abstract— A Cross-Site Request Forgery (CSRF/XSRF) is

web application vulnerability where malicious code placed

on a web site can make requests to another web site using

the victim’s credentials. This kind of attack appears to come

from the victim who still logged in, but is done without his

knowledge. The attack can be constructed in many ways, as

send email to other user or change password without user

acknowledgment, using the permission the user has given.

This paper discusses two CSRF attacks and a defense

against them. The most commonly known defenses are

discussed and explained and implemented into experimental

scenarios. These defenses are implemented as a tool in PHP

and are tested. The results are evaluated and compared with

reported work. From the tests performed a defense using

randomly generated token is recommended.

Keywords-component web security; CSRF;XSRF; cross site

request forgery

I. INTRODUCTION

The Open Web Application Security Project (OWASP)
[1] has identified the Cross-Site Request Forgery (CSRF) as
one of the top 10 web security vulnerabilities. The attacker
creates a web site that appears innocent, but when a victim
loads the page, his browser inadvertently sends a request to
a vulnerable web application that performs an action useful
to the attacker [2]. A link, image, iframes, JavaScript or
other content can execute the malicious code.

A CSRF attack happens when a victim’s browser thinks
that the request is coming from him, rather than from the
attacker’s code on the malicious site. This is possible
because the browser sends the victim’s cookie with the
request, and the application assumes that request came from
that particular user [3]. Cross-site request forgeries are often
HTTP GET requests collected and sent through the use of
some html feature that loads automatically (like an image,
iframes or script tag). The user typically thinks that he is
performing a different task but his web page requests have
side effects. These exploit the users own browser to send the
users security credentials to the attackers target site.

CSRF are possible on any site that allows images or
links to be posted even if the actions use the HTTP POST
method [4].

This paper proceeds as follows. Firstly we describe
possible defenses against CSRF attacks, which cover
existing work in this area. Then we describe the
experimental scenario, and possible simulated attacks this
supports. Next we discuss the design and implementation of
a tool that can protect against CSRF attacks. We then
conclude with discussions and future work.

II. DEFENCES

In this section we review several possible defenses against

CSRF attacks. Such are attacks are difficult to defend

against, as they exploit the automatic loading features of
images, iframes, etc that execute automatically when a web

page is loaded. The following defenses are all executed at

the server. That is, they try to ensure that the credentials

used in a secure transaction are legitimately those of the

authorized user. We describe in turn the Secret Validation

Token, Referrer Header, and Challenge-Response.

A. Secret Validation Token

The session token is a randomly generated unique number

that ensures a unique relationship between a web

application and the user’s browser. In a secure application

session tokens are included as variables in the http header.

When an http request (i.e. web page request) is received the

application verifies that the correct token is included. The

attacker will not be able to perform an attack without

knowing the session token [5].

B. The Referrer Header

The referrer header defense consists of checking the HTTP

header referrer URL to see if an action request comes from

the same host that initiated the request [6]. This solution is

not reliable since for privacy reasons the http referrer is not

always sent. The user can also switch off sending the

referrer in the browser. If a request ignores the referrer
header then this request will be ignored. The referrer might

be sent from another domain, but the server needs to have

in place a cross-domain policy, which lists the authorized

and secure domain [7].

This defense is also weak as is easy to spoof or trick, so

that some web pages can have fake referrer header. Some

Appending C: An Experimental Analysis and Possible Solution for the Cross Site Request Forgery

Attack

 141

web pages do not use referrer checks, so this method is still

not the most suitable.

C. Challenge-Response

CAPTCHA as the distorted graphic letters used to defend

many web sites. The user must enter the correct letters to
confirm the page on which they entered their password is

the same page being sent to the server. This method

prevents against robotic submissions of forms.

We now move on to describe experimental scenario.

III. EXPERIMENTAL SCENARIOS AND ATTACKS

In this section we describe the experimental scenario and

possible variation on the CSRF attack. These exploit the

login form, a change password request, and related attacks.

These attacks follow the general scenario fig (1) as

described in [6].

A. Login form

Fig. 12. Login CSRF, [6]

In the Login CSRF attack an attacker uses CSRF to log a

user in to a site using the user credentials. The attacker then

waits for them to submit sensitive information. The attacker

the forges request to an honest site. Attacker logs in with

his own credentials, establishing a user session of the

attacker.

The following user requests to the honest site are done

within the user session of the attacker.

Scenario:

• The victim visits a web page which requires user

login

• The page will contain attackers attack code, which is

a automated submission form for login

• The victim will be login to application, but with

attackers credentials

• The victim may add a credit card to his account,

because the application contains purchasing

goods.

• The details will be added to attackers account, and

the victim might not even realize it.
Here, malicious code performs an automated submission

of a web form. The form contains the attacker’s username
and password, which will cause that a victim will login to an
application inadvertently using the attacker’s credentials.
Thus, all of the victim’s actions will be performed using the
attacker account.

An attack is possible even if the application is using
POST method, as JavaScript code can be used here [9].

B. Change password

• Attacker finds a site1 from where he wants to steal

victims or administrator account.

• The site1 has a function, which can change a

password (most of web sites has this function).

• Now the attacker needs to trick the victim or
administrator to change the password.

• The attacker can trick administrator as a fake

message on bulletin forum, the image loads

automatically and the code changes the

administrator password with his credentials.

• The attacker sends an email to administrator with

a fake link, which will point him to fake website

and the action will be performed in the

background without administrator knowledge.

• The attacker places an image with an attack code

into site2.

• This site will execute the command, and unless the

site had specific CSRF protections in place, the

user’s password would end up being changed.

• This attack succeed only when the victim or

administrator are still logged on site1, where the

session or cookies are still active.

• The attacker can now log into site1 with the

victims or administrator’s username, which is

known and the changed password “1234”.

C. Attacks

1) Attack number 1

This attack takes all the user’s cookies, which enters a site,

grab then and insert into txt file or database, it depend of

the php file structure.

The user needs to click on the particular link to perform an

attack.

2) Attack number 2

When a user load a site the attacking image loads a URL
address, which will send an email on behalf and without

knowledge of the user.

IV. DESIGN AND IMPLEMENTATION

PHPProxy is a web-based proxy written in PHP by the

eProxies.info Team. It is used to hide ones identity on the

Internet, protect privacy, and to speed up Internet

connections.

Appending C: An Experimental Analysis and Possible Solution for the Cross Site Request Forgery

Attack

 142

PHPProxy is a web HTTP proxy designed to bypass
restrictions such as global IP address permissions. The
interface allows all the features to be switched on or off. All
HTTP requests and responses are filtered by PHPProxy,
which sits down between the user browser and server.

A. Implementation of the extension for the PHPMyProxy

The extension will include interception from the server,
which will include the link (source) of the image or iframes,
header information, referrer, cookies and active sessions.
The implementation of the extension will be divided into
few subsections, which will include functions to parse the
html, interception of the header and form submitted, and
checks for analysis of the code.

B. Parse the HTML

A function to parse the HTML page was implemented
using the simple html DOM library from sourceforge [10].
The function parses the html source code into a string. The
function creates a DOM object from the html page, which
will be processed.

The code allows looping through the DOM objects,
which will find all the images [11]. The images might be
printed or passed to other function where their can be
checked.

The code will output a source of the image, and will
loop till all sources URL of images are shown. The images
source will be displayed parsed or non-parsed, depended
from the web page. The parsed source will include URL as
http://example.com/image.jpg, and non-parsed source will
list only path to image as /example/images/bg/image.jpg.

C. Interception

The code below gets HTTP request and print on screen all

header information.
The code will output a response header, with hostname,

referrer and cookies available for the current session.

The main information about the response header from
the server will be shown, as it will be a necessary part when
testing the extension of defenses. The response header
cannot be modified, but the cookies for each session will be
stored into text file for testing purposes.

D. Checks for analysis

The codes in table I are a part of the implemented library,
which checks the URL for possible attacks and compares

them with already known attacks. The URL is broken into

parts and each part must be checked. The code checks for

example for the extension of the URL, so if it is a jpg, png,

or gif image. It also checks if the image is stored on the

same domain, and informs the user if any possible attack is

found. The user can decide if wants to show the image or

not, but by default the images will be discarded and not

shown. Basically the code takes the URL strings, break

them down into their domain and compare them. The steps

involved are described in Table I.

CODES FOR PARSING HTML PAGE

	

Number	

Parsing	HTML	code	

Codes	 Description	

1.	 if(isset($_POST["url"])){		
$url	=	$_POST["url"];	

Get	the	url	address	from	the	
form	 entered	 in	 the	 main	
form	

2.	 include('simple_html_dom.
php');	

Create	 DOM	 from	 URL	 or	
file,	 which	 will	 include	 a	
Dom	library	

3.	 $html=@file_get_html($url;		
$html2	="$url";	

Read	 an	 html	 file,	 which	
will	be	the	url	entered.	

4.	 “foreach($html->find('img')	
as	$element)	{“	[10]	

Find	all	the	images	tags	and	
put	 then	 in	 element	
variable	

The codes in table II checks if the image has the same host.

If so then continue to display the image. If not, check the

extension of the file and if it is not an image then do not

display it.

CODES FOR THE ANALYSIS OF THE IMAGE SOURCE

Number	 Analysis	of	the	image	source	

Codes	 Description	

Appending C: An Experimental Analysis and Possible Solution for the Cross Site Request Forgery

Attack

 143

1.	 $test_domains	=	$element->src;	

$test_domains	 =	 explode(",",	
$test_domains);	

Get	 the	 source	 of	 each	

image	 stored	 in	 the	
variable	element	

2.	 $looking_for=parse_url($html2,	
PHP_URL_HOST);		
foreach	($test_domains	as	$url)	{	

Parse	 url	 and	 get	 the	
host	 of	 the	 particular	
url	address	

3.	 $parsed	=	parse_url($url);	
if	 (array_key_exists('host',	
$parsed))	{	
$host	 =	 explode('.',	
$parsed['host']);		

$found	 =	 implode('.',	
array_slice($host,	-2,	2));	

Parse	 the	 url	 and	 get	
the	host	
	

4.	 $filename	=	basename($url);	
$ext	 =	 substr(strrchr($filename,	
'.'),1);	

Get	the	extension	of	the	
image	file	

5.	 if	 (preg_match("/$looking_for/",	
"$url",	$matches))		{	
echo	"Match	was	found	
";	
echo	$matches[0];	}	

Check	the	whole	host	of	
image	 for	 matching	
word	 against	 the	 host	
from	the	url	

6.	 if($ext	==	'jpg'	||	$ext	==	'png'	||	

$ext	==	'gif')		{	

Checks	 if	 the	 extension	

of	 the	 image	 is	 an	 jpg,	
png	or	gif	format	

7.	 if($looking_for	==	$found)	{	
echo	 $parsed['host']	 .	 '	 is	 a	
match	 with	 '	 .	 $looking_for	 .	
'
';}	

looking_for	 ==	 $found	
where	 found	 is	 the	
entered	url	host	and	the	
looking	for	is	the	host	of	
the	image	

8.	 else		 	 {	
echo	"Not	the	same	
";}}	
else		 	 {	

echo	"Not	an	image	
";}}	
else		 	 {	
echo	"No	parsed	url	
";	

Else	 statements,	 if	 the	
domains	 are	 not	 the	
same,	 images	 don’t	

have	 an	 extension	 or	
the	 url	 can	 not	 be	
parsed	

E. Checks for analysis Defences miniform

The definition miniform came from the existing PHPProxy.

This means that it is a kind of form where the options can

be checked, which means that will become active. The

miniform is available on every page on default, for the

purpose of user awareness.

Miniform with options to apply specific defense methods

and functions will be included as an extensive div to
existing miniform. The form will be hidden, but if the user

clicks the show button the form will appear. From there the

user can choose a specific method, which will be applied to

proxy.

The defense extension form will be available on each page,

and the user can click each defense, which will be straight

applied to each shown page.
When the user request a page, page that shows some
information, which might be sensitive, and after user opens
new tab or windows, the defense can be applied to page,
which the user wish to protect. So if the user opens new tab
and the page requested include an attack file in form an
image or iframes, the page will be analyzed for safe images
or iframes and after display only safe elements. If the user
wish to protect or prevent the page with sensitive data can
apply defenses 1-3, which will be applied by refreshing the
page. The best-known protection defense will be set by
default, and will be evaluated.

F. DEFENCES MINIFORM

The tables III, IV and V show the defenses included in the

miniform, with short description and a code example. The

code examples are part of implementation of the extension

for the existing PHP proxy.

SECRET VALIDATION TOKEN (TOKEN)

Defenses

Defense

name

Defense

description
Code example

Generate random

token

Secret
Validation

Token
(Token)

Check against
the session
value (rather

than cookie
value)
Rewrites the

<form>and
add CSRF
token to them.

This will be
after
submitting the

form checked
if the token is
the same or

not.

$input="<in

put

type='hidde

n'name='$na

me'value=\"

$tokens\"$e

ndslash>";

$form=preg_

replace('#(

<form[^>]

method\s=

\s*["\']pos

t["\'][^>]*

>)#i',

 '$1' .

$input,

$form);

function

generateFormTok

en($formName)

{

$token =

md5(uniqid(micr

otime(),

true));

$_SESSION[$form

Name.‘ token‘]

= $token;

return $token;

}

The table III shows a defense using tokens. The token
will be applied to every form and the token value will be
random md5 number. As this is a random number, it is hard
to guess it, so the attack might be less efficient. When the
user requests a page, the proxy will append a token to each
form. This is possible, because the proxy is parsing the
entire page and will look only for the forms tags. Every
form tag will be secured with this random token and after
the user submits the form the function of valid token will
check if the token is valid or not. A token will be then
assigned to every form, so that every form will have
different token.

If the token is still valid, then the form will be submitted.
Otherwise the page will send an error message. The whole
operation will be done on the server side, so no user
interaction is needed. In that case an attacker will need to
compromise the server itself to configure the code. The
token is submitted encrypted will the form value.

Appending C: An Experimental Analysis and Possible Solution for the Cross Site Request Forgery

Attack

 144

THE REFERRER HEADER

Defenses

Defense

name
Defense description Code example

The
Referrer
Header

Authentication data in the same
HTTP Request checks the referrer

header from submitted page against
all other pages opened in
PHPProxy, compare them and

submit request only if the header
match.

“eregi($_SERVER["
HTTP_HOST"],

str_replace("www.",

"",
strtolower($_SERV
ER["HTTP_REFER

ER"]))))”
[12]

CHALLENGE-RESPONSE

Defenses

Defense

name

Defense

description
Code example

Challenge-
Response

CAPTCHA, Re-

Authentication
(password),
One-time Token

This defense is based on the user authentication if a
requested action will be performed. The main idea is to use

a CAPTCHA (a challenge-response which is used to ensure

that a request is made by human), which will generate a

random word, and the use will need to enter it correct to

perform requested action. This defense will be most used in

forums or blogs, where the prevention of automated posting

is necessary. Example is shown in table V.

Other defenses implemented will be checking the

referrer header, as shown in table IV. In that case the code

implemented checks if the submitted form is from the same
page or different URL address. If the headers match then

the form value is submitted to the requested page and the

action would be done. PHPProxy compare these headers as

shown in the code example, so if the header is coming form

example.com and the host of the requested page match with

it, then the form value will be submitted. The main

principle consists in cross checking the referrer value.

V. TESTING

Table VI and VII contains test results for each scenario.

In this scenario each attack and defense was applied.

Whenever a different operating system or browser has been

used, the attack implemented in particular scenario has
been tested. The test was then repeated and the result

recorded.

SCENARIO 1

	Test	number		
	

Testing	Results	

Defense	

applied	

Browser

/OS	

Attack	 Result	

Test	number	1	

	

Token	 Firefox/

Windows	
Attack

number 1	
PASS	

Test	number	2	

	

Token	 Firefox/O
SX	

Attack
number 1	

PASS	

Test	number	3	

	

Header	 Safari/Wi
ndows	

Attack
number 1	

PASS	

Test	number	4	

	

Header	 Safari/OS
X	

Attack
number 1	

PASS	

From the test result can be seen that the applied

defenses in the scenario 1 has been successful in all test

numbers.

Scenario is described in Section III A, which is login

scenario.

Attack number 1- Described in Section III C.

The defenses applied here are randomly generated token,

which is applied to every submitted form and referrer

header.

SCENARIO 2

	Test	number		
	

Testing	Results	

Defense	

applied	

Browser

/OS	

Attack	 Result	

Test	number	1	

	

Token	 Firefox/

Windows	
Attack

number 2	

PASS	

Test	number	2	

	

Token	 Firefox/O

SX	
Attack

number 2	

PASS	

Test	number	3	

	

Header	 Safari/Wi
ndows	

Attack

number 2	
PASS	

Test	number	4	

	

Header	 Safari/OS
X	

Attack

number 2	
PASS	

From the test result can be seen that the applied defenses in
the scenario 2 has been successful in all test numbers. The

defenses applied here are randomly generated token, which

is applied to every submitted form and referrer header.

Attack number 2- Described in Section III C.

Scenario is described in Section III A, which is message

board (forum), change password.

A. Evaluation of the experiment results

The tests of experimental tool have been performed and the

results are shown in testing Section V.

Defense against token has been discussed in Section II.A as

the most commonly used by today’s web applications. The

results indicated that generation of random tokens has

stopped more than 90% of attacks. This defense is easy to

implement and with a designed class, which can be

included in every file, making it the best known defense for

web applications.

Appending C: An Experimental Analysis and Possible Solution for the Cross Site Request Forgery

Attack

 145

The disadvantage to this defense is that the attacker can

predict a random token. This can be done be observing the

web application in detail, and find the generated algorithm.

The referrer header defense has stopped many attacks, but

still has some major complications. The main advantage to

this defense is when a server is using cross domain policy;

the method works as expected and stopped most of the

attacks. The disadvantage is that a user can switch off

sending referrer header on their browser, which makes the

defense useless.

Captcha is very simple and easy to spoof defense, and

many attackers need just short time to pass it. The defense

has the advantage to stop attacks from computer based

attacks like robotic attacks, because a confirmation is

required.

VI. FUTURE WORK

Securing web applications against flash attacks needs to
be implemented. Increasing the extension of the PHPProxy
to handle such kinds of attacks could be done in the future.
The report has concentrated mostly on defense against
images and iframes attacks, but it has been mentioned that
flash files can affect the users and web pages in the same
way.

The PHPProxy server is a working on the server side, so
it can handle only the responses, which are coming back
from the server to user. The request is made by user side,
which means that different programming language could be
applied, as JavaScript. The future work may include
implementation of the interception of the user side to
process http requests. This could help the end user to see
what requests browser makes to server.

VII. CONCLUSION

This paper has described several cross site request
forgery (CSRF) attacks that are used against web
applications. We have also given examples of the most
widely used defenses. These defenses have been
implemented in an existing tool, PHPProxy, which is a
server side HTTP proxy. Attacks were modified and
implemented into scenarios to test defenses. From the
results it can be seen that some of the expected defenses,
which are used in most web applications, have been
completely successful.

