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Abstract 

This thesis presents an analysis of, and enhanced security model for IndexedDB, the 

persistent HTML5 browser-based data store. In versions of HTML prior to HTML5, web 

sites used cookies to track user preferences locally. Cookies are however limited both in 

file size and number, and must also be added to every HTTP request, which increases web 

traffic unnecessarily. Web functionality has however increased significantly since cookies 

were introduced by Netscape in 1994. Consequently, web developers require additional 

capabilities to keep up with the evolution of the World Wide Web and growth in 

eCommerce. The response to this requirement was the IndexedDB API, which became an 

official W3C recommendation in January 2015. The IndexedDB API includes an Object 

Store, indices, and cursors and so gives HTML5 - compliant browsers a transactional 

database capability. Furthermore, once downloaded, IndexedDB data stores do not require 

network connectivity. This permits mobile web- based applications to work without a data 

connection. Such IndexedDB data stores will be used to store customer data, they will 

inevitably become targets for attackers.  

This thesis firstly argues that the design of IndexedDB makes it unavoidably 

insecure. That is, every implementation is vulnerable to attacks such as Cross Site 

Scripting, and even data that has been deleted from databases may be stolen using 

appropriate software tools. This is demonstrated experimentally on both mobile and 

desktop browsers. IndexedDB is however capable of high performance even when 

compared to servers running optimized local databases. This is demonstrated through the 

development of a formal performance model. The performance predictions for IndexedDB 

were tested experimentally, and the results showed high conformance over a range of 

usage scenarios. This implies that IndexedDB is potentially a useful HTML5 API if the 

security issues can be addressed.  

In the final component of this thesis, we propose and implement enhancements that 

correct the security weaknesses identified in IndexedDB. The enhancements use multi-

factor authentication, and so are resistant to Cross Site Scripting attacks. This enhancement 

is then demonstrated experimentally, showing that HTML5 IndexedDB may be used 

securely both online and offline. This implies that secure, standards compliant browser-

based applications with persistent local data stores may both feasible and efficient.  
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Chapter 1.  Introduction 

Introduction 

This chapter outlines the background to the study and the importance of new 

technologies; this is presented to serve as a basic foundation for the study. Additionally, 

we present the arrangement of the overall thesis, along with the objectives to be 

completed. 

1.1.  Background of the research 

This thesis attempts to answer several questions. Firstly, what is HTML5 IndexedDB; 

where did the technology come from and what has motivated its development; what is its 

current status and what is inhibiting its take-up; and finally, what is the future of HTML5 

IndexedDB? 

HTML5 is the latest W3C standard for the language in which web pages are written 

and for Application Programming Interfaces (API) that are expected to be provided by a 

supporting web browser. The motivation behind the changes and enhancements coming 

with HTML5 is that the web browser should be capable of running browser-based 

applications in the same way that it supports desktop applications. That is, client-side 

process will be able to avoid the ineffectiveness and network connectivity issues found in 

server-side applications, and the inherent visual instability caused by their required page 

refreshes. Consequently, major browsers now support the majority of the new HTML5 

components and API. Therefore, HTML5 browser-based storage may contain stored data 

from online services that utilise the new functionality of HTML5 (Naseem and Majeed, 

2013). The process of accessing this data might be slow in some cases, due to network 

latency or database query process (Zhanikeev, 2013). It is suggested that this new level 

of browser-based storage will ensure that such HTML5 enabled browsers are going to be 

a significant target for cyber-attacks (De Ryck et al. 2011). 

Web browsers store history and other data using cookies on the client computer, which is 

considered attractive for marketing purposes. The importance of being browser-based is 

critical for developers, as modern browser-based web applications are able to store large 

amount of data and access this faster than any server-side database. Consequently, 

HTML5 opens up entirely new security challenges and issues (Anttonen et al. 2011). 

User information is tracked on every move on the Internet (Castelluccia, 2012; Atterer et 

al. 2006): eCommerce sites store customer details, orders and saved products, and web 
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sites store cookies on user computers to track returning customers. The data can be used 

later for marketing purposes and for targeting new customers. Sometimes consumers and 

the general public do not realise the quantity of personal data that is shared over the 

World Wide Web (WWW) (Rosenfeld and Morville, 2006) and how the data can be used 

or misused. Data privacy and information leakage is, therefore, a serious concern (Ruiz et 

al. 2015).  

HTML5 is not supposed to replace Flash videos, but extends the functionality, 

which works on any device without the need of installing additional software. This 

means that the customer will be able to stream videos from native Web browser. Online 

videos are suggested to increase on online stores popularity and sales, where video has 

evolved into a powerful marketing tool that online retailers can prospect from (Xu, 2015). 

Videos are gaining on popularity, where they influence online reviews on customer 

perceptions and decisions to purchase products. 

 In 2009 and 2010 large corporations as Apple stopped implementing Adobe 

Flash to IOS devices, saying that will be instead using only HTML5 standard for mobile 

devices (Prince, 2013). This has led to a dramatic expansion of HTML5 usage over 

Adobe Flash by developers. 

 

1.1.1 IndexedDB – the Past 

In this section, we consider the drivers behind HTML5 IndexedDB, that is, why the 

technology was considered at all and what motivates current standards? We proceed as 

follows. Firstly, we provide an overview of the status of eCommerce, with particular 

attention paid to its mobile variant, mCommerce. Then we consider browser-based 

cookies that are IndexedDB’s intellectual antecedents. 

The term ‘eCommerce’ began to be used widely in early 2000 and is defined as 

commercial transactions conducted electronically on the WWW, such as purchasing 

goods and services online. Business worldwide prosper from eCommerce, because is 

fast-growing method for trading (Chuang et al. 2007; Pool et al. 2006). The eCommerce 

market grew slowly until 2007, when its proportion of GDP was about 3%, but the 

biggest expansion happened in the last decade when retails sales increased to 40% 

(eMarketer, 2014). In 2012, eCommerce accounted for 18% (£492 billion) of UK 

business turnover. In 2012, 21% of UK businesses made eCommerce sales to their own 

country, 9% to EU countries and 7% to non-EU countries – based on Office of National 

statistics (ONS) data (Jones, 2014). Of the UK's total GDP of £1.45 trillion, the Internet 

value chain represented 2.6% and the eCommerce generated a further 3.1%. The UK 
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claims 57 million Internet users and has a penetration rate of 89%. Users usually spend 

nearly an hour per week browsing eCommerce stores and buying goods online. The use 

of eCommerce, by both organisations and individual consumers, continues to grow as 

more people are connected to the Internet and with the increased availability of fibre 

broadband. 

eCommerce has several advantages over offline stores and mail catalogues. The 

existence of online stores eliminates the third-party costs required by wholesalers and 

distributors and also removes the overheads of physical shops. Both of these aspects 

lower operational costs. eCommerce stores also provide search functionality to find the 

exact product a customer is looking for. Customers can easily browse through large 

amounts of products and services (Reynolds, 2000). eCommerce has been expanded to 

the business to business (B2B) (Vargo and Lusch, 2011) and business to consumer (B2C) 

(Ta et al. 2015) markets. Many retailers took the step of investing in online sales, which 

targets more customers in categories such as electronics, books and transport. 

eCommerce also provides retailers a global market opportunity with minimal initial 

investment (Xiaojing et al. 2012). Consumers can also see prices, allowing simple price 

comparison, and can then place orders quickly. eCommerce stores allow the customer to 

add products to their wish list, which can be sent to friends or family to be paid for.  

Consumers can check existing online product reviews and also compare prices for 

best offer before buying any goods or services. Some eCommerce stores provide a video 

review of products, where the customer can observe the product without the need to 

leave the house (Sunil, 2015). One of the most important advantages of eCommerce 

stores is global market and creating new business opportunities (Wang et al. 2015). 

Online stores are available to everyone, everywhere. For most businesses, eCommerce is 

an excellent alternative supply channel that is not only cost-effective but continuous and 

extensive in reaching consumers directly. 

The Internet helps companies to engage in eCommerce by collecting, storing and 

exchanging personal information obtained from visitors to their websites (Boritz et al. 

2008). eCommerce stores can target customers in many ways; the most widely used are 

email and online ads which have a cost advantage over offline stores where printed flyers 

must be produced. eCommerce can target a larger number of customers in a shorter 

period of time, as everything is done over the Internet. With the growth in popularity of 

social media, eCommerce retailers took advantage of this to attract new customers. 

Additionally, online retailers use online customer buying habits to target new and 

existing customers with social media advertisements and special offers (Huang and 

Benyoucef, 2013). Since the late 1990s, it was foreseen that every step on the Internet 
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could be traced and that this information might be stored (Gehling and Stankard, 2005). 

Information from web browsers is stored in computer history, and eCommerce sites store 

user preferences and shop orders to understand their customers better and target them 

with advertising related products. eCommerce stores use cookies (Stalker et al. 2004) to 

store customers’ preferences, which makes the online buying experience more 

convenient. Web technology also allows retailers to track customer preferences and to 

deliver individually tailored marketing (Zhao and Lin, 2014). Security experts predicted 

that user information on the Internet would be valuable for marketing and targeting 

customers with special offers (Wang and Zhang, 2010; Gómez and Lichtenberg, 2007). 

HTML was first focused on the desktop computer, for in 1993 when the web 

started, mobile (cell) telephones did not have Internet connectivity. Tablet computers 

(e.g. the Grid Compass) were a rarity and limited to specialised applications. In 2015, 

mobile phones and tablets combined now account for 38% of all web pages served 

around the world (StatCounter, 2016). Smart phone user penetration was 9.6% in 2011 

and by 2015, it was 28% (Statista, 2016), while in UK the mobile penetration rate is 

72%. The UK’s Internet ecosystem is worth £82 billion a year, with mobile devices 

connections accounting for 16% of this. mCommerce sales will continue to grow where 

by 2019 it is predicted to reach £37 billion and drive over 60% of online retail sales. 

Since 2007, mCommerce sales have grown rapidly from less than 5% to 21% of all sales 

in 2015 (eMarketer, 2014), which has opened a new market for online stores. The latter 

needed to change their strategy and target the mobile market. 

Businesses operating over the Internet need to maintain contact with their customers to 

ensure continuity, recognise previous customers and simplify the eCommerce process. 

This is achieved using cookies. 

Cookies are small quantities of data stored by websites in the client browser and 

sent to that web site with each Hypertext Transfer Protocol (HTTP) or Hypertext Transfer 

Protocol Secure (HTTPS) request. Cookies were introduced by Netscape 

Communications the in 1994. Cookies allow user to store their sessions and state with a 

website. Later they provided functionality like customer shopping carts and the 

recognition of returning customers (Uehara et al. 2001), whereby online stores can 

display recommended products and offers.  

The problem with cookies was with implications for privacy, in that third-party 

applications could potentially steal information from cookies (Ayenson, 2011). There are 

also several security issues with cookies, such as cookie poisoning (Buja et al. 2014; 

Saha and Das, 2012) and cookie injection (Choi and Gouda, 2011). Cookie poisoning 

attacks involve the modification of the contents (user IDs, passwords, account numbers, 
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time stamps) in order to bypass security mechanisms (Saha and Das, 2012). The cookie 

poisoning attacks allows attacker to impersonate as the victim with the purpose to access 

information about the victim. Cookie injection attacks operate by injecting a cookie 

string or code into the HTTP header to change its execution, which can lead to SQL 

injection (Appelt, 2014; Shar and Tan, 2013; Lee et al. 2012).  

The Cookie Law is the result of a EU directive in 2011 and enacted into law across the 

majority of the European Union. It requires websites to obtain visitors agreement to store 

or retrieve any kind of information on a desktop computer or mobile device (Summers et 

al. 2013; Hayes, 2012). The Cookie Law was designed to protect online privacy of 

consumers. When a consumers entered a website or eCommerce site and cookies has 

been used, the website was required to alert them of how information about them is 

collected and used online, and to give them a choice to allow this or not. From 2015 the 

websites are not obligated to alert the visitor about storing cookies.  

Cookies are limited in size to 4KB and therefore are rarely used to store site-specific 

information directly. Rather, a typical cookie will store a unique database key which will 

usually point into the web server’s customer database that is not accessible publicly. That 

database may contain any amount of information about the customer, including their 

personal details, transaction/purchase history, and preferences. 

1.1.2 IndexedDB at present 

Browser storage has been proposed to extend cookie functionality by providing web 

developers and web applications with better alternatives to store data locally. With 

browser-based storage, eCommerce can store user preferences, shopping cart and product 

images locally. This can help eCommerce applications to speed up the process of loading 

products and displaying them to end-users.  

With browser-based storage, eCommerce sites can be stored locally and used 

offline. The user will have the ability to add products to the shopping cart, even if the 

network connection is down. The advantage of using local storage is with mobile 

devices, where network connection and data quotas are concerns. Local storage could be 

used when a service is limited or allows only a certain number of calls per hour, but the 

data does not change that often. A web application could store the information in local 

storage and prevent users from using the limit (Karthik et al. 2014). Online stores could 

save new images every couple of hours, rather than every minute, which would improve 

the bandwidth. Local storage keeps users from being banned from services and also 

means that when a call to the application program interface (API) fails, the user will still 
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have information to display. For example, the cart can be stored locally and synchronised 

with the eCommerce site when network connectivity is restored.  

The main problem with HTTP protocol as the main transport layer of the web is 

that it is stateless (Fielding and Reschke, 2014). This means that when an application is 

closed, its state will be reset the next time it is opened. If a desktop application is closed 

and then re-opened, its most recent state is restored. Local storage has advantages over 

cookies which includes better performance, storing larger amount of data, storage across 

multiple windows in web browser and data persist even after the web browser is closed 

(Ayenson, 2011). Therefore, local storage provides functionality similar to desktop 

applications, where the state is persistently stored. 

In 1995, Netscape’s vision of the future was to run multimedia applications, 

spreadsheets and word processing programs from the web browser. Netscape’s main 

product was a browser, which was written to run across multiple operating systems 

(Windows, Linux and Macintosh). The vision was that applications would run on top of 

any Operating System with their sets of APIs, so that third-party application developers 

would not need to worry about the underlying Operating System and computer hardware. 

Today, this vision is a reality, where applications like YouTube and Facebook run from 

browsers. Also, Chrome introduced its new Operating System, which is web browser-

based, partially based on Netscape’s vision. The application can be run as a web 

application but developers have introduced applications that can be run offline as well 

(Gihan et al. 2011) . 

As the HTML5 standard evolved, new browser-based storage was introduced and was 

able to store larger amounts of data. Additionally, it provided the non-functional 

requirement such as speed, because the stored data was not transmitted with every HTTP 

request. Non-functional requirements are not used to perform a specific function, 

sometimes also referred as quality factors or attributes (Chung et al. 2000). 

HTML5 provides two new featured to store data locally. First, browser-based 

storage is called local storage. It allows the storing of information locally within web 

browsers in object stores (SQL databases have tables), that persists on disk. The storage 

is limited to 5MB and the stored data is in name/value pair.  

HTML5 browser-based storage technology is called IndexedDB, known previously 

as WebSimpleDB. It is a Not only SQL (NoSQL) (Kuznetsov and Poskonin, 2014; 

Atzeni et al. 2014; Zachary et al. 2013; Strozzi, 1998) key-value asynchronous browser-

based storage. 

IndexedDB API offers fast access to unlimited amounts of structured data. The 

current state of IndexedDB is regarded as insecure, because security was not considered 
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in its specification. As documented in Chapter 4, we have used forensic tools and 

identified security issues with IndexedDB. 

NoSQL is the database solution that is not relational or object orientated. NoSQL 

does store data in key/value format. The database can handle a large amount of data, 

where the relational model is not needed. 

IndexedDB came from the W3C specification of implementing web storage into 

web browsers in 2009. IndexedDB is a persistent client-side database implemented into 

browsers and is an alternative to already deprecated WebSQL. Mozilla and Microsoft 

supported the change, while Oracle's Berkley DB mostly influenced this. The application 

uses local data stored on a client system (Casario et al. 2011). It caches large amounts of 

data from server to client-side using JavaScript Object Stores, equivalent to tables in 

relational databases. 

Files and data stored by the browser are retained on the user’s hard drive storage 

system. The client-side database, IndexedDB, stores the data, even when the browser 

terminates. IndexedDB is a persistent client-side database, which means that the data can 

be retrieved even offline. Therefore, the files reside on the user file system and can be 

recovered until other files overwrite them. IndexedDB treats file data just like any other 

type of data. An application can write a file or a Binary Large OBject (BLOB) into 

IndexedDB, as well as storing strings, numbers and JavaScript Objects. This is detailed 

in the IndexedDB specifications and, so far, implemented in both the Firefox and 

Chrome applications of IndexedDB. Using this, storing all information in one place and a 

single query to IndexedDB can return all the data. 

In Firefox and Chrome’s IndexedDB implementation, the files are stored 

transparently external to the actual database; the performance of storing a file in 

IndexedDB is just as good as storing it in a file system. Storing files does not extend the 

database size and slow down other operations. Moreover, reading from the file means 

that the implementation reads from an Operating System file; therefore, IndexedDB is 

just as fast as a file system. The Firefox IndexedDB implementation is even smart 

enough that if storing the same BLOB multiple files, it creates only one copy. Writing 

further references to the same BLOB simply adds to an internal reference counter. This is 

completely transparent to the web page; it writes data faster whilst using fewer resources. 

Browser-based storage as IndexedDB (W3C, 2015) can be used on multiple browsers 

and is cross-platform compatible. Web applications can take advantage of using 

IndexedDB on desktop, mobile and tablet, without additional programming using APIs.  

IndexedDB caches large amounts of data from server to client-side using 

JavaScript Object Stores, equivalent to tables in relational databases. Files and data 
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stored by the browser are retained on the user's hard drive. The client -side database, 

IndexedDB, stores the data, even when the browser terminates. 

Web applications can use browser-based storage without the need for network 

connection (Gihan et al. 2011). The HTML5 standard provides all of the functionality 

where data can be stored on client machines and accessed at any time. An important 

aspect of HTML5 is that web applications can run offline using local storage. The 

advantage of HTML5 compared to desktop programs is that web applications do not 

require any installation or start-up configuration and will also run on any device that 

supports HTML5, such as laptops, phones or tablets. This reduces the barrier to entry for 

new customers, since clients can begin taking advantage of the web applications just by 

visiting the relevant web site. 

IndexedDB extends local storage by providing web application offline storage. 

With this functionality, web applications such as eCommerce stores can take advantage 

of storing customer preferences, which are not sent with every HTTP request. 

Consequently, the request and response traffic will decrease and the preference or 

information will be accessed only when requested. An important aspect of HTML5 is 

that web applications can run offline using local storage. This means that client data will 

be stored on the client-side and accessed any time the application requires it. Offline 

storage and cached pages provide a better experience for users where the network latency 

is minimal.  

With the new HTML5 IndexedDB functionalities, new security issues arise 

because it increases access to the computer’s resources. One of the biggest disadvantages 

is that the new standard does not provide additional security. HTML5 video and audio 

support replaces third-party applications as Adobe, which closes a common attack vector 

with FLASH application or plug-ins. Additionally, HTML5 provides much more access 

to computer resources, which includes local storage, and therefore provides new 

opportunities for potential attacks. 

The problem with the current browser-based storage such as IndexedDB is that 

there is concern over reading offline data that another application has stored on the 

client-side. 

The security mechanism in web browsers that prevents web applications from 

reading data from other sources is known as Same Origin Policy (SOP) (Gollman, 2011, 

Ss. 2.3.2). The data can be accessed only if the hostname of web application 

(www.example.com), port number (web browsers run on port 80) and protocol (HTTP 

or HTTPS) match against the origin record. The same principle applies when web 

application wants to access data stored on users device (browser-based storage, history). 
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When the origin of the data and requesting origin match, the access is allowed. 

From the experiments conducted, we have found that the storage of data in an 

unencrypted state is not the only problem. Browser-based storage have another issue, 

where the data is not fully deleted from the hard drive. With the help of forensic tools, it 

is possible to restore deleted data from desktop and mobile devices. 

The issue of restoring deleted data merely extends the security concern of storing data in 

an unencrypted state, where the attacker could get multiple versions of browser-based 

local storage. The deleted data persists on hard drive and when a request to delete the 

data is executed, the data is just marked as deleted but occupies the unallocated space on 

the device. New requests to store data to browser-based storage will assign new partition 

space and the old data will persist on the hard drive – it will be not overwritten. 

1.1.3 IndexedDB – future 

The future of IndexedDB is to support secure browser-based offline usage. Existing 

browser-based storage is not popular with web developers, as they face several problems. 

The first is the complexity of code, where the developers need extra time to understand 

the program structure. Yet, there are many examples to help developers start 

implementing browser-based storage into their web applications. The second problem 

with IndexedDB is security. Currently, IndexedDB stores data in an unencrypted state, so 

that is neither protected, nor securely deleted. Therefore, IndexedDB cannot be 

recommended for the storage of personal information. This makes it limited in 

functionality. As with data stored on a desktop, or mobile device in an unencrypted state, 

an attacker can access data without bypassing any protection. With a Cross Site Scripting 

attack (XSS) (Elhakeem and Barry, 2013; Wassermann and Su, 2008; Vogt et al. 2007; Di 

Lucca et al. 2004), such as hidden in an email link, an attacker could find the stored data. 