The extension tool PHPProxy has been successful in
demonstrating the defenses against possible attacks. CSRF
tool has been designed to protect end user against several
attacks.

Defenses using tokens are the most commonly used by
today’s web applications. The results indicated that
generation of random tokens has stopped more than 90% of
attacks. This defense is easy to implement and with a

designed class, which can be included in every file, making
it the best-known defense for web applications.

The disadvantage to this defense is that the attacker can
predict a random token. This can be done be observing the
web application in detail, and find the generated algorithm.

Presented and demonstrated attacks show that CSRF
attacks are dangerous and web applications needs to be
better secured. Web developers and users can use tools as
the one designed to protect their web applications and
themselves.

REFERENCES

[1] Brodkin, J. (2007) The top 10 reasons Web sites get hacked.
Network World. Vol. 24 Issue 39, p1-20

[2] Stuttard, D. Pinco, M. (2007) Web Application Hacker’s Handbook.
Published by: Wiley Publishing, Indianapolis, Indiana

[3] Ahmad, D (2008) The Confused Deputy and the Domain Hijacker.
[Online] IEEE Digital Library

[4] Willis. Ch. (2009) Preparing for the Cross site request forgery
defense. Available at: http://www.blackhat.com/presentations/bh-dc-
08/Willis/Whitepaper/bh-dc-08-willis-WP.pdf Accessed on: 10
Februaary 2011

[5] Ramarao, R. Radhesh, M, Pais, A. (2009) Tool for preventing image

based CSRF attacks. Available at:
http://isea.nitk.ac.in/rod/csrf/PreventImageCSRF/icscf09PreventIma
geCSRF.pdf Accessed on: 22 February 2011

[6] Barth, A. Jackson, C. and Mitchell, J.C. (2008) Robust defenses for
cross- site request forgery. [Online] In Proc. ACM Conference on
Computer and Communications Security (CCS)

[7] Son, S. (2009) Prevent Cross-site Request Forgery: PCRF.
Available at:
http://www.cs.utexas.edu/~samuel/PCRF/Final_PCRF_paper.pdf
Accessed on: 7 February 2011

[8] Jovanovic,N. Kirda, E. Kruegel, CH. (2006) Preventing Cross Site
Request Forgery Attacks. Securecomm and Workshops. p:1-10

[9] Chen, S. (ND) PHP Simple HTML DOM Parser. Available at:
http://simplehtmldom.sourceforge.net/ Accessed on: 17 March 2011

[10] Gabriel, C. (2008) Scraping Data: PHP Simple HTML DOM Parser.
Available at: http://www.bitrepository.com/php-simple-html-dom-
parser.html Accessed on: 21 March 2011

[11] Anonymous (2005) Digital point forum. Available at:
http://forums.digitalpoint.com/showthread.php?t=101263 Accessed
on: on: 15 March 2011

Appending C: An Experimental Analysis and Possible Solution for the Cross Site Request Forgery Attack

 146

 147

Appendig D: An Investigation into Possible Attacks on

HTML5 IndexedDB and their Prevention

The 13th Annual Post-Graduate Symposium on The Convergence of

Telecommunications, Networking and Broadcasting (PGNet 2012), Liverpool, UK.

Appendig D: An Investigation into Possible Attacks on HTML5 IndexedDB and their Prevention

 148

Appendig D: An Investigation into Possible Attacks on HTML5 IndexedDB and

their Prevention

Stefan Kimak , Dr. Jeremy Ellman, Dr. Christopher Laing

Northumbria University, CEIS

Newcastle upon Tyne, UK

stefan.kimak@unn.ac.uk , jeremy.ellman@unn.ac.uk, christopher.laing@unn.ac.uk

Abstract- over the past 20 years web browsers have changed

considerably from being a simple text display to now supporting

complex multimedia applications. The client can now enjoy

chatting, playing games and Internet banking. All these

applications have something in common, they can be run on

multiple platforms and in some cases they will run offline. With

the introduction of Hyper Text Markup Language v.5 (HTML5)

this evolution will increase, with browsers offering greater levels

of functionality. However, with the introduction of HTML5, new

persistent database security vulnerabilities could impact on this

functionality. IndexedDB functionality involves storing

application data on the client computer. As client data including

sensitive information is now stored locally, consequently

vulnerabilities within HTML5’s IndexedDB scheme could have

devastating consequences. This paper will investigate potential

vulnerabilities, and propose security framework for HTML5’s

IndexedDB files that could be included as part of an inherited

web browser security.

Keywords-component web security; HTML5; IndexedDB

VIII. INTRODUCTION

HTML5 is still in the standardisation process. The

motivation for the changes and enhancements coming with

HTML5 is that the web browser should be capable of running

client side applications. That is, client side process will be able

to avoid the ineffectiveness and network connectivity issues

found in server side applications. Consequently, major

browsers now support the majority of the new HTML5
components and Application Programming Interfaces (API).

Therefore an HTML5 browser client side database may well

contain stored data from online services that makes use of the

new functionality of HTML5. It is suggested that this new

level of client side data storage will ensure that such HTML5

enabled browsers are going to be a “juicy target for cyber-

attacks” [1]. Consequently HTML5 opens up entirely new

security challenges and loopholes [2].

This paper is going to investigate possible vulnerabilities

and attacks, which might be possible in HTML5’s IndexedDB.

These attacks are mostly known, as Web applications attacks,

however, with HTML5 and greater level of data stored on the
client side, then these attacks will have potentially greater

consequences.

This paper presents a solution to possible attacks, which

might be a framework to provide the client database with input

validation. The following section will discuss the background

to the new HTML5 standard, security issues and

vulnerabilities. In section IV a possible security framework

designed to circumvent these issues will be presented.

IX. BACKGROUND

HTML is the main programming language for web pages.

Since it arrived in 1990 [3] the versions have evolved to allow

web applications to act as desktop applications [4]. The World
Wide Web Consortium (W3C) and Web Hypertext

Application Technology Working Group (WHATWG) are

currently collaborating on the latest development of HTML

and its features and capabilities. These are collectively known

as HTML5 [5].

An important aspect of HTML5 is that the web applications

can run offline using local storage. This means that client data

will be stored on client side and accessed anytime that the

application requires it [6].

Fig 1. HTML5’s IndexedDB functionality

When a client connects to a HTML5 web application for

the first time, an API transaction will be created. The

application will ask the client to store data locally. This data

will be stored in a client side database, IndexedDB. If a

network failure occurs, the data from the database will be read

and the client can still use the application. This means that an

application can be run offline as seen in Fig. 1. Pictures and

text from pages could be stored in IndexedDB.
The advantage of HTML5 compared to desktop programs

is that web applications do not require any installation or

startup configuration and will also run on any device that

supports HTML5, such as laptops, phones or tablets. This

Appendig D: An Investigation into Possible Attacks on HTML5 IndexedDB and their Prevention

 149

reduces the barrier of entry for new customers since clients

can begin taking advantage of the web applications just by

visiting the relevant web site [7]. Benefits of client side

storage include connectivity failure, where an application can

be used even a connection is not available. Offline content

also allows access to and creation or modification of data

stored locally that the application may use offline. Currently,

websites behave as desktop applications; the application

reloads the content instantly, without needing to reload the
page. The performance improvements include less bandwidth

usage as data is stored on client side and the data is transferred

only when the web application requires it [8].

Web-based software is increasingly popular data as

applications are constantly available on the Web as services.

This means that end client software will be developed using

web technologies [9]. Such applications and services consist

of data and code that can be located anywhere in the world.

This allows a wide range of applications to support multiple

clients and share data worldwide. With the help of client-side

storage, data can be periodically saved to the browser while

the client completes it. After the data has been processed the
information is then transmitted to the server [10]. This will

speed up application load time [11].

HTML5's IndexedDB is a client side database integrated

into the client’s web browser. The application uses local data

stored on a client system. [12]. It caches large data from server

to client side using JavaScript Object Stores, equivalent to

tables in relational databases [13]. An application stores

JavaScript objects into IndexedDB when the application is

connected to the Internet. When the connection terminates for

any reason the application can fetch data from the IndexedDB

and the application may then be run offline [14]. The
application runs as if it were a desktop application. This will

be beneficial to mobile clients as they can use the application

even if the connection is lost due to poor signal for example,

however it can be run on many platforms such as tablets or

smartphones [15].

A. Related Work

HTML5 is a new standard, so obviously not many security

investigations and preventions against vulnerabilities exist.

Anyways, client side vulnerabilities might be secured by

existing preventions, such as input validation. Domain Name

Systems (DNS) spoofing attacks can be prevented by using

Transport Layer Security (TLS). Also encryption of client data

is required for a better security. Some possible vulnerability in

HTML5 and client side databases has been point out by West

[5]. These vulnerabilities are going to be discussed more in

detail, also possible attacks, which might be possible from

these vulnerabilities.

B. Structuring the database

Unlike other web-based databases such as Structured

Query Language (SQL) databases that use tables for storing

data, IndexedDB uses object stores. Multiple object stores use

a single database. Keys are assigned to every value in an

object store within a database, with keys being assigned by

key path or by a key generator.

IndexedDB was created to allow local storage of data,

however this does not include the following features:

1) Internationalised sorting – Internationalised sorting

cannot be supported with IndexedDB due to the wide

variety of scripting languages in use in modern day web

applications.While the database can't store data in a

specific internationalised order, the client can sort the data
that is read out of the database manually.

2) Synchronising - Server-side databases currently cannot be

synchronised due to the time-consuming implementation

required for its development. Developers have to write

code that synchronises a client-side indexedDB database

with a server-side database, which is time consuming.

3) Full text searching- The API does not have an equivalent

of the LIKE operator in SQL. W3Schools [16] describes it

as, “The LIKE operator is used to search for a specified

pattern in a column”.

By assuming that these limitations do not have an important

impact of security issue, the explanation is very crucial part of
IndexedDB. IndexedDB does not use SQL; it uses queries on

an index that produces a cursor, which is used to iterate across

the result set. Index is a data structure (a way of storing and

organizing data) that improves the retrieval of data from

database. Anyways an IndexedDB is a No Sequel (NOSQL)

database, which means that to perform an SQL injection is not

possible. IndexedDB is built on a transactional database

model. Everything the client does in IndexedDB always

happens in the context of a transaction. The IndexedDB API

provides lots of JavaScript objects that represent indexes,

tables, cursors, but each of these is tied to a particular
transaction. Although, applications cannot execute commands

or open cursors outside of a transaction. Transactions have a

defined lifetime, so if someone attempts to use a transaction

after it has completed the process of passing the object, it will

throw error message (exception). The transaction model

carries many advantages, including the prevention of instances

whereby a client may try to run more than one instance of a

web application at the same time. Without transactional

operations, the two instances could create database issues and

affect functionality.

C. HTML5 vs. HTML4 storage

Web developers have used cookies for storing data on the

client side since Netscape Corp introduced the idea in 1994

[17]. Cookies are limited as a website could only store a very

small amount of data. Cookies are sent to server with every

HTTP request, which is slowing down the connection.

HTML5 introduces several alternatives to cookies and storing
data on the client side, which is a Local storage [15]. Part of a

local storage is indexedDB [18].

X. SECURITY VULNERABILITIES

As HTML5 can be run on multiple platforms, potential

attackers may be more able to attack clients of a wider range

Appendig D: An Investigation into Possible Attacks on HTML5 IndexedDB and their Prevention

 150

of browsers. Any security breaches that occur in a web

application do not open the client’s data to attack, as this

information is stored only locally on the client machine, and

therefore can only be accessed when this machine itself is

compromised [19].

IndexedDB operates by using the same-origin policy

(SOP), which involves linking stored data to a particular

domain or subdomain, so that the data cannot be accessed

from any other source [20].
The same-origin policy is the only form of browser protection

against potential security threats. It works by not allowing

access to client data from sources that could be deemed to be

the original source, perhaps by the use of cross-site scripting

(XSS) for example. That is, if applications in multiple

windows or frames are downloaded from different servers,

they should not be able to access each other’s data and scripts

[21]. The prevention of data or attacks coming from a different

domain is possible. Web browsers are using this prevention

technique against untrusted site attacks.

HTML5’s new functionality allows attackers to access

untrusted sites, even if they are on a different domain,
meaning that the SOP will not apply here. Security

vulnerability and potential attacks might be possible here, and

the attacker will be able using hacking techniques to reach and

access the database from a different domain [22]. If the

website or application is vulnerable to XSS attacks, then the

attacker could steal the data from client database. When the

SOP is not correctly configured, then content from different

web sites will allow attackers to manipulate the data through

their code access.

The SOP prevention is not enough to prevent an attacker to get

the data from a different domain. As the data is stored on the
local machine in database, the applications are limited to

access only data created by particular application on a domain.

This is a security vulnerability of web browsers, where the

client database is situated and an attacker might compromise

the client data [22].

[23] states, “The SOP is not the correct security mechanism

and requires redesign to meet the access-control requirements

of Web-based assets”.

The data stored in IndexedDB is not using any kind of client

input validation, which may be why possible flaws exist. The

data is stored on a client’s machine as unencrypted files. This
means that any attacker with access to the file system can

directly extract the information from the files. In order to

mitigate this, the application must obviously encrypt any

sensitive information before writing it to the database. In

addition, operating system level mechanisms (file system

permissions, file system level encryption, etc.) should be used

to prevent access to the files by unauthorized users.

The validation hasn’t been implemented by W3C, but

needs to be implemented by the browser [24]. The database

and API is still in draft, but the validation of data needs to be

strictly applied. As there is not any input validation, any site

can store potentially dangerous JavaScript code into client
local machine. As the client is not aware what code is stored

onto their local disk, security vulnerabilities apply here.

Coming back to same origin weaknesses, that can lead to
attacks such as cross-site request forgery (CSRF), XSS, and

Web cache poisoning [23].

Using HTML5 localStorage to replace session data stored in a

cookie improves the application’s scalability and prevents

simple CSRF attacks because, unlike a cookie data in

localStorage is not automatically sent [25].
An example of client side vulnerability might be XSS.

XSS is an attack technique that forces a web site to execute

malicious code in a client’s Web browser [22]. XSS may be

used to steal all the data stored in a client’s browser or to

change client settings [26].

Web application security is crucial in managing threats. If a

security hole exists as XSS the whole client database might be

compromised [27]. An attacker is able to read the complete

client database of a domain exploiting XSS vulnerability.

Storing sensitive data is dangerous in this case, as there is a

possibility that all the data of domain can be compromised and
accessed by attacker.

XI. POSSIBLE PREVENTIONS

The following framework could be used in the development

of IndexedDB web applications for the prevention of such

attacks outlined above. The framework will be divide into

parts as:

• Client side data encryption

• Code analysis

• Input validation

• SOP

The framework will be implemented to browser. This will add
the required security for storing data in a database. The data

will be stored as encrypted files and will encrypt data every

time an application writes the data into a database. When the

application reads the data back then the decryption process

will be initiated. Client side encryption and decryption of data

stored in IndexedDB, which will be a part of browser

extension. This will be based in web browser as extension.

The extension will be a third party encryption component as

JavaScript Microsoft Exchange ActiveSync (EAS) or Secure

Hash Algorithm (SHA)-256 implementation [28]. This method

of encryption use verification hash, which ensure that the

encryption is correct, without the decryption of data on the
server. The data cannot be decrypted on the server, only in the

web browser.

The data could be safely manipulated and only be retrieved by

origin of the site that creates it.

The framework will protect the client database from

various attacks. This is done be static and dynamic analysis of

code. The code or data will be analyzed when the data will be

written or read from a database. In some cases the data can

include JavaScript code, which might be potentially

dangerous.

The framework will consist of static and dynamic data
validation.

The solution is to build a framework, which will check the

data in IndexedDB. The data will be checked every time the

application requires transaction to database. The transaction

Appendig D: An Investigation into Possible Attacks on HTML5 IndexedDB and their Prevention

 151

might be read or written. The framework will consist of two

parts:

• The first part is static analysis of code, which is going to
be written to database.

• The second parts will be more complex in the dynamic
code analysis, where the code will be analysed during

run time.

Static analysis of code will aim to highlight any possible

attacks that become apparent.
Dynamic analysis will be done when the application has

been launched. The analysis will be based on checking the

API call from web application to client side database and

reverse. Before the actual action gets executed the code

analysis checks the call and after the successful processing of

the call, the action will be performed. Other method to secure

the code and the client side data is to use the HTML5 sandbox.

This method provides the functionality of locking down the

content from third party content.

When sandbox is enabled it locks down the harmless content

that behind the scenes attempts to access privileged

information. This means that third party content couldn’t
access all the data in client side database.

Input and output validation to secure the client side

application and database will be build on the top of

IndexedDB API. The validation takes the string and returns

true if the input is permitted by the input validation policy)

otherwise returns false.
Possible solution to prevention against XSS attacks will be

to secure the input validation. Other solutions might include
using a different policy, as the current same origin-policy is not
secure. Potential policies might include Content Security
Policy (CSP). The CSP restricts common attack vectors in the
client browser. The CSP employs a set of directives that define
the security policy for all types of webpage content on the
webpage [23].

XII. CONTRIBUTION

The main contribution of this paper will be the

investigation of security mechanisms for IndexedDB, also the

implementation of a security framework to address these

issues.

This framework will be developed from an analysis of

identified vulnerabilities in HTML5.
 A series of experiments will be trialed by using static and

dynamic code analysis will be used to test the proposed
framework. The outcome of this work will aid in securing
HTML5 and will be available to W3C and Web Hypertext
Application Technology Working Group.

XIII. CONCLUSION

This paper has presented possible vulnerabilities and

attacks in HTML5’s IndexedDB. Although attacks are

possible because the standard is not completed yet, but mostly

because vulnerabilities such as XSS are a crucial part of

todays web applications. Vulnerabilities exist in all web

application, but securing client side, especially when the

sensitive data is going to be stored is a crucial part. This paper

has point out vulnerabilities as XSS and the downfalls of same

origin policy in HTML5’s IndexedDB.

This paper also briefly presents a possible solution to input

validation, where the data needs to be encrypted before it has

been read or written. Possible solutions to XSS in HTML5’s

IndexedDB may include developing a new security policy that

improves on the same origin policy.

[1] Ryck, P. Desmet, L. Philippaerts, P. Piessens, F. (2011) A Security

Analysis of Next Generation Web Standards, (ENISA). Tech. Rep.