Hence, IndexedDB is inherently vulnerable to such attacks.  

Security flaws are inevitable when considering web applications and storage of 

information, because no technology is 100% resistant to vulnerability.  

By design, browser-based storage security is a concern, but it can be corrected. The 

method is to use client-side encryption, which will mean that browser-based storage is at 

least as secure as the sever-side. 

We have proposed a security model that will be implemented as a browser 

extension. The proposed security model extends that of the current web browser. 

Furthermore, we have implemented a browser extension with a client-side encryption 

library, which will help to secure the data stored on a client’s machine. When an 

application requests a new transaction for IndexedDB to open the database and save data, 
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the designed encryption library extension will encrypt the data. This way, the data will be 

stored in an encrypted state and will not be readable to others. The data stored locally 

will be safe even should an attacker gain access to the database, because the stored data 

will be encrypted. 

The security model is built around an encryption framework that will help to secure 

the data. The encryption framework consists of an encryption library that is implemented 

into a browser but does not provide a full security protection. This thesis argues that such 

protection is not achievable in a single machine, since any single browser could be the 

target of an XSS attack. Therefore, external browser functionality needs to be 

implemented. In addition the encryption library, a multifactor authentication (MFA) or 

two-factor authentication (2FA) (Ss. 2.12) has been implemented.  

Based on our findings, we can state that there is a case for browser-based 

databases. We have implemented a JavaScript encryption framework, which is a part of 

the security model added to the browser in a form of an extension. The proposed security 

model extension covers the security issue IndexedDB has by design. Also, the 

implemented security model fulfils the security requirements. 

1.2.  Motivation 

The motivation for the changes and enhancements coming with HTML5 is that the web 

browser should be capable of running browser-based applications in the same way that 

desktop applications can be used. That is, client-side process will be able to avoid the 

ineffectiveness and network connectivity issues found in server-side applications. 

Consequently, major browsers now support the majority of new HTML5 components and 

APIs. Therefore, HTML5 browser-based storage may well contain stored data from 

online services that makes use of the new functionality of HTML5 (Naseem and Majeed, 

2013). The process of accessing this data might, in some cases, be slow because of 

network redundancy or database query process (Zhanikeev, 2013). It is suggested that 

this new level of browser-based storage will ensure that such HTML5-enabled browsers 

are going to be a significant target for cyber-attacks (De Ryck, 2011). Consequently, 

HTML5 opens up entirely new security challenges and issues (Anttonen, 2011). 

User information is tracked with every move on the Internet, and eCommerce sites 

store customer details, orders and saved products (Castelluccia, 2012). Sites store cookies 

on user computers to track returning customers. The data can be used later for marketing 

purposes and to target new customers. Sometimes the end customer does not even realise 

how much personal data is shared over the Internet and how the data can be used. Data 

privacy and information leakage is a pressing concern that needs to be addressed. Web 
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browsers store history, cookies and data in local storage on the user’s computer, which is 

considered attractive for marketing purposes.  

Using browser–based storage is important for developers, because modern web 

applications are able to store large amounts of data and access it much faster than any 

server-side database. The importance of HTML5 (Anthes, 2012) browser-based storage 

components would come in their benefit to eCommerce, as the customer could use online 

store without an Internet connection to browse products and add them to their shopping 

cart. 

 

The following research questions are addressed in this thesis: 

 

Considering the speed performance of databases, does offline storage performs faster 

than online services? 

 

How secure is running standalone applications in a web browser with browser-based 

storage in its current state and development? 

 

Considering security by design, can browser-based storage ever be secured against online 

and offline attacks? 

1.3.  Objectives 

The objectives of this project are: 

1. Develop a performance model for browser-based storage which estimates the time 

to perform read and write of data.  

2. Perform experiments with developed performance benchmark to compare the 

results. Provide a conclusion based on the results and comparisons, which shows if 

there is a case for browser-based storage. 

3. Critical investigation on security issues of IndexedDB. 

4. Critically evaluate security on desktop and mobile devices based on previous 

investigation. 

5. Develop a browser-based storage security model, this will resolve the identified 

security issues. 	
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1.4.  Scope of research and timeliness of research topic 

IndexedDB is still in the process of development; therefore, the problem is relevant. As the 

IndexedDB database is not yet widely adopted and used, many issues and problems are 

still not identified. As of early 2015, IndexedDB has gained a W3C Recommendation, 

which means that is officially a web standard. The scope of the research is to develop 

HTML5 applications to run IndexedDB as their backend database, undertake comparison 

of performance and find possible security vulnerabilities. 

1.5.  Contributions and impact  

This thesis presents a novel synthesis and enhanced security model for browser-based 

storage. We believe that existing web security models do not protecting the end user 

data, and our investigation intends to confirm this belief. The contribution consider 

whether browser-based storage is still resistant to attack when a client-side security 

model is applied. The data stored locally will be safe and even if an attacker accesses the 

stored data, it will be encrypted. Furthermore, we implemented a web browser extension 

with a client-side encryption library that will help to secure the stored data on client 

machines. The security of the end user is becoming an everyday concern, as many 

vulnerabilities exists with web applications, such as XSS, SQL injection, Cross - Site 

Request Forgery (CSRF) (Willis, 2009; Stuttard and Pinto, 2011; Burns, 2005) and 

JavaScript attacks. The main concern is how the data is secured on server or client-side. 

In the case of client-side, there are many protections against attacks; but with new 

technologies, these protections are not enough. We demonstrate the effectiveness of the 

current client-side protections. The second contribution is ineffectiveness of IndexedDB 

browser-based storage, whereby experiments show security design flaws. The third 

contribution is a performance model to show that browser-based storage performs faster 

than server-side databases. This model was also confirmed by our benchmarking 

experiments. 

1.6.  Organisation of the thesis 

This thesis argues that current HTML5 browser-based storage is not secure by design. 

We have used an experimental research methodology to prove this and are currently 

developing a supporting theory. 

Chapter 2 presents an overview of existing solutions for browser-based local 

storage and security issues associated with it. Additionally, we have gathered 

background information of IndexedDB and performed initial investigations on possible 
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security issues within using and storing client – side data. The initial investigation was 

published in 2012 and that paper is in Appendix D. 

Chapter 3 designs a speed model to demonstrate the effectiveness of using 

browser-based storage (IndexedDB) in comparison to other browser-based storage or 

server-side databases. We have also compared the results of browser-based storage to the 

MySQL server-side database. The benchmarking experiments and the results were 

published in 2013 and that paper is in Appendix E. 

Chapter 4 have investigated browser-based storage and browser security. The 

investigation was focused on data storage for the browser-based databases in the Operating 

System file. To help analyse the results, a forensic tool called EnCase (Encase, 2004) was 

used. The experiment concentrated on investigating how IndexedDB is saving the data and 

how it can be retrieved after deletion. The desktop forensic investigation experiment and 

results were reported in 2014 and the paper is in Appendix F. Additionally, investigations 

on mobile devices based on steps included in the desktop forensic investigation were 

performed. This was conducted on an Android mobile phone, with the help of the mobile 

forensic tool, XRY (XRY,	2015) and EnCase 7 (Bunting and Wei, 2006; EnCase, 2004). 

Chapter 5 presents a novel synthesis and enhanced security model for browser-

based storage. This model extends the current web browser security model and an 

overview of the architecture is shown in Figure 5.1. Furthermore, we have implemented a 

web browser extension with a client-side encryption library, which will help to secure the 

stored data on client machines; the steps are described further in Chapter 5. We are also 

proposing a new client-side security model that will extend the current web browser model 

and we will evaluate its effectiveness. 

Chapter 6 concludes the thesis by looking at each chapter. Also future work will be 

discussed in areas not covered in thesis, which are out of the scope. The last part of the 

chapter will make main conclusion to summarise the whole thesis and covered 

contributions. 

1.7.  Summary 

Based on these findings, it may be concluded that there is a case for browser-based 

databases. The experiments in this thesis have demonstrated that all data stored on the 

user’s machine is in an unencrypted state. When a web application is vulnerable to online 

attacks stored data is could be compromised, retrieved or deleted by an attacker. The 

same applies to offline attacks, where the attacker could get a physical access to device 
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where the data is stored, such example implies a scenario when a user lost a mobile 

device. 

As a part of thesis a JavaScript encryption framework has been implemented, 

which is part of the security model implemented into the browser in a form of an 

extension. This extension covers the security issue that IndexedDB suffers from by 

design. Also, the security model implemented fulfils the security requirements. The 

model extends the current security model which is insufficient for complex HTML5 

browser-based applications. Based on the evaluation, we can suggest that the model will 

correct the defence ineffectiveness by protecting client-side data. In order to decrypt it 

and obtain private data, an authentication and private key is required. 

Browser-based databases face problems that prevent them from being widely used. 

The first is the complexity of code, where the developer needs extra time to understand 

the structure. However, there are many examples that can help developers to start 

implementing browser-based storage in their web applications. 

The second issue with browser-based storage is security. Browser-based storage is 

not secure by design, which means that the storage cannot, or is not recommended to, be 

used to store personal information. This limits potential functionality. Despite the issues 

and concerns about storing data locally, browser-based storage has the potential to be 

used widely. The main advantages are performance speed, being cross platform (desktop, 

mobile, tablet), browser availability and offline usage. 
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Chapter 2.  Literature Review 

2.1.  Introduction 

This chapter reviews the research related to the new HTML standard functionalities and 

possible security issues which might arise. Section 2 identifies related work and work 

which is the thesis build on; section 3 introduces the new functionalities; section 4 

identifies and discusses the research closely connected with the subject of this thesis - 

while provides the main insight into security within the research. 

There is a trend and a demand for moving traditional desktop applications, such as 

word processors and spreadsheets, to the Internet: and replace them with web 

applications. This implies a trend to where the only client software that most computers 

and mobile devices will need in the future is a Web browser (Stuttard and Pinto, 2011). 

However, there will most likely always be places without Internet access, and it should 

be possible to use these web applications regardless of this, so offline forms (many of 

which currently exist) of these applications are an important part of this development. To 

enable secure use of offline web applications – even when online - security testing of 

these applications is important: they should be made as secure as possible. 

When looking at this from a security point of view, there are certain disadvantages 

with Web applications. Making web applications secure is even more important than 

with other software, as they are exposed to millions of users on the Internet (Meucci et 

al. 2008). 

2.2.  Related work 

The web browser is arguably the most security-critical component in our information 

infrastructure. It has become the channel through which most of our information passes. 

Integrated database in browser does not have any kind of protection, similar to server 

side databases, where an authentication is required to access the stored data. At the 

moment browser based databases have only Same Origin Policy (Ss. 2.3.2), which can be 

bypassed with online attacks (Ss. 2.3.2) and the attacker could get all data from database 

without any kind of authentication or client authorisation. Most of the studies into online 

web applications security and online attacks consider the fact, that user data is stored on 

web server rather than on client.  

Several recent studies propose a new security model for browsers, but this do not 

apply to browser based databases. 
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The current studies on browser based databases security suggest, that securing web 

application against online attacks can also protect the end user data, as suggested by 

Weissbacher et al. (2015) and Gupta et al. (2016). This can be true in most of the cases, 

but data stored locally can be accesses physically, or the mobile device can be lost, 

which leaves all the data unprotected and vulnerable. 

As discussed by De Ryck et.al (2011) improvements to browser security are required 

to protect the end user and stored data locally. The browser model is required to change, to 

progress with the new technologies. The authors also suggesting, that there should be a 

user authorisation for accessing local storage, and the SOP needs to be improved to prevent 

against attacks which can bypass the restriction. 

It has been argued that HTML standard and Web has evolved and therefore current 

security measure are not sufficient to protect data stored on client (HTML5 storage). West 

et. al (2012) done some work on identifying security concern and suggest that it is 

necessary to constantly address modern security and privacy concerns through consistent 

updates of HTML specifications. 

HTML5 local storage data residues can be accessed within the memory images, and 

the forensic investigation results by Matsumoto and Sakurai (2014) showed that the 

acquisition of Web Storage content on the browsers were possible and revealed its formats. 

Values of Web Storage was checked in the residuals that left by all of three web browsers 

(Chrome, Firefox, IE). They arguing that user with the knowledge of values will be able to 

find the location of the evidence to hint values. 

Research has proposed a secure space for storage, with the attempt to secure user 

data. The approach of Jemel and Serhrouchni (2014) proposes that the browser devote to 

each user a secure space for data storage. Thus, all data will be stored safely in the client 

side before their synchronization over the different machines of the same user using the 

Cloud. The data protection can be applied either on PC or on smart-phone for mobile 

Internet application.  

The security work of Kun and Yizheng (2014) investigates the security of HTML5 

Client side storage, where they argue that local storage cannot be fully controlled by the 

server-side, which brings data security risk. The work presents test analysis of different 

approaches of storage and potential safety hazards. 

The security model for browser based database is not sufficient to protect the end 

user data as suggested by Bugliesi et al. (2014) work. Therefore, this thesis proposes an 

additional security model, which will help to protect the data with both encryption and 

additionally with end user authentication.  
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2.3.  HTML5 Functionality 

The HTML5 standard provides new functionality that helps to develop better web 

applications. These functionalities are described in more detail with both their 

advantages and disadvantages. The security of HTML5 is an important aspect, and we 

will look at what types of attacks could be performed to bypass the existing security safe-

guards of the new functionalities. 

2.3.1 Introduction 

The motivation for the changes and enhancements embedded in HTML5 is that the web 

browser should be capable of running HTML5 client-side web applications (similar to 

current desktop applications). Traditional desktop applications, like word processors and 

spreadsheets, might be used as HTML5 client-side web applications. This means that the 

client will no longer need to install any software on the computer: only a Web browser 

will be needed (Stuttard and Pinto, 2011). 

For example, many applications can run on multiple platforms e.g. tablets, mobiles 

and others. The problem for developers is that on mobile devices there can be multiple 

OSs: Android, IOS, Windows Phone. Each of the operating systems provides different 

programming languages/environments for development. Therefore developing an 

application to run on multiple platforms can be expensive and time consuming. HTML5 

provides a functionality whereby an online application can be used on any platform and 

on various browsers. That way the developers need to develop the application only in one 

language and it can be used on multiple platforms, such as desktop, mobile and tablet. 

HTML5’s browser-based database, IndexedDB provides a functionality whereby the web 

application can run offline so the end user does not need an Internet connection. The 

offline usage provides full functionality, but obviously is limited in some ways – e.g. 

where some data is required from 3rd party applications, such as payment gateways for 

eCommerce sites. 

2.3.2 Client-side databases 

Client-side data is passed to the browser's storage API which stores data on the local 

device (Xu et al. 2013). The importance of client-side application usage provides user 

experience and functionality of desktop applications (Maras et al. 2011), which can also 

be used in the same way on mobile devices (Asif and Krogstie, 2013). This application 

therefore can be customised to fit the needs and improve Web accessibility in web 

browsers (Garrido et al. 2013). Therefore an HTML5 browser client-side database may 
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well contain stored data from online services that make use of the new functionality of 

HTML5 (Naseem and Majeed, 2013). The process of accessing this data from online 

sources might in certain cases be slow because of network redundancy or the database 

query process (Zhanikeev, 2013). It is suggested that this new level of client-side data 

storage will mean that HTML5 enabled browsers will attract security violations (De 

Ryck et al. 2011). Consequently HTML5 opens up entirely new security challenges and 

security issues (Anttonen et al. 2011). 

An important aspect of HTML5 is that the web applications can run offline using 

local storage. This means that client data will be stored on the client-side and accessed any 

time that the application requires it.  

 

Figure 2-1 HTML5’s IndexedDB functionality 

 

When a client connects to an HTML5 web application for the first time, an API transaction 

will be created. The application will ask the client to store data locally. This data will be 

stored in a client-side database - IndexedDB. If a network failure occurs, the data from the 

database will be read and so the client will still be able to use the application. This means 

that an application can be run offline. Pictures and text from pages can be stored in 

IndexedDB.  

The advantage of HTML5 applications as compared to desktop programs is that web 

applications do not require any installation or start-up configuration and will also run on 

any device which supports HTML5 - laptops, phones or tablets. This reduces the barrier of 

entry for new customers since clients can begin taking advantage of the web application 

just by visiting the relevant web site (Harjono et al. 2011). The benefits of client-side 
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storage include the ability to deal with connectivity failure: an application can be used 

even when a connection is not available. Offline content also allows access to, and creation 

or modification of, data stored locally that the application can then use entirely offline. 

Using this technology, websites behave like desktop applications; the application reloads 

the content instantly, and without needing to reload the page. The performance 

improvements include less bandwidth usage as data is stored on the client-side and the data 

is transferred only when the web application requires it (Hilerio, 2011).  

Web-based software is increasingly popular as applications are constantly becoming 

available on the Web as services. This means that client software will increasingly be 

developed using web technologies (Taivalseeri and Mikkonen, 2011). Such applications 

and services consist of data and code which can be located anywhere in the world. This 

allows a wide range of applications to support multiple clients and share data worldwide. 

With the help of client-side storage, data can be periodically saved to the browser while the 

client completes it. After the data has been processed the information is then transmitted to 

the server. This will speed up application load time (Wisniewski, 2011). Further details and 

examples of existing client-side databases are described in section 2.7. 

2.3.3 Advantages of new HTML5 functionalities 

HTML5 provides build in video playback; this radically impacts on the use of third party 

programs such as Adobe Flash, Quicktime and Silverlight. HTML5 also offers offline 

storage, meaning that the user can load certain elements or the whole Web page without an 

active Internet connection. HTML5 will enable web designers to use cleaner code with 

semantic HTML5 elements. 

One of the new functionalities of HTML5 is the new local storage feature. Local 

storage is an improvement over the storage facilities of cookies because it has better 

performance, meaning that the data is not transmitted in every HTTP request. Local 

storage can save larger amount of data, up to 5MB, where the stored data can be used 

across multiple windows and persist stored once the web browser is closed (Ayenson, 

2011). 

The new features are available cross browser and cross platform. One of the biggest 

advantages is the fact that it is mobile ready. Browsers on mobile devices fully support 

HTML5 therefore creating mobile ready projects easier, which works in the same way as 

on desktop computer. 
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2.3.4 Disadvantages of new HTML5 functionalities 

One of the biggest disadvantages or disappointments is that the new standard does not 

provide any additional security (West and Pulimood, 2012). HTML5 video and audio 

support replaces third party applications such as Adobe; this closes a common attack 

vector via FLASH application and plug-ins (Eilers, 2012). On the other hand, though, 

HTML5 provides much more access to local resources, including local storage, and 

therefore opens new opportunities for attacks (Taivan et al. 2014). 

2.3.5 Difference between HTML5 and HTML4 

The differences include new functionalities, such as streaming video and audio without 

need for third party plug-ins such as flash, and local Web storage - which is a replacement 

for cookies – also there are new structural elements to replace div tags for creating page 

templates (Sharma, 2012). In addition, HTML5 allows the storage of data locally, on 

client-side. The stored data can be accessed to support web applications when requested 

(e.g., loading images stored on client-side). Stored data can even be accessed when the 

user does not have a network connection. HTML5 introduces new semantic (<header>, 

<nav>, <section>, <footer> etc.) and non-semantic elements <speed> and features that 

allow developers to improve interoperability, whereby the new functionalities can be used 

on multiple platforms. 

2.4.  Server-side databases 

Relational databases (Martinez-Cruz et al. 2012; Ramakrishnan and Gehrke, 2002) are the 

most used type of database these days according to DB engines ranking. The most 

popular and widely used databases include Oracle, MySQL, MS SQL Server, 

PostgreSQL and MS Access. Relational databases are computerized programs used to 

store information in tables. These tables contain rows and columns used to sort and 

retrieve information. The rows and columns contain related information about the subject 

of the table. The database administrator can define the relationships among the various 

types of data. Relational databases require data to be entered as integers, strings or real 

numbers. This data must then be accessed through SQL queries (Conolly and Begg, 

2004).  The Entity Relationship (ER) model has been known for decades now, and is still 

working for most of the current scenarios.  

A relational database-management system (RDBMS) includes a collection of data 

items organized as a table, with the columns representing data categories and the rows 

representing the data itself (Sumathi, 2007). Relational databases are good for managing 
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large amounts of structured, alphanumerical data. For example, companies use them to 

maintain records of transactions or personnel files. However, relational databases are 

inflexible because their only data structure is tables. And they work only with limited, 

simple data types, such as integers, and thus have had trouble handling complex and 

user- defined data types, including multimedia (Chengjiong, 2012). 

2.4.1 MySQL 

MySQL (Ullman, 2012; Gehani, 2011) is one of the most widely used Open Source 

Relational SQL database management system (RDBMS). MySQL is an RDBMS and is 

used for developing web-based software applications. The MySQL Database system can 

be used on client or server side. The database provides a wide range of APIs, provides 

different back ends (MyISAM and InnoDB), administrator management tools and can be 

set up on Windows, Linux or Unix environment (Kofler, 2001). 

2.4.2 SQLite 

SQLite is popular transactional SQL database engine. It is popular because it can be 

embedded into end-user programs such as browsers or mobile phone GUIs (Patil et al. 

2012). 

The main advantage of SQLite is its availability (it is used on Android for mobile 

applications and browsers and on iOS for mobile browsers). The main disadvantage of 

SQLite is that the W3C no longer support it, and browsers such as Firefox, have removed 

the SQLite support for their latest versions. 

Embedding SQLite in web browsers has resulted in the addition of SQLite to the 

HTML5 Web Storage standard and, after some discussion, inside the W3C Web 

Applications Working Group (W3C, 2015).  

Next we are going to look at client-side databases and the main reasons for using 

these rather than server-side databases (in situations where this is, indeed, appropriate). 

2.5.  Client-side Web Databases 

In this section we compare the existing databases used for web development with the 

newly proposed databases. Also we look at how these new databases will impact the end 

user experience and a depth comparison of client-side as opposed to server-side 

databases.  
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2.5.1 WebSQL 

WebSQL is a structured database, which uses standard SQL syntax for storage (West and 

Pulimood, 2012). W3C (2010) wrote that the WebSQL database API is off active 

maintenance. They cited the lack of independent implementations as being the reason - 

due to the fact, at least at the time, that most browsers relied on SQLite as the underlying 

database. The WebSQL database system brought a real relational database 

implementation to browsers. Data could be stored in a very structured way. 

2.5.2 NoSQL 

NoSQL (Not only SQL, see Kuznetsov and Poskonin, 2014, Atzeni et al. 2014, Zachary 

et al. 2013, Strozzi, 1998) is a database solution which is neither relational nor object 

oriented. NoSQL does store data in a key/value format though. Key/value means that the 

key is the identifier for the data and value can be data or pointer to file location. NoSQL 

store data in unstructured records, which means that the data can be (Atzeni et al. 2014). 

A NoSQL database can handle a large amount of data for which the relational model is 

not needed. They came to the use when the designers of web services with large numbers 

of users discovered that the traditional relational database management systems 

(RDBMS) are fit either for small databases with frequent read/write transactions or for 

large batch transactions with rare write accesses, but not for heavy read/write workloads 

(which is often the case for these large scale web services as Google, Amazon, Facebook, 

Yahoo and such)(Tudorica and Bucur, 2011). 

NoSQL databases use various models - the key-value model being the simplest. Other 

models include ordered key-value, document full text search, graph and big table.  

The main feature of NoSQL databases is the abandonment of the relational data 

model and SQL. NoSQL databases offer pieces of Atomicity, Consistency, Isolation, 

Durability (ACID) (Connolly and Begg, 2014) transactions and use distributed 

architecture (Kuznetsov and Poskonin, 2014). 

Atomicity is related to transactions involving multiple separate pieces of data where 

either all of the pieces of data are committed or none are.  

Consistency of a transaction in database is the requirement that on failure a new state 

is created and the data is returned to state before the failure. 

The lack of support for ACID transactions leads to compromised consistency. 

Banking sites use consistency in their applications; therefore usage of NoSQL databases in 

that arena could be problematic (Shashank, 2011). On the other hand, NoSQL provides 

better performance and scalability. 
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Isolation is the requirement that a transaction must remain inaccessible from other 

transaction. 

Durability is the condition that where any committed data remains in a valid and 

consistent state, even if unexpected failure or interruption occurs. 

NoSQL databases performance of data processing is faster than relational databases 

(Leavitt, 2010) and this can be demonstrated, for instance by the comparison undertaken 

by Zachary et al. (2013) and Van der Veen et al. (2012). Also NoSQL databases are often 

faster just because their data models are simpler (Banker, 2010).  

Data that is too large and complex to store, capture, analyse, process and 

understand using recent methods and available tools is referred as Big Data (Barbierato 

et al. 2014; Gudivada et al. 2014). NoSQL databases are used for Big Data, because of 

their indexing performance advantage, consistency, and single-digit millisecond latency at 

any scale (Barbierato et al. 2014; Gudivada et al. 2014). Additionally, another reason for 

NoSQL database usage for Big Data is the fact that their key/value data storage regime is 

often relevant to this arena (username/password, etc). 

There are advantages to using NoSQL databases, but there are disadvantages and 

downsides to NoSQL as well. NoSQL databases face several challenges: for instance, 

overhead and complexity. Also they do not work with SQL queries, which means that they 

need to be manually programmed. In cases of simple tasks they perform fast, but it is time 

consuming to program for complex queries such as joins (Zacharyet al. 2013, Leavitt, 

2010). 

ACID is supported by relational databases, while NoSQL databases have only 

partial or no support. Therefore, NoSQL databases do not offer the level of reliability 

that ACID provides. With additional programming NoSQL databases can apply ACID to 

data. 

Most organizations are unfamiliar with NoSQL databases and thus may not feel 

knowledgeable enough to choose one or even to determine that the approach might be 

better for their purposes (Stonebraker, 2010). Unlike commercial relational databases, 

many open source NoSQL applications do not yet come with customer support or 

management tools. Each NoSQL database has its own set of Application Programming 

Interfaces (API), libraries and preferred languages for interacting with the data they 

contain. 

Examples of document-oriented NoSQL database systems are as follows: 

MongoDB, Level DB, and BerkeleyDB (IndexedDB is based on Oracle BerkleyDB 

(Brooks, 2011)). The BerkleyDB database system provide persistence, replication, high 
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availability and transaction processing (Yubin et al. 2013). MongoDB is a cross-platform 

document-oriented database. These databases use an ordered key/value store - LevelDB 

also uses Bigtable. Bigtable is high performance distributed storage system designed by 

Google for managing structured data. The design allows scaling large size of data 

(petabytes- 250 bytes) across a large number of servers (Chang et al. 2008). These 

additionally provide higher level of availability, scalability and reliability (Xu et al. 2014).  

2.5.3 Web Storage (Local Storage) 

Local storage (Myeong et al. 2012) is a mechanism for storing structured data on the 

client-side. Web browser Local storage stores data in key/value pairs which are always 

stored as strings. Local storage defines two objects, the first is the localStorage object, 

and the second is sessionStorage object. LocalStorage has the same SOP restriction as 

other client-side storages. Data stored in LocalStorage persists even after the web 

browser is closed, while data stored in sessionStorage does not persist. SessionStorage 

can run in multiple browser windows for the same web application. Local storage 

provides the same functionality as cookies, but like sessionStorage, carries additional 

advantages over the use of cookies (West and Pulimood, 2012). The advantages include 

storing up to 5MB of key-value data per domain.  

2.5.4 LevelDB 

LevelDB (LevelDB, 2011, Pillai et al. 2013) is a persistent key-value store which was 

formerly developed at Google. LevelDB provides sorting by keys and ordered mapping 

from string keys to string values. Google Chrome uses LevelDB as an embedded 

database. The DataBase Manager (Dbm) library stores arbitrary data by the use of a single 

key. Like other NoSQL and Dbm stores, LevelDB does not use any relational data model, 

does not support SQL queries, and has no support for indexes.  

2.5.5 Cookies 

Cookies (Stalker et al. 2004) are small text files (4KB) stored on the client machine. 

They can have several functions in web applications as session, authentication or 

personalization storage. Due to their storage limit (4KB) other methods have had to be 

developed. HTML5 local storage is the standard's replacement for cookies. 

Cookies used for session allow to identify the device associated with a particular 

user for the web application. The user is recognised and the web application is not 

treating the user as new visitor.  
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Cookies used for authentication are used to identify unique visitors to the web 

application or website. After successful authentication the web application remember 

who the user is so that web application can provide access to pages personal to that user.  

Personalization cookies enable the web application to remember the user 

preferences for the web application. For example, if the user has set the web application 

to display specific background, layout or format these cookies will remember those 

settings. 

HTTP works as request-response protocol between client and server as shown in 

Figure 2.7 (Stockhammer, 2011). Cookies are sent to the server with every HTTP request 

- which slows down the connection.  

 

Figure 2-2 Cookie setup 

 

HTML5 introduces several alternatives to cookies for storing data on the client-side. 

HTML5’s client-side browser-based database is part of the state of the art for web 

applications but this can lead to the risk of client data being disrupted. 

2.5.6 HTML5 File API 

HTML5 standard provides a way where web applications can interact with files stored on 

client-side, via the File API specification (Crowther et al. 2014). File API allows a web 

application to save files to a temporary file location and reference the file while the user is 

offline (W3C, 2013). File API is another of the new functionalities embedded in HTML5.  

A directory traversal (Han, 2015) (or path traversal) is a exploiting where security 

validation or sanitization of user inputted file names is insufficient. The characters, which 

represent a traverse to a parent directory, are passed through to the File API. The purpose 

of this attack is to allow a web application to access local files which is not intended to be 

accessible. This attack exploits a lack of security, where the File API is functioning as it is 

supposed to.  
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2.6.  Difference between client and server-side databases 

One of the advantages of using client-side storage over server-side storage for holding 

large amounts of data is the, non-functional, requirement of speed. Speed is important in 

cases where the Internet or the data connection is slow. 

2.7.  Differences between SQL and NoSQL databases 

The difference between relational and NoSQL databases lie primarily in the storing of 

data. Relational databases (Connolly and Begg, 2014) have tables with rows and columns 

containing typed data. The IndexedDB NoSQL requires the creation of an object store 

for a type of data and the saving of JavaScript Objects to that store. Each object (type) 

can have a collection of indexes that make it faster to query and search across. NoSQL 

does not support joins directly whereas relational databases do. The different types of 

database system are different in scalability and performance. Comparison of query 

results using joins shows that NoSQL performs this kind of query, and renders the data 

faster. On the other hand, the code for NoSQL is much more complicated, as all the code 

needs to be manually written in JavaScript – this logic is provided natively by SQL. 

NoSQL databases have advantages over SQL databases because they allows scaling of an 

application to new levels. The new data services require scalable structures which can 

work in the cloud.  

As has been said, NoSQL does not support SQL joins, and relations between tables 

need to be manually programmed (Pokorny, 2013). SQL joins mean that data are stored in 

multiple tables and are referenced by Ids. NoSQL developers turned their lack of joins into 

a feature, as complex join commands take a lot of resources and time to process. Therefore 

NoSQL stores everything in one place, which means that information can be obtained 

much faster. The difference between relational and IndexedDB lie in the storage of the 

data. Relational databases store tables with rows and columns of typed data. IndexedDB 

requires creating an object store for each type of data and saving JavaScript Objects to that 

store. Each object can have collection of indexes that make it faster to query and search 

across (W3C, 2015). IndexedDB does not support joins, where relational database does 

(W3C, 2015). The comparison of the query results using joins shows, that IndexedDB 

performs the query and renders the data faster. On the other hand the code in IndexedDB is 

much more complicated, as all the code needs to be manually done (W3C, 2015) in 

JavaScript that is otherwise provided natively by SQL. IndexedDB can split array in 

chunks of small pieces and using setTimeout, instead of loop inserted the data faster in 

database (W3C, 2015). 
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Next we are going to look at browser-based database IndexedDB in detail. 

2.8.  IndexedDB 

IndexedDB, previously known as WebSimpleDB came from the W3C specification for 

implementing web storage into web browsers in 2009. IndexedDB is a persistent client-

side database implemented into the browser and is an alternative to the already 

deprecated WebSQL. Mozilla and Microsoft supported the change: the use of Oracle's 

Berkley DB in IndexedDB mostly influenced this (Forfang, 2014). The application uses 

local data stored on a client system (Casario et al. 2011). It caches large amounts of data 

from server to client-side using JavaScript Object Stores - equivalent to tables in relational 

databases (Windows, 2011). 

Files and data stored by the browser are retained on the user file storage system, on 

the user's computer hard drive. The client-side database, IndexedDB, stores the data, even 

when the browser terminates. IndexedDB is a persistent browser-based database, which 

means that the data can be retrieved even offline. Therefore, the files reside on the user file 

system and can be recovered until other files overwrite them. IndexedDB treats file data 

just like any other type of data. An application can write a file or a BLOB into IndexedDB, 

as well as storing strings, numbers and JavaScript Objects (Flanagan, 2011). This is 

detailed in the IndexedDB specifications and implemented in both the Firefox and the 

Chrome applications of IndexedDB. Via this mechanism, all the relevant information can 

be stored in one place and a single query to IndexedDB can return it all. 

In Firefox and Chrome’s IndexedDB implementation, the files are stored 

transparently external to the actual database; in other words, the performance of storing a 

file in IndexedDB is just as good as that of storing the file in a filesystem. The storing of 

files does not extend the database size and slow down other operations. Moreover, reading 

from the file means that the implementation reads from an OS file; therefore, IndexedDB is 

just as fast as a filesystem. The Firefox IndexedDB implementation is even smart enough 

that if it is storing the same BLOB multiple times, it creates only one copy. Writing further 

references to the same BLOB just adds to an internal reference counter. This is completely 

transparent to the web page: data is written faster while using fewer resources. 

2.8.1 Structuring the database  

Unlike other web-based databases such as SQL databases that use tables for storing data, 

IndexedDB uses object stores. Multiple object stores use a single database. Keys are 

assigned to every value in an object store within a database; keys are assigned by key path 

or by a key generator. IndexedDB was created to allow local storage of data. However, it 
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has a somewhat limited feature set; for instance, it does not include the following features:  

 1) Internationalised sorting - Internationalised sorting cannot be supported with 

IndexedDB due to the wide variety of scripting languages in use in modern day web 

applications. While the database can't store data in a specific internationalised order, the 

client software can sort the data that is read out of the database itself. 

2) Synchronising – Server-side databases currently cannot be synchronised with an 

IndexedDB database because of the time-consuming development which would be 

required for the implementation of this feature. Developers have to write code that 

synchronises a specific browser-based IndexedDB database with a server-side database, 

which is time consuming. 

3) Full text searching - The API does not have an equivalent of the LIKE operator in 

SQL. The LIKE operator is used to search for a specified pattern in a column. 

Clearly it is believed that these limitations are tolerable and do not counteract the 

lightweight system's real advantages. For instance in security terms, IndexedDB is a 

NoSQL database, which means that is not possible to perform an SQL injection. 

IndexedDB is built on a transactional database model. Everything the client does in 

IndexedDB always happens in the context of a transaction. A transaction is an atomic and 

durable set of data-access and data-modification operations on a particular database. It is 

how the browser interacts with the data in a database. Any reading or changing of the 

data in the database must happen within a transaction (MSDN, 2012). The IndexedDB 

API provides lots of JavaScript Objects that represent indexes, tables, cursors, etc., but 

each of these is tied to a particular transaction: applications cannot execute commands or 

open cursors outside of a transaction. Transactions have a defined lifetime, so if someone 

attempts to use a transaction after it has completed the process the API will throw out an 

exception error. One of the transaction advantages is to prevent user to run multiple 

instances of a web application at the same time. The purpose is prevention for database 

issues and affecting functionality. 

2.8.2 Value in IndexedDB 

Each record has a value which can include anything that can be expressed in JavaScript: 

including Boolean values, numbers, strings, dates, general objects, arrays, regexp, 

undefined, and null. IndexedDB enables the storage of structured data. Unlike cookies and 

DOM Storage, IndexedDB provides features that enable the grouping, iteration, search, 

and filtering of JavaScript Objects (MSDN, 2012). Each record consists of a key path and a 

matching value. These can be of a simple type, such as string or date; or more advanced, 

such as JavaScript Objects and arrays. Records can include indexes for faster retrieval of 
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(other) records and can store large amounts of objects. IndexedDB is a key-value store in 

the same way that Local storage is. Local storage retains just a string only key; therefore, 

the usual approach with local storage is to JSON.stringify all data to be stored. 

JSON.stringify (Ihrig, 2013) is a method that converts a JavaScript value to a JavaScript 

Object Notation (JSON) string. The JSON.parse method parses a string as JSON; this is 

suitable for finding an object with a unique key. However, the only way to retrieve the 

properties of myObject from local storage is to JSON.parse the object and then examine it. 

This is appropriate if the database only has one, or a few, objects. For example, if the 

database contains a thousand objects, all of which have a property b, and the user wants 

only to search values where b==2, it is necessary, using local Storage, to loop the entire 

store and check b on each item. 

IndexedDB can store data other than strings in the value; this includes simple types 

such as DOMString and Date as well as Object and Array instances (Mehta, 2012). 

Furthermore, it can create indexes on object property values. Thus, IndexedDB can hold 

the same one thousand objects but then create an index on the b property and use that to 

retrieve only the objects where b==2 without having to scan every object in the store. 

IndexedDB is aware of ranges; therefore, it can search and retrieve all records 

beginning with 'ab' and ending with ‘abd' in order to find 'abc' etc. IndexedDB is 

implemented differently across browsers. Firefox uses SQLite and Chrome, LevelDB. 

The need for IndexedDB comes from the need to store more complex data on the client-

side. One of the main reasons for using client-side databases is to reduce an application's 

the dependence on a good Internet connection. Running a web application that requires a 

lot of reading and writing data from/to a server-side database depends on continuous 

Internet connectivity: if the connection is lost, parts of the data may get corrupted. The 

browser-based database standard was proposed in order to fulfil these needs and solve 

the issues mentioned. W3C, Mozilla and Chrome state that their new browser-based 

database systems do not have storage limits (MDN, 2012). The implementations merely 

ask for user permission to store larger amounts of data after a certain threshold has been 

reached, and what this threshold is, depends on the browser implementation. In this 

connection, it should be noted that where IndexedDB is used in Firefox, it is implemented 

via SQL-backed technology (MDN, 2014). 
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Figure 2-3 IndexedDB structure 

 

Google Chrome, can have up to 5 MB of storage for IndexedDB, by default. Installed 

apps can make use of unlimited IndexedDB storage if the manifest file is set to have 

unlimited storage and the user grants that permission to the application. When web 

application request to store larger amount of data then the default, web browser alert the 

user. By permitting, unlimited quote of data such as text, videos, images can be stored on 

client-side. 

  JSON-formatted manifest file provides important information such as the 

name of the application, its description and the URLs that the application uses (Google 

developers, N/A). An application with a manifest.josn file can be hosted on any website. 

The manifest file can specify the storage size of the application - the data storage can be 

unlimited. JSON is a lightweight data-interchange format (Crockford, 2008). 

The values (in IndexedDB) can be complex structured objects and keys can be 

properties of those objects. Indexes use properties of the objects for quick searching and 

sorted enumeration. A key is a data value by which stored values are organized and 

retrieved in the object store. 

IndexedDB does not use SQL; it uses queries on an index that produces a “cursor”, 

which is used to iterate across the result set. An index is a data structure (a way of storing 

and organizing data) that improves the retrieval of data from the database. The structure 

of an IndexedDB database can only be modified during a version change transaction. 

This means that the only time ObjectStores or indexes can be created or removed is 

during a version change transaction. Basically, the IndexedDB API automatically creates 

a versionchange transaction whenever a database is opened through the open method and 

one of the following two conditions occur:  

• The requested database does not exist. 
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• The requested database version number is greater than the version number of the 

database on the client machine. 

2.8.3 Disadvantages of IndexedDB 

IndexedDB has significant disadvantages which have been identified and discussed in the 

literature. These include the lack of browser support (Opera) or partial support (IE, Edge, 

Safari) as well as difficulties with complex queries, also the fact that the data is stored in a 

non-encrypted form, and that older, deleted versions of a database can exist on a disk and 

can be accessed with forensic tools. The code is too complex to implement (currently) a 

fully working web version and it has no BLOB support in Chrome browsers older than 

v.37. Browsers such as Chrome, Firefox, IE and Safari 8 support IndexedDB (2015). As 

the database is NoSQL, there is a problem when constructing complex queries (Zachary, 

2013) such as joint tables. 

2.9.  Security Issues 

This section describes the security issues which have been identified in relation to the 

new HTML5 functionalities. Additionally it describes how the current security attacks 

can impact the end user and their data via the new HTML5 functionalities. 

2.9.1 Origin of the problem 

With the new HTML5 functionalities, new security issues arise because it provides more 

access to the computer’s resources (Taivan et al. 2014). In addition, with local storage 

and offline caching available in HTML5, the web browser might store sensitive data, 

such as that originating from the client's email account (De Ryck et al. 2014). 

The client-side security model is basically the Web browser security model. On the 

release of the new standard, it was found that the security had not been updated to reflect 

the new functionalities (De Ryck et al. 2012). Therefore, browser vendors will need to 

develop a richer security model, much like those that exist for operating systems 

(Livshits et al. 2013). The majority of attacks in relation to HMTL5 have their effect on 

the browser and the end user, and thus do not have a direct impact on the server (Tian et 

al. 2014). 

Web browser security operates by using the same-origin policy (SOP) (Gollman, 

2011, Ss. 2.3.2), which involves linking stored data to a particular domain or sub-domain, 

and ensuring that the data cannot be accessed from any other source.  