[2] Anttonen, M. Salminen, A. Mikkonen, T. Taivalsaari, A (2011)
Transforming the web into a real application platform: new
technologies, emerging trends and missing pieces. ACM Symposium on
Applied Computing

[3] Sefton, P. (2009) Towards Scholarly HTML. Serials Review. Volume
45, Issue 3.p.154-158

[4] West, W. and Pulimood, M. (2012) ANALYSIS OF PRIVACY AND
SECURITY IN HTML5 WEB STORAGE. ACM digital library. Journal
of Computing Sciences in College. Volume 27 Issue 3

[5] Mitchell, E. (2010) Standards, Efficiency, and the Evolution of Design.
Journal of Web Libibrarianship. Volume 4, Issue 4

[6] Clark, J. (2010) HTML5. Online Journal. CINAHL database.
ISSN:0146-5422 .Volume 34 Issue 6, p12

[7] Harjono, J. Ng, G. Kong, D. Lo, J. (2011) Building smarter web
applications with HTML5. Conference of the Center for Advanced
Studies on Collaborative Research

[8] Hilerio, I. (2011) Building offline access in Metro style apps and
websites using HTML5. Available at:
http://channel9.msdn.com/Events/BUILD/BUILD2011/PLAT-376T.
Accessed on: 20 February 2012

[9] Taivalseeri, A. Mikkonen, T. (2011) The Web as an Application
Platform: The Saga Continues. Software Engineering and Advanced
Applications (SEAA), 2011 37th EUROMICRO Conference.

[10] Nichols, V. (2010) Will HTML5 restandardize the Web? Computer.
Volume: 43, Issue: 4. P. 13-15

[11] Wisniewski, J. (2011) HTML5. Online journal. ISSN:01465422. Vol. 35
Issue 6, p53-56, 4p

[12] Casario, M. Elst, P. Brown, Ch. Wormser, N. Hanguez,C. (2011)
HTML5 Solutions: Essential Techniques for HTML5 Developers.
Publisher: FRIENDS OF ED; 1 edition ISBN: 1430233869

[13] Windows development (2011) IDBDatabase. Available at:
http://msdn.microsoft.com/en-us/library/windows/apps/hh441231.aspx.
Accessed on: 24 March 2012

[14] Gihan, D. Karunarathna, D.G.M ; Udantha, G.P.D.M ; Gunathilake,
J.A.I.M ; Pathirathna, P.S.P ; Rathnayake, R.A.T.L (2011) Database
based and RESTful email system with offline web based email client.
Advances in ICT for Emerging Regions (ICTer), 2011 International
Conference.

[15] Ijtihadie, R.M. Chisaki, Y. Usagawa, T. Cahyo, H.B. Affandi, A. (2011)
Offline web application and quiz synchronization for e-learning activity
for mobile browser. TENCON 2010 - 2010 IEEE Region 10 Conference.
On page(s): 2402 - 2405 ISBN: 978-1-4244-6889-8

[16] W3Scool (2012) Like Operator. Available at:
http://www.w3schools.com/sql/sql_like.asp. Accessed on: 17 April 2012

[17] Tappenden, A. (2008) A Three-Tiered Testing Strategy for Cookies.
Software Testing, Verification, and Validation, 2008 1st International
Conference. p: 131 – 140

[18] Lennon, J. (2010) Create modern Web sites using HTML5 and CSS3
Implementing the canvas and video elements in HTML5. Available at:
http://www.ibm.com/developerworks/web/tutorials/wa-html5/wa-html5-
pdf.pdf. Accessed on: 17 March 2012

[19] Hsu, F., Chen, H.,(2009) Secure file system services for web 2.0
applications. CCSW '09 Proceedings of the 2009 ACM workshop on
Cloud computing security. Pages 11-18

Appendig D: An Investigation into Possible Attacks on HTML5 IndexedDB and their Prevention

 152

[20] Mozilla developer network (2012) IndexedDB . Available at:
https://developer.mozilla.org/en/IndexedDB Accessed on: 15 February
2012

[21] Takesue, M. (2008) A Protection Scheme against the Attacks Deployed
by Hiding the Violation of the Same Origin Policy.Emerging Security
Information, Systems and Technologies, 2008. SECURWARE '08.
Second International Conference p. 133 - 138

[22] Stuttard, D. Pinto, M. (2011) Web Application Hacker’s Handbook 2nd
ed. Published by: Wiley Publishing, Indianapolis, Indiana

[23] Saiedian, H. Broyle, D. (2011) Security Vulnerabilities in the Same-
Origin Policy: Implications and Alternatives. Computer Journal.
Volume: 44, Issue: 9, p29 – 36.

[24] W3C (2010) IndexedDB . Available at:
http://www.w3.org/TR/IndexedDB / Accessed on: 5 March 2012

[25] Mayer, M. (2011) Computer (Same origin Policy) Published in:
Computer, IEEE Journals & Magazines. Volume: 44, Issue: 12, p: 6 - 7

[26] Lawton, G. (2007) Web 2.0 Creates Security Chalenges. Computer.
Volume 40, Issue:10, p. 13-16

[27] Schmidt, M. (2011) HTML5 Web Security. Available at:
http://media.hacking-lab.com/hlnews/HTML5_Web_Security_v1.0.pdf.
Accessed on: 20 April 2012

[28] Morse, R. Nadkarni , P. Schoenfeld, D. Finkelstein, D. (2011) Web-
Browser encryption for personal health information. BMC Medical
Informatics and Decision Making, Volume 11

 153

Appendix E: Performance Testing and Comparison of

Client Side Databases Versus Server Side

The 14th Annual Post-Graduate Symposium on The Convergence of

Telecommunications, Networking and Broadcasting (PGNet 2013), Liverpool, UK.

Appendix E: Performance Testing and Comparison of Client Side Databases Versus Server Side

 154

Appendix E: Performance Testing and Comparison of Client Side Databases Versus

Server Side

Stefan Kimak , Jeremy Ellman

Northumbria University, CEIS

Newcastle upon Tyne, UK

stefan.kimak@unn.ac.uk , jeremy.ellman@unn.ac.uk

Abstract- Databases are a crucial part of today’s Internet based

web applications. To date, almost all web applications have used

server side databases. With the adaption of HTML5, which is

currently in the process of being standardized by W3C, new

client side databases are being introduced that will be embedded

in the web browser. Client side databases have the advantage of

reducing load on the web server, but the disadvantage that

database performance will vary depending on the user’s web

browser and in particular how the browser’s designers have

chosen to implement the IndexedDB API.

In this paper we describe appropriate database benchmarks and

apply these to three current web browsers, Google Chrome 24,

Firefox 17. We also compare these results with the popular server

side database MySQL. The benchmarking is based on writing,

reading and deleting database data. The comparison of

benchmarks shows the suitability of client side versus server side

databases.

Our findings are that there are significant performance

differences between the indexedDB implementations. The main

differences are discussed in relation to the benchmark results.

Irrespective of browser differences, the results show that client

side databases perform well in comparison to server side

databases whilst reducing network latency concerns.

Keywords-component; HTML5; IndexedDB, Benchmarking

XIV. INTRODUCTION

The World Wide Web Consortium (W3C) is currently

standardizing HTML5 for the next generation of web

applications. With the new HTML5 standard come new

functionalities. These include IndexedDB , which is a client

side browser based database. The need for IndexedDB

reflects requirements for more storage space, that persists

beyond page refreshes whilst avoiding data transfers to the

server. Storing the data on the client machine can resolve this

issue. Traditional SQL relational databases have been used

since 1976 (Chamberlin, 1976). The changes some companies

made were to use object-oriented databases, as these have

some advantages over SQL. The motivation for the changes

and enhancements coming with HTML5 is that the web

browser should be capable of running client side applications

in the same way that it can run desktop applications. That is,

client side process will be able to avoid the ineffectiveness and

network connectivity issues found in server side applications.

Consequently, major browsers now support the majority of the

new HTML5 components and Application Programming

Interfaces (API). Therefore an HTML5 browser client side

database may well contain stored data from online services

that makes use of the new functionality of HTML5.

Traditional desktop applications, like word processors and

spreadsheets, might be used with Web applications. This

means that client will not need to install any software on the

computer, and will only need a Web browser (Stuttard, 2008).

As Internet access is crucial for Web applications, and it

should be possible to use these Web applications regardless of

connection, so offline applications are an important part of this

development.

The paper will compare various databases in different browser

environments. Both client and server side databases are tested

are. Client side databases include IndexedDB, LocalStorage

and the depreciated WebSQL. Server side databases include

MySQL with InnoDB and MyISAM. The benchmarking

contains data from various testsets, which include the common

create, read, update and delete (CRUD) data operations to and

from a database. A comparison of databases will be discussed

in the next section, where some background data will close up

the details about particular database.

IndexedDB is implemented differently across browsers.

Firefox uses SQLite and Chrome uses LevelDB (LevelDB is

not a SQL database (W3C, 2011)). Like other NoSQL and

Dbm stores, it does not have a relational data model, it does

not support SQL queries, and it has no support for indexes, so

even if IndexedDB is built into Firefox, a SQL-backed

technology with SQL-like overhead is actually used. (MDN,

2011).

XV. BACKGROUND

A. Relational Database

A Relational Database Management Systems (RDMS)

represent records organized in tables. The structure of tables

consists of columns and rows. Columns represent data

categories and row the data (Eaglestone, 1991). The structure

of relational databases is good for managing large amount of

structured data. The disadvantage is their inflexibility, because

their only data structure is tables. They have a problem

handling complex multimedia files, which is important for

complex web applications (Harrington, 1998).
Relational databases are computer programs used to store

information in tables. These tables contain rows and columns

used to sort and retrieve information. The rows and columns

contain related information about the subject of the table. The

Appendix E: Performance Testing and Comparison of Client Side Databases Versus Server Side

 155

database administrator can define the relationships among the

various types of data. Relational databases require data to be
entered as integers, strings or real numbers. This data must

then be accessed through SQL queries (Conolly and Begg,

2004).

An entity relationship diagram (ERD) is a useful technique for

managing the development of a database information system.

An ERD models data into logical and easy to understand

graphical representations (Thalheim, 1998). Entity relationship

diagrams illustrate the logical structure of databases. Boxes

are used to represent entities, diamonds are normally used to

represent relationships and ovals are used to represent

attributes. The relationship between the boxes can be:

• One to one

• One to many

• Many to many

	
The relationships from the ERD are going to be used when

creating the database tables to create relationships between

them. So the diagram is showing the relationship between the

objects.

B. SQLlite server Side Database

SQLite is the most widely used database for web sites

according to survey by Netcraft (Netcraft, 2006). The main

advantage of SQLite is it is availability (it is used by mobile

browsers on Android and iOS, by PhoneGap for mobile

applications and by Chrome 15 and Safari 5).
The main disadvantage of SQLite is that the W3C do not

support SQLite anymore and some browsers, like Firefox,

removed the SQLite support in their latest versions.

Embedding SQLite in web browsers has resulted in adding

SQLite to the HTML5 Web Storage standard and after

discussion inside the W3C Web Applications Working Group

(Mozilla, 2009).

C. NoSQL Client Side Database

NoSQL (Not only SQL)(Strozzi, 1998) is the solution of

database that is not relational or object oriented. It does store

data in key/value format. The database can handle a large

amount of data, where the relational model is not needed.

They were really used only at the time when the designers of

web services with very large number of users discovered that

the traditional relational database management systems

(RDBMS) are fit either for small but frequent read/write

transactions or for large batch transactions with rare write

accesses, and not for heavy read/write workloads (which is

often the case for these large scale web services as Google,

Amazon, Facebook, Yahoo and such)(Tudorica, 2011).

Advantages of NoSQL databases

NoSQL databases generally process data faster than

relational databases (Leavitt, 2010). Relational databases are

usually used by businesses and often for transactions that

require great precision. Developers usually do not have their

NoSQL databases support ACID (atomicity, consistency,
isolation, durability) in order to increase performance, but this

can cause problems when used for applications that require

great precision. NoSQL databases are also often faster because
their data models are simpler (Banker, 2010). According to

Leavitt (2010) there is a trade-off between speed and model

complexity but it is frequently a trade off worth making.

Disadvantages of NoSQL databases

NoSQL databases face several challenges, which are

overhead and complexity. They do not work with SQL queries,

which means that they need to be manually programmed. In

cases of simple tasks they perform fast, but is time consuming
for complex queries (Leavitt, 2010).

Reliability- Relational databases natively support ACID

(Conolly and Begg, 2004), while NoSQL databases do not.

Therefore NoSQL databases do not offer reliability. For

performing this functionality additional programming is

required.

Consistency- The lack of support ACID transactions leads

to compromising consistency. Banking sites are using
Consistency in their applications; therefore usage of NoSQL

databases might be a problem (Shashank, 2011). On the other

hand their provide better performance and scalability. Most

organizations are unfamiliar with NoSQL databases and thus

may not feel knowledgeable enough to choose one or even to

determine that the approach might be better for their purposes

(Stonebraker, 2010). Unlike commercial relational databases,

many open source NoSQL applications do not yet come with

customer support or management tools. Each NoSQL database

has its own set of APIs, libraries and preferred languages for

interacting with the data they contain.

Few examples document-oriented NoSQL database include

MongoDB, LevelDB, BerkleyDB. The first two databases

store the data on HDD. The BerkleyDB uses ordered

key/value store.

D. LevelDB Client Side Database

LevelDB is a fast key/value storage library written at

Google that provides an ordered mapping from string keys to

string values. The stored data is sorted by key and it provides

an ordered mapping from string keys to string values (Dean,

2011).

E. WebSQL Client Side Database

W3C (2010) wrote that the WebSQL database API is off

active maintenance. They cited lack of independent

implementations as being the reason because most of the

browser relied on SQLite as the underlying database.

WebSQL database brought real relational database

implementation onto browsers. Data could be stored in a very

structured way.

F. IndexedDB Client Side Database

HTML5’s IndexedDB is a client side database integrated

into the client’s web browser. The application uses local data

Appendix E: Performance Testing and Comparison of Client Side Databases Versus Server Side

 156

stored on a client system (Casario, 2011). It caches large data

from server to client side using JavaScript Object Stores,
equivalent to tables in relational databases (Windows, 2011).

An application stores JavaScript objects into IndexedDB when

the application is connected to the Internet. When the

connection terminates for any reason the application can fetch

data from the IndexedDB and the application may then be run

offline (Gihan, 2011). The application runs as if it were a

desktop application. This will be beneficial to mobile clients

as they can use the application even if the connection is lost

due to poor signal for example, however it can be run on many

platforms such as tablets or smart phones (Ijtihadie, 2011).

IndexedDB databases store key/value pairs. The values can
be complex structured objects, and keys can be properties of

those objects. Indexes use property of the objects for quick

searching and sorted enumeration. A key is a data value by

which stored values are organized and retrieved in the object

store.

IndexedDB is built on a transactional database model.

Everything done in IndexedDB always happens in the context

of a transaction. A transaction is an atomic and durable set of

data-access and data-modification operations on a particular

database. It is how a browser interacts with the data in a

database. Any reading or changing of data in the database

must happen in a transaction (MSDN, 2012). The IndexedDB
API provides lots of objects that represent indexes, tables,

cursors, but each of these is tied to a particular transaction. A

command cannot be executed or cursor opened outside a

transaction. Transactions have a defined lifetime, so

attempting to use a transaction after it has completed throws

exceptions (W3C, 2011). IndexedDB does not use SQL; it

uses queries on an index that produces a cursor, which is used

to iterate across the result set. Index is a data structure (a way

of storing and organizing data) that improves the retrieval of

data from database. The structure of an IndexedDB database

can only be modified during a versionchange transaction. This
means that the only time ObjectStores or indexes can be

created or removed is during the versionchange transaction.

Basically, the IndexedDB API automatically creates a

versionchange transaction anytime a database is opened trough

the open method and one of the following two conditions

occur:

• The requested database does not exist.

• The requested database version number is greater

than the version number of the database on the client

machine.

New implementation of open database

Chrome currently still implements the old specification rather

than the new one. Similarly it still has the prefixed

webkitIndexedDB property even if the unprefixed indexedDB

is present.

New IndexedDB projects:

PouchDB - An implementation of CouchDB on top of

IndexedDB. One of the premises is to offer the same

synchronization (master-to-master) decentralized

capabilities of CouchDB on the browser.
BrowserCouch - A similar project but using WebSQL as

browser storage.

Html5sql is a light JavaScript module (jQuery library) that

simplifies working with IndexedDB. Its primary function is to

provide a structure for the SEQUENTIAL processing of SQL

statements within a single transaction. This alone greatly

simplifies the interaction with the database. Many other

smaller features have been included to make things easier,

more natural and more convenient for the programmers.
(http://html5sql.com/index.html). Table with 11000 entries

created in: 1.405s.

G. Differences Between NoSQL and SQL Database

The main difference between NoSQL and a SQL database

is how the data is stored. NoSQL uses key/value as the main

storage. On the other hand SQL is a relational database, which

means that it uses relations (called tables). The databases are
different in scalability and performance. NoSQL database has

advantages over SQL database because it allows scaling an

application to new levels. The new data services require

scalable structures, which can work in the cloud. In

comparison the NoSQL database does not need a database

administrator, or complicated SQL queries and still is

considered faster in managing high amount of data. NoSQL

does not however support SQL Joins, and relations between

tables need to be manually programmed. The differences

between relational and IndexedDB are in storing the data.

Relational databases store tables with rows and columns of

types of data. IndexedDB requires creating an object store for
type of data and saving JavaScript objects to that store. Each

object can have collection of indexes that make it faster to

query and search across. IndexedDB does not support joins,

where relational database does. The comparison of the query

results using joins shows, that IndexedDB performs the query

and renders the data faster. On the other hand the code in

IndexedDB is much more complicated, as all the code needs to

be manually done in JavaScript that is otherwise provided

natively by SQL. IndexedDB can split array in chunks of

small pieces and using setTimeout, instead of loop inserted the

data faster in database.

XVI. TEST SUITE ENVIRONMENT

IndexedDB is the client side database. The database

supports blobs and JavaScript objects. The applications were

tested in Firefox (v.15) and Chrome (v.22). Both of these

browsers fully support the IndexedDB API. The application is

setup on the server, because IndexedDB doe not support local

servers. While Firefox uses the latest W3C specifications an

onupgradeneeded event to determine if a database should be

created or upgraded, Chrome still uses the older and now

obsolete setVersion method.

Appendix E: Performance Testing and Comparison of Client Side Databases Versus Server Side

 157

A. Benchmark for Client Side Database

The benchmark consists of functionality that adds records

to database. The records are randomly generated as follow

example: ssn:"111-11-

1115",name:"Donna",age:12,email:"donna123@gmail.org"

The records are objects of size 151 Bytes.

The ssn is the key of the object stored in the database, which is

also randomly generated. The generator is a JavaScript
random number generator. Purpose of the ssn key is a keyPath

that is the property that makes an individual object in the store

unique. The benchmark measures the time needed to generate

the values and the time needed for insertion. For the

benchmarking and comparison the insertion is the only

important part.

The benchmark firstly opens a database connection, and

creates an object store to store the generated records.

B. Benchmark for Server Side Database

For server side database a JavaScript function will

generate a random name and surname and insert these data

into database. The JavaScript function consists of array of

names, which will be randomly put together and inserted as

one array into database. The scenario is based on a real

application, where the data of people is stored and retrieved

from/to a database.
This scenario is based for benchmarking; it does not consider

security of browser side databases.

The code calls the onsucess function for every record, as the

cursor points the records retrieve it one by one and shows it.

All the retrieved data is stored in memory and from there

output to the browser. Since there is no other way to get all

records from database, this way might be slow in some cases,

where the database contains a large quantity of data.

For insert- The benchmark is measures the time or request for

insertion to time of response.

For retrieve- For the retrieve the benchmark measures time of

request to actual data appearing on the screen. This code

structure is not optimized, as the record retrieval to actual

output of the screen might take longer than just measuring the

time of the response.

XVII. RESULTS AND ANALYSIS

The performance testing of IndexedDB has been compared

to others alternatives as local storage and WebSQL (which has

been deprecated). The tests performed were inserting data in

client side database to show the time of actual insertion. The
IndexedDB has shown that it can insert the data very quickly,

in most cases faster than the others alternatives. This

demonstrates why IndexedDB was chosen by W3C as client

side database, due to the potential of fast inserting and reading

the data. The tables below show insertion of records into

MySQL with MyISAM and InnoDB types. Comparison

between SQL and IndexedDB databases are visibly different

and the results are showing the big potential of client side

storage.
Databases are tested on web server and local machine. These

show data insertion time. Results in tables show the storage

size of data in databases and it can be seen that IndexedDB

uses more storage than a traditional relational SQL database.

Table 1. MySQL database performance testing with MYISAM

Fig. 1 Performance testing: Insertion of records into database
(IndexedDB in Firefox and Chrome)

From the results can be seen that IndexedDB perform faster
in Firefox. The reason is that Firefox implements and
maintains the newest code architecture, as Chrome is still
behind. The results show a visible difference in time, where
the possible reason is usage of backend database.

Fig. 2Performance testing: Insertion of records into database

(Firefox)

Test Amount

of data

Time for

insertion

Type / Browser

0 5 10 15

1000

5000

9000

16000

25000

36000

50000

IndexedD
B	Chrome

Indexedd
b	Firefox

Test Amount

of data

Time for

insertion

1

Time for

insertion

2

Size of

file

Type

Test1 1000 1.09s 1.04s 48KB MYISAM

Test2 2000 2.05s 2.04s 94KB MYISAM

Test3 5000 5.58s 5.14s 232KB MYISAM

Test4 10000 12.178s 11.175s 461KB MYISAM

Test5 20000 23.47s 20.31s 923KB MYISAM

Test6 30000 31.84s 36.24 1.4MB MYISAM

Appendix E: Performance Testing and Comparison of Client Side Databases Versus Server Side

 158

Test1 1000 0.05s LocalStorage/ Chrome

Test2 2000 0.2s LocalStorage / Chrome

Test3 5000 0.75s LocalStorage / Chrome

Test4 10000 1.38s LocalStorage / Chrome

Test5 20000 2.93s LocalStorage / Chrome

Test6 25000 4.61 LocalStorage / Chrome

Test7 29000 5.1s LocalStorage / Chrome

Test8 30000 Failed LocalStorage / Chrome

Test9 200000 LocalStorage / Chrome

Table 2. LocalStorage database performance testing in Chrome

Test Amount

of data

Time

for

inserti

on

Type / Browser

Test1 1000 0.09s WebSQL/Chrome

Test2 2000 0.17s WebSQL/Chrome

Test3 5000 0.37s WebSQL/Chrome

Test4 10000 0.81s WebSQL/Chrome

Test5 20000 1.73s WebSQL/Chrome

Test6 30000 2.24s WebSQL/Chrome

Test7 50000 3.45s WebSQL/Chrome

Test8 100000 7.35s WebSQL/Chrome

Test9 200000 20.45s WebSQL/Chrome

Test10 500000 50s WebSQL/Chrome

Test11 600000 76s WebSQL/Chrome

Test12 700000 80s WebSQL/Chrome

Test13 800000 91s WebSQL/Chrome

Test 14 1000000 Failed WebSQL/Chrome

Table 3. WebSQL database performance testing in Chrome

Test Amount

of data

Time for

insertion

Size of

file

Type / Browser

Test1 1000 0.06s 918KB IndexedDB/FF

Test2 2000 0.09s 1,4MB IndexedDB/FF

Test3 5000 0.15s 2,8MB IndexedDB/FF

Test4 10000 0.35s 4,8MB IndexedDB/FF

Test5 20000 0.77s 9MB IndexedDB/FF

Test6 30000 1.25s 13,3MB IndexedDB/FF

Test7 50000 1.89s 22.2MB IndexedDB/FF

Test8 100000 2,21s 43,8MB IndexedDB/FF

Test9 200000 4,57s 87,5MB IndexedDB/FF

Test10 500000 12s 136MB IndexedDB/FF

Test11 1000000 113s 218MB IndexedDB/FF

Test12 2000000 127s 350MB IndexedDB/FF

Test13 5000000 460s 665MB

Table 4. IndexedDB database performance testing in Firefox

The tables are showing results of various databases in different

browsers.

Fig. 3 Performance testing: Insertion of records into database

(Firefox, WebSQL, Local Storage, IndexedDB)

XVIII. DISCUSSION OF ANALYSIS

A Comparison of the results of inserting the records into

database in Chrome and Firefox can be seen in table 8. This

shows that IndexedDB in Firefox handles the insertion of data

faster than in Chrome. In many forums and support discussion

groups, developers note that Chrome performance is worse

because the support and code architecture is not updated to

support fully IndexedDB. From the results it can be seen that

IndexedDB performs faster than the MySQL database. The

insertion size of object data into database starts at 1K, up to

500K. The insertion of the objects comparing between the

databases is shown in the table.

Network Latency

Client side database process the data on the client side, where

the network latency is minimal. All of the data is stored and

retrieved from the client machine disk, based on the web

application coding. Comparing the results of benchmarking

the client side database handle the data much faster.

Scalability

Data scalability is very important for any web-based business.

The web applications are becoming more scalable to fit the
current market, so there is need for a database, which will

handle this requirement.

Client side databases may have an advantage as they avoid

communications costs and other overheads that server side

databases may incur.

XIX. FUTURE WORK AND MOTIVATION

Internet Explorer 10 (IE10) benchmarking remains to be

done, since currently IE10 does not support IndexedDB

completely. Further experiments will look at various

optimization of retrieving the data from database in a faster
manner.

0 50 100 150

1000(1k)

5000(5k)

20000(20k)

50000(50k)

200000(200k)

Time	(s)

Appendix E: Performance Testing and Comparison of Client Side Databases Versus Server Side

 159

New features of web browsers and new technologies such

as HTML5 bring databases to web browsers. I believe that
these features are the future of upcoming technologies, where

the performance for the end user is important. The motivation

is a investigation into performance of client side databases.

Future work will include discussion on how to properly

merge those two to get good features from both sides or how

do we need to extend one side or the other to avoid certain

overheads.

XX. CONTRIBUTION

The main contribution of this paper is a benchmark that

has the potential to compare performances of client side
databases such as IndexedDB in different browser

implementations.

The implementation of the benchmarking tool to perform

various tests as inserting and reading data has been described

and the results were compared and analyzed.

Future development will include a tool to delete data and

measure the deletion time.

XXI. CONCLUSION

HTML5 IndexedDB performance has been examined in

multiple client browsers. From the results it can be seen that
IndexedDB performs faster in Firefox, but in Chrome the

performance is lacking. Chrome still uses WebSQL,

notwithstanding its deprecation since its performance is fast

when compared to IndexedDB.

In conclusion the backend technology in Firefox uses SQLite

to implement IndexedDB, which supports SQL queries and

indexes for search optimisation. On another hand Chrome is

using its own backend LevelDB, which does not support SQL

queries and indexes. We conclude then that the Firefox

implementation of IndexedDB is a better solution. The

performance depends on the browser as Firefox
implementation of IndexedDB API is much more developed

than Chrome or IE. Firefox uses SQLite as a backend

database, and IndexedDB is implemented on the top of it.

Researchers and developers note that IndexedDB performs

faster with SQL as a backend. Comparing to Chrome

implementation where IndexedDB is implemented on the top

of LevelDB (which is NoSQL) is much slower than Firefox.

On the other end WebSQL (deprecated) performs well in

Chrome, whilst Firefox support for WebSQL has ceased.

REFERENCES

1. Alaric Snell-Pym (2010) NoSQL vs SQL, Why Not Both?
Cloudbook Journal  Vol 1 Issue

2. Banker, K. (2010) MongoDB and e-commerce. Available at:
http://kylebanker.com/blog/2010/04/30/mongodb-and-
ecommerce/

3. Connolly, T. Begg, C. (2004) Database Systems: A Practical

Approach to Design, Implementation and Management. 4th

Edition. Published by Addison Wesley Publishing Company.
ISBN 0321210255

4. Dean, J. Ghemawat, S. (2011) LevelDB: A Fast Persistent Key-Value

Store Available at: http://google-
opensource.blogspot.co.uk/2011/07/leveldb-fast-persistent-key-
value-store.html

5. Eaglestone, B. (1991) Relational databases. Published Cheltenham
: Stanley Thornes. ISBN: 0748711767, 9780748711765

6. Harrington, J. L. (1998) Relational database design clearly
explained. Published San Diego ; London : AP Professional 1998.
ISBN: 0123264251, 9780123264251

7. Leavitt, N. (2010) Will NoSQL Databases Live Up to Their
Promise? Computer. Volume: 43, Issue: 2.
Page(s): 12 - 14

8. MDN (2011) IndexedDB development. Available at:
https://developer.mozilla.org/en/IndexedDB/Basic_Concepts_Beh

ind_IndexedDB
9. Netcraft (2006) November 2006 web server survey. Available at:

http://news.netcraft.com/archives/2006/11/01/november_2006_we
b_server_survey.html

10. Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., & Abramov, J.
(2011). Security Issues in NoSQL Databases. 2011IEEE 10th

International Conference on Trust, Security and Privacy in

Computing and Communications, 541-547. Ieee.

doi:10.1109/TrustCom.2011.70
11. Shashank, T. (2011) Professional NoSQL. Published Indianapolis,

IN : Wiley 2011. ISBN: 6613258156, 9786613258151,
9780470942246

12. Stonebraker, M. (2010) SQL Databases v. NoSQL Databases.
Communications of the ACM. Vol. 53 Issue 4, p10-11, 2p

13. Strozzi, C. (1998) NoSQL A Relational Database Management
System. Available at: http://www.strozzi.it/cgi-

bin/CSA/tw7/I/en_US/nosql/Home%20Page
14. Thalheim, B. (1998) Entity-Relationship Modeling: Foundations

of Database Technology. Published by Springer, New York, USA.
ISBN: 3-540-65470-4

15. Tudorica, B.G. Bucur, C. (2011) A comparison between several
NoSQL databases with comments and notes. Roedunet
International Conference (RoEduNet), 2011 10th. Page(s): 1 - 5

16. W3C (2011) IndexedDB transactions. Available at:
http://lists.w3.org/Archives/Public/public-

webapps/2011JulSep/0614.html

 160

Appendix F: Some Potential Issues with the Security of

HTML5 IndexedDB

9th IET System Safety and Cyber Security, Manchester, UK

Appendix F: Some Potential Issues with the Security of HTML5 IndexedDB

 161

Appendix F: Some Potential Issues with the Security of HTML5 IndexedDB

Stefan Kimak , Jeremy Ellman, Christopher Laing

Northumbria University, Faculty of Engineering and Environment

Newcastle upon Tyne, UK

stefan.kimak@ northumbria.ac.uk , jeremy.ellman@ northumbria.ac.uk, christopher.laing@ northumbria.ac.uk

Keywords: Component web security; IndexedDB, Security,

Forensic Test, Encase

Abstract

The new HTML5 standard provides much more access to
client resources, such as user location and local data storage

etc. Unfortunately, this greater access may create new

security risks that potentially can yield new threats to user

privacy and web attacks. One of these security risks lies with

the HTML5 client-side database. It appears that data stored

on the client file system is unencrypted. Therefore, any

stored data might be at risk of exposure. This paper explains

and performs a security investigation into how the data is

stored on client local file systems. The investigation was

undertaken using Firefox and Chrome web browsers, and

Encase (a computer forensic tool), was used to examine the
stored data. This paper describes how the data can be

retrieved after an application deletes the client side database.

Finally, based on our findings, we propose a solution to

correct any potential issues and security risks, and

recommend ways to store data securely on local file systems.

1 Introduction

While HTML5 is still in the process of being standardized by

the W3C [1], its adoption will greatly help developers

resolve recognized problems, such as media and online data

handling; thereby providing a more robust method for

handling data [20]. Furthermore, the enhanced

functionalities of HTML5, such as a client-side database

called IndexedDB (which will be embedded within the web

browser), will provide additional benefits, such as reducing

the web server load. However, while client-side databases

have the advantage of reducing load on the web server, their

performance will be dependent on the user’s web browser;

particularly, how the browser implements the new client side

database API; otherwise known as the IndexedDB API.
 This paper will focus on the security of this new browser-

based storage capability, and a series of experiments will

show how vulnerable the IndexedDB API is to attacks. These

attacks will be described in more detail later, after which we

will propose methods of protecting against such attacks. This

paper will also investigate how the web application will store
the data in the client-side database, and a series of tests will

be conducted to retrieve the deleted database files. A possible

solution for storing and retrieving data in secure manner will

be proposed and described in further detail.

The testing will use Firefox and Chrome browsers, as they

currently support the IndexedDB client-side database. The

investigation will focus on the data storage mechanism of the
client-side database. To help us analyse the results, a forensic

tool called Encase was used; Encase is an industry standard

computer forensics tool, used in the majority of criminal

cases involving the collection and presentation of digital

evidence [5]. Encase is a software to access raw data, and

provide the functionality to create disk images.

2 Background

The development of new Web technologies faces a trade-off

between stronger security (thereby protecting the user), and

increased functionality (thereby helping the user).
Unfortunately, this trade-off may have resulted in the

development and implementation of an insecure API, namely

IndexedDB API. It should be noted that the implementation

of the IndexedDB into Web browsers is not yet fully

completed; consequently these some of the security risks

may no longer exist in future implementations of the

IndexedDB API. The security issue with the unencrypted

data stored into IndexeddB is considerably a structure flaw.

This means that the database is designed to store all of the

data in unencrypted state.

2.1 Problem identification

IndexedDB is storing data in unencrypted state. This

information might not be sensitive, such as usernames or

password, but can include client name, address, place of

birth or date of birth.
If some of the information is put together, then this can lead

to identity theft.

To prevent leaking of data all over the place, we propose an

algorithm to secure this information, and prevent the end

user from identity theft.

IndexedDB also works on mobile devices, where the data is

stored into internal phone memory. Therefore, the problem

also exists on mobile device, which is more serious

compared to desktop. The deleted data can be retrieved

from any mobile device. As the data is unencrypted, the

security issue is much higher. Considering the scenario
where the mobile phone is lost or stolen, it will be possible

to retrieve the deleted data. This risk of data exposure is

much higher in this case.

Appendix F: Some Potential Issues with the Security of HTML5 IndexedDB

 162

Compared to storing data on server, where data is not

available to recover after deletion, storing on client side is

going to be more insecure.

2.2 IndexedDB Structure

Files and data stored by the browser are retained on the file

storage system, on the computer’s hard drive. The client-side

database, IndexedDB, is a persistent client-side database,

consequently the files reside on the user file system and can

be recovered until they are overwritten by other files.

IndexedDB treats file data just like any other type of data. An

application can write a file (or Blob), into IndexedDB, as

well as storing strings, numbers and JavaScript objects [6].

This is detailed in the IndexedDB specifications and, so far,

implemented in both the Firefox and Chrome applications of

IndexedDB. In Firefox and Chrome’s IndexedDB
implementation, the files are stored transparently, externally

to the actual database; the performance of storing a file in

IndexedDB is just as good as storing it in a filesystem. It

does not bloat the database and slow down other operations.

Moreover, reading from the file means that the

implementation reads from an OS file; therefore, it is just as

fast as a filesystem.

The Firefox IndexedDB implementation will, if it is

storing the same Blob in multiple files, create only one copy.

Writing further references to the same Blob just adds to an

internal reference counter. This is completely transparent to
the web page; it writes data faster while using fewer

resources.

2.3 Value in Database

 Each record has a value, which could include anything that

can be expressed in JavaScript, including: Boolean, number,

string, date, object, array, regexp, undefined, and null.

IndexedDB enables the storage of structured data, and unlike

cookies and DOM Storage, IndexedDB provides features that

enable to group, iterate, search, and filter JavaScript objects

[18]. Each record consists of a key path and a matching

value. These can be a simple type, such as string or date, or

more advanced, such as JavaScript objects and arrays. It can

include indexes for faster retrieval of records and can store

large amount of objects.

 IndexedDB is a key-value store in the same way as Local

storage. However, Local storage just retains strings only key;

therefore, the usual approach to local storage is to

JSON.stringify it. While this is suitable for finding the object

with key uniq, the only way to retrieve the properties of

myObject from local storage is to JSON.parse the object and

examine it. IndexedDB can store data other than strings in

the value, including simple types such as DOMString and
Date as well as Object and Array instances [16].

Furthermore, it can create indexes on object properties

containing a specific value. So while IndexedDB can hold

the same one-thousand objects, it can also create an index on

the b property and use that to retrieve only the objects where

b==2 without having to scan every object in the store.

Furthermore, IndexedDB is aware of ranges; therefore, it can

search and retrieve all records beginning with 'ab' and ending

with abd' in order to find 'abc' etc.

 IndexedDB is implemented differently across browsers.

Firefox uses SQLite and Chrome LevelDB. It should be

noted that LevelDB is not a SQL database. Like other

NoSQL and Dbm stores, it does not have a relational data

model, it does not support SQL queries, and it has no support

for indexes.

 IndexedDB is implemented in the browser on top of
another database. This mean that it does not work on its own,

as it is an API layer. IndexedDB is storing the value in local

filesystem, which means that the limit of storage is limited to

space on user hard drive. When compared to other databases,

IndexedDB is updating the whole data rather that just the bits

of specific data values.

3 Potential attack vector

This section is considering an unauthorized physical access

attack to IndexedDB file, from outside the user local

machine.

3.1 CORS (Cross-origin resource sharing) Attack

 CORS is a mechanism that allows JavaScript on a web

page to make XMLHttpRequests to another domain, not the

domain the JavaScript originated from. Normally, web

browsers would otherwise forbid such ‘cross-domain’

requests. CORS defines a way in which the browser and the

server can interact to determine whether or not to allow the

cross-origin request [23]. By letting third party applications

accessing the data created with other domains application can

lead to security issues, such as information leakage.

Therefore user agents must implement Cross-origin resource
sharing with IndexedDB in greater security details. Also, in

some CORS should not be allowed, to protect the privacy of

the end user.