SOP applies to any storage in the browser. When SOP is implemented, the web browser 

checks the hostname (www.someurl.com), port number (web browsers run on port 80) 
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and protocol (HTTP or HTTPS) against the origin record of stored data. Only when they 

match, the web application will be allowed to access the data. The SOP is the only form 

of browser-based protection against potential security threats, available in the standard. 

SOP even disallows access to client data from sources that could be deemed to be the 

original source, perhaps by the use of cross-site scripting (XSS) for example. That is, if 

applications in multiple windows or frames are downloaded from different servers, they 

should not be able to access each other’s data and scripts (Takesue, 2008). Thus, the 

prevention of data or attacks coming from a different domain is possible. Web browsers 

use this preventative technique against untrusted site attacks. Attackers use multiple 

techniques which make use of the ease with which browser history can be inspected 

(Weinberg et al. 2011). These techniques include “sniffing”, which is where web 

browsers render web pages with malicious JavaScript code (Barua et al. 2011). The code 

needs to be placed on the attacker's web page; this will trigger the code to “sniff “ the 

history. Based on this fact, we can assume that the attacker might get access to other 

stored information via the browser. SOP weaknesses have led to attacks such as Cross-

Site Request Forgery (CSRF), Cross-Site Scripting (XSS), and Web cache poisoning. 

Using HTML5 localStorage to replace session data stored in cookies improves the 

application’s scalability and prevents simple CSRF attacks because, unlike a cookie, data 

in localStorage is not automatically sent. 

2.9.2 Same origin policy (SOP) 

The only existing security mechanism for browsers is this Same Origin Policy (SOP). 

SOP restricts loading content or script from one origin which is not the same as the 

origin requesting the content (Huang et al. 2010). When the data is stored on the client-

side, the only point of access for that data is through the user's local machine. (Saiedian 

and Broyle, 2011) does not consider SOP to be the appropriate security mechanism, 

because a cross site scripting attack might bypass the mechanism, executing a malicious 

script, similar to CORS (Ss. 2.9.3). Stored data on the client is more likely to be 

compromised than data stored on server (Hanna et al. 2010). 

HTML5’s new functionality allows attackers to access untrusted sites, even if they 

are on a different domain, meaning that the SOP will not apply to this situation. Security 

vulnerability and potential attacks might be possible here since the attacker will be able 

using hacking techniques to reach and access the database from a different domain 

(Stuttard and Pinto, 2011). If the website or application is vulnerable to XSS attacks, 

then the attacker could steal the user's data from the client-side database. When the SOP 

is not correctly configured, then content from different web sites will allow attackers to 
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manipulate the data through their code's access.  

 

Figure 2-4 Same Origin Policy 

The SOP security measure is not enough to prevent an attacker from getting data from a 

different domain (Stamm et al. 2010). When data is stored on the local machine in the 

database, the applications are limited to access only data created by particular 

applications on a domain. This is a security vulnerability of web browsers, where the 

client database is situated: an attacker might compromise the client data (Stuttard and 

Pinto, 2011). 

Since the current Same Origin Policy is not secure, other solutions might include 

using an entirely different policy. Potential policies might include Content Security Policy 

(CSP). The CSP restricts common attack vectors in the client browser. The CSP employs a 

set of directives that define the security policy for all types of Web page content (Saiedian 

and Broyle, 2011). 

2.9.3 Cross origin resource sharing (CORS) 

Cross origin resource sharing (CORS) is a specification that gives JavaScript on a web 

page the ability to make XMLHttpRequests (XHR) (Rauti & Leppänen, 2012, Fang et al. 

2011) to another domain, not the originated from. XHR is defined as API that can be 

used by JavaScript to make transfers between the client and server. Normally, Web 

browsers would forbid such ‘cross-domain’ requests. CORS defines a way in which the 

browser and the server can interact to determine whether or not to allow the cross-origin 

request (Zakas, 2010). Letting third party applications access the data created by another 

domain's application can lead to security issues such as information leakage. Therefore 

user agents must implement CORS with IndexedDB in mind. Also, CORS expands on 
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the design of the Same Origin Policy. Each resource declares a set of origins which are 

able to issue various kinds of requests (such as DELETE, INSERT, UPDATE) to, and 

read the contents of, the resource. CORS is a “blind response” technique controlled by an 

extra HTTP header (origin) which, when added, allows the request to reach the target. 

This means that if an application creates an IndexedDB database, which is saved with the 

domain name, another application cannot access the database files, as the access is 

restricted for the particular domain. One possible attack is based on bypassing the Same 

Origin Policy and establishing cross-domain connections to allow the deployment of a 

Cross-site Request Forgery attack vector (Stuttard and Pinto, 2011). This is just to 

mention one possible CORS based attack which can be used to bypass the restrictions 

and so read data from other domains. 

 

 
Figure 2-5 Cross origin resource sharing 

2.10.  Online and offline attacks 

2.10.1 Cross-site scripting (XSS) 

XSS is one of the most popular web application attacks - third on the OWASP list 

(OWASP, 2013). WhiteHat (WhiteHat, 2014) security has provided statistics whereby 

XSS regains the position of the number one web application vulnerability. XSS is a 

popular attack because even where the web application is secure, the attack can rely on 

the end users who can be tricked to click a link and therefore authorize the attack. 

2.10.1.1 Definition 

XSS (Elhakeem et al. 2013; Wassermann and Su, 2008; Vogtet al. 2007; Di Lucca et al. 

2004) is a security vulnerability where the attacker injects malicious JavaScript code into 

web application. Victim’s web browser executes the code with victim’s privileges and the 

code can modify or transmit any data through the victim’s browser to the attacker. 

	Origin	
CORS	Aware	Browser	

Cross-site	XHR	

CORS	aware	web	server	

http://somesite.co.uk	

	

Servers	the	original	

document/application	context	

	 http://remote-service.co.uk	

	

Servers	cross-site	HTP	requests	

	

	

X	
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In order to bypass access controls, such as the SOP, attackers may use a cross-site scripting 

vulnerability. 

Di Luccaet al. (2004) identified a number of cross-site scripting vulnerabilities in 

web applications, in which the attacker takes the dynamic analysis approach. XSS is the 

most best known advanced threat to offline web applications and web databases 

according to the Open Software Security community (OWASP). 

2.10.1.2 Types of XSS attack 

Stored XSS (Persistent) attacks (Wang et al. 2011) generally occur when user input is 

stored on the target server database. The attack consists of storing potentially dangerous 

scripts to this database which get executed every time a user makes a request to access data 

on it. 

A reflected XSS (Non-Persistent) attack (Pelizzi and Sekar, 2012) occurs when user 

input is instantly returned by the web application in a form such as search result or error 

message. Reflected attack is engineered to trick a user to click a link which will trigger a 

script. Figure 2.4 shows the XSS attack principle. 

 
Figure 2-6 XSS attack explained 

 

1. The attacker can use one of the web application forms (login, search) to insert a 

malicious code formed as a string into the web application back database. 

2. The victim requests a web page from the web application. 

3. The web application includes the malicious code from the database in the response 

and sends it to the victim browser. 

4. The victim's web browser executes the malicious code inside the response, which 

will send the victim's cookies to the attacker's server. 
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Document Object Model (DOM) Based XSS (Lekies et al. 2013) is a form of XSS where 

the attack where the malicious code is being executed in the DOM rather than HMTL. If a 

page contains a script which writes the data requested from a URL, the attacker can simply 

add dangerous script to the URL, which gets executed. The script gets written to DOM, 

and thus the attacker can get access to cookies or change the page behaviour.  

Server XSS occurs when the manipulated data comes from the server HTTP 

response. 

Client XSS occurs when malicious data includes JavaScript code to update the 

DOM. 

2.10.1.3 Cause of the attack 

XSS takes advantage of web applications where the user input is not filtered properly. 

XSS filtering is a process of filtering out parameter values that look suspicious (Pelizzi 

and Sekar, 2012) - this includes special characters. XSS attack can be used to manipulate 

not only direct form (search or login form) but also session cookies or data stored in 

database. Bates et al. (2010) argues that many XSS exploits are possible not because 

implementation but design errors. Most XSS attacks can be prevented by sanitizing or 

validating user input (Shar and Tan, 2012). 

2.10.1.4 Structure of the attack 

XSS makes use of the fact that attackers can input html code or other client-side scripts 

like JavaScript. Using XSS an attacker can create cookies which are used to bypass 

access control. In most cases malicious code is added to a hyper-link which is added to a 

website to which the user has legitimate access. Via this mechanism, the hyper-link is 

executed, so parsing also the malicious code, and thus the attacker might obtain sensitive 

data from the victim. XSS can enable the attacker to, for instance, steal authentication 

information and hijack accounts, and of course this will allow the attacker to change user 

settings and/or information (Malviya et al. 2013). Other attacks might be to damage the 

site or to steal cookies. This might lead to the accessing of the admin account. 

HTML Inline Frame (IFrame) allows the embedding of content from sources other 

than the main page (Mansfield-Devine, 2010). An IFrame is an HTML embedded inside 

another HTML on a website. Main purpose of IFrame is to insert content from other source 

into web pages, usually used to embed advertisements. 

Based on these XSS vulnerabilities, an attacker can inject a script, or any file, an 

html file, a css file, a script etc. via the IFrame element in HTML (Liu et al. 2013). Using 
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this, an attacker can change the appearance and/or behaviour of a web application, adding 

malicious content or otherwise controlling the web application and/or server database. 

Mewara et al. (2014) identified remaining cross-site scripting vulnerabilities in web 

applications where a dynamic analysis approach is chosen as the protective mechanism. 

Protection via the dynamic analysis approach uses a mechanism on the server which 

removes any script in the input that is not intended by the web application. 

2.10.1.5 Preventions against XSS attacks 

There are preventions against XSS attack such as encoding output, filtering and 

validating user input. Encoding output based on input parameters (Lan et al. 2013) uses a 

web proxy to prevent execution of URL links which contain binary encoded characters. 

Another prevention is to filter the input parameters (Yusof and Pathan, 2014), 

where any data from the input is filtered so that it is not executed in the browser. To 

avoid XSS attacks developers must sanitize the user input before the input data is stored 

in the database. 

Validating user input is another important step to secure web applications. The web 

application should always check that the user input is in the correct format (string, integer) 

and the right length. Without validating user input the web application could be vulnerable 

and the attacker could change the site content or get data from database. 

2.10.1.6 XSS impact on client-side databases (IndexedDB) 

The new client-side database facility provides the functionality to store data on the user's 

machine. Stored data might contain information which is considered sensitive such as 

user personal information. If a web application is vulnerable to XSS attack, then an 

attacker could get access to this client-side storage. The client-side storage data can be 

accessed through the browser, so the execution of an XSS attack might output the stored 

data. 

When the attacker has gained access to information on the Web server via a XSS 

vulnerability, there are many things that they can do. Once they have access to the 

information, the attacker can copy it to a different location, change the data, delete the 

data or inject malware into it, etc. 

It is important to secure the Web servers on which web applications exist against 

XSS vulnerabilities. A real example of this includes Google Docs where the user can 

choose to use the application offline. If there were even one XSS vulnerability anywhere 

on the Google Docs web-site pages, an attacker would be able to access and steal or 

modify the user data of anyone who logs in to the application (Liu, 2012). 
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2.10.2 Man in the middle attack 

The man-in-the middle attack (MITM, MitM, MIM, MiM or MITMA) intercepts a 

communication between two systems. MITM attack alters and listens to the 

communication between two systems or people (routers, server-client, server-server, 

client-client) (Lyubashevsky and Masny, 2013).  

When a user sends a public key to another user and the attacker is able to intercept it, 

a man in the middle attack is possible. A MITM attacks allows the attacker to intercept, 

send and receive the data from the intercepted communication. MITM is an eavesdropping 

attack, where the attacker is inserted into a communication session between systems or 

people. A MITM attack exploits the immediate processing of conversations, transactions or 

other transfers of data. MITM attacks allow attackers to intercept, send and receive data, 

without the end system knowing. 

 

 
Figure 2-7 Man in the middle attack 

MITM is a method of session hijacking. Other methods of session hijacking similar to 

MITM are sidejacking, sniffing and evil twin. 

Sidejacking (Vishwakarma et al. 2015; Borders et al. 2012; Riley et al. 2011) is an 

attack that involves the attacker to sniff data packets with the purpose to steal session 

cookies. Session cookies can contain login or user information in unencrypted form, even 

if the site is secure and the attacker can hijack a user’s session. 
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Evil Twin (Lanze et al. 2014; Nikbakhsh et al. 2012) is a rogue Wi-Fi network that 

looks and acts as legitimate. The attacker controls the evil twin network and therefore if a 

victim joins the network, the attacker launches a MITM attacks. All data on the network is 

intercepted and captured by the attacker. 

Sniffing (Pandey et al. 2014; Barua et al. 2011) involves a attacker using available 

software to intercept data being sent from, or to, user device. 

There are 2 types of attacks, intentional and unintentional. The intentional attacks 

tries to trick the user into clicking a link which will redirected the user to a malicious site. 

An unintentional attack happens when the site is vulnerable to malicious attacks, such as 

those associated with insufficient input validation (Alkhalaf et al. 2012). 

There are two types of developer: friendly and hostile. Each type can be further 

categorized into competent and incompetent.  

When using a site or application constructed by a friendly and competent developer 

we can assume that the web application will be secure and that the end user will be 

protected against online attacks, such as XSS. The main issue to be borne in mind when 

constructing a security regime is that XSS attacks can, and often do, succeed. The end user 

can be tricked into allowing XSS, for example, by clicking a link in an email. The email 

could have been sent from a known address, therefore the end user would not be wary of 

malicious code included in the link. When the end user clicks the link, an authorization to 

perform the attack will proceed. 

2.10.3 Social engineering attacks 

Social engineering, in this context, is a method of tricking and manipulating people so that 

they give up confidential or personal information. The attackers usually trick people into 

giving them passwords or bank information. Alternatively they might, in this way, gain 

access to the user's computer to secretly install malicious software with the purpose of 

accessing information or controlling the computer (Huber et al. 2011). Attackers use social 

engineering methods because it is usually easier to exploit human nature than it is to 

discover ways to hack web applications or software. For example, it is easier to trick a 

victim into providing the attacker with login details than it is to try to hack their password 

(Krombholz et al. 2011).  

An example of social engineering might be an email from a known sender. If an 

attacker succeeds to socially engineer victims email password, then that attacker will have 

access to the victim's contact list. The attacker can then send emails or messages to 

members of the victim’s contacts list with a link. If this link is then clicked on, then the 

result could be that the next victim's computer will be infected by malware or that they are 
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redirected to the attackers site (Kotenko et al. 2011). The link might also contain a 

download, such as a picture, movie, document or audio file which has malicious code 

embedded in it. When the victim downloads the file, the victim’s computer will be infected 

and the attacker may then have access to the victim's computer, emails, accounts and 

contacts. 

2.10.3.1 Types of social engineering attacks  

Phishing is when an attacker or malicious group sends a fake email, looking like a 

legitimate email from a trusted source, with a message which is capable of installing 

malware on the victim’s computer or sharing financial or personal information. 

 Baiting involves leaving a malware infected physical device unattended for 

someone to find and use it. If a victim loads the device (usb flash device, external drive 

or CD-ROM disk) they may then unintentionally install malware. 

Pretexting is when one side lies to another to obtain access to personal confidential 

data. Example of pretexting could involve a scam where the attacker call a victim 

pretending to be a bank representative, but the victim needs to confirm the identity first. 

Attacker then gets financial and personal information about the victim.  

A quid pro quo is when one side tries to obtain login details from other side in 

exchange for a desirable gift. 

Spam is considered to be unwanted junk email. 

Spear phishing is a kind of phishing which is personalized for a specific person or 

company.  

Tailgating is when someone who is not authorized to access a secure location 

follows an authorised person when passing through a door. The purpose is to gain access 

to secure location where confidential or valuable items are stored.  

2.10.4 SQL Injection 

An injection attack is defined as any attempt to threaten the web application database by 

submitting unsupported or unexpected data as user input. SQL injection is a common 

type of injection attack (Clarke, 2012). SQL injection attack occurs when the SQL query 

is altered with illegal characters by not sanitising the user input. The query is passed on 

to the database server where the query is executed. Illegal characters might be 

semicolons, apostrophes or commenting characters, which can result in dangerous and 

unexpected queries (Shema, 2012). Any unchecked user input is considered unsanitised 

and can lead to dangerous and incorrectly formed queries. For example if the query 

expects a textual input and receives numeric input, the database can misinterpreted the 
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query as numeric command. Usanititised user input is considered to be a security 

vulnerability that must be corrected (Shulman, 2006). 

Injection attacks differs from traditional attacks on the web server, where the attack 

is no attempting to gain access to server. Injection attack takes advantages of 

vulnerabilities in web application, such us usanitised or unchecked user input with the 

purpose to use or alter the data in database. Because JavaScript is an interpreted 

language, there is the potential for injection attacks related to this as well. 

2.10.5 Physical access 

Physical access (Szefer et al. 2012) is possible when the attacker can gain physical 

access to the user's machine. When a device, or stored data therein, is unencrypted, the 

attacker may be able to access all its data. The security solutions which prevent physical 

access attacks include physical access controls. 

 To gain access to restricted areas only personnel with authorisation should be 

allowed using access cards. In terms of physical access, the attacker or any person with 

access to the filesystem could potentially get the file and the data, which would mean that 

it could be transferred to an external drive and used via an the appropriate application. 

A possible solution to this, to prevent an unauthorized person gaining access to a 

filesystem, is to lock the screen so that a password has to be entered before any of the files 

can be viewed. Mobile devices could be secured with two-factor authentication something 

the user knows with something the user have. For example mobile device could be locked 

with password or pin lock, but have a fingerprint scan as well. This way the authentication 

will be harder for an attacker to pass. 

Security experts and security researchers do not recommend that users or web 

developers save any sensitive data on the client-side, and user machine. The 

recommendation is to store any sensitive data on the server.  

2.10.6 Tracking privacy 

With the new HTML5 functionalities new attacks are possible. For instance, HTML5 

provides the functionality to track a user's physical/geographical location, which can 

cause a loss of their privacy (Mayer and Mitchell, 2012). This means that web 

applications can track user location and store it in their systems. Social networks provide 

a functionality whereby the user can check in to a particular location, and this location is 

stored on the system. Based on the check-in the user location can be obtained and can 

cause a loss of privacy (Wernke et al. 2014). Before the user location is stored the user is 
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notified by the browser that the application would like to access the user's physical 

location.  

2.10.7 Cross-site request forgery 

Cross Site Request Forgery (CSRF) (Barth et al. 2008, Käfer, 2008, Jovanovic et al. 2006) 

is web application vulnerability where a malicious web site can make legitimate requests to 

a vulnerable web site under the cover of a logged-in user without that user’s knowledge. If 

a user can send email to his friend, then a malicious web site can do the same. This 

vulnerability has been rated as one of OWASP (Open Web Application Security Project) 

Top 10 vulnerabilities.  

A CSRF hole is when a malicious site can cause a visitor's browser to make a request 

to server that causes a change on the server. The server thinks that because the request 

comes with the user's cookies, the user wanted to submit that form.   CSRF flaws exist in 

web applications with a predictable action structure and which use cookies, browser 

authentication or client side certificates to authenticate users. CSRF are often GET requests 

collected and sent through the use of an automatic load (such as img or script tag).  

The user typically thinks that are performing a different task but using HTTP 

requests that have side effects the attacks use the user's own browser to send HTTP attacks 

to the target site.  

CSRF attacks can be prevented by not relying only on cookies. In secure 

applications, session’s tokens are submitted via hidden fields in HTML forms. When the 

form is submitted the application verifies that the correct token is received. The attacker 

will be not able to perform attack without knowing the session token (Stuttard and Pinto, 

2011)  . The session token must be randomly generated unique number. So the application 

will send the cookie session with attached session token. After the form is submitted, the 

token will be checked and if is valid the action will be performed. Requiring a secret, user-

specific token in all form submissions and side-effect URLs prevents CSRF so the 

attacker's site can't put the right token in its submissions.  

In the next section we are going to identify client and server-side databases, and the 

main differences between them. Additionally, we are going to perform an investigation 

of which security issues, vulnerabilities and attacks can harm these kinds of databases.  

2.11.  Cryptography 

Cryptography (Stallings, 2013; Katz, 2008; Konheim, 2007) is a method of using 

algorithms to transmit data in a non-readable and secure way. Cryptography has two 

parts, encryption and decryption. 
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Encryption (Stallings, 2013; Stinson, 2006) is an essential tool to protect sensitive 

information. The purpose of using encryption is to provide privacy in order to prevent 

disclosure and breaches of confidentiality during communications. Encryption is the 

process where original data (plaintext) will be transformed to encrypted data (ciphertext). 

The original data is the user input and ciphertext is the encrypted original data output, as 

shown in Figure 2.9 and Figure 2.10. 

A cipher is a pair of algorithms that create the encryption and the reversing 

decryption. Many modern encryption systems use two keys, one is called the Private Key 

and the other one is called the Public Key (Stallings, 2013). The public key encrypts the 

message so that it can be sent to the recipient for decryption using the private key.  