 Scenario 1: Unauthorized physical access to the OS file

system, where the data from the browser database

(IndexedDB) is stored unencrypted.

 CORS expands on the design of the Same Origin Policy.

Each resource declares a set of origins, which are able to

issue various kinds of requests (such as DELETE, INSERT,
UPDATE) to, and read the contents of, the resource. CORS

Appendix F: Some Potential Issues with the Security of HTML5 IndexedDB

 163

is a “blind response” technique controlled by an extra HTTP

header (origin), which, when added, allows the request to

reach the target. This means, that an application creates an

IndexedDB database, which is saved with the domain name.

Another application cannot access the database files, as the

access is restricted for the particular domain. This attack is

based on bypassing the Same Origin Policy and establishing

cross-domain connections to allow the deployment of a

Cross-site Request Forgery attack vector [21].

 Scenario 2 (Data Breach): Unauthorized access from an
external machine (bypassing the Same Origin Policy (SOP))

to read the data and retrieve the information stored in the

IndexedDB files.

But why is the ability to read and retrieve data stored in the

IndexedDB files such an issue. In order to demonstrate the

problem, we will firstly conduct an analysis of the

IndexedDB database file.

4 Analysis of indexedDB database file

The first step in conducting this analysis is to build a ‘clean’

Hard Disk Drive (HDD) on a PC [HP Z400 6-DIMM with

12GB RAM and XEON 4 physical cores (8logical cores)],

that will include the operating system (Windows 7, 64-bit)

and web browsers (Firefox v.20.0.1; Chrome

v.29.0.1547.620. after which some initial Internet browsing

will be conducted. The HDD will then be ‘acquired’ using

Encase v.6.11.1. This will be the starting point for each

investigation. After each experiment, the image needs to be
restored to a ‘clean’ state, and following each experiment, the

disk will be forensically wiped, and then same component

(operating system, web browsers) will be installed.

The aim of these experiments is to investigate and show how

the data is deleted from IndexedDB (local file) and also if the

data is in unencrypted state. We will also perform an reuse of

recovered file and show, if it can be successfully achieved.

EXPERIMENT 1: RECOVERY OF DELETED INDEXEDDB SQLITE

DATABASE FILE

 In this experiment, the SQLite database file will be deleted

from a Hard Disk Dive (HDD), in a PC [HP Modified to i5
processors and 16GB Ram] running a Windows 7 64-bit

Operating System. Then using Encase v.6.11.1, locate the

deleted data and perform a data recovery. The structure of the

web browsers (Firefox v.20.0.1 and Chrome v.29.0.1547.62)

will also be examined to assess how the data is stored.

EXPERIMENT 1: RESULTS

 Firefox stores all data in a temporary table (SQLite

database) from where the data is copied into an Object Store,

complete with key/value link. After the data has been copied

successfully, the temporary table is dropped. The browser

always stored the SQL file in the same location in the file

system. On Firefox the location is C:\Users\[user-

name]\Application Data\Mozilla\Firefox\Profiles\[profile

name.default]\indexedDB\[domain-name]\[database-name]

where on Chrome C:\Users[user-

name]\AppData\Local\Google\Chrome\User

Data\Default\IndexedDB. Consequently, and previously
stored data is always overwritten. Interestingly, when the

data is deleted from the application (using delete function),

the location within the file system is reserved for that deleted

file. It is keeping the reserved location, because the deleted

file still persists on the HDD. So when running the

application again, the browser always allocates a different

location for the newly created Object Store.

 Allocation of file storage in Chrome is slightly different; all

of the databases are stored in the same file. Consequently, it

is assumed that Chrome is using compression for storing
browsing data.

 In Encase we choose the option for Copy/UnErase the

deleted file. This exported the deleted file with all the data.

While the deleted file data can be read from Encase, we

choose to export the file and opened with SQLite Manager

(Figure 1). In this way all the data in table was visible, and

the field values in the Blob could be exported unencrypted.

Figure	1:	Exported	deleted	database	file.	

EXPERIMENT 2: CLEARING THE BROWSER CACHE

 Experiments in Firefox will include deleting the data by

clearing the browser cache (deleting the offline data option).

Each experiment will store 300K records with a file size of

Appendix F: Some Potential Issues with the Security of HTML5 IndexedDB

 164

127MB. Experiments in chrome will include deleting the

data by clearing the browser cache (clearing browsing data-

Hosted app date). Each experiment will store 300K records

with a file size of 128MB.

EXPERIMENT 2: RESULTS

 Clearing the browser cache in Chrome clears the databases

and deletes the file where it is stored.

In Firefox the clearing the cache does not delete the database

file from local file system.

EXPERIMENT 3: REUSE OF RECOVERED INDEXEDDB

DATABASE

 In this experiment the possibility of reusing a recovered
IndexedDB database in a different web browser was

investigated. This involved identifying the location (physical

address on the HDD), of the file after it had been deleted. In

addition, this experiment also considered if the database

name is changed after it has been deleted; to see if the Web

application can read deleted file with different filename.

When deleting a database from the application, everything in

the folders is deleted; including those that can be stored

locally (image, document, video, audio).

SQLite is not a typed database, which means that any data

type can be put into any cell, regardless of the type declared
for the column, and the database will attempt to convert it.

Similarly, a different type than the column type is requested,

SQLite will also convert this value.

Figure 2: The physical address, and data in database file.

EXPERIMENT 3: RESULTS

 Figure 2 displays the physical address of the file before and

after deletion. Also the physical address of the newly created

database file persists on the same location. The deleted files

are marked with red cross. This file was restored with Encase

and exported to another hard drive. The file was restored

into database folder, and application was run to check if the

data could be accessed. The result is that the application read

the file and all of the data in unencrypted state was available

for us to see.

5 Analyses and Possible Solution

 The results were as expected; the deleted data has been
marked as deleted, but it can be exported and all the

information inside the database could be read. Moreover,

exported data that has been imported to another PC running

Windows 7 can be accessed and re-used. However a possible

solution to this security issue is presented below.

5.1 A Proposed Solution to Security issue in IndexedDB

 In this section we are going to propose a solution to

IndexedDB storage security issue.

The prevention against such scenarios might include

encryption of the files stored by the browser on the file

system. All the data stored by the browser will be encrypted

and stored to the file system. When retrieving the data, a

secure key will be required to read the data from the file

system. An encryption library will generate this key, which

will permit access to read the data. Otherwise, the data

remains encrypted and impossible to read. The encryption

key will be downloaded dynamically and the key (password)

will be stored in session key. When the key is secure, then it

will encrypt data. When a user closes browser, then the key is

overwritten in RAM. This will help to prevent attacker

getting access to secure key when reading data from RAM.

The algorithm to secure saving of data could be a JavaScript

library (proposed Stanford JS Encryption library), which will

help us to prevent saving data in unencrypted state.

We going to explain steps to write, update and read the data

with algorithm in pseudo code.

The following steps are described writing or updating data to

database.

1. Ensure we have established the secure connection trough
OAuth - The first step is to provide a secure login
functionality, which can be provided by web application.
The web application will use the login to authenticate a
user and securely logged the user into system.

Appendix F: Some Potential Issues with the Security of HTML5 IndexedDB

 165

2. Open a connection to database - When an application
requests a new transaction for IndexedDB to open
database and save data, the designed encryption library
extension will encrypt the data. This way the data will be
stored in an encrypted state and not readable to others.

3. Encryption library generates public and private key -
When the data is encrypted a key will be generated and
stored with the user information on server. Client-side
encrypts sensitive data using the public key, which will
be generated and stored on sever side. This public key is
used when encrypting information using the JavaScript
library.
Public and private key are created simultaneously using
the same algorithm (RSA- Rivest-Shamir-Adleman).

4. Encrypt data - When Client-side encryption is enabled, an
RSA keypair is generated and user will be given a
specially formatted version of the public key. RSA is the
algorithm that is used to encrypt data with a private key
to produce a digital signature [15]. The private key,
however, is never revealed to user or anyone else. Once
the data servers, the data is decrypted using the keypair’s
private key [16]. Private key is used to decrypt text that
has been encrypted with public key. It uses the industry-
standard AES algorithm at 128, 192 or 256 bits; the
SHA256 hash function; the HMAC authentication code.

5. Save the file and close the connection
	

When reading the data, the following steps needs to be
fulfilled.

1. Checking user credentials - When the user request the
read the data from database, the web application will
check user credentials (if the session is active) and get the
key from server to allow decryption of data.

2. Get the key to decrypt data - Upon successful
authentication user will be given a public key, which will
be used for decryption of the data. This private key will
be stored on server side, with all the user information,
which is used for decrypt the data. We are going to use
OAuth 2, which is an open standard for authorization.
This will be used to securely transfer private key to
server.

3. Decrypt Data – Encryption library will check for
matching combination of private and public key, and
perform decryption of data.

4. Show the decrypted data to user
5. Close the connection	

 For a secure authentication with server we are going to

consider OAuth. This will provide authentication between

the application and web server using a security token. We do

not consider security issues with OAuth, because this will be

done in later stage, when the implementation is done.

The data is stored unencrypted to file system, which can be

accessed by the web application. When an application send a

request to web browser to store the data on local file system,

the cryptography library will encrypt the data, to be stored

secure. A secure key will be also generated and stored on

web server. Reading the data from local file system will be

possible only when a secure key is provided and the

authentication between web application and server is

established. Considering all of the points are made and

connection is securely established, the data is decrypted by

cryptography library and displayed trough web browser to

user. In fig. 3 we highlight the proposed solution showing

how the cryptography library will be implemented. The

library will be implemented on top of web browser API. It

should be noted, that at this stage this solution is only

theoretical, however further work will be undertaken to prove

this hypothesis.

The algorithm will consist of the following components,

which are build into browser (Figure 4).

• Mechanism for generating private and public key

• Mechanism for checking the combination of keys

• Encryption

• Decryption

 Figure 3: Proposed Encryption Library

Figure 4: Encryption and decryption using keys

Appendix F: Some Potential Issues with the Security of HTML5 IndexedDB

 166

 Encryption/Cryptography library is a piece of software or

code, which encrypts readable text into unreadable data. This

data can be accessed by using an encryption key. Some

examples of encryption libraries are listed below. These are

just few encryption libraries, which are considered for

implementation into browser. This libraries were chosen,

because provide the functionality to encrypt on client side,

and also are available as open source.

OpenSSL: Open Source toolkit implementing the Secure

Sockets Layer (SSL v2/v3) and Transport Layer
Security (TLS v1) protocols as well as a full-strength general

purpose cryptography library (Engelschall, 1999).

BeeCrypt: A C++ API cryptography library (Doxygen,

2009).

Crypto++: A free C++ library for cryptography: includes

ciphers, message authentication codes, one-way hash

functions, public-key cryptosystems and key agreement

schemes (Dai, 2004).

GPGME: (GnuPG Made Easy) a C language library that

allows support for cryptography to be added to a programme.

It is designed to provide easier access to public key crypto

engines like GnuPG or GpgSM. GPGME provides a high-

level crypto API for encryption, decryption, signing,

signature verification and key management (Koch,1999)

Libgcrypt: GNU's basic cryptographic library (Werner,

2007).

Off course, another possible solution to problem might

include usage of an external device to store data from a
browser. For example, a user could specify to a location to

which any IndexedDB files should be stored when browsing

the web or running some applications. This includes an

option where the data could be written and read from an

external source, such as USB. The USB key will need to be

secured with access encryption and restricted to access data

when the master password is entered.

6 Conclusion

In this paper, we have demonstrated security related flaws

within IndexedDB. While the browser can delete IndexedDB

files stored on the local filesystem, they can be retrieved by

Encase. Unfortunately, the retrieved data is in an

unencrypted format, and given the nature of the data held

within the IndexedDB API, a potential security issue exists.

All the data in IndexedDB is exposed. We have demonstrated

a solution for this security issue, which includes a secure
‘library’, located between the browser and the filesystem. All

data stored by the Indexed DB application will be encrypted

and saved to the library. Therefore, if the application needs to

read the data, an encryption key will be required. Without a

key, the data will not be decrypted and reading the data will

not be possible. This will help to secure the data stored on the

client side and prevent retrieval in an unencrypted state.

Future work will focus on implementing the cryptography

library into web browser and testing for possible attacks.

References

[1] Berjon, R. (2014) W3C HTML5 Specification. Available at:
http://www.w3.org/html/wg/drafts/html/master/

[2] Bunting , S. Wei, W. (2006) Encase computer forensics: the official
EnCE EnCase certified examiner study guide. Published San
Francisco, Calif. : SYBEX / Wiley 2006

[3] Dai, W. (2004) Cryptoo++ Library. Availabe at:
http://www.cryptopp.com Last Accessed :20 May 2014

[4] Doxygen (2009) BeeCrypt C++ API Documentation. Availabe at:
http://beecrypt.sourceforge.net/doxygen/c++/index.html Last Accessed
:20 May 2014

[5] Engelschall, R. S. (1999). About the OpenSSL Project Available at:
https://www.openssl.org/about/

[6] Encase (2004) EnCase Forensic Edition User Manual. v.4 Available at:
http://www.guidancesoftware.com/ Accessed on: 5th January 2014

[7] Flanagan, D. (2011) JavaScript: The Definitive Guide Activate Your
Web Pages. 6th edition, Publisher: O'Reilly

[8] Koch, W. (1999) GPGME – The GNU Privacy Guard. Available at:
https://www.gnupg.org/index.html Last Accesed : 20 May 2014

[9] Koch, W. (2003) Libgcrypt. Available at:
http://www.gnu.org/software/libgcrypt/ Last Accesed : 20 May 2014

[10] Mehta, N. Sicking, J. Graff, E. Popescu, A. Orlow, J. (2012) Indexed
Database API Available at: http://www.w3.org/TR/IndexedDB/
Accessed on: 5th January 2014

[11] MSDN (2012) IndexedDB. Available at:
http://msdn.microsoft.com/en-us/library/ie/hh673548(v=vs.85).aspx.
Accessed on: 5th January 2014

[12] Sarris, S. (2013) HTML5 Unleashed. Published by: Sams. Print

ISBN-10: 0-672-33627-8

[13] Stuttard, D. Pinco, M. (2007) Web Application Hacker’s Handbook.
Published by: Wiley Publishing, Indianapolis, Indiana

[14] Zakas, C. N. (2010) Cross-domain Ajax with Cross-Origin Resource
Sharing". NCZOnline. Available at:
http://www.nczonline.net/blog/2010/05/25/cross-domain-ajax-with-
cross-origin-resource-sharing. Last Accessed: 20 February 2014

[15] Bernett, S. Paine, S. (2001) RSA Security’s Official Guide
toCryptography. Osborne/McGraw-Hill

[16] Mollin, R. (2003) RSA and Public-Key Cryptography. CHAPMAN &
HALL/CRC A CRC Press Company ISBN 1-58488-338-3

 167

Appendix G: The role of HTML5 IndexedDB, the past,

present and future

10th International Conference for Internet Technology and Secured Transactions

(ICITST-2015), London, UK

Appendix G: The role of HTML5 IndexedDB, the past, present and future

 168

Appendix G: The role of HTML5 IndexedDB, the past, present and future

Stefan Kimak

Faculty of Engineering and Environment
Northumbria University

Newcastle Upon Tyne, UK

stefan.kimak@northumbria.ac.uk

Jeremy Ellman

Faculty of Engineering and Environment
Northumbria University

Newcastle Upon Tyne, UK

Abstract—Over the past 20 years web browsers have changed

considerably from being a simple text display to now

supporting complex multimedia applications. The client can

now enjoy chatting, playing games and Internet banking. All

these applications have something in common, they can be run

on multiple platforms and in some cases they will run offline.

With the introduction of HTML5 this evolution will continue,

with browsers offering greater levels of functionality. This

paper outlines the background study and the importance of new

technologies, such as HTML5’s new browser based storage

called IndexedDB. We will show how the technology of storing

data on the client side has changed over the time and how the

technologies for storing data on the client will be used in future

when considering known security issues. Further, we propose a

solution to IndexedDB’s known security issues in form of a

security model, which will extend the current model.

Keywords-component; Cookies; HTML5; IndexedDB

XXII. INTRODUCTION

This paper attempts to answer several questions. Firstly,
what is HTML5 IndexedDb; where did the technology come
from, and what motivated its development; what is its current
status and what is inhibiting its take up, and finally, what is
the future for HTML5 IndexedDb.

HTML5 is the latest W3C standard for the language in
which web pages are written. It also defines Application
Programming Interfaces (APIs) that are expected to be
provided by a web browser that supports HTML5. The
motivation for the changes and enhancements coming with
HTML5 is that the web browser should be capable of running
browser based applications in the same way that it supports
desktop applications. That is, client side processes will be able
to avoid the ineffectiveness and network connectivity issues
found in server side applications and the inherent visual
instability caused by their required web page refreshes.
Consequently, major browsers now support the majority of the
new HTML5 components and APIs. Therefore HTML5
browser based storage may well contain stored data from
online services that makes use of the new HTML5
functionality [1]. The process of accessing this data might in
some cases be slow, due to network latency or database query
process [2]. It is suggested that this new level of browser
based storage will ensure that such HTML5 enabled browsers
are going to be a significant target for cyber-attacks [3].

Web browsers store history, and other data using cookies on
client computers, which is attractive for those marketing
products or services. Being browser based is critical for
developers, because modern browser based web applications

are able to store large amount of data and access that data
much faster than any server side database. Consequently
HTML5 opens up entirely new security challenges and issues
[4]. As is well known, user information is tracked on every
move on the Internet. eCommerce sites store customer details,
orders and saved products, sites store cookies on user
computers to track returning customers. The data can be later
used for marketing purposes and to target new customers.
Sometimes consumers and the general public do not realize
the quantity of personal data that is shared over the Internet
and how that data can be used or misused. Data privacy and
information leakage is then a serious concern.

XXIII. INDEXEDDB – THE PAST

In this section we consider the drivers behind HTML5
IndexedDB. That is, why the technology was considered at all,
and what motivates current standard. We proceed as follows,
firstly we overview the status of eCommerce, with particular
attention to its mobile variant mCommerce. Then we consider
browser based cookies that are IndexedDB’s intellectual
antecedents.

A. eCommerce

The term eCommerce began to be widely used in early
2000, and it is defined as commercial transactions conducted
electronically on the Internet, such as purchasing goods and
services online. eCommerce has a significant and positive
impact on businesses everywhere [5,6]. The eCommerce
market grew slowly until 2007 when its proportion of GDP
was about 3%, but the biggest expansion happened in the last
decade when the retails sales increased to 40 %. In 2012,
eCommerce accounted for 18% (£492 billion) of UK business
turnover. 21% of UK businesses in 2012 made eCommerce
sales to their own country; 9% of UK businesses made
eCommerce sales to EU countries and 7% to non-EU countries
based on the Office of National statistics (ONS) [7]. Of the
United Kingdom's total £1.45 trillion GDP, the Internet value
chain represented 2.6% of GDP, and the eCommerce
conducted over it a further 3.1%. The UK boasts 54.6 million
Internet users and has a penetration rate of 86%, with a typical
user spending 42 minutes per week browsing virtual stores and
buying on the web. The use of eCommerce, by both
organizations and individual consumers continues to grow, as
more people are connected to the Internet and with the
increased availability of fibre broadband.

eCommerce has several advantages over offline stores and
mail catalogues. Online stores eliminate the 3rd party
middleman costs required by wholesalers and distributors. It
also removes the overheads of physical shops, both of which

Appendix G: The role of HTML5 IndexedDB, the past, present and future

 169

lower operational costs. eCommerce stores also provide search
functionality so that a customer is looking exactly the item for
which they are looking. Additionally, customers can easily
browse through large amounts of products and services
eCommerce has been expanded to the business to business
(B2B) and business to consumer (B2C) [8] markets. Many
retailers have moved to invest in online sales that target more
online customers in categories such as electronics, books, and
transport. eCommerce gives retailers an opportunity to expand
outside their domestic markets with minimum upfront
investment [9]. Consumers can also see prices, allowing
simple price comparison and can then place orders quickly.
eCommerce stores allow the customer to add products to a
wish list, which can then be sent to friends or family to be paid
for.

Consumers can also check existing online product reviews
and compare prices before buying any goods or services.
Some of the eCommerce stores provide video product reviews
where the customer can see the product in action without the
need to leave the house. One of the most important advantages
of eCommerce stores is access to the global market and the
creation of new business opportunities Online stores can be
available to everyone everywhere. For most businesses the
eCommerce is an excellent alternative supply channel that is
cost effective but continuously can reach consumers directly
and extensively. The Internet helps companies to engage in
eCommerce by collecting, storing, and exchanging personal
information obtained from visitors to their websites [10].
eCommerce stores can target customers in many ways, most
widely used is by email and online ads. This way has a cost
advantage over offline stores, where print flyers must be
produced. eCommerce can target a greater number of
customer in a shorter space of time, as everything is done
electronically. eCommerce retailers have also advantage of
through popular social media to attract new customers.
Additionally, online retailers use customer buying habits to
target new and existing customers with social media
advertisements and special offers. Since the late 90’s it was
predicted that every step on the Internet could be traced and
that this information might be stored [11]. Information from
web browsing is stored in the browser history, eCommerce
sites store user preferences and shop orders to better
understand the customer with the aim of targeting advertising
at them for related products or services. [12].

B. The importance of mobile commerce (mCommerce)

HTML was first focused on the desktop computer, since
when the web started in 1993 mobile (cell) telephones did not
have Internet connectivity. Tablet computers (e.g. the Grid
Compass) were a rarity and limited to specialised applications.
In 2015, combined, mobile phones and tablets now account for
38% of all web pages served globally (StatCounter).
Smartphone user penetration in 2011 was 9.6%, whilst by
2015 it is 28%. Here in UK the mobile penetration rate is
72%.

The U.K. Internet ecosystem is worth £82 billion a year,
with mobile connections accounting for 16% of this.

mCommerce sales will continue to grow at a double-digit rate
until 2017 when it is expected to reach £17.2 billion and drive
over 26% of online retail sales. Since 2007 mCommerce sales
have rapidly grown from less than 5% to 21% of sales in 2015,
which opened a new market for online stores. Online stores
needed to change their strategy and embrace the mobile
market.

Businesses operating over the Internet need to maintain
relations with their customers to ensure continuity, recognize
previous customers, and simplify the eCommerce process.
This is done using cookies.

C. Cookies

Cookies are small quantities of data that are stored by

websites in the client browser, and sent to that web site with

each http request. Cookies were introduced by Netscape

Communications in 1994 in their Netscape Navigator

Browser. Cookies allow users to store their sessions and state

with websites.

eCommerce applications use cookies to store customers’

preferences. This both makes the online buying experience

more convenient and focused as cookies allow the tracking of

customer preferences. Cookies support functionality such as
customer shopping carts and the recognition of returning

customers who are then recommended appropriate products

and made offers using individually tailored marketing.

The problem with cookies is privacy since third party
applications could potentially steal information from cookies.
There are also several security issues with cookies such as
cookie poisoning [13], and cookie injection. Cookie poisoning
attacks involves the modification of the cookie contents (user
IDs, passwords, account numbers, time stamps) in order to
bypass security mechanisms. Using cookie-poisoning attacks,
attackers can gain unauthorized information about another
user and steal their identity. Cookie injection attacks inject a
cookie string or code into the HTTP header to modify server
page execution, which may lead to SQL injection attacks [14].

The Cookie Law is the result of a EU directive in 2011 and
enacted into law across the majority of the European Union. It
requires websites to obtain visitors’ agreement to store or
retrieve any information on a computer, smartphone or tablet
[15].

It was designed to protect online privacy, by making
consumers aware of how information about them is collected
and used online, and give them a choice to allow it or not.

Cookies are limited in size to 4KB, and therefore are rarely

used to directly store site-specific information. Rather, a

typical cookie will store a unique database key. That key will

usually point into the web server’s customer database that is

not accessible publicly. That database may contain any

amount of information about the customer including their

personal details, transaction and purchase history, preferences
and so on. Cookies, and their limitations in size and flexibility,

Appendix G: The role of HTML5 IndexedDB, the past, present and future

 170

have lead to the specification and development of HTML

IndexdDB.

XXIV. INDEXEDDB - PRESENT

Browser storage has been proposed in HTML5 to extend
the cookies functionality to provide web developers and web
applications with better alternatives to store data locally. With
browser based storage eCommerce companies can store user
preferences, shopping cart and product images locally. This
can help eCommerce applications to speed up the process of
loading products and displaying them to end-users.

By using browser-based storage, eCommerce sites can also
be used offline. The user will have the ability to add products
to a shopping cart, even if the network connection is down.
The greatest advantage of using offline storage is with mobile
devices, where network connectivity and data caps are a
concern.

If a Web service allows only a certain number of calls per
hour but the data does not change that often, web applications
could store the information in local storage and so help
prevent mobile users breaching data limits [16]. Online stores
could save new images every six hours, rather than every
minute, which would improve the bandwidth utilization.

Local caching keeps users from being banned from
services, and it also means that when a call to the Application
program interface (API) fails, user will still have information
to display. For example, shopping cart data could be stored
locally and synchronized with the eCommerce site when
network connectivity is restored.

The main problem with HTTP as the main transport layer
of the Web is that it is stateless. This means that when an
application is closed, its state will be reset the next time is
opened. If an application on the desktop is closed and then re-
opened, its most recent state is restored. Local storage is better
than cookies since it allows for storage across multiple
windows. It also has better security and performance and data
will persist even after the browser is closed [17]. Therefore,
local storage provides functionality similar to that of desktop
applications, where application state is persistent.

In 1995 Netscape Corp’s vision of the future was to run

multimedia application, spreadsheets and word processing

programs from the web browser. Netscape’s main product was

a browser (Naviagator), which was written to run across

multiple operating systems (Windows, Unix, and Macintosh).

The vision was that application would run on the top of any

operating system with their sets of APIs, so that third party
applications developers would not need to worry about the

underlying operating system and hardware. These days,

Netscape’s vision is a reality, where applications like

YouTube and Facebook can be run from any web browser.
As the HTML5 standard evolved, new browser based

storage concepts were introduced. These are targeted at storing
larger data volumes. Additionally they have satisfied the key
non-functional requirement of speed, since stored data was not
transmitted with every HTTP request, whilst cookies are.

HTML5 provides two new features to store data locally. The
first browser based storage feature is called ‘local storage’. It
allows the storage of information locally within a web browser
in object stores, which are persistent and stored on disk. The
storage is limited to 5MB and the stored data is in name/value
pairs.

IndexedDB is another HTML5 browser based storage
technology. It is a NoSQL (Not only SQL) [18],
asynchronous, key-value browser-based data store, where
NoSQL is an approach to databases that is not relational or
object oriented. Rather, NoSQL stores data in key/value
format. The database can handle a large amount of data.
IndexedDB supports an API that offers fast access to
unlimited amount of structured data. IndexedDB may be
considered to be insecure, since security was not considered in
its specification. In a previous paper [19] we have described
how standard forensic tools may be used to identify data
stored, and then deleted from IndexedDB data stores.

IndexedDB, which was previously known as
WebSimpleDB came from the W3C specification of
implementing web storage into web browser in 2009.
IndexedDB is a persistent client-side database implemented
into browser and is an alternative to WebSQL, which has been
deprecated. Mozilla and Microsoft supported the introduction
of IndexdDB, which was most influenced by Oracle's Berkley
DB. The application uses local data stored on a client system
[20]. It caches large data from server to the web browser client
using JavaScript Object Stores, which may be considered to be
equivalent to tables in relational databases.

Files and data stored by the browser are retained on the

user file storage system, on the user's computer hard drive.

The client-side database, IndexedDB, stores the data, even

when the browser terminates. IndexedDB is then a persistent

client-side database, which means that the data can be

retrieved even the browser is offline. Therefore, the files

reside on the user file system and can be recovered until other

files overwrite them. IndexedDB treats file data just like any

other type of data. An application can write a File or a Blob
into IndexedDB, as well as storing strings, numbers and

JavaScript objects. This is detailed in the IndexedDB

specifications and, so far, implemented in both the Firefox and

Chrome applications of IndexedDB. Using this, storing all

information in one place and a single query to IndexedDB can

return all the data.

In Firefox and Chrome’s IndexedDB implementation, the
files are stored transparently external to the actual database; in
other words, the performance of storing some data in
IndexedDB is just as efficient as storing it directly in the OS
filesystem. Storing files does not extend the database size and
slow down other operations. Moreover, reading from the file
means that the implementation reads from an OS file. The
Firefox IndexedDB implementation is even smart enough to
recognize if is storing the same Blob in multiple files. If this
happens it creates only one copy. Writing further references to
the same Blob just adds to an internal reference counter. This

Appendix G: The role of HTML5 IndexedDB, the past, present and future

 171

is completely transparent to the web page, so it writes data
faster while using fewer resources.

Browser based storage such as IndexedDB can be used on
multiple browsers and is cross platform compatible. Web
applications can take advantage of using IndexedDB on
desktop, mobile and tablet, without additional programming.
Web applications can use browser-based storage without the
need for network connections. The HTML5 standard provides
the functionality where data can be stored on client machine,
and can be accessed anytime without the need of network
connection.

An important aspect of HTML5 is that the web
applications can run offline using local storage. The advantage
of HTML5 compared to desktop programs is that web
applications do not require any installation or start-up
configuration and will also run on any device that supports
HTML5, such as laptops, phones or tablets. In an eCommerce
scenario, this reduces the entry barrier to new customers since
customers can begin taking advantage of web applications just
by visiting the relevant web site.

IndexedDB extends local storage by providing web
applications with offline storage. This may be used by
eCommerce stores to store customer preferences without
sending these with every HTTP request. Consequently, HTTP
request and response traffic will decrease and customer
preferences or other information will be accessed only when
requested. An important aspect of HTML5 is that the web
applications can run offline using local storage. This means
that client data will be stored on user’s browser and accessed
anytime that the application requires. Offline storage and
cached pages provide a better user experience, since network
latency is minimal.

The new HTML5 IndexedDB functionalities bring new
security issues, since there is increased access to the client
computer’s resources. One of the biggest disadvantages or
disappointments is that the new standard does not provide any
additional security. HTML5 video and audio are replacing
third party application as Adobe and closing a common attack
vector with FLASH applications or plug-ins. Additionally
HTML5 provides greater access to computer resources, which
includes local storage, and therefore opens new opportunities
for attacks.

The problem with the current browser based storage, such
as IndexedDB is that there is concern that another application
on the client computer may also access that offline data. To
prevent web applications from reading each other’s data, a
mechanism known as the same origin policy (SOP) applies to
all of the web storage technologies. By implementing the same
origin policy, browsers check and record the origin of all the
data they store based on the hostname of the web application
(www.example.com), the port number on which the web
application runs (80) and the protocol through which the data
was delivered (typically http or https). When a web
application wants to access data stored locally, the browser
will check the current origin and the origin of the data and

only allow access if these match. Data is protected through the
use of the same origin policy.

From the experiments performed, we have confirmed

IndexedDB stores data as received, so that it is not encrypted.

However, this is not the only problem. Browser based storage

faces another issue, where the deleted data is not fully deleted

from the hard drive. With the help of standard forensic tools

we were able to restore current and deleted IndexedDB data

from both desktop and mobile drives.

The issue of restoring deleted data just extends the security

concern of storing data in unencrypted state, where the
attacker could get multiple versions of browser based local

storage. The deleted data persists on the hard drive and when

delete data request is executed, the data is just marked as

deleted but still occupies the associated space. A further data

storage request just assigns additional disk space but the old

data will persist on the hard drive and it will be not

overwritten.
We have than a complex scenario with IndexedDB. It has

the advantages of persistence, storage size, and better network
utilization, but the disadvantages of security weakness.

XXV. INDEXEDDB - FUTURE

The future of IndexedDB is to support secure of browser-
based offline usage. Existing browser-based storage has not
become popular with web developers, because they face
several problems. The first problem is the complexity of code
required, where the developers need extra time to understand
the structure. Saying that, there are many online tutorial
examples, which can help developers to start implementing
browser, based storage into their web applications.

The second problem with IndexedDB is security. Currently
IndexedDB stores data in an unencrypted state so that is
neither protected, nor securely deleted. Therefore IndexedDB
storage cannot be recommended for the storage of personal
information. This makes it limited in functionality. As with
data stored on desktop, mobile or tablet in an unencrypted
state, an attacker can get the data without bypassing any
protection. For example, with a Cross-site scripting attack
(XSS), such as hidden in email link an attacker could find the
stored data. IndexedDB is inherently vulnerable to such
attacks.

Security flaws are inevitable when considering web
applications and storage of information. This is due not only to
the sophistication of the attacks, but also to the fact the many
attacks, such as cross-site scripting, are based on social
engineering and exploit human error, so are extremely difficult
to protect against. Browser based storage security design is a
concern, but that can be corrected. The correction is to use
client side encryption, which would mean that browser based
storage is at least as secure as that on the server.

We have proposed a security model, which will be
implemented as a browser extension. The proposed security
model extends that of the current web browser. Furthermore,
we have implemented a browser extension with a client side

Appendix G: The role of HTML5 IndexedDB, the past, present and future

 172

encryption library, which will help to secure the data on a
client’s machine. When an application requests a new
transaction for IndexedDB to open the database and save data,
the proposed library extension will encrypt the data. This data
will then be as safe as the encryption scheme even should an
attacker get physical access to the device, which would
happen if a laptop were lost, or a mobile handset stolen.

The security model consists of an encryption framework,
which will help to secure the data. The encryption framework
cannot though provide full security protection. We argue that
such protection is not achievable in a single machine, since
any single browser could be the target of an XSS attack.
Therefore, functionality external to be browser needs to be
implemented. On top of the encryption library a multifactor
authentication (MFA) or two factors authentication (2FA) has
been implemented.

Based on our findings, we can state that there is a case for
browser-based databases. We have implemented a JavaScript
encryption framework, which is a part of the security model
implemented into the browser in a form of an extension. The
proposed security model extension addresses the security issue
that IndexedDB has as a product of its design. Also, the
implemented security model fulfils the security requirements.

XXVI. CONCLUSION AND FUTURE WORK

Based on these findings, we can state, that there is a case
for browser-based databases. Browser based databases though
face security problems over and above those on the server, and
this has inhibited their uptake. Nevertheless, despite the
existing issues faced by browser-based storage, there is a
future for the technology due to its convenience, performance,
reduced reliance on continuously available network
connection.

Considering the issues and concerns of storing data locally,
browser based storage has the potential to be widely used,
where the main advantage is the performance speed, cross
platform (desktop, mobile, tablet) and browser availability.
The advantages of local storage outweighs the disadvantages,
keeping in mind that the issues identified can be corrected and
browser-based storage can be widely used by developers
without any concerns of security issues introduced as by
design limitations.

Our future work includes more details of the security
mechanism in [21]. Although the proposed security
framework has been successfully applied to browser based
local storage, further improvements can be made in extending
the security and performance model. These could be addressed
by extending the current model to use further security factors
such as biometrics.

REFERENCES

[1] Naseem, S.Z. Majeed, F. (2013) Extending HTML5 local storage to save
more data; efficiently and in more structured way. Eighth International

Digital Information Management (ICDIM)

[2] Zhanikeev, M. (2013) A Practical Software Model for Content
Aggregation in Browsers Using Recent Advances in HTML5. 37th

Annual Computer Software and Applications Conference Workshops
(COMPSACW). pp.151-156, Japan 22-26 July 2013

[3] Ryck, P. Desmet, L. Philippaerts, P. Piessens, F. (2011) A Security
Analysis of Next Generation Web Standards, (European Union Agency
for Network and Information Security - ENISA). Tech. Rep.

[4] Anttonen, M. Salminen, A. Mikkonen, T. Taivalsaari, A (2011)
Transforming the web into a real application platform: new
technologies, emerging trends and missing pieces. ACM Symposium on
Applied Computing. New York, NY, USA. Pp. 800-807.

[5] Chuang, T. T., Nakatani, K, Chen, J. C. H. and Huang, I. L. (2007).
Examining the Impact of Organisational and Owner's Characteristics on
the Extent of E-commerce Adoption in SMEs,

[6] Pool, P. W., Parnell, J. A., Spillan, J. E., Carraher, S. and Lester, D. L.
(2006). Are SMEs Meetings the Challenge of Integrating E-commerce
into Their Businesses? A Review of the Development, Challenges and
Opportunities, International Journal Information Technology and

Management, 5(2/3), pp.97-113.

[7] Jones, J. (2014) E-commerce: measuring, monitoring and gross domestic
product. ONS. Available at: http://www.ons.gov.uk/ons/rel/gva/national-
accounts-articles/e-commerce--measuring--monitoring-and-gross-
domestic-product/index.html (Accessed: 20 September 2015).

[8] Ta, H., Esper, T., & Hofer, A. R. (2015). Business‐to‐Consumer (B2C)
Collaboration: Rethinking the Role of Consumers in Supply Chain
Management. Journal of Business Logistics, 36(1), 133-134.

[9] Xiaojing, L., Liwei, Z., & Weiqing, W. (2012). The mechanism analysis
of the impact of eCommerce to the changing of economic growth mode.
In Robotics and Applications (ISRA), 2012 IEEE Symposium on (pp.
698-700). IEEE.

[10] Boritz, E., Gyun, W., and Sundarraj, P. 2008. Internet privacy in E-
commerce: Framework, review and opportunities for future research. In:

Proceedings of the 41st Hawaii International Conference on System
Sciences. Hawaii, January 7-10 2008, pp.204-256.

[11] Gehling, B., & Stankard, D. (2005). eCommerce security. In
Proceedings of the 2nd annual conference on Information security
curriculum development (pp. 32-37). ACM.