 

 

 
 

Figure 2-8 RSA Encryption and decryption process 

 

 
Figure 2-9 AES Encryption and decryption process 
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Plaintext is any information that a sender wishes to transfer to a receiver. It can be 

thought of as the input to any encryption algorithm or as information to be transmitted 

before an algorithm encrypts it. Examples of plaintext include email messages, word 

processor files, images, or ATM and credit card transaction information. This plaintext is 

converted to ciphertext, which is data that has been encrypted and is unreadable until it 

has been decrypted with a key (Thakur & Kumar, 2011). 

Client-side encryption is still not mature, compared to server-side. Many of the 

client-side encryption libraries cannot yet deal with the complexity of all the case 

scenarios. It is relatively easy for an attacker to bypass client-side encryption in 

comparison to server-side. This also will depend on the depth of encryption and the 

location of public and private keys. Client-side encryption is essential when storing data 

on the client-side machine. It provides security for user data and prevents people from 

viewing the content of the user's files. Basharat (2012) discusses the importance of 

database encryption but suggests that strong encryption might reduce performance, but 

he also argues that encryption reduces the attack risk and protects sensitive data. 

The salt is 64 bits (binary digits) of random data which is added to the key (before 

the use of the pass-phrase) in order to make it less predictable (Mechanic et al. 2007). A 

salt could be used on client-side for hashing (for server-side encryption), but it offers no 

additional security. Usual way for storing hash value is to combine salt and the 

password (OWASP, 2014). When using hashing on client-side, the salt would need to be 

sent from client to server. Then server sends back salt to user where the same would be 

generated. There is, therefore, the possibility of a MITM attack because the salt would 

be sent from server to client. However, hashing should be used for all client-side 

authentication and encryption. When the encrypted content is transmitted a MITM 

attack could get the encrypted content, but without the password the decryption would 

be not possible. The password would be stored on client-side and therefore not shared 

with the server.  

The W3C working draft of its Web Cryptography API is intended to help web 

developers secure their web applications using encryption and hashing. This 

specification does not explicitly provide any new storage mechanisms for CryptoKey 

objects. Instead, by allowing CryptoKey objects to be used with the structured clone 

algorithm, any existing or future web storage mechanism that support storing structured 

clone-able objects can be used to store CryptoKey objects. This means, that the key can 

be stored in IndexedDB with additional meta data. 

There are proposed solutions to the problem of protecting sensitive information on 

the client-side. One of these solutions includes the concept of CRYPTONS, which is a 
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software framework for remote storage whereby the remote server has no knowledge of 

what is being stored. It implements a database-abstraction layer that provides support for 

most major systems. Dong et al. (2013) and Xu et al. (2013) discuss the issue that storing 

sensitive data on client-side is not secure and the existing protection is not enough.  

2.11.1 Cryptography Algorithm 

An algorithm (Stallings, 2013) is a set of instructions intended to perform a specific 

operation or set of functions. There are many different ways to perform a specific 

operation or action. Therefore, algorithms serve to make the operation or action more 

efficient (Cormen et al. 2009). Algorithm functions accomplish a task as a small 

program that can be a part of a larger program. Based on the type of key being used, 

cryptography algorithms are classified into symmetric and asymmetric key algorithms.  

Symmetric key algorithms (e.g., Advanced Encryption Standard or Rijndael 

Algorithm (AES), Data Encryption Standard (DES), Rivest Cipher (RC5), Blowfish, etc.) 

and Asymmetric key algorithms (e.g., Rivest-Shamir-Adleman (RSA), Message-digest 

algorithm (MD5), Secure Hash Algorithm (SHA), etc.).  

Symmetric key algorithms use one, the same symmetric key for encryption and 

decryption as shown in Figure 2.10. Asymmetric key algorithms use different keys, 

public key for encryption and private key for decryption as shown in Figure 2.9. 

Advanced Encryption Standard (AES) or Rijndeal is an encryption algorithm where 

with encryption and decryption a single symmetric key is used.  AES encryption replaces 

the DES and Institute of Standards and Technology (NIST) released the specification for 

AES. AES algorithm has block ciphers with 128, 192 or 256 bits. AES is very secure 

(Stallings and Brown, 2008) and provides flexible and fast functionality. For encryption 

the user needs to enter a password, where a random salt for new password is added. User 

can decide how secured password should be, by choosing the key size (128, 192, 256).  

2.11.2 Difference between hashing and encryption 

Hashing is used when checking the validity of input data. For example, when we have 

two input values and want to check to see if they are the same. This is mostly used for 

passwords and authentication (Park et al. 2010). 

Encryption is used to transform data to make it not visible to others in plain text. 

Encryption is used when we want to store data and later retrieve the data (read). 

Encryption is mostly used when storing data, long term. When encrypting plaintext into 

ciphertext a key is generated. This key is required when decrypting ciphertext back into 

plaintext. 
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2.12.  Biometrics and Multifactor authentication (MFA) 

Nowadays, our lives are surrounded by electronic systems whose access is normally 

protected with simple authentication methods, such as passwords, pins or patterns. These 

traditional authentication methods are generally vulnerable to development mistakes or 

other issues: spy-ware, brute force and dictionary attacks. 

Biometrics (Dozono et al. 2014, Yang et al. 2014, Yampolskiy et al. 2014) is a 

interesting future option, particularly for use with touchscreen devices. Biometrics is not 

considered to be a single, sufficient, authentication mechanism: it must be used alongside 

other factors in order to create a sufficiently secure system. 

Existing mobile and tablet devices provide basic biometrics, and these can be used to 

extend the authentication process (Chuda et al. 2015). Instead of using something a person 

has (like a card or a physical key) or something a person knows (like a password), 

biometrics uses physical or behavioral characteristics to identify the person. Physical 

characteristics might include fingerprints, face identity, vein geometry, palm or eye iris 

scans. Behavioral characteristics can include voice, handwriting or type rhythm (Ramya et 

al. 2014). 

Biometrics systems use three steps: enrollment, storage and comparison. Enrollment 

is the first step, at which the biometric characteristics are recorded as shown in Figure 

2.11. The system will get an image of a fingerprint and then specific characteristics such as 

the pattern of ridges and valleys from the image are filtered and saved in binary form; 

these are used for verification. The algorithmic result cannot be reconverted to an image, 

therefore it should not be possible to duplicate fingerprints. 

 

 

Figure 2-10 Principle for saving a fingerprint scan 

 

Biometrics provide a convenient level of security, reducing fraud and attacks. They 

eliminate the problem caused by lost IDs or passwords by using psychological or physical 
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attributes. Prevention against unauthorized access is at a much higher level when using 

biometrics because their use make it possible to know who has accessed a restricted area. 

The disadvantages of biometrics include the expense of the machinery which provides 

state of the art sensing – e.g. retina or iris. 

Multifactor authentication (MFA) (Fleischhacker et al. 2014, Bruun et al. 2014, Bell et 

al. 2014) is a security system that requires more than one method of authentication from 

independent categories of credentials to verify the user's identity for a login or other 

transaction. This means that to be able to access a user account or certain data, the user is 

required to input additional security beyond basic authentication such as username and 

password. MFA generally uses an external device or software to generate a token - which 

is one time use only.  

 

Methods for generating a token: 

• SMS 

• Mobile device application 

 

MFA uses three basic elements, something the user knows (password, pattern or PIN), 

something the user owns (access card or mobile device) plus something the user is (voice, 

eye retina or fingerprint) (Singh and Chatterjee, 2015). To reduce the risk of exposure data 

a strong authentication process should be applied. Facebook and Google have users 

confirm their identity when accessing their account from an unrecognized device. 

2.13.  Web Sockets 

The WebSocket protocol enables the server to communicate to the client-side code 

when the user requests to change the server-side data or other server-side action occurs. 

For existing Web Sockets the handshake is based on session cookies. 

 

Webix is an existing Web Socket which supports IndexedDB saving and retrieving 

of data. The protocol doesn't handle authorization and/or authentication (Jemel and 

Serhrouchni, 2014). 

The current problem with web sockets is cross-site WebSocket hijacking, as Web 

Sockets is not restrained by the SOP.  

When a server does not check and validate the origin header from a Web socket 

request (i.e. handshake) then server might accept the connection. The WebSockets 
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connection, same as with CORS can originate from different origin. Because the 

connection is regular HTTP or HTTP request the cookies is being sent, even if cross site. 

Attacker can begin a WebSocket request from a malicious site targeting a web 

application, where the victim is authenticated. The browser sends the victim cookie in 

WebSocket, where the attacks scenario is similar to CSRF attack. The difference is that 

attacker can perform reads and writes in the WebSocket connection. 

2.14.  Conclusion 

HTML5 provides new functionalities for web developers, including the local storage 

standard (Jemel and Serhrouchni, 2014). With local storage all of the data from web 

applications can be stored locally instead of on the server (Jemel and Serhrouchni, 2014). 

Storing data locally allows web applications to respond faster since the data is retrieved 

locally as well.  

In addition to these new functionalities it is suggested that new security issues will 

arise (De Ryck et al. 2011). Storing data locally has a performance advantage, but in 

terms of security there are possible problems XSS (Hydara et al. 2015; Liu et al. 2015), 

and saved data encryption (Jemel and Serhrouchni, 2015). This thesis then builds on work 

in number key areas, security of browser based databases and browser model De Ryck et.al 

(2011) and database performance work by Van der Veen (2012). 

It can be concluded that attacks such as XSS, or physical access could impact the 

data stored in browser-based databases (You et al. 2015; West and Pulimood, 2012). 

Browser-based database technology is new and therefore not much is currently known 

about its associated security issues. Considering the fact that personal information could 

be stored in IndexedDB databases locally, security is a significant factor. As HTML5’s 

new functionalities and API do not provide any additional security mechanisms but 

additionally does open the door to new, previously unknown attacks (such as File API 

attacks (You at al. 2015), Web Sockets attacks (Choo et al. 2015), bypassing SOP with 

CORS (Smith, 2015), the issues need to be addressed before IndexedDB, become widely 

adopted and used. 

Existing solutions such as encryption are not sufficient on their own to protect 

against XSS attacks (Liu and Gong, 2013); methods such as Multifactor authentication 

(Tirumala, 2015) or biometrics (Gupta and Gupta, 2014) could make the situation more 

secure. Considering that the data can be stored on many different kinds of device such as 

tablets or phones, physical access attacks are likely from which sensitive information 

could be retrieved (Shin et al. 2015). Such attacks do not follow any particular steps, 

therefore it is nearly impossible to produce a methodology to describe these attacks, but 
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rather only some use case scenarios.  The thesis builds on work of De Ryck et.al (2011) 

and Jemel and Serhrouchni (2014), where the thesis is proposing new browser based 

security model. 

According to the W3C documentation (W3C, 2015), IndexedDB was not designed 

to be a secure browser-based database, and therefore could be considered vulnerable. 

From the database area this work is build on Bagade and Dhende (2012) where the 

thesis is proposing and designing s performance model to theoretically measure the 

performance of client and server side databases. 

Based on this research, we conclude that browser-based databases should perform, 

in theory, faster than server-side databases, but there is no existing model which can 

verify that. One of the principles in relation to identifying the performance of browser-

based storages is to find out the effectiveness of using IndexedDB in contrast to server-

side databases. 

A model for measuring the performance of browser-based databases will be 

designed and tested in Chapter 3. The following chapter will consider the, non-

functional, requirement, speed, and a performance model will be compared to the 

experimental results. 
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Chapter 3.  A Performance Model for Client-side Databases 

The aim of this chapter is to investigate the speed, effectiveness, and the possible 

advantages of using an IndexedDB client-side browser-based database as opposed to a 

server-side database. In this section a performance model will be proposed, for which the 

main objective is to identify the effectiveness of client-side databases. This chapter 

demonstrates the effectiveness of client-side databases by comparing theoretical results 

against experimental. The scope of the model is to show that client-side databases have 

significant performance advantage over server-side databases.  

Simulations of the model have been completed with the purpose of comparing the 

results of simulation to a real life experiment. Based on the results and the comparison, 

the conclusion outlines the effectiveness of using client-side databases over server-side 

database. 

The experiment will seek to compare the performance of traditional SQL databases 

(Van der Lans, 2006) on server to a NoSQL database (see section 2.6.2) (Kuznetsov et al. 

2014, Atzeni et al. 2014, Zachary et al. 2013, Strozzi, 1998) on client-side. 

In the literature review sections 2.8.1 and 2.8.2 we discussed the structure and the 

storage strategy for values in IndexedDB. The data which can be stored in IndexedDB 

can be a generic JavaScript Object such as a string, a number or a BLOB. The 

IndexedDB documentation defines the data storage limits for any IndexedDB database to 

be unlimited. This means that IndexedDB may use all the available space on the user's 

computer file system or mobile's internal memory. 

One approach to testing the storing and reading limits of IndexedDB was via 

experiments. These experiments were important because they allowed us to see 

IndexedDB in action, and this helped us to understand the whole structure of how the 

data is saved and how the transaction functionality works.  

We started the experiments with the purpose of overloading IndexedDB with data 

in order to find out its limits. The purpose was to find out how much data can be stored 

in IndexedDB in one query and to see if storing large amounts of data can break it. We 

performed the experiments using a tool developed to test reads and writes of data. This 

tool was automated: we could specify which database we wanted to test and how much 

data was to be inserted into this database. The results were shown in a table, with the 

time of insertion and any possible errors. 
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The experiment lead to the development of a performance model so that the experimental 

results could be compared to simulation experiments, in terms of storing and retrieving 

data from IndexedDB. 

For the performance model we used a queuing model as a base. The model can be 

applied to any browser-based or server based database where variables such as disk 

speed, bandwidth and queuing time must be considered. 

The conclusion of the experiment confirm that IndexedDB performs faster than any 

other existing database, when storing large numbers of records – e.g. more than 50,000 

record in one insert query. Additionally, from the results (Ss. 3.9.2) it can be seen that 

IndexedDB performed faster in the Firefox browser, where the combination of back end 

databases is SQLite and IndexedDB (SQL and NoSQL). 

3.1.  Motivation 

Client-side databases are assumed, by their very nature, to perform faster (Pokorny, 

2013) than server-side databases, and the demonstration of the performance model, and 

the experimental results supplied this assumption. Additionally, client-side databases are 

considered to be a good solution for storage (Walker and Chapra, 2014), because of their 

speed, effectiveness and offline usage.  

The key difference between a server and a client-side database is how the data is 

served to the user. On the client-side, this is from a local file - the data is not served over 

an external network - but on the server-side data is served from a server over an external 

network (McFarland and Nicholson, 2007).  

Another notable difference between a server and a client-side database is the 

structure and the file access time.  

There are advantages of using NoSQL (Ss. 2.6.2) over SQL, such as low latency, high 

performance and high scalability. NoSQL low latency means that the data is better 

cached which provides faster access (Konstantinou et al. 2011). NoSQL databases are 

highly scalable, which means that they can handle higher volumes of read and write 

operations (Tauro et al. 2012).  

A database Index (Van der Lans, 2006) is a data structure which improves the 

efficiency and time of data retrieval operations (SQL statement or procedure) on a database 

table. The downside of database index is additional writes and increased storage space. 

The high performance depends on a number of aspects of the database structure, such as 

the indexing of data (Ayabakan and Kilimci, 2014). 

Joins (Van der Lans, 2006) combine records from two or more tables. One of the 

disadvantages of using a NoSQL database is the lack of an embedded join operation: 
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complex queries must be handled by complex application code (Tendulkar and Phalak, 

2011). 

The security in the browser, i.e. SOP (SS. 2.3.2) make IndexedDB only work for 

web applications using the Hypertext Transfer Protocol (HTTP) or Secure Hypertext 

Transfer Protocol (HTTPS) (Clark, 2003). 

3.1.1 Distributed Databases 

A Distributed Database (Özsu and Valduriez, 2011) is a database where parts of the 

database are stored at multiple locations (multiple servers or computers). Analytical and 

simulation performance studies of distributed databases generally use queuing systems 

(Jain, 1991, Gross and Harris, 1985) as underlying models. The advantage of using 

distributed database is that they are secure by design, providing local storage with 

increased performance by running queries locally so there is no network bottleneck 

(Chen and Greenfield, 2013). A bottleneck can be defined as a stage in a process that 

causes the whole process to slow down or stop (Sevilla et al. 2014).  

This section outlines the motivation for this work, as client-side databases are 

considered to perform faster (Pokorny, 2013) than server-side databases. The work 

described in this chapter was that of using a queuing model to design a theoretical 

performance model; the predicted results will then be compared to experimental results. 

3.2.  Queuing model 

The use of a queuing model for both the server and the client-side was decided on in 

order to demonstrate the effectiveness, and the results were compared in terms of how 

latency and queuing time impact on performance. 

(Medhi, 2003; Bunday 1996) defines Queuing theory as a mathematical study of 

queues or waiting lines. Therefore, a simple queuing model can be explained in terms of 

the user arriving at a busy server and joining the queue on that single server. (Whitt, 

2000) classifies the queuing processes as either standard (light traffic) or growing (heavy 

traffic) and summarises limit theorems for each. In theory, as data from the server takes 

longer in processing because of the network latency and queuing time, as shown in the 

queuing model (Walker and Shan, 2015; Vilaplana et al. 2014), client-side data can be 

processed much faster as the latency and queuing time is minimal.  

The aim of queuing theory is to get queuing or waiting time of a system, which can 

be applied to simulations to achieve performance results (Wang et al. 2012; Hohn, 2004; 

Kalashnikov, 1994).  
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It is important to realise that server-side databases always have network latency 

(Ghosh and Rau-Chaplin, 2006) and therefore the queuing time will apply. However, in 

client-side databases the network latency is minimal and the queuing time will be zero – 

especially since IndexedDB can handle only one transaction at a time (W3C, 2015). This 

transaction operation can be a read or a write. 

3.3.  Database Replication 

Database replication (Yadav et al. 2013; Zhou and Wei, 2013) is the process of copying 

(duplicating) part of database from one database server to another server. Therefore 

duplicated copies of database are available to be used by users and share equal level of 

information. 

The advantages of using data replication include increased performance and 

availability (Minhas et al. 2013; Zhou and Wei, 2013). Application reliability can be 

improved by spreading the data across multiple machines. Also, spreading the data reads 

across multiple machines can improve reading operation performance (Yadav et al. 2013).  

3.3.1 Methods of performing Database Replication  

Database replication can be performed via snapshot replication, merging replication or 

transactional replication. Snapshot replication (Elnikety et al. 2005) (isolation) is when the 

latest snapshot of one database server is duplicated to another database, which can be on 

the same or different server.  

Merging replication (Mazilu, 2010) is when data from multiple databases are merged 

into a single database.  

Transactional replication (Mazilu, 2010) is when users obtain complete initial copies 

of the database, with additional frequent updates as data changes, which means that 

changes are sent to users as they happen.  

Database replication involves frequent updates of existing records with a large 

amount of data. This experiment will seek to compare the replication of data in server 

databases to that for client-side databases and look at how the frequent update operations 

will impact on performance. 

This section describes an important method which is used to optimise the 

performance of databases. Another important method is database fragmentation, described 

in the next section. 
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3.4.  Database fragmentation  

Data can be stored on multiple computers by fragmenting (Khan and Hoque, 2012) where 

the whole database can be split up into several pieces called fragments. These fragments 

are logical data pieces stored in a distributed database system (Khan and Hoque, 2010; 

Gibbs et al. 2005; Tamhankar and Ram, 1998). The objective of planned fragmentation is 

to minimise the data transfer time acquired to execute multiple queries, by locating the 

required fragments (Abdalla and Amer, 2012). Fragmentation is used to improve database 

performance (Gorla et al. 2012) with one of three strategies, which includes Vertical 

Fragmentation, Horizontal Fragmentation and Mixed Fragmentation (Runceanu and 

Popescu, 2013; Gorla et al. 2012). Horizontal Fragmentation (Abdalla and Amer, 2012; 

Ezeife, and Zheng 1999) splits tables by row, whereas the tables remain the same as they 

were. Vertical Fragmentation (Goli e al. 2012; Lim and Ng, 1997) splits tables by column, 

i.e. one table splits into two or more tables. 

3.5.  Performance factors 

There is a performance difference between server and client-side databases which 

depends on several factors, such as network latency, as described in 3.5.1 and 3.5.2. 

These factors played an important in proposing the performance model, which is 

specified in two parts. 
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Figure 3-1 Queuing model Diagram – Define the structure 

3.5.1 Factors for DB Performance on server 

Factors for database performance on the server are as follows: the client network interface, 

the network bandwidth, the server network interface, server CPU loading, server memory 

usage, server disk bandwidth and configuration effects. 

The client network interface factor can be described as the time taken when due to 

configuration errors such as network interface (bottlenecks) or hardware malfunction the 

user is not capable to send or receive packets (Biondi et al. 2014).  
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Network bandwidth of an overly overfilled network (a network which is too busy) 

with packets slows down both server replies and client transmissions (Totok and 

Karamcheti, 2011). 