[12] Gómez, J. M., & Lichtenberg, J. (2007). Intrusion Detection
Management System for ECommerce Security. Journal of Information

Privacy and Security, 3(4), 19-31.

[13] Buja, G., Jalil, K. B. A., Ali, F. B., Mohd, H., & Rahman, T. F. A.
(2014). Detection model for SQL injection attack: An approach for
preventing a web application from the SQL injection attack. In
Computer Applications and Industrial Electronics (ISCAIE), 2014 IEEE

Symposium on (pp. 60-64). IEEE.

[14] Appelt, D., Nguyen, C. D., Briand, L. C., & Alshahwan, N. (2014).
Automated testing for SQL injection vulnerabilities: An input mutation
approach. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis (pp. 259-269). ACM.

[15] Summers, S., Schwarzenegger, C., Ege, G., & Young, F. (2014). The

emergence of EU criminal law: cyber crime and the regulation of the
information society. Bloomsbury Publishing.

[16] Karthik, R., Patlolla, D. R., Sorokine, A., White, D. A., & Myers, A. T.
(2014). Building a secure and feature-rich mobile mapping service app
using HTML5: challenges and best practices. In Proceedings of the 12th

ACM international symposium on Mobility management and wireless
access (pp. 115-118). ACM.

[17] Ayenson, M. Wambach, D. J. Soltani, A. Good, N. Hoofnagle, C. J.
(2011) Flash cookies and privacy II: Now with HTML5 and ETag
respawning. Computer and Information Systems Abstracts. [Online].
Available at: http://dx.doi.org/10.2139/ssrn.1898390 (Accessed: 10
February 2015).

[18] Strozzi, C. (1998) NoSQL A Relational Database Management System.
Available at: http://www. strozzi. it/cgi-
bin/CSA/tw7/I/en_US/nosql/Home% 20Page (Accessed: 20 September
2015).

[19] Kimak, S. Ellman, J. Laing, C. (2014) Some Potential Issues with the
Security of HTML5 IndexedDB. In: System Safety and Cyber Security

Appendix G: The role of HTML5 IndexedDB, the past, present and future

 173

2014 (IET Conference), 14-16th October 2014, The Midland Hotel,
Manchester, UK.

[20] Casario, M. Elst, P. Brown, Ch. Wormser, N. Hanguez,C. (2011)
HTML5 Solutions: Essential Techniques for HTML5 Developers.
Publisher: FRIENDS OF ED; 1 edition ISBN: 1430233869 

[21] Kimak S, forthcoming, 2016 ‘Phd Thesis’ Northumbria University

 174

Appendix H: HTML5 IndexedDB encryption: Prevention

against potential attacks

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4,

2015

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

 175

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

Stefan Kimak
Faculty of Engineering and Environment

Northumbria University

Newcastle Upon Tyne, UK

stefan.kimak@northumbria.ac.uk

Jeremy Ellman
Faculty of Engineering and Environment

Northumbria University

Newcastle Upon Tyne, UK

Abstract

Over the past 20 years web browsers have changed

considerably from being a simple text display to now

supporting complex multimedia applications. The client can

now enjoy chatting, playing games and Internet banking. All

these applications have something in common, they can be run

on multiple platforms and in some cases they will run offline.

With the introduction of HTML5 this evolution will continue,

with browsers offering greater levels of functionality. This

paper outlines the background study and the importance of new

technologies, such as HTML5’s new browser based storage

called IndexedDB. We will show how the technology of storing

data on the client side has changed over the time and how the

technologies for storing data on the client will be used in future

when considering known security issues. Further, we propose a

solution to IndexedDB’s known security issues in form of a

security model, which will extend the current model.

1. Introduction

This paper attempts to answer several questions. Firstly,

what is HTML5 IndexedDb; where did the technology come

from, and what motivated its development; what is its current

status and what is inhibiting its take up, and finally, what is
the future for HTML5 IndexedDb.

HTML5 is the latest W3C standard for the language in which

web pages are written. It also defines Application

Programming Interfaces (APIs) that are expected to be

provided by a web browser that supports HTML5. The

motivation for the changes and enhancements coming with

HTML5 is that the web browser should be capable of running

browser based applications in the same way that it supports

desktop applications. That is, client side processes will be able

to avoid the ineffectiveness and network connectivity issues

found in server side applications and the inherent visual

instability caused by their required web page refreshes.
Consequently, major browsers now support the majority of the

new HTML5 components and APIs. Therefore HTML5

browser based storage may well contain stored data from

online services that makes use of the new HTML5

functionality [1]. The process of accessing this data might in

some cases be slow, due to network latency or database query

process [2]. It is suggested that this new level of browser

based storage will ensure that such HTML5 enabled browsers

are going to be a significant target for cyber-attacks [3].

Web browsers store history, and other data using cookies on

client computers, which is attractive for those marketing
products or services. Being browser based is critical for

developers, because modern browser based web applications

are able to store large amount of data and access that data

much faster than any server side database. Consequently

HTML5 opens up entirely new security challenges and issues

[4]. As is well known, user information is tracked on every

move on the Internet. eCommerce sites store customer details,

orders and saved products, sites store cookies on user

computers to track returning customers. The data can be later

used for marketing purposes and to target new customers.

Sometimes consumers and the general public do not realize

the quantity of personal data that is shared over the Internet
and how that data can be used or misused. Data privacy and

information leakage is then a serious concern.

2. Importance of Indexeddb

In this section we consider the drivers behind HTML5
IndexedDB. That is, why the technology was considered at all,

and what motivates current standard. We proceed as follows,

firstly we overview the status of eCommerce, with particular

attention to its mobile variant mCommerce. Then we consider

browser based cookies that are IndexedDB’s intellectual

antecedents.

2.1 eCommerce

The term eCommerce began to be widely used in early

2000, and it is defined as commercial transactions conducted

electronically on the Internet, such as purchasing goods and

services online. eCommerce has a significant and positive

impact on businesses everywhere [5,6]. The eCommerce

market grew slowly until 2007 when its proportion of GDP

was about 3%, but the biggest expansion happened in the last

decade when the retails sales increased to 40 %. In 2012,

eCommerce accounted for 18% (£492 billion) of UK business
turnover. 21% of UK businesses in 2012 made eCommerce

sales to their own country; 9% of UK businesses made

eCommerce sales to EU countries and 7% to non-EU countries

based on the Office of National statistics (ONS) [7]. Of the

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

 176

United Kingdom's total £1.45 trillion GDP, the Internet value
chain represented 2.6% of GDP, and the eCommerce

conducted over it a further 3.1%. The UK boasts 54.6 million

Internet users and has a penetration rate of 86%, with a typical

user spending 42 minutes per week browsing virtual stores and

buying on the web. The use of eCommerce, by both

organizations and individual consumers continues to grow, as

more people are connected to the Internet and with the

increased availability of fibre broadband.

eCommerce has several advantages over offline stores and

mail catalogues. Online stores eliminate the 3rd party

middleman costs required by wholesalers and distributors. It
also removes the overheads of physical shops, both of which

lower operational costs. eCommerce stores also provide search

functionality so that a customer is looking exactly the item for

which they are looking. Additionally, customers can easily

browse through large amounts of products and services

eCommerce has been expanded to the business to business

(B2B) and business to consumer (B2C) [8] markets. Many

retailers have moved to invest in online sales that target more

online customers in categories such as electronics, books, and

transport. eCommerce gives retailers an opportunity to expand

outside their domestic markets with minimum upfront

investment [9]. Consumers can also see prices, allowing
simple price comparison and can then place orders quickly.

eCommerce stores allow the customer to add products to a

wish list, which can then be sent to friends or family to be paid

for.

Consumers can also check existing online product reviews

and compare prices before buying any goods or services.

Some of the eCommerce stores provide video product reviews

where the customer can see the product in action without the

need to leave the house. One of the most important advantages

of eCommerce stores is access to the global market and the

creation of new business opportunities Online stores can be
available to everyone everywhere. For most businesses the

eCommerce is an excellent alternative supply channel that is

cost effective but continuously can reach consumers directly

and extensively. The Internet helps companies to engage in

eCommerce by collecting, storing, and exchanging personal

information obtained from visitors to their websites [10].

eCommerce stores can target customers in many ways, most

widely used is by email and online ads. This way has a cost

advantage over offline stores, where print flyers must be

produced. eCommerce can target a greater number of

customer in a shorter space of time, as everything is done

electronically. eCommerce retailers have also advantage of
through popular social media to attract new customers.

Additionally, online retailers use customer buying habits to

target new and existing customers with social media

advertisements and special offers. Since the late 90’s it was

predicted that every step on the Internet could be traced and

that this information might be stored [11]. Information from

web browsing is stored in the browser history, eCommerce

sites store user preferences and shop orders to better

understand the customer with the aim of targeting advertising
at them for related products or services. [12].

2.2 The importance of mobile commerce

(mCommerce)

HTML was first focused on the desktop computer, since

when the web started in 1993 mobile (cell) telephones did not

have Internet connectivity. Tablet computers (e.g. the Grid

Compass) were a rarity and limited to specialised applications.

In 2015, combined, mobile phones and tablets now account for

38% of all web pages served globally (StatCounter).
Smartphone user penetration in 2011 was 9.6%, whilst by

2015 it is 28%. Here in UK the mobile penetration rate is

72%.

The U.K. Internet ecosystem is worth £82 billion a year,

with mobile connections accounting for 16% of this.

mCommerce sales will continue to grow at a double-digit rate

until 2017 when it is expected to reach £17.2 billion and drive

over 26% of online retail sales. Since 2007 mCommerce sales

have rapidly grown from less than 5% to 21% of sales in 2015,

which opened a new market for online stores. Online stores

needed to change their strategy and embrace the mobile
market.

Businesses operating over the Internet need to maintain

relations with their customers to ensure continuity, recognize

previous customers, and simplify the eCommerce process.

This is done using cookies.

2.3 Cookies

Cookies are small quantities of data that are stored by

websites in the client browser, and sent to that web site with

each http request. Cookies were introduced by Netscape

Communications in 1994 in their Netscape Navigator

Browser. Cookies allow users to store their sessions and state

with websites.

eCommerce applications use cookies to store customers’

preferences. This both makes the online buying experience

more convenient and focused as cookies allow the tracking of
customer preferences. Cookies support functionality such as

customer shopping carts and the recognition of returning

customers who are then recommended appropriate products

and made offers using individually tailored marketing.

The problem with cookies is privacy since third party

applications could potentially steal information from cookies.

There are also several security issues with cookies such as

cookie poisoning [13], and cookie injection. Cookie poisoning

attacks involves the modification of the cookie contents (user

IDs, passwords, account numbers, time stamps) in order to

bypass security mechanisms. Using cookie-poisoning attacks,

attackers can gain unauthorized information about another
user and steal their identity. Cookie injection attacks inject a

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

 177

cookie string or code into the HTTP header to modify server
page execution, which may lead to SQL injection attacks [14].

The Cookie Law is the result of a EU directive in 2011 and

enacted into law across the majority of the European Union. It

requires websites to obtain visitors’ agreement to store or

retrieve any information on a computer, smartphone or tablet

[15].

It was designed to protect online privacy, by making

consumers aware of how information about them is collected

and used online, and give them a choice to allow it or not.

Cookies are limited in size to 4KB, and therefore are rarely

used to directly store site-specific information. Rather, a
typical cookie will store a unique database key. That key will

usually point into the web server’s customer database that is

not accessible publicly. That database may contain any

amount of information about the customer including their

personal details, transaction and purchase history, preferences

and so on. Cookies, and their limitations in size and flexibility,

have lead to the specification and development of HTML

IndexdDB.

3. Current state of IndexedDB

Browser storage has been proposed in HTML5 to extend

the cookies functionality to provide web developers and web

applications with better alternatives to store data locally. With

browser based storage eCommerce companies can store user

preferences, shopping cart and product images locally. This

can help eCommerce applications to speed up the process of

loading products and displaying them to end-users.

By using browser-based storage, eCommerce sites can also
be used offline. The user will have the ability to add products

to a shopping cart, even if the network connection is down.

The greatest advantage of using offline storage is with mobile

devices, where network connectivity and data caps are a

concern.

If a Web service allows only a certain number of calls per

hour but the data does not change that often, web applications

could store the information in local storage and so help

prevent mobile users breaching data limits [16]. Online stores

could save new images every six hours, rather than every

minute, which would improve the bandwidth utilization.
Local caching keeps users from being banned from

services, and it also means that when a call to the Application

program interface (API) fails, user will still have information

to display. For example, shopping cart data could be stored

locally and synchronized with the eCommerce site when

network connectivity is restored.

The main problem with HTTP as the main transport layer

of the Web is that it is stateless. This means that when an

application is closed, its state will be reset the next time is

opened. If an application on the desktop is closed and then re-

opened, its most recent state is restored. Local storage is better
than cookies since it allows for storage across multiple

windows. It also has better security and performance and data

will persist even after the browser is closed [17]. Therefore,
local storage provides functionality similar to that of desktop

applications, where application state is persistent.

In 1995 Netscape Corp’s vision of the future was to run

multimedia application, spreadsheets and word processing

programs from the web browser. Netscape’s main product was

a browser (Naviagator), which was written to run across

multiple operating systems (Windows, Unix, and Macintosh).

The vision was that application would run on the top of any

operating system with their sets of APIs, so that third party

applications developers would not need to worry about the

underlying operating system and hardware. These days,
Netscape’s vision is a reality, where applications like

YouTube and Facebook can be run from any web browser.

As the HTML5 standard evolved, new browser based

storage concepts were introduced. These are targeted at storing

larger data volumes. Additionally they have satisfied the key

non-functional requirement of speed, since stored data was not

transmitted with every HTTP request, whilst cookies are.

HTML5 provides two new features to store data locally. The

first browser based storage feature is called ‘local storage’. It

allows the storage of information locally within a web browser

in object stores, which are persistent and stored on disk. The

storage is limited to 5MB and the stored data is in name/value
pairs.

IndexedDB is another HTML5 browser based storage

technology. It is a NoSQL (Not only SQL) [18],

asynchronous, key-value browser-based data store, where

NoSQL is an approach to databases that is not relational or

object oriented. Rather, NoSQL stores data in key/value

format. The database can handle a large amount of data.

IndexedDB supports an API that offers fast access to

unlimited amount of structured data. IndexedDB may be

considered to be insecure, since security was not considered in

its specification. In a previous paper [19] we have described
how standard forensic tools may be used to identify data

stored, and then deleted from IndexedDB data stores.

IndexedDB, which was previously known as

WebSimpleDB came from the W3C specification of

implementing web storage into web browser in 2009.

IndexedDB is a persistent client-side database implemented

into browser and is an alternative to WebSQL, which has been

deprecated. Mozilla and Microsoft supported the introduction

of IndexdDB, which was most influenced by Oracle's Berkley

DB. The application uses local data stored on a client system

[20]. It caches large data from server to the web browser client

using JavaScript Object Stores, which may be considered to be
equivalent to tables in relational databases.

Files and data stored by the browser are retained on the

user file storage system, on the user's computer hard drive.

The client-side database, IndexedDB, stores the data, even

when the browser terminates. IndexedDB is then a persistent

client-side database, which means that the data can be

retrieved even the browser is offline. Therefore, the files

reside on the user file system and can be recovered until other

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

 178

files overwrite them. IndexedDB treats file data just like any
other type of data. An application can write a File or a Blob

into IndexedDB, as well as storing strings, numbers and

JavaScript objects. This is detailed in the IndexedDB

specifications and, so far, implemented in both the Firefox and

Chrome applications of IndexedDB. Using this, storing all

information in one place and a single query to IndexedDB can

return all the data.

In Firefox and Chrome’s IndexedDB implementation, the

files are stored transparently external to the actual database; in

other words, the performance of storing some data in

IndexedDB is just as efficient as storing it directly in the OS
filesystem. Storing files does not extend the database size and

slow down other operations. Moreover, reading from the file

means that the implementation reads from an OS file. The

Firefox IndexedDB implementation is even smart enough to

recognize if is storing the same Blob in multiple files. If this

happens it creates only one copy. Writing further references to

the same Blob just adds to an internal reference counter. This

is completely transparent to the web page, so it writes data

faster while using fewer resources.

Browser based storage such as IndexedDB can be used on

multiple browsers and is cross platform compatible. Web

applications can take advantage of using IndexedDB on
desktop, mobile and tablet, without additional programming.

Web applications can use browser-based storage without the

need for network connections. The HTML5 standard provides

the functionality where data can be stored on client machine,

and can be accessed anytime without the need of network

connection.

An important aspect of HTML5 is that the web applications

can run offline using local storage. The advantage of HTML5

compared to desktop programs is that web applications do not

require any installation or start-up configuration and will also

run on any device that supports HTML5, such as laptops,
phones or tablets. In an eCommerce scenario, this reduces the

entry barrier to new customers since customers can begin

taking advantage of web applications just by visiting the

relevant web site.

IndexedDB extends local storage by providing web

applications with offline storage. This may be used by

eCommerce stores to store customer preferences without

sending these with every HTTP request. Consequently, HTTP

request and response traffic will decrease and customer

preferences or other information will be accessed only when

requested. An important aspect of HTML5 is that the web

applications can run offline using local storage. This means
that client data will be stored on user’s browser and accessed

anytime that the application requires. Offline storage and

cached pages provide a better user experience, since network

latency is minimal.

The new HTML5 IndexedDB functionalities bring new

security issues, since there is increased access to the client

computer’s resources. One of the biggest disadvantages or

disappointments is that the new standard does not provide any

additional security. HTML5 video and audio are replacing
third party application as Adobe and closing a common attack

vector with FLASH applications or plug-ins. Additionally

HTML5 provides greater access to computer resources, which

includes local storage, and therefore opens new opportunities

for attacks.

The problem with the current browser based storage, such

as IndexedDB is that there is concern that another application

on the client computer may also access that offline data. To

prevent web applications from reading each other’s data, a

mechanism known as the same origin policy (SOP) applies to

all of the web storage technologies. By implementing the same
origin policy, browsers check and record the origin of all the

data they store based on the hostname of the web application

(www.example.com), the port number on which the web

application runs (80) and the protocol through which the data

was delivered (typically http or https). When a web

application wants to access data stored locally, the browser

will check the current origin and the origin of the data and

only allow access if these match. Data is protected through the

use of the same origin policy.

The SOP is the only form of browser protection against

potential security threats. SOP works by not allowing access

to client data from sources that could be deemed to be the
original source, perhaps by the use of cross-site scripting

(XSS) for example. That is, if applications in multiple

windows or frames are downloaded from different servers,

they should not be able to access each other’s data and scripts

(Takesue, 2008). The prevention of data or attacks coming

from a different domain is possible. Web browsers are using

this prevention technique against untrusted site attacks.

Attackers use multiple techniques that can easily inspect the

browser history or get data of another domain.