Server network interface delays occur when a server is overwhelmed with packets 

that cannot receive any more. Interrupt service routine influence the capability of the 

server to receive packets from the network (Bourke, 2001). 

Server CPU loading refers to the server when the server has sufficient CPU cycles, 

and the summary of processes currently running in queue. 

Server memory usage is the performance factor associated to the server memory size 

and availability (Van der Mei et al. 2001). 

Server disk bandwidth delays or bottlenecks occur when the data is not available in 

memory and the server cannot read the data from the drives quickly (Biondi et al. 2014). 

Configuration effects occur with misconfigured settings in which all server services 

run correctly but unproductively (Biondi et al. 2014). 

3.5.2 Factors for DB Performance in local files 

The factors for database performance (Bezemer et al.2014; Garrett, 2013) in local files 

include disk speed, and that can be broken down into average seek time, rotation speed, 

controller time, average latency, CPU load, memory usage and disk transfer rate. 

3.6.  Structure of tested databases 

In this section, the varying characteristics of different types of databases will be explored. 

The section will focus on the tested browser-based database, IndexedDB. 

As it can be see from Figure 2.8 the structure of IndexedDB (Ss. 2.8.2) consist of Object 

store, which can contain multiple objects. NoSQL database can contain any number of 

object stores. The value stored in object store is associated with a key. The object store can 

store objects as well. First the web application needs to open a connection to database and 

current version. Then an object store is created which will store the values. Lastly a new 

record is added in transaction. 

For the purpose of testing we have used IndexedDB, LocalStorage (Ss. 2.7.3) (both 

key/value) and WebSQL (Ss. 2.7.1) (SQL database).  

 

var request = indexedDB.open(DB_Name, 3); 

var objStore = db.createObjectStore("name of OS", { autoIncrement 

: true }); 
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The person data will consist of these variables and each variable will be added as a 

separate value into database. ssn:"111-11-1115",name:"Donna ",age:12,email:" 

donna123@gmail.org (Ss.3.9.1.1). 

 

var request = objectStore.add(personData[i]); 

 

The structure of WebSQL consists of tables and rows where the data is saved.  

Compared database on the server was MySQL (Ss.2.6.1) which is a SQL relational 

database. To insert data into MySQL database table a single query can be used. 

INSERT INTO table_name (column1, column2, ...) VALUES (value1, value2, ...) 

3.7.  Define the performance model based on the queuing model 

This section describes and analyses the proposed performance model. The main purpose 

of the model is to show the effectiveness of using client-side over server databases. 

Additionally, the performance model will apply to both client and server-side 

performance measurements. The proposed performance model is based on a queuing 

model which, in turn, is based on the Markov model (Shi, 2013). 

3.7.1 Model description 

The model takes into account the variables and constants which will be applied to it. The 

model will show the performance effectiveness, where the variable added to the speed 

model is an average figure for the amount of data. In addition, latency will also be 

considered for the situation where it is necessary to use over 10 queries for insert and 

read operations. For the number of queries lower than 10, the latency is considered to be 

minimal, as there is no queue. Web servers, such as Apache start by default with multiple 

threads. Where the server can keep multiple copies of itself to server multiple user at the 

same time. 

Based on the theoretical research, it can be expected that it will be more efficient to store 

data locally after a certain number of queries. 

The queuing model will provide the solution for the performance model. Based on 

the model variables, the experimental results can be further examined in order to evaluate 

the results. 

The M/M/1 queue is the classic, single queue model and M/M/1/N is queuing model with a 

finite queue. The letter M refers to a memoryless (or Markovian) arrival process 

distribution, that is, to the exponential distribution or Poisson process. The number 1 
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represents single server. The letter N represents customers only. The (N+1)th customer will 

not join the queue. N-1 represents the maximum number of customers in the queue.  

3.7.2 Performance measures of M|M|1|N queuing system. 

In order to highlight different aspects of database performance, a model has been 

identified. Initially, the queuing system waiting time is calculated. This is important, as 

there can be many concurrent users who will be performing insert, update or delete 

actions. Secondly, the average waiting time in the queue is calculated by using data from 

the previous result. Equation 3.1 is calculating queuing system waiting time. 
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	+ 	
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�
Equation 3-1 

 

Table 3-1 Waiting time variables 

W/	 Average queuing system waiting time 

�1 Average number of customers 

P3	 Represents the probability for the user of not joining the system 

µ	 Service rate per server = 1/E[s] 

λ	 The arrival rate = 1/E[τ] 

E	 Represents amount of times of arriving at state n, and L represent amount of 

times of leaving state n. Ε	 − � 	�	 0,1  

�	 Inter-arrival time which represents time between two succeeding arrivals. 

s	 Represents service time per operation. 
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Table 3-2 Average waiting time in the queue 

WF Average waiting time in the queue 

W/: Average queuing system waiting time 

µ	 Service rate per server = 1/E[s]	 

 

Equation 3.2 is calculating average waiting time in the queue. Traffic modelling is 

(3.2) 

(3.1) 
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concerned with the packet arrival process or Poisson process. The Poisson process is an 

important model used in queuing theory. Often a Poisson process can describe the arrival 

behaviour of customers (Kalashnikov, 1994).  

3.7.3 Speed model of network transfer 

The proposed performance/speed model will have set variables, and can be calculated as 

show in equation 3.3 (Calculating the minimum access time to total data) and equation 

3.4 (Calculating the data transfer time).  
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Table 3-3 Data transfer variables 

Value Description Inserted Value 

c	 The CPU time to compute each byte 10ms 

D	 The total of data 100000MB 

I	 Network speed 100 MB/s 

M	 The number of I/O nodes 1 

N	 The number of clients 10 

P	 The number of disks in parallel 1 

R	 Disk speed 7200rpm 

T	 The minimum access time to total data 1s 

S	 The maximum aggregate bandwidth 

(Limitation: P/M >=1) 

1 machine * (1 gigabit * 

2) = 40gbps 

 

3.7.3.1 Other factors to consider 

Causes of end-to-end delay described by (Gettys and Nichols, 2012) include 

processing delays, buffer delays, transmission delays and propagation delays. 

(3.3) 

(3.4) 
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The processing delay (Pinto et al. 2013) is the time it takes routers to analyse the 

packet on network system before it is send. The processing delay is an important factor in 

the total network delay. 

The queuing (or buffer) delay (Xue et al. 2013) is the time a packet waits in a queue 

before requested packet could be transmitted. Packets which needs to be processed and 

transmitted arrive at a router and can only be processed one packet at a time.  

Transmission delay (Hu et al. 2013) is the amount of time that all the bits of packet 

leave the sending point.  

The propagation delay (Chitre et al. 2012) is the amount of time it takes for the first 

bit of packet to travel from the sending point to the receiving point. 

 

The time required to insert a row is determined by the time taken to connect to the 

database, send the query to the server, parse the query, insert the row, update the relevant 

indexes and then close the connection (Connoly and Begg, 2014). 

3.7.4 Hard drive speed 

 

To calculate the disk speed, we can use the equation 3.5 as shown: 

� = 	8	 ∗ 	
�	
Y	
Z
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�
 

Where: 

c  Speed of light = 299792458 m / s 

S Bits per second 

B Block Size 

D Distance in meters 

C Connect Speed 

 

 

(3.5) 
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Also the disk latency can be calculated as shown in equation 3.6: 

 

�	 = 	1000	 ∗ 	
�

�
	 

 

Where: 

c  Speed of light = 299792458 m / s 

L Latency in milliseconds 

D Distance in meters 

 

 

The physical disk performance must also be considered, as disks can be of different types 

and models. IOPS are used to define the performance of a given disk or disk array, 

shown in equation 3.7. 
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Where: 

�^ Average Latency 

�_ Average Seek 

	

	

3.8.  Experiment Validation 

For the validation of the performance model, one user will be considered as the default 

server configuration. This section takes the performance model and applies the set 

variables to simulate the predicted results. These results will be later compared to 

experiments results, and then a conclusion of the effectiveness of the databases will be 

made. 

3.8.1 Simulation of the performance model 

For the simulation, the computational software program Wolfram Mathematica (Wellin, 

2013), was used. 

(3.6) 

(3.7) 
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The first calculation to be performed was to find the value of T (the minimum access 

time to total data), with different sets of D (total amount of data). This variable is then 

applied to a second model, which calculates the speed to transfer and save the data. 

The presumption of variable I (network speed) is 100 MB/s, c (CPU) is 10-9 seconds 

= 1 ns. The transferred and to be stored data is in range from 10 MB to 30k MB. Variables 

as N (number of I/O nodes), M (number of clients) and P (number on disks in parallels) are 

set to 1. The speed of disk is 200 MB/s. The results of the proposed model are shown in 

Figure 3.3. 

 

3.9.  Experimental Evaluation of model 

This section describes the experimental evaluation which assessed the following:  

(1) Experimental Evaluation of performance comparison between client and server-side 

databases 

(2) Experimental Evaluation of different kinds of client-side databases  

(3) IndexedDB performance in different browsers.  

Also, this section evaluates the theoretical performance model and compares the results to 

the experimental results. 

3.9.1 Experimental Environment  

The database was, on the client-side, IndexedDB. This browser-based database supports 

BLOB and JavaScript Objects. The application was tested in Firefox (v.15) and Chrome 

(v.22). Both of these browser fully support the IndexedDB API and its functionality. The 

application was set up on the server because IndexedDB does not support local servers. 

While Firefox uses the latest W3C specifications onupgradeneeded event to determine if 

a database should be created or upgraded, Chrome still uses the older, and now obsolete, 

setVersion method.  

For the experiments, a Western Digital 7200rpm 40 GB hard drive was used. All 

the experiments and the conclusions are based on the use of the same SATA HDD. 

3.9.1.1 Data model (Size of web record) 

The data model consists of a query which saves and reads data from one simple table. 

The experiment consists of a functionality which adds records to a database. The records 

are randomly generated as per the following example: ssn:"111-11-1115",name:"Donna 

",age:12,email:" donna123@gmail.org". The records are all objects of size 151 Bytes. 
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The ssn is the key of the object stored in the database, which is also randomly 

generated. The generator is a JavaScript random number generator. The purpose of the 

ssn key is as a keyPath (Atzeni et al. 2014) that is the property that makes an individual 

object in the store unique. The experiment measures the time needed to generate the 

values and the time needed for insertion. For the experiment evaluation and comparison 

the insertion is the only important part. The experiment firstly opens a database 

connection, and creates an object store for storing the generated records. 

3.9.1.2 Experiments for the Server-side Database 

For the server-side database a JavaScript function will generate a random name and 

surname and insert these data into the database. The JavaScript function consists of an 

array of names which will be randomly put together and inserted as one array into the 

database. The scenario is based on a real application where the information concerning a 

set of people is stored and retrieved to or from a database. The scenario is based on this 

specific experimental work; it does not consider the security of browser side databases.  

The code calls the onsuccess function for every record, as the cursor pointing to the 

records retrieves them one by one and then displays them. All the retrieved data is stored 

in memory and from there output to the browser; there is no other way to get all the 

records from the database - this way might be slow in some cases where the database 

contains lots of data. For the insert operation the experiment is, measure the time from 

request for insertion to time of response. For retrieval operation, the experiment is, 

measure time from request to actual data appearing on the screen. This code structure is 

not optimal, as the retrieving of records to actual output of the screen might take longer 

than just measuring the time of the response. 

3.9.2 Results and analysis of performance 

The performance testing of IndexedDB has been compared to other alternatives 

such as Local storage (Ss. 2.7.3) and WebSQL (currently deprecated) (Ss. 2.7.1). The 

tests performed were inserting data in a client-side database to show the time of actual 

insertion. IndexedDB has shown, that it can insert the data fast, in most cases faster than 

the other alternatives. This has shown that IndexedDB was chosen by W3C as a client-

side database because of the potential of fast inserting and reading of the data. The tables 

below show insertion of records into MySQL with MyISAM and InnoDB types. 

Comparison between SQL and IndexedDB databases are visibly different and the results 

show the big potential of client-side storage. 
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Databases were tested on the web server and on the local machine. They show 

different times for the insertion of data. The results in the tables show the storage size of 

data in the databases, and it can be seen that IndexedDB uses more storage than a 

traditional relational SQL database.  

In addition, the experiments examined the performance of IndexedDB client-side 

databases in multiple browsers. From the results it can be seen that IndexedDB performs 

faster in Firefox, but in Chrome the performance is lacking. Chrome still uses WebSQL, 

notwithstanding its deprecation since its performance is fast when compared to 

IndexedDB.  

Additionally, the back-end technology in Firefox uses SQLite to implement 

IndexedDB, which supports SQL queries and indexes for search optimisation. In 

contrast, Chrome uses its own backend, LevelDB, which does not support SQL queries 

and indexes. It can be concluded that the Firefox implementation of IndexedDB is a 

better solution. The performance depends on the browser, as the Firefox implementation 

of the IndexedDB API is much more developed than that of Chrome or Internet Explorer 

(IE). Firefox uses SQLite as a back-end database, and IndexedDB is implemented on top 

of it. Researchers and developers note that IndexedDB performs faster with SQL as a 

back-end. In comparison, the Chrome implementation, where IndexedDB is implemented 

on top of LevelDB (which is NoSQL), is much slower than Firefox. On the other hand 

WebSQL (deprecated) (W3C, 2010) performs well in Chrome (v.22), whilst Firefox 

(v.15) support for WebSQL has ceased. 

 

 

Figure 3-2 Performance testing: Insertion of records into database (IndexedDB in Firefox and 

Chrome) 
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From the results, it can be seen that IndexedDB performed, by the end, four times faster 

in Firefox. The reason is that Firefox implements and maintains the newest code 

architecture: Chrome is still behind. The results show a significant difference in time, 

and the possible reason is the use of a back-end database (WebSQL). 

 

 

Table 3-4 The table is showing insertion times results of tested databases 

Test number Amount of data WebSQL/Chrome 

(Insertion time) 

LocalStorage/Chrome 

(Insertion time) 

IndexedDB/FF 

(Insertion time) 

MySQL	 MYISAM	

(Insertion	time)	

Test1 1,000 0.09s	 0.05s	

0.06s	 1.09s 

Test2 2,000 0.17s 0.2s 0.09s	

2.05s 

Test3 5,000 0.37s 0.75s 

0.15s	 5.58s 

Test4 10,000 0.81s 1.38s 

0.35s	 12.178s 

Test5 20,000 1.73s 2.93s 

0.77s	 23.47s 

Test8 30,000 2.24s 5,1s 

1.25s	 31.84s 

Test 9 50,000 3.45s *	 1.89s	

*	

Test 10 100,000 7.35s *	 2.21s 

*	

Test9 200,000 20.45s *	

4.57s *	

Test10 500,000 50s *	

12s *	

Test11 600,000 76s *	

21.2s *	

Test12 700,000 80s *	

34s *	

Test13 800,000 91s *	

45s	 *	

Test 14 1,000,000 Failed *	

113s	 *	

 

*Length limit of table exceeded. 
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Figure 3-3 Insertion of records into database (IndexedDB, WebSQL, Local Storage, Mysql) with 

predictions 

3.9.3 Discussion of Analysis 

The comparison results of inserting records into the databases in Chrome and Firefox can 

be seen in Figure 3.2. This is that IndexedDB in Firefox handles the insertion of data 

faster than Chrome. In many forums and support discussion groups developers have 

noted that the performance is slower in Chrome because the support and code 

architecture is not updated to fully support IndexedDB. From the results it can be seen 

that the IndexedDB performs faster than the SQLite database. The insertion size of object 

data into the database started at 1K, goes up to 500K. The insertion of the objects 

comparison between the databases is shown in the table.  

3.9.3.1 Network Latency 

Client-side database process the data on the client-side where the network latency is 

minimal. All of the data is stored and retrieved from the client machine disk, based on 
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the web application coding. Comparing the results of experiments, the client-side 

database handles the data much faster.  

3.9.3.2 Scalability 

Data scalability is important for any web-based business. The web applications are 

becoming more scalable to fit the current market, so there is need for a database which 

will handle this requirement. Client-side databases may have an advantage as they avoid 

communications costs and other overheads that server-side databases may incur. 

3.10.  Conclusion 

This chapter demonstrated the theoretical performance model and compared its results with 

experimental results and so analysed the performance behaviours. The purpose of the 

performance model is to prove that client-side databases have performance advantages. 

This can be stated as being true, based on the findings regarding network latency, 

propagation delay, queuing delay and transfer time. 

Based on the theoretical performance model predictions and experimental results, it 

can be concluded that client-side databases perform faster than server-side databases. Also, 

by comparing the predictions against the experiment results, the final conclusion is that 

client-side databases perform faster, where IndexedDB was the fastest in read and write 

operations. Client-side performance efficiency was the main motivation for proposing the 

performance model. Based on the results there is a strong motivation for using client-side 

database to store large amount of data (as opposed to storing on server-side databases). The 

technological implementation differs in browsers (Firefox and Chrome) and the Figure 3.2 

shows that browser-based IndexedDB performs four times faster in Firefox browser. 

From the results of the performance model for client-side browser-based databases 

can be seen that IndexedDB browser-based databases perform faster than other comparable 

client-side databases. It can be also seen from Figure 3.3, that IndexedDB insertion of data 

was faster even with a great deal of data. Comparing the experimental results to the 

theoretical model, the results shown in Figure 3.2 indicates that the proposed model v.1 has 

the insertion time close to the experimental results. From the 3.3 graph can also be seen 

that the insertion time start to rapidly grow at 200k records. Based on these results, it may 

be concluded that there is a case for IndexedDB because of its superior performance. A 

practical usage of InedexedDB is to target mobile devices, where the network connection 

is not reliable (4G, WIFI). 
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Chapter 4.  A Security Investigation of IndexedDB 

In the chapter 2 we identified the security issues associated with the use of IndexedDB, 

and this chapter will describe experiments which were performed to look deeper at these 

issues. First we present the experiments which were performed on desktop computers 

with web browsers Firefox, and Chrome. Second we present the experiments which we 

performed on mobile devices - which were procedurally the same as the ones carried out 

on the desktop computer. For these experiments, we used the forensic tools Encase, and 

XRY (Ss 4.3.9). 

The main objective of these investigations was to uncover and examine the security 

issues associated with the use of IndexedDB. The experiments were motivated by the 

work described in Chapter 3 which identified possible issues that might impact the 

security of browser-based databases and the data they hold. Previous chapter have 

outlined the necessary information on how data is structured and processed within 

IndexedDB. 

The identified experimental steps were based on those used in forensic 

investigations: the way security professionals would perform the investigation. 

The first of these steps was to forensically wipe the hard drive and then restore a 

previously created Windows 7 x86 SP1 image to ensure consisted results. The second 

step consisted of running a web application which used IndexedDB as a back-end 

database. The information stored in IndexedDB by the application is then deleted in a 

number of different ways: clear browser cache, send to recycle bin, and hard – delete 

(holding SHIFT +Delete keys). Each deletion method was then subject to a separate 

investigation. After each deletion process, a forensic acquisition was performed. 

'Acquisition,' in this context, means that all relevant data, even that which has been 

marked as deleted, is made available to be viewed and potentially recoverable. 

The result of these experiments was the conclusion that IndexedDB saves the data 

on the filesystem, and when this data is deleted it is marked as deleted but still physically 

persists on the media. When web applications run a query and saved new data the old - 

deleted data - is not overwritten. 

4.1.  Browser Security Experiments 

4.1.1 Introduction 

HTML5 reached the official Recommendation stage on 28 October 2014 (W3C, 2014). 

This means that the World Wide Web Consortium recommended HTML5 as an official 
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standard. HTML5 was in use by developers and in browsers even as the technology was at 

specification stage (as a standard). HTML5 adoption will greatly help developers resolve 

recognized problems such as media and online-data handling; thereby providing a more 

robust method for handling data (Sarris, 2014). Furthermore, the enhanced functionalities 

of HTML5, for instance a client-side database called IndexedDB (which is embedded 

within the web browser), will provide additional benefits such as reducing the web server 

load. However, while client-side databases have the advantage of reducing load on the web 

server, their performance will be dependent on the user’s web browser - particularly how 

the browser implements the new client-side database API which is otherwise known as the 

IndexedDB API. 

This chapter will focus on the security of this new browser-based storage 

capability, and a series of experiments will show how vulnerable the IndexedDB API is 

to attacks. These attacks will be described in more detail, after which we will propose 

methods of protection against such attacks. We also investigated how the web application 

will store the data in the client-side database, and a series of tests were conducted to 

retrieve deleted database files. A possible solution for storing and retrieving data in a 

secure manner is proposed and described in further detail. 

The testing used the Firefox and Chrome web browsers, as they currently support 

the IndexedDB client-side database. The investigation will focus on the data storage 

mechanism of the client-side database. For analysis the results, a forensic tool called 

EnCase will be used; EnCase is an industry standard computer forensics tool, used in the 

majority of criminal cases involving the collection and presentation of digital evidence 

(Encase, 2004). EnCase is a software tool for accessing raw data and providing the 

functionality to create disk images, which is used to investigate acquired media. 