From the experiments performed, we have confirmed

IndexedDB stores data as received, so that it is not encrypted.
However, this is not the only problem. Browser based storage

faces another issue, where the deleted data is not fully deleted

from the hard drive. With the help of standard forensic tools

we were able to restore current and deleted IndexedDB data

from both desktop and mobile drives.

The issue of restoring deleted data just extends the security

concern of storing data in unencrypted state, where the

attacker could get multiple versions of browser based local

storage. The deleted data persists on the hard drive and when

delete data request is executed, the data is just marked as

deleted but still occupies the associated space. A further data

storage request just assigns additional disk space but the old
data will persist on the hard drive and it will be not

overwritten.

We have than a complex scenario with IndexedDB. It has

the advantages of persistence, storage size, and better network

utilization, but the disadvantages of security weakness.

4. Potential attacks

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

 179

4.1 CORS

Cross origin resource sharing (CORS) is a mechanism that

allows JavaScript on a web page to make XMLHttpRequests

(XHR) to another domain, not the domain the JavaScript

originated from. XHR is an API available to web browser
scripting languages such as JavaScript. It is used to send

HTTP or HTTPS requests to a web server and load the server

response data back into the script.

Normally, web browsers would otherwise forbid such

‘cross-domain’ requests. CORS defines a way in which the

browser and the server can interact to determine whether or

not to allow the cross-origin request. By letting third party

applications accessing the data created with other domains

application can lead to security issues, such as information

leakage. Therefore user agents must implement Cross-origin

resource sharing with IndexedDB in greater security details.

Also, CORS expands on the design of the Same Origin Policy.
Each resource declares a set of origins, which are able to issue

various kinds of requests (such as DELETE, INSERT,

UPDATE) to, and read the contents of, the resource. CORS is

a “blind response” technique controlled by an extra HTTP

header (origin), which, when added, allows the request to

reach the target. This means, that an application creates an

IndexedDB database, which is saved with the domain name.

Another application can not access the database files, as the

access is restricted for the particular domain. This attack is

based on bypassing the Same Origin Policy and establishing

cross-domain connections to allow the deployment of a Cross-
site Request Forgery attack vector. We mention a CORS

attack, which can be used to bypass the restriction and read

data from other domains.

4.2 XSS

Cross-site scripting is one of the most popular web

application attack, third on the OWASP list. WhiteHat

security has provided a statistic report where XSS regains the

number one vulnerability in web applications. XSS is popular

attack, because even the web application is secured the attack

rely on the end user, which can be tricked to click a link and

therefore authorize the attack.

XSS is taking advantage of web applications, where the

user input is not filtered properly. Cross site scripting filtering

is a process of filtering out parameter values that look

suspicious, this includes special characters. Attackers may also
manipulate indirect inputs such as session variables and

database records. This can be prevented with sanitizing or

validation of user input. XSS is an attack technique that forces

a Web site to display malicious code, which then executes in a

user’s Web browser.

New client side database provide the functionality to store

data on user machine. Stored data might contain information,

which is considered sensitive, such as user personal

information. If a web application is vulnerable to XSS attack,
then an attacker could get access to client side storage. The

client side storage data can be accessed through the browser,

so the execution of XSS attack might output the stored data.

4.3 Social engineering attacks

Social engineering is the art of manipulating people so they

give up confidential information. The attackers usually trick

people into giving them passwords or bank information, or

access to computer to secretly install malicious software with

the purpose access information or control. Attackers use social

engineering tactics because it is usually easier to exploit

human nature to trust than it is to discover ways to hack web

applications or software. For example, it is much easier to fool

someone into giving the attacker their password than it is

trying to hack their password.

Example of social engineering can be a email from a friend.
If attacker manages hack or socially engineer one person’s

email password, then the attacker would have access to the

victim contact list. The attacker can send email or leave

message to victim’s contacts list with a link, which could be

result that the victims computer will be infected by malware or

the victim is redirected to attackers site. The link could also

contain a download, such as picture, movie, document, or

audio file that has malicious code embed in. When the victim

downloads the file, the victim’s computer will be infected and

the attacker could have access to victims machine, emails,

accounts and contacts.

4.4 Physical Access

Physical access is possible when the attacker has the

physical contact to user machine. When the device or stored

data is unencrypted, the attacker might get access to all data.
Physical access controls to the location where the computers

are kept. Employees who are authorized to work in that

location can use either a RFID card or some magnetic stripe or

barcode on their ID badge to gain access through a locked

door. This allows the accesses to the location to be assessed on

a per employee basis. When considering physical access, the

attacker or any person with access to the filesystem could

potentially get the file and the data, which will mean that it

could be transferred to an external drive and used with the

appropriate application.

Possible solution to prevent an unauthorized person to gain
access to filesystem is to lock the screen, where a password

would need to be entered before any of the files could be

viewed.

5. Encryption For IndexedDB

The future of IndexedDB is to support secure of browser-
based offline usage. Existing browser-based storage has not

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

 180

become popular with web developers, because they face
several problems. The first problem is the complexity of code

required, where the developers need extra time to understand

the structure. Saying that, there are many online tutorial

examples, which can help developers to start implementing

browser, based storage into their web applications.

The second problem with IndexedDB is security. Currently
IndexedDB stores data in an unencrypted state so that is
neither protected, nor securely deleted. Therefore IndexedDB

storage cannot be recommended for the storage of personal

information. This makes it limited in functionality. As with

data stored on desktop, mobile or tablet in an unencrypted

state, an attacker can get the data without bypassing any
protection. For example, with a Cross-site scripting attack

(XSS), such as hidden in email link an attacker could find the

stored data. IndexedDB is inherently vulnerable to such

attacks.

Security flaws are inevitable when considering web

applications and storage of information. This is due not only to

the sophistication of the attacks, but also to the fact the many

attacks, such as cross-site scripting, are based on social

engineering and exploit human error, so are extremely difficult

to protect against. Browser based storage security design is a

concern, but that can be corrected. The correction is to use
JavaScript client side encryption, which would mean that

browser based storage is at least as secure as that on the

server.

With the implementation of the encryption library in the

browser (Firefox v. 29) we are hoping to address the

ineffectiveness of the insecure storing of data. We are going to

propose and develop an algorithm, which will be implemented

into the Mozilla Firefox browser in an extension format. Also,

our algorithm will ensure that the database transaction for

storing or retrieving data will only be possible when a secure

and valid authentication is completed. This also relies upon
providing the private key to encrypt/decrypt data.

We have proposed a security model, which will be
implemented as a browser extension. The proposed security
model extends that of the current web browser. Furthermore,
we have implemented a browser extension with a client side
encryption library, which will help to secure the data on a
client’s machine. When an application requests a new

transaction for IndexedDB to open the database and save data,

the proposed library extension will encrypt the data. This data
will then be as safe as the encryption scheme even should an
attacker get physical access to the device, which would
happen if a laptop were lost, or a mobile handset stolen.
Steps to encrypt the data are:

[21] a)Get a secure Login

The first step is to provide a secure login functionality, which

can be provided by the web application. The web application

will use the login process to authenticate a user and securely

log the user into system.

[21] b)Encrypt data

When an application requests a new transaction for

IndexedDB to open the database and save data, the designed

encryption library extension will encrypt the data. This way

the data will be stored in an encrypted state and will not be
readable to others.

[21] c)Store public and private key

When the data is encrypted a key will be generated and stored

with the user information on the server.

Client-side encrypts sensitive data using the public key, which

will be generated and stored on the server side. This public

key is used when encrypting information using the JavaScript

library. When Client-side encryption is enabled, an RSA

keypair is generated and the user will be given a specially

formatted version of the public key. RSA is the algorithm that

is used to encrypt data with a private key to produce a digital

signature. The private key, however, is never revealed to the
user or anyone else. The data is decrypted using the keypair’s

private key.

Public and private keys are created simultaneously using the

same algorithm (RSA- Rivest-Shamir-Adleman). Private keys

are used to decrypt text that has been encrypted with a public

key.

[21] d)Decryption of data

When the user requests to read the data from the database, the

web application will check user’s credentials (if the session is

active) and get the key from the server to allow decryption of

data.

e)User Authentication

Upon successful authentication, the user will be given a public

key, which will be used for the encryption/decryption of the

data. This private key will be stored on the server side, with all

the user information which is used for decrypt the data. We are

going to use OAuth 2, which is an open standard for

authorization. This will be used to securely transfer the private

key from the server to the encryption library.

[21] f)Deletion of data

Secure deletion of data will be required to overwrite the space

of data with zeros. This means that the data cannot be read

again, as all of the values are set to zero.

If running over HTTPS, then things are more secure as the
browser will detect a modified JavaScript file. The SSL layer

of HTTPS protocol handles this.

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

 181

5.1 Proposal

Hashing and encryption can be done within browsers
through the JavaScript encryption library. Algorithm will use a

JavaScript encryption library (proposed Stanford JS

Encryption Library), where the library will be implemented

into the browser (Firefox) as an extension. This extension will

be based on the top of IndexedDB API and therefore every

time during the reading or writing of data, the data will be

encrypted. The library consists of encryption with private and

public keys. The private key will be saved on the server. The

public key will be given to the user and stored on the user’s

machine, the same way as a cookie. The extension will

provide encryption/decryption of data on the user’s machine,

which will resolve the issue of storing data in an unencrypted
state.

5.2 Algorithm Used

It differs from typical AES implementations (different
approach that keeps the code small and speeds up

encryption/decryption). The source code for the AES

algorithm, also called Advanced Encryption Standard or the

Rijndael algorithm. The benchmarking tests have shown that

the Stanford JS Encryption library performs faster than other

client side encryption libraries. The benchmark has been

achieved in multiple browsers on Windows, Mac and Linux

Operating Systems. One of the reasons we proposed to use and

implement the library into algorithm was the speed and

multiplatform usage.

The algorithm is going to contain the JavaScript encryption

library, which will be implemented into the browser. The
algorithm will consist of a few steps, with the higher security.

This will allow the end user to save and retrieve data from

IndexedDB. The data will be encrypted with the JavaScript

library and a private and public key will be used to

encrypt/decrypt this data.

5.3 Implementation

The model will add an extra layer between the web browser

and IndexedDB API. The security model consists of an

algorithm framework, which adds extra protection against

issues identified, by reading each other’s data through XSS

vulnerabilities.

Algorithm is using JavaScript encryption library (proposed

Stanford JS Encryption Library), where the library is

implemented into the browser (Firefox) as an extension. This

extension is placed on the top of IndexedDB API and therefore

every time during the reading or writing of data, the data will

be encrypted. The library consists of encryption with private
and public keys. As expected, the private key will be saved on

the server. The public key will be given to the user and stored

on the user’s machine, the same way as a cookie. The

extension will provide encryption/decryption of data on the

user’s machine, which will resolve the issue of storing data in

an unencrypted state. It will also provide better security for

possible attacks, where the attacker can manipulate with user

data.

The browser based local storage security model (BBLS) is

relying on the web browser security model (WBSM), which is

using Same origin policy. The security mechanism is not
enough to preserve the security confidence among the end

user.

The BBLS security model differs from WBSM in few

ways, which includes the security mechanism. The main

difference is that BBLS security model is trying to secure the

data between browser and the end user file system, where

comparing to WBSM, which is securing the data between web

applications and user browser.

The goal of BBLS security model is to secure the data,

which is stored in client side database. User should be able to

visits other websites, without they databases to be

compromised.
The current WBSM is not sufficient protection for complex

web application and stored data on client side is becoming

more important.

The security model consists of an encryption framework,

which will help to secure the data. The encryption framework

cannot though provide full security protection. We argue that

such protection is not achievable in a single machine, since

any single browser could be the target of an XSS attack.

Therefore, functionality external to be browser needs to be

implemented. For implementation to existing encryption

library we will use Multifactor authentication (MFA). MFA is
used to make the authentication process more secure by

adding an extra layer of security. The extra authentication will

need to be passed to make sure the encryption library decrypts

the data. Mobile two-factor authentication use phones to

replace fobs or software-based tokens that were commonly

used for remote authentication. When a person tries to log into

an online service, a security pin is sent to his or her mobile

phone via voice or SMS message, rather than to the token.

5.4 Evaluation

To evaluate the security model, we will run tests to

conclude the effectiveness of the model. This will include

attacks, which will be bypassing the SOP trough XSS attacks.

First we will perform and attack with existing security,

without applying the security model.

Then we will add the security model, and perform the
attack again. We suggest that the model will prevent an

attacker to read data from other source, by adding the

authentication process to place. Also the data stored will be

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

 182

encrypted, which means that even the authentication process is
compromised, the data will not be available to read in

unencrypted state.

Based on our findings, we can state that there is a case for

browser-based databases. We have implemented a JavaScript

encryption framework, which is a part of the security model

implemented into the browser in a form of an extension. The

proposed security model extension addresses the security issue

that IndexedDB has as a product of its design. Also, the

implemented security model fulfils the security requirements.

6. Conclusion and Future Work

Based on these findings, we can state, that there is a case

for browser-based databases. Browser based databases though

face security problems over and above those on the server, and

this has inhibited their uptake. Nevertheless, despite the

existing issues faced by browser-based storage, there is a

future for the technology due to its convenience, performance,
reduced reliance on continuously available network

connection.

Considering the issues and concerns of storing data locally,

browser based storage has the potential to be widely used,

where the main advantage is the performance speed, cross

platform (desktop, mobile, tablet) and browser availability.

The advantages of local storage outweighs the disadvantages,

keeping in mind that the issues identified can be corrected and

browser-based storage can be widely used by developers

without any concerns of security issues introduced as by

design limitations.

Although the proposed security framework has been
successfully applied to browser based local storage, further

improvements can be made in extending the security and

performance model. These could be addressed by extending

the current model to use further security factors such as

biometrics.

7. References

[1] Naseem, S.Z. Majeed, F. (2013) Extending HTML5 local

storage to save more data; efficiently and in more structured
way. Eighth International Digital Information Management
(ICDIM)

[2] Zhanikeev, M. (2013) A Practical Software Model for Content
Aggregation in Browsers Using Recent Advances in HTML5.
37th Annual Computer Software and Applications Conference
Workshops (COMPSACW). pp.151-156, Japan 22-26 July 2013

[3] Ryck, P. Desmet, L. Philippaerts, P. Piessens, F. (2011) A
Security Analysis of Next Generation Web Standards,
(European Union Agency for Network and Information Security
- ENISA). Tech. Rep.

[4] Anttonen, M. Salminen, A. Mikkonen, T. Taivalsaari, A (2011)
Transforming the web into a real application platform: new
technologies, emerging trends and missing pieces. ACM
Symposium on Applied Computing. New York, NY, USA. Pp.
800-807.

[5] Chuang, T. T., Nakatani, K, Chen, J. C. H. and Huang, I. L.
(2007). Examining the Impact of Organisational and Owner's
Characteristics on the Extent of E-commerce Adoption in SMEs,

[6] Pool, P. W., Parnell, J. A., Spillan, J. E., Carraher, S. and Lester,
D. L. (2006). Are SMEs Meetings the Challenge of Integrating
E-commerce into Their Businesses? A Review of the
Development, Challenges and Opportunities, International
Journal Information Technology and Management, 5(2/3),
pp.97-113.

[7] Jones, J. (2014) E-commerce: measuring, monitoring and gross
domestic product. ONS. Available at:
http://www.ons.gov.uk/ons/rel/gva/national-accounts-articles/e-
commerce--measuring--monitoring-and-gross-domestic-
product/index.html (Accessed: 20 September 2015).

[8] Ta, H., Esper, T., & Hofer, A. R. (2015). Business‐to‐Consumer
(B2C) Collaboration: Rethinking the Role of Consumers in
Supply Chain Management. Journal of Business Logistics,
36(1), 133-134.

[9] Xiaojing, L., Liwei, Z., & Weiqing, W. (2012). The mechanism
analysis of the impact of eCommerce to the changing of
economic growth mode. In Robotics and Applications (ISRA),
2012 IEEE Symposium on (pp. 698-700). IEEE.

[10] Boritz, E., Gyun, W., and Sundarraj, P. 2008. Internet privacy in
E-commerce: Framework, review and opportunities for future
research. In: Proceedings of the 41st Hawaii International
Conference on System Sciences. Hawaii, January 7-10 2008,
pp.204-256.

[11] Gehling, B., & Stankard, D. (2005). eCommerce security. In
Proceedings of the 2nd annual conference on Information
security curriculum development (pp. 32-37). ACM.

[12] Gómez, J. M., & Lichtenberg, J. (2007). Intrusion Detection
Management System for ECommerce Security. Journal of
Information Privacy and Security, 3(4), 19-31.

[13] Buja, G., Jalil, K. B. A., Ali, F. B., Mohd, H., & Rahman, T. F.
A. (2014). Detection model for SQL injection attack: An
approach for preventing a web application from the SQL
injection attack. In Computer Applications and Industrial
Electronics (ISCAIE), 2014 IEEE Symposium on (pp. 60-64).
IEEE.

[14] Appelt, D., Nguyen, C. D., Briand, L. C., & Alshahwan, N.
(2014). Automated testing for SQL injection vulnerabilities: An
input mutation approach. In Proceedings of the 2014
International Symposium on Software Testing and Analysis (pp.
259-269). ACM.

[15] Summers, S., Schwarzenegger, C., Ege, G., & Young, F. (2014).
The emergence of EU criminal law: cyber crime and the
regulation of the information society. Bloomsbury Publishing.

[16] Karthik, R., Patlolla, D. R., Sorokine, A., White, D. A., &
Myers, A. T. (2014). Building a secure and feature-rich mobile
mapping service app using HTML5: challenges and best
practices. In Proceedings of the 12th ACM international
symposium on Mobility management and wireless access (pp.
115-118). ACM.

[17] Ayenson, M. Wambach, D. J. Soltani, A. Good, N. Hoofnagle,
C. J. (2011) Flash cookies and privacy II: Now with HTML5
and ETag respawning. Computer and Information Systems
Abstracts. [Online]. Available at:
http://dx.doi.org/10.2139/ssrn.1898390 (Accessed: 10 February
2015).

[18] Strozzi, C. (1998) NoSQL A Relational Database Management
System. Available at: http://www. strozzi. it/cgi-
bin/CSA/tw7/I/en_US/nosql/Home% 20Page (Accessed: 20
September 2015).

[19] Kimak, S. Ellman, J. Laing, C. (2014) Some Potential Issues
with the Security of HTML5 IndexedDB. In: System Safety and
Cyber Security 2014 (IET Conference), 14-16th October 2014,
The Midland Hotel, Manchester, UK.

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

 183

[20] Casario, M. Elst, P. Brown, Ch. Wormser, N. Hanguez,C.
(2011) HTML5 Solutions: Essential Techniques for HTML5
Developers. Publisher: FRIENDS OF ED; 1 edition ISBN:
14302338

Appendix H: HTML5 IndexedDB encryption: Prevention against potential attacks

 184