4.1.2 Background 

The development of new Web technologies involves compromise between stronger 

security (thereby protecting the user), and increased functionality (thereby helping the 

user). Unfortunately, consideration of this trade-off may have resulted in the 

development and implementation of an insecure API, the IndexedDB API. It should be 

noted that the current implementations of IndexedDB in existing Web browsers is mostly 

fully completed. However, it is to be hoped that existing security risks may not persist in 

future implementations of the IndexedDB API. The security issue resulting from the 

storage of unencrypted data by IndexedDB has a considerable structural flaw: The 

database is designed to store all of its data in an unencrypted state.  
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4.1.2.1 Problem identification 

IndexedDB stores data in an unencrypted state. Not all the data stored is sensitive in its 

own right (as for instance, username and password information is) but it can often 

include items such as client name, address, place and/or date of birth. If these 

components are put together, then identity theft is possible.  

To prevent the wholesale leakage of data via this security 'hole', we propose an 

algorithm to secure the information and thus protect the end user from identity theft. 

IndexedDB also works on mobile devices, where the data is stored in internal phone 

storage. Therefore, the problem also exists on mobile devices, and this is an even more 

serious matter as compared to the situation with desktop PCs. The deleted data can be 

retrieved from any mobile device. As the data is unencrypted, and considering the 

situation where the mobile phone is lost or stolen, the security issue is, in fact, much 

more acute - it is possible to retrieve the deleted data, thus the risk of data exposure, due 

to the fact that the data stored via IndexedDB is not encrypted, is even higher. Also, 

compared to storing data on the server-side, where the data is not available to recover 

after deletion, client-side data storage is less secure.  

4.1.2.2 IndexedDB Structure 

Files and data stored by the browser are retained on the file storage system, on the device 

permanent storage. The client-side database, IndexedDB, is a persistent browser-based 

database, consequently the files reside on the user file system and can be recovered until 

they are overwritten by other files. 

IndexedDB treats file data just like any other type of data. An application can write 

a file (or BLOB), into IndexedDB, or store strings, numbers or JavaScript Objects 

(Flanagan, 2011). This is as detailed in the IndexedDB specifications and included in 

both the Firefox and Chrome implementations of IndexedDB. In Firefox and Chrome’s 

IndexedDB implementation, the files are stored transparently, external to the database; 

the performance of storing a file in IndexedDB is as good as storing it on filesystem. It 

does not bloat the database and slow down other operations. Moreover, reading from the 

file means that the implementation reads from an OS file; therefore, it is just as fast as a 

filesystem and results in faster retrieve. 

The Firefox IndexedDB implementation will, if it is storing the same BLOB in 

multiple files, create only one copy. Writing further references to the same BLOB just 

adds to an internal reference counter. This is completely transparent to the web page; the 

data is written faster to the filesystem using fewer resources. 



Chapter 4. A Security Investigation of IndexedDB  

 71 

IndexedDB is implemented in the browser on top of another database (Ss. 3.9.2). 

IndexedDB is stores the values/objects in the local filesystem which means that the limit 

of storage is that of the available space on the user's hard drive. When compared to other 

databases, IndexedDB updates the whole data object rather than just specific data 

values/fields.  

4.1.3 Forensic Tools used 

EnCase v.6.11.1 and v.7 (Bunting and Wei, 2006; EnCase, 2004) is a software 

application available for the Windows Operating System; It enables the forensic 

examination and extraction of data from a computer and wide range of mobile devices 

(only in v.7). It provides, efficient and secure method for analysing a wide range of 

mobile phones through a secure examination process -recovering data in a forensically 

secure manner. EnCase uses ADB (Android Debug Bridge) to communicate with the 

mobile device through an USB connection to access device file system. ADB is part of 

Android Software Developer Kit (SDK). EnCase provides physical and logical extraction 

of files. Physical extraction operates at a much lower level than Logical and gives access 

to protected and deleted data such as deleted SQL databases. The extraction dumps the 

content of the mobile devices' memory. Physical extraction or acquisition gives a bit-by-

bit copy of the entire internal flash memory, which allows investigator to conduct 

analysis. 

XRY v.6.7 (XRY, 2015) is a mobile devices forensic software application available 

for the Windows Operating System. XRY provides SIM card readings, mobile device 

logical examination and fast recover of live mobile data. XRY allows performing a secure 

forensic extraction of data from a wide range of mobile devices, e.g., smartphones, tablets, 

music players, modems and satellite navigation devices. 

4.1.4 Potential attack vector 

This section considers an unauthorised physical access attack on an IndexedDB file from 

outside the user's device. 

4.1.4.1 Cross-origin resource sharing (CORS) attack. 

CORS (Ss. 2.3.3) is a mechanism that can bypass SOP. CORS allows a JavaScript code 

on a web page from one domain to make XMLHttpRequests to another domain. 

 

Scenario 1: Unauthorised physical access to the OS file system where the data from the 

browser database (IndexedDB) is stored, unencrypted. 
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Scenario 2 (Data Breach): Unauthorised access from an external machine, bypassing the 

SOP (SS. 2.3.2) to read the data and retrieve the information stored in the IndexedDB 

files.  

Why is the ability to read and retrieve data stored in the IndexedDB files an issue? 

In order to highlight the problems which this causes, we shall first conduct an analysis of 

the IndexedDB database file. 

4.1.4.2 Analysis of IndexedDB Database File 

The first step in conducting this analysis was to build a ‘clean’ Hard Disk Drive (HDD) 

on a PC [HP Pavilion 8680 Desktop PC with a Dual Core processor and 4GB Ram, 

including an Operating System (Windows 7, 32-bit) and web browsers (Firefox v.20.0.1, 

Chrome v.29.0.1547.620)]. After this, initial Internet browsing was conducted. The HDD 

was then ‘acquired’ using EnCase v.6.11.1. This was the starting point for each 

investigation. After each experiment, the disk image needed to be restored to a ‘clean’ 

state, and so following each experiment the disk was forensically wiped and then the 

same components (operating system, web browsers) re-installed. 

The aim of these experiments was to investigate and show how the data is deleted 

from an IndexedDB (local file) and also to discover whether the data is held in an 

unencrypted state. We also performed a re-use of a recovered file to see if that could be 

successfully achieved. 

4.1.4.2.1 Experiment 1: Recovery of deleted IndexedDB SQLite database file 

 

In this experiment, the SQLite database (Ss 2.6.2) file was deleted from a Hard Disk 

Dive (HDD), on a PC [HP Pavilion 8680 Desktop PC with a Dual Core processor and 

4GB Ram running the Windows 7 32-bit Operating System]. Then, using EnCase 

v.6.11.1, the device was acquired to an image file for analysis of the content of the disk. 

A write-blocker was used at all times to ensure data writing did not occur during data 

recovery. The structure of the web browsers (Firefox v.20.0.1 and Chrome 

v.29.0.1547.62) was also examined to assess how the data is stored. 

 

Experiment 1: Results 

 

Firefox stores all data in a temporary table (SQLite database) from where the data is 

copied into an Object Store, complete with key/value link. After the data has been copied 

successfully, the temporary table is dropped. The browsers always store the SQL file in 
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the same location in the file system. For Firefox, this location is C:\Users\[user-

name]\ApplicationData\Mozilla\Firefox\Profiles\[profilename.default]\ 

indexedDB\[domain-name]\[database-name], and for Chrome, C:\Users[user-

name]\AppData\Local\Google\Chrome\UserData\Default\IndexedDB. 

Consequently, any previously stored data is always overwritten, although when the data 

is deleted from the application (using the delete function), the location within the file 

system, for that deleted file, is still reserved. Operating system maintains the reserved 

location because the deleted file still persists on the HDD. So when running the 

application again, the browser always allocates a different location for the newly created 

Object Store.  

Allocation of file storage in Chrome is slightly different; all of the databases are 

stored in the same file. Consequently, it was assumed that Chrome is using compression 

for storing browsing data. 

In EnCase the option Copy/UnErase to recover the deleted file was executed an to 

export the file for further analysis. The option exported the deleted file with all the data. 

Although the deleted file data can be read from EnCase; instead, we chose to export the 

file and open it with SQLite Manager (Figure 4.1). The SQLite Manager tabulated the 

data in a readable way and the field values in the BLOB could be exported unencrypted. 

 

 

Figure 4-1 Exported deleted database file 

4.1.4.2.2 Experiment 2: Clearing the browser cache 

Experiments with Firefox included deleting the data by clearing the browser cache 

(deleting offline data option). Each experiment consisted of storing 300K records with a 

file size of 127MB. Experiments in Chrome also included deleting the data by clearing 

the browser cache (clearing browsing data/Hosted app data). Again, each experiment 

stored 300K records with a file size of 128MB. 
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4.1.4.2.3 Experiment 2: Results 

Clearing the browser cache in Chrome clears the database and deletes the file where it is 

stored. In Firefox clearing the cache does not delete the database file from the local file 

system. 

4.1.4.2.4 Experiment 3: Re-use of a recovered IndexedDB database 

In this experiment the possibility of reusing a recovered IndexedDB database in a 

different web browser was investigated. This involved identifying the location (physical 

address on the HDD) of the file after it had been deleted. In addition, this experiment 

also considered whether the database name was changed after it has been deleted - to see 

if the web application can read a deleted file with a different filename. When deleting a 

database from the application, everything in the folders is deleted; including data 

components that can be stored locally (images, documents, videos, audio). SQLite is not 

a typed database, which means that any data type can be put into any cell, regardless of 

the data type declared for the column; the database will attempt to convert it. Similarly, if 

a different type, other than the column type is requested/retrieved, SQLite will also 

convert this value. 

 

 

Figure 4-2 The physical address, and data in database file 

4.1.4.2.5 Experiment 3: Results 

 

Figure 4.2 displays the physical addresses of the file before and after deletion, which are 

the same. Deleted files are marked with a red cross. The file was recovered with EnCase 
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and exported to another hard drive; the file was then copied into a database folder, and 

the application was run to check if the data could be accessed. The result was that the 

application read the file and all of the data (in an unencrypted state) which was thus 

available publicly.  

4.1.5 Analysis and Possible Solution 

The results of the experiment were as expected; the deleted data has been marked as 

deleted, and so they can be exported and all the information inside the database, viewable 

for inspection. Moreover, exported data that has been imported to another PC which is 

running Windows 7 can be accessed and re-used. However a possible solution to this 

security issue is presented below. 

4.1.5.1 A Proposed Solution to Security issue in IndexedDB 

In this section we are going to propose a solution to the IndexedDB storage security issue.  

A preventative measure against the kind of scenarios which have been described might be 

the encryption of the files stored by the browser on the file system. All the data stored by 

the browser would be encrypted first. When retrieving the data, a secure key will be 

required to read the data from the file system. An encryption library will generate this key 

to permit access to read the data. Without this key, the data cannot be decrypted and so is 

impossible to read. The encryption key will be downloaded dynamically and the key (i.e. 

the password) will be stored in 'session key.' Once the key has been secured, it can be used 

to encrypt data. When a user closes the browser, the key is overwritten in RAM. This will 

help to prevent any attacker from getting access to the secure key when reading data from 

RAM. 

The following are the steps required for writing or updating data to the database, also Ss 

5.3.1 for algorithm steps. 

 

1. Ensure a secure connection through OAuth2 (Hardt, 2012)- The first step is to provide a 

secure login functionality for the web application. The web application will use the 

login functionality to authenticate the user and securely log the user into the system. 

2. Open a connection to the database - When an application requests a new transaction, 

requiring IndexedDB to open the database and save data, the encryption library based 

extension, which we have designed and implemented, will encrypt the data. This way 

the data will be stored in an encrypted state and thus is not readable to others.  

3. The encryption library generates a secure (symmetric) key from the user entered 

password. Salt is added to the password. Before the data can be encrypted a key must be 
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generated and stored with the user information on the server. The client-side encrypts 

sensitive data using the the key, which will be generated and stored on the server-side. 

This key is used when encrypting information using the JavaScript library.  

4. The key is created using Advanced Encrypotion Satndard (AES) algorithm.  

5. Encrypt data. When client-side encryption is enabled, an AES key is generated and the 

user will be given a session cookie with the key identifier. AES is the algorithm that is 

used to encrypt data with a key to produce a digital signature (Barth et al. 2011). The 

key, however, should not be revealed to anyone else. The key is used to decrypt data 

that has been previously encrypted (Bugiel, 2012). This process uses the AES (Ss 

2.11.1) algorithm at 128, 192 or 256 bits with the keyed-hash message authentication 

code (HMAC) and the SHA256 hash function (Daemen and Rijmen, 2013). 

6. Save the file and close the connection to the database. 

 

When reading the data, the following steps need to be fulfilled: 

 

1. Check user credentials. When the user asks to read the data from the database, the web 

application will first check user credentials (if the session is active) and get the key from 

the server to allow the decryption of data. 

2. Get the key to decrypt the data. Upon successful authentication the user will be given a 

the key, which will then be used for the decryption of the data. The key will be stored 

on the server-side, along with all the other user information which is used for 

encrypting/decrypting the data. OAuth2 was used, which is an open standard for 

identity authorisation. This standard was used to transfer the key to the server, securely. 

3. Decrypt data. The encryption library will check for a matching key, and if this is found, 

perform the decryption of the data. 

4. Display the decrypted data to the user. 

5. Close the connection. 

 

To ensure secure authentication (with the server), OAuth2 was used. This provides 

authentication between the application and the web server using a security token. We do 

not consider security issues with Oauth2, here, because this will be done in later chapters 

when the implementation is described. 

The stored data in IndexedDB is stored, unencrypted, to the file system (which can 

be accessed by the web application). When the application sends a request to the web 

browser to store the data on the local file system, the cryptography library is used to 

encrypt the data so that it can be stored in a secure fashion. A secure key will be also be 
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generated and stored on the web server. Reading the data from the local file system will be 

possible only once a secure key has been provided and the authentication between web 

application and server is established. Assuming all of these conditions are met and the 

connection is securely established, the data is decrypted by the cryptography library and 

displayed through the web browser to the user. In Figure 4.3we highlight the proposed 

solution, showing how the cryptography library will be used. The library will be 

implemented on top of the web browser API. The algorithm will consist of the following 

components, which are built into the browser (Figure 4.3). 

  

• Mechanism for generating asymmetric key 

• Mechanism to salt the password 

• Encryption 

• Decryption 

 

 

Figure 4-3 Proposed Encryption Library 

 

The cryptography library encrypts readable text into unreadable data. This data can be 

accessed by using an encryption key. Examples of encryption libraries are listed in 

Appaendix B. All of these were considered for implementation into the browser. The 

library chosen provides the functionality to encrypt on the client-side, and also it is 

available, open source. 

Another possible solution to the problem at hand might be to use an external device 

to store data from the browser. That is, a user could specify a location to which any 

IndexedDB files should be stored when browsing the web or running web applications. 

This would include an option whereby the data could be written to, and read from an 
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external source, such as an USB. The USB key would need to be secured with access 

encryption and restricted to only accessing data when the master password is entered. 

4.1.6 Conclusion 

In this chapter, security related flaws within IndexedDB have been demonstrated. While 

the browser can delete IndexedDB files stored on the local filesystem, these files can still 

be retrieved by EnCase. Unfortunately, the retrieved data is in an unencrypted format; 

thus, given the nature of the data held within the IndexedDB API, a potential security 

issue exists. 

All the data stored by IndexedDB is exposed. A solution for this security issue, 

which includes a security library has been shown, located between the browser and the 

filesystem. All the data stored by the Indexed DB application will be encrypted and 

saved via the library. The application needs to read the data, an encryption key is 

required and without the key, data cannot be decrypted, and so the reading of these data 

will not be possible. This will help to secure data stored on the client-side and prevent 

any retrieval of it in an unencrypted state. 

New section is going to investigate the security of mobile devices in forensic way, 

where forensic tools will be used to determine any possible vulnerabilities or security 

issues. 
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4.2.  Mobile Devices Security Experiments 

4.2.1 Introduction 

Data storage on mobile devices is not new. People frequently use their smart 

phones, on the move, to help with everyday tasks - not just for making phones calls. 

Browsing the Web via mobiles devices is becoming an easier task – the availability of 

network connections is an important factor in this. Smart phones are powerful pieces of 

technology wrapped up into small packages; they are capable of tracking the 

communications, location, and contacts of their users. Everyone is looking to perform the 

same tasks on their mobile as they do on their computer. Storing data is a significant part 

of accomplishing these tasks. New web standards have started to define functionalities 

which extend the basic storage requirements of cookies. There is, therefore, a need for 

storing larger files on the user's device (file system). This need has resulted from a 

requirement for faster application response via decreased use of the network. Thus W3C 

introduced the HTML5 standard, which will help developers to resolve the storage and 

therefore network latency problem. With the new HTML5 standard come new 

functionalities, such as the client-side browser-based database called IndexedDB. This 

will be a standard for storing data on client computer or mobile device.  

The requirement for a new client-side database came from developers' feedback 

highlighting the need for better storage. The web developers and users require more 

storage space which persists beyond page refresh and is not transmitted to the server. 

This applies also to mobile devices (smartphones and tablets) where the data can be 

stored on permanent storage. 

Storing data on permanent storage can entail security risks. Based on previous tests 

and research we found that the stored data is in an unencrypted form. This is potentially 

dangerous when storing sensitive data: for instance, user personal information, bank or 

credit card details.  

The work described in this chapter was focused on investigating the security of 

browser-based storage on mobile devices. The storage functionalities of new 

technologies such as HTML5 are vulnerable to attacks i.e. XSS (Ss. 2.4) and social 

engineering attacks (Ss. 2.5.2).  

We investigated how web application will store the data in the client-side database 

and performed tests to retrieve ostensibly deleted database files. The possible solution to 

these security issues, involving storing and retrieving data in a secure manner, is 

described in further detail. 
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The testing encompassed both the Firefox and Chrome mobile browsers. These 

support IndexedDB client-side databases and storing offline data to phone memory. 

IndexedDB is implemented in mobile browsers in a similar way to that in which it is 

implemented for computer browsers. The main reason for these tests was to investigate 

client-side database and mobile browser security, and so the investigation was focused on 

data storage for the client-side database in the phone memory. To analyse the results and 

mobile device structure, a forensic tool called XRY was used. The XRY forensic tool is 

described in more details in section 4.3.9. The investigation's results indicate whether 

certain actions can be performed, and so show us the potential risks involved such as the 

retrieving of deleted data from a database. The tests which we decided to perform 

concentrated on investigating how IndexedDB saves the data and also how the data can be 

retrieved after deletion. The following section is going to describe the background 

information on cryptography (relating to storing the data in a secure way). The experiments 

showed how the data from the client-side could be retrieved with forensic tools. Results 

will be described in section 5 for Firefox and Chrome browsers. 

Mobile applications are another possible means via which stored information on 

mobiles filesystems can be compromised. An attack can occur when the user downloads 

an application and installs it because, unknown to the user, the application might include 

built-in code which can access the user's filesystem. The application might send some of 

the data to an attacker; the code could be programmed (or could have a function) to 

search for some specific data such as stored usernames, passwords or personal 

information. Other possible attacks could be relevant when a web application is using 

IFrame.  

4.2.1.1 Motivation for Work 

The new features of web browsers, and new technologies such as HTML5 bring database 

technology to web browsers. We believe that these features are important for the future 

of upcoming technologies, especially where the performance for the end user is 

paramount. This is the motivation for this investigation into mobile security, and storage 

within the browser-based database system, IndexedDB. 

4.2.2 Related Work 

In this section we describe related work on mobile forensics and data storage. Also we 

discuss the limitations of new web technologies in terms of their security aspects. 

The Koll (2012) study shows, that only a small amount of data stored on mobile 

devices is securely deleted. This means that the data can be retrieved from a device after it 
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has been deleted. The Koll (2012) study also showed that a higher security risk exists when 

the data is stored in an unencrypted state. This can lead to the theft of sensitive data.  

4.2.3 Background 

This section describes background information related to the storage of data in a client 

file system, in an encrypted fashion, and the possible encryption libraries which might be 

implemented at browser/file system layer. Possible attacks are described in Section 2.4. 

These attacks are considered to be possible and are known by the HTML5 security 

community and security researchers (Abgrall et al. 2014). As Abgrall  et al. (2014) states, 

new technologies bring new security risks which need to be countered in order to protect 

the user.  

Because of the increasing number of security vulnerabilities and attacks in the global 

communication environment, IT security engineers and researchers are constantly trying to 

developed new or improve existing secure algorithms. Algorithms should provide secure 

storage of data and made the data easily available for authenticated users (Chaitanya, 

2012). One way to provide the secure storage is cryptography (Ss. 2.11). Cryptography is 

using a key to encrypt stored data on the storage device (Tang et al. 2012), and so the 

content will remain encrypted even after deletion. 

4.2.3.1 Android Internal Memory and Removable Flash. 

Android uses the Linux Memory Technology Device (MTD) subsystem to access flash 

memory storage.  

NAND flash (Grupp et al. 2012) memory is a type of long-term persistent storage 

that retains data without requiring power. NAND flash memory is best suited for flash 

devices which require large capacity data storage. 

The Samsung device uses Robust File System, Samsung (RFS), which supports 

larger files and journaling. With this, each time a new database is saved onto the file 

system, a journal file is created. It does this by keeping the file in the cache until the 

change is finalised. If the process gets interrupted while the file is being saved (for 

instance, if the battery is pulled or the phone is hard-rebooted), the file system doesn't get 

corrupted. In Android the SQLite databases are stored under /data/data/appname 

/databases. 

4.2.4 Smartphone database file systems 

The database files are stored in internal memory. By default the application data and 
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database files are stored in /data/data directory, and normal user can not access or view 

them. The files for any file system application are hidden. To access these directories and 

files, the mobile device needs to be rooted (Bunting and Wei, 2006). Rooting alters the 

device settings and acquire full administrator or super user privileges. Forensic tools, such 

as EnCase provide rooting option, which does not delete or alter any data when performed. 

Rooting a mobile device puts a ‘su’ binary file into the /system/bin or /system/xbin 

directory. The benefits of rooting include unlocking hidden features, removing preinstalled 

applications, boost the performance speed and battery life, installing custom versions of 

Operating System.  

4.2.5 Attack Scenario- cracking the key storage 

The first scenario involves unauthorised physical access to a smartphone file system, 

where the data from the browser database (IndexedDB) is stored unencrypted. The 

attacker can read the data and get all the information stored in the files, at will.  

The second scenario involves unauthorized access from an external machine 

(running software which is able to bypass the SOP) which reads the data and so retrieves 

the information stored in the files.  

4.2.6 Possible Prevention 

The preventative measures against attacks might include the encryption of files 

stored by the browser on the file system. A browser extension can be built and located 

between the browser and the file system. This browser extension is built on top of the 

existing API enable faster implementation. All the data stored by the browser is encrypted 

before being stored in the file system. When retrieving the data, a secure key is needed in 

order to read the data from the file system. An encryption library will generate this key. 

Without this key, the data remains encrypted, making it impossible to read. For testing 

purposes, an encryption library was attached to a C++ read/write program. Data access was 

first tested without, and then with encryption in place.  

First the data was stored unencrypted in the file system so that it can be accessed by 

all program. 

 Next, the encryption library was attached to the program which caused the data to be 

written in encrypted form - when reading the data, it is decrypted by the library. 
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Figure 4-4 Proposed Encryption Library for mobile device 

4.2.7 Testing 

The testing was done in a number of stages. First we stored distinctive data and created a 

disk image. Then we deleted the data and obtained the disk image again. This last image 

was then used to recover the deleted data for comparison with the original image. The 

steps are described below in more detail. 

4.2.7.1 Execute the Following in the Forensic Lab 

The tests were done on an Android phone (v 4.3), which does not need to be rooted. This 

means that the tool can then have access to all system folders and files. The mobile 

device was a Samsung Galaxy Ace S5830. The EnCase software will root devices 

automatically (if the option is selected).  

 The data from browsers is stored in the /data/data/ folder which by default is not 

possible to access or view. It is possible to do so only by using forensic tools described in 

section 4.2.4. Without the use of a forensic tool an export of data can be made but 

sensitive data might need root access privileges. In Firefox the IndexedDB database is 

stored in a file with a .sqlite extension. The database file pathname is: 

data/data/org.mozzilla.firefox/files/Mozilla/[randomnumber].default/inde

xedDB/[domain name]/idb 

4.2.7.2 Storing Data 

The first step was to run the application and store the data. The data consisted of email 

addresses, integers, and text. This helped us cover each possible data format. Data was 

stored in a random order in mobile storage. 

Write data 

 

Browser 

 

Mobile file system 

Read data 

Encrypt 

Unencrypt 
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4.2.7.3 Acquisition 

Acquisition is process of creation of a complete, physical bit-by-bit image of a 

mobile device (Ambhire and Meshram, 2012). The EnCase or XRY evidence file is an 

exact duplicate of the data, as on the mobile device and during the acquisition. Extracted 

data as shown in Figure 4.5 can be categorised in section, such as files (videos, images, 

databases), messages, contacts etc. 

Before starting with the acquisition of the device, all network connections (WIFI 

and cellular) has been disabled and removed the SIM card. We performed the acquisition 

of the RAM disk, and we selected physical acquisition. This meant that more data was 

accessible– e.g. deleted SQL database files. The result of the acquisition was a full 

device image. 

On mobile devices applications (i.e. browsers) save persistent application or 

temporary data into the directories /data/data. These directories are hidden - by default. 

Root permission allows access to this directory's files. Mobile phone memory will be 

“acquired” with EnCase and this becomes the starting point of the investigation. 

 

 

Figure 4-5 Logical extraction, view in XRY 
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4.2.7.4 Recovering Data 

There are number of tools available for displaying deleted or destroyed data. XRY 

provides a tool called XACT, as show in Figure 4.6. XACT is a viewer which allows us 

to examine extracted raw hexadecimal data from the physical dump of a mobile device. 

4.2.7.5 Analysing Results (Evidence) 

With XACT we can examine the data and see where exactly the data is in the 

mobile device file structure as shown in Figure 4.6.  

After each experiment, the disk image needed to be restored to a 'clean' state in 

order to ensure continuity between tests. We used Android recovery mode to backup and 

restore a clean install.  

The experiments included deleting the data from the phone memory and then, 

EnCase, locate the deleted data and performing a data recovery. We looked at the 

structure of browsers (Firefox and Chrome) to see how the data is stored. 

 

 
Figure 4-6 Logical extraction, view in XACT 

4.2.8 Results 

This section provides the test results relating to both, Firefox and Chrome browsers on 

the mobile devices.  

IndexedDB stored file 
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4.2.8.1 Firefox 

The stored database file is located in data/data/org.mozzilla.firefox/ 

files/Mozilla/[randomnumber].default/indexedDB/[domain name]/idb. 

From the tests conducted, it was discovered that clearing the cache and offline data, does 

not delete the database files on any mobile devices. The only possible option for deleting 

these files is to manually explore the structure, locate the files, and then explicitly delete 

them using an appropriate Operating System function. The investigation recovered the 

deleted files and restored the file to perform further testing. 

4.2.8.2 Chrome 

Deleting IndexedDB files in Chrome is possible by opening Content settings/Website 

settings and then checking the domain name. By checking the domain name an option to 

clear stored data will be displayed. After successful confirmation of clearing all data the 

domain name along with all the data will be deleted. The stored database file is located in 

data/data/com.android.chrome/app_chrome/default /indexedDB/[domain name] 

.indexeddb.leveldb. All databases are included in the same log file- filename.log; 

also there are current, lock, and manifest files – the latter providing a pointer to a specific 

database. Restoring the deleted data from the disk image shows us that all of the deleted 

database information can be retrieved and used. Deleted data does not differ from the 

original content in the .sqlite file. This confirms our theory that the deleted data can be 

retrieved, accessed and used with the help of forensic tools. 

 

Figure 4-7 Web Application on mobile 
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Figure 4-8 Restored file from mobile running on desktop computer 

4.2.9 Results of extracted data 

For the purpose of testing a web application was run to store data on mobile device as 

shown in Figure 4.7. The stored data has been deleted using the browser functionality to 

remove any stored offline data. The device has been connected to desktop computer and 

forensic tool XRY has been used to extract the data from the mobile device internal 

storage. The extraction of deleted data on mobile device is using the same structure as on 

desktop computer, therefore we could reuse the data running the same application on 

desktop computer as shown in Figure 4.8. 

4.2.10 Conclusion 

From the tests executed it can be concluded that database data on mobile devices is stored 

in a format which makes it initially meaningful. The file requires further processing and 

parsing in order to make the associated content accessible. 

The test also showed that restoring the deleted data and accessing it with the 

application in order to read the data, works. The only significant difficulty discovered 

when performing these tests was that the file content could not be read just by opening the 

file.  

To delete the data from the mobile device file system a manual file delete approach 

was needed, as just clearing the browser cache and offline data did not work. 
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Future work might include further experiments where, for instance, the data from the 

browser will be store to an external medium. For security reasons a user could specify a 

location (e.g. a memory card) at which IndexedDB files should be stored when browsing 

the web or running web applications. 
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Chapter 5.  Browser-based local storage Security Model (BBLS) 

The previous chapter identified security issues related to the use of IndexedDB and in 

this chapter we describe a solution to these problems - in terms of a proposal, and an 

implementation of this proposal. 

In this chapter a security model is presented - which has been built into the Firefox 

browser as an extension. The chapter fulfils firstly client-side encryption and hashing; 

existing encryption libraries are considered as the base of the framework and use one for 

the implementation. Secondly, the framework is extended with Multifactor authentication 

(Ss 2.12). Lastly the effectiveness of the model is explored by performing attacks, such as 

XSS (Ss 2.4) from the browser-based local storage. 

Based on the issues identified previously in Chapter 4 and in the literature review 

(Chapter 2), the security issues with IndexedDB can be corrected. This chapter proposes a 

security model, which will correct the build – in security issue that IndexedDB has by 

design and make it secure. The security model consists of an encryption library and 

Multifactor authentication (which is used to secure the database against XSS attacks). 

5.1.  Introduction 

It appears that data stored by IndexedDB on the client file system is unencrypted 

(Chapter 4). Therefore, any stored data might be at risk of exposure. This means that 

IndexedDB is not secure by design. This is potentially dangerous when storing sensitive 

data, such as a user’s personal information, bank or credit card details (Ma, 2008). 

IndexedDB treats file data just like any other type of data. An application can write a 

file (or BLOB), into IndexedDB, as well as store strings, numbers and JavaScript 

Objects (Flanagan, 2011). 

This thesis intends to design and implement an algorithm that will contain the 

main components of the JavaScript Encryption Library, which will be a browser-based 

extension. With this extension, the data will be stored encrypted, and therefore there 

will be no security risk. 

Several encryption libraries are available, which will be brought into consideration 

for the implementation as shown in Section 5.2.1. The steps of implementation will be 

described in more detail in section 5.3. An algorithm’s steps will be described, which 

will help structure the functionality and show how the extension will work in several 

cases of use. 

With the implementation of the encryption library in the browser (Firefox v. 29) the 
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thesis intends to address the ineffectiveness brought about by storing data in an insecure 

way. Proposing and developing an algorithm which will be implemented into the 

Mozilla Firefox browser in an extension format. The algorithm will also ensure that the 

database transaction for storing or retrieving data will only granted when a secure and 

valid authentication process is completed. This also relies upon providing the key to 

encrypt/decrypt data. 

5.2.  Background 

The current concern with browser-based local storage is that it stores data on the client-

side unencrypted. In this section possible solutions are explored to minimise the risk of 

sensitive data being accessed inappropriately. 

5.2.1 Client-side Encryption 

As described on section 2.11, client-side encryption (encryption in the browser) is not 

developed as encryption on the server-side, therefore the number of encryption libraries 

that can be selected is limited. Below is a list of considered client-side encryption 

libraries. 

 

Table 5-1 List of possible consideration of JavaScript encryption libraries 

Library name Available at Description 

WebCryptoAPI http://www.w3.org/TR/

WebCryptoAPI/ 

• A JavaScript API for performing basic 

cryptographic operations in web 

applications, such as hashing, signature 

generation and verification, and encryption 

and decryption.	

PolyCrypt 
• http://polycrypt.net/ 

 

Pure JavaScript implementation of the 

WebCrypto API. 

crypto-js  https://github.com/glynr

ob/client-encryption 

 

gwt-crypto  Google Web Toolkit (GWT) 
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jscrypto 
• https://code.google.com/

archive/p/crypto-js/ 

 

Growing collection of standard and secure 

cryptographic algorithms implemented in 

JavaScript. 

Stanford 

JavaScript 

Crypto library 

(SJCL) 

http://bitwiseshiftleft.git

hub.io/sjcl/doc/ 

(Stark et al. 2009) 

 

5.2.2 Consideration Results 

The decision to choose an encryption library, which could be implemented into browser 

consist of those factors: 

• Size of the library 

• Multi browser and multi platform availability and implementation 

• Different variable key length of 128, 192, or 256 bits  

• Hash functions 

• Keyed-hash message authentication codes (HMAC) 

• Salt 

 

SJCL offers SHA256 for digesting and AES for encryption with three bit lengths, at 128, 

192 or 256 bits. Also provides the SHA256 hash function, the HMAC authentication code, 

the PBKDF2 password strengthener and the CCM and OCB authenticated-encryption 

modes. SJCL strengthens the passwords by a factor of 1000 and salts them to protect 

against rainbow tables, and it authenticates every message it sends to prevent it from being 

modified. SJCL provides the best security which is practically available in JavaScript. 

Unfortunately, this is not as great as in desktop applications because it is not feasible to 

completely protect against code injection, malicious servers and side-channel attacks. 

5.3.  Algorithm 

The algorithm used to save data in this secure way was implemented using a JavaScript 

library, the proposed Stanford JavaScript Crypto library (SJCL) (Stark et al. 2009). 

In the following, the required steps are described for read, write and update the 

data, using an algorithm in pseudocode. 



Chapter 5. Browser-based local storage Security Model (BBLS)  

 92 

5.3.1 Algorithm steps to secure data 

We are going to propose an algorithm, where initial steps need to be completed to enable 

the encryption/decryption of data, this will provide functionality with the steps, as 

described below. 

Algorithm 1 Encryption of data 
procedure Authenticate 

if authenticate = TRUE then 
 action login 

else 

 action error 
end if 

 

procedure write/read 

if success = TRUE then 
 action open DB 

else 

 action error 
end if 

 

procedure connect to db 

if success = TRUE then 
 action generate key 
 action save key 

else if 

 action regenerate key 
else 

 action terminate 
end if 

 

procedure encrypt 
if key != NULL then 

while Not end do 
 action encrypt 

end while 

action success message 
else 

 action key not found 
end if 

 

Algorithm 2  Decryption of data 
procedure Authenticate 

if authenticate = TRUE then 
 action login 

else 

 action error 
end if 

 

procedure read 

if success = TRUE then 
 action get key 

else if 

 action retry 
else 

 action terminate 
end if 

 

procedure request key 

if success = TRUE then 
 action keep key 

else 

 action close 
end if 

 

procedure decrypt 
if key1 = key2 then 

while Not end do 
 action decrypt 

end while 

action success message 
else 

 action key not found 
end if 
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5.3.1.1 Obtain a secure Login 

The first step is to provide a secure login functionality, which can be provided by the web 

application. The web application will use the login process to authenticate a user and 

securely log the user into the system. 

5.3.1.2 Encrypt data 

When an application requests a new transaction for IndexedDB to open the database and 

save data, the designed encryption library extension will encrypt the data. This way the 

data will be stored in an encrypted state and will not be readable by others.  

If connecting over HTTPS, then connection is more secure as the browser will 

detect a modified JavaScript file. The Secure Sockets Layer (SSL) of HTTPS protocol 

handles this.  

5.3.1.3 Store the symmetric key 

When the data is encrypted a key will be generated and stored with the user information 

on the server. The client-side encrypts sensitive data using the the key, which will be 

generated and stored on the server-side. This key is used when encrypting information 

using the JavaScript library. When client-side encryption is enabled, AES key is 

generated and the user will be given a session key, which can be used until the web 

browser is not closed. AES is the algorithm that is used to encrypt and decrypt data with 

the same key (Burnett, 2001). The key, however, is never revealed anyone else. The 

data is decrypted using the secure key. (Bernett, 2001) 

The symmetric key is generated form the user password, which is also salted by 

AES algorithm.  

5.3.1.4 Decryption of data 

When the user makes a request to read the data from the database, the web application 

will check the user’s credentials (if the session is active) and get the key from the server 

to allow decryption of data. The HTTPS protocol is always the preferred method of 

exchanging any confidential information. 

5.3.1.5 User Authentication 

Upon successful authentication, the user will be given a session key, which will be used 

for the encryption or decryption of the data until the browser is not closed. Then the 

session key will be destroyed. The key key will be stored on the server-side, with all the 
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user information which is used for decrypting the data. We are going to use OAuth2, 

which is an open standard for authorisation. This will be used to securely transfer the 

key from the server to the encryption library on the user device. 

5.3.1.6 Deletion of data 

Secure deletion of data will be required – i.e. the overwriting of the data with zeros. 

This means that the data cannot be read again, as all of the values are set to zero in place 

of the original data. 

5.3.2 Proposal 

Hashing (Ss.2.11.2) and encryption (Ss. 2.11) can be done within browsers through the 

JavaScript encryption library. Our algorithm will use a JavaScript encryption library 

(proposed SJCL), where the library will be implemented into the browser (Firefox) as 

an extension. This extension supplement the existing IndexedDB API and therefore 

every time during the reading or writing of data, the data will be encrypted. The library 

consists of encryption with symmetric keys. The key will be saved on the server. The 

session key identifier will be given to the user and stored on the user’s machine in the 

same way as a cookie is. The proposed extension will provide encryption/ decryption of 

data on the user’s machine; this will resolve the issue of storing data in an unencrypted 

state. It will also provide better security for potential attacks, in which the attacker uses 

user specific data. 

• Cryptography: Encryption is the process of encoding original text (plaintext) into an 

unreadable ciphertext. The encryption key (secret key) specifies how a plaintext is 

to be encoded. 

• Authorised: able to decode the ciphertext using the decryption algorithm that requires 

the secret key. 

• Unauthorised: Must not have access to the key. By viewing the ciphertext, the 

unauthorized user should not be able to determine anything about the original 

plaintext, as it has not been decoded. 

5.4.  Implementation 

The overall structure of the proposed model can be seen in Figure 5.1. The model will add 

an extra layer between the web browser and IndexedDB API. The security model consists 

of an algorithmic framework which adds extra protection against issues identified - 

reading other’s data via XSS vulnerabilities. 
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The proposed encryption model consists of the JavaScript encryption library 

(proposed JSCL); this library is implemented into the browser (Firefox) as an extension. 

This extension is placed on the top of IndexedDB API and therefore every time during 

the reading or writing of data, the data will be encrypted.  

When decrypting the data, a secure key will be required to read the data from the 

file system. The encryption library will generate this key to permit access to read the 

data. Without this key, the data cannot be decrypted and so is impossible to read. The 

encryption key will be downloaded dynamically and the key (i.e. the password) will be 

stored in 'session key.' Once the key has been secured, it can be used to encrypt data. 

When a user closes the browser, the key is overwritten and destroyed in RAM. This will 

help to prevent any attacker from getting access to the secure key when reading data 

from RAM. 

The library consists of encryption and decryption using the same key. As might be 

expected, the key will be saved on the server. The session key will be given to the user 

and stored on the user’s device, in the same way as a cookie. The extension will provide 

encryption/decryption of data on the user’s device, which will resolve the issue of storing 

data in an unencrypted state. It will also provide better security for possible attacks, 

where the attacker can manipulate with user data. 

The browser-based local storage security model (BBLS) is relying on the web 

browser security model (WBSM), which uses SOP (Ss 2.3.2). This security mechanism, 

on its own, is not enough to preserve security confidence amongst end users. 

The BBLS security model differs from WBSM in a number of ways; these include the 

security mechanism. The main difference is that the BBLS security model is trying to 

secure the data between browser and the end user file system, whereas the WBSM, which 

is securing the data between web applications and user browser. 

The goal of BBLS security model is to secure the data which is stored in the client-side 

database; the user should be able to visits other websites without their databases being 

compromised.  

The current WBSM is not sufficient protection for complex web applications, and 

stored data on the client-side is becoming more important.  

5.4.1 Structure of the library/ encryption 

In order to encrypt and decrypt a predefined function sjcl.decrypt("password", 

"encrypted-data") is called. The library uses the AES (Ss 2.11.1) algorithm at 128, 192 or 

256 bits, HMAC authentication code and the SHA256 hash function. Also the library can 

be used with numerous versions of Chrome, Firefox, Internet Explorer Safari and Opera 
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on Windows, Macintosh and Linux. (Stark et al. 2009). 

 

 
Figure 5-1 Overall structure of the proposed security model 

5.4.2 Algorithm implemented 

The AES used in the encryption library differs from typical AES implementations in that 

it uses a different approach, explained by Stark et al. (2009). The implementation speeds 

up encryption and decryption while keeps the code small. 
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The Advanced Encryption Standard (AES) 

The source code is available for the AES algorithm, also called the Advanced 

Encryption Standard or the Rijndael algorithm (Daemen and Rijmen, 2013; Hoang, 

2012).  

The benchmarking tests performed by (Stark et al. 2009) have shown that the 

SJCL performs faster than other current client-side encryption libraries. The benchmark 

has been conducted in multiple browsers on Windows, Mac and Linux Operating 

Systems. One of the reasons we proposed to use and implement the library into our 

algorithm was the speed and its cross-platform usage. 

The algorithm contains this JavaScript encryption library, implemented into the 

browser. The algorithm will consist of steps which, nevertheless, achieve much higher 

security. This will allow the end user to save and retrieve data from IndexedDB. The data 

will be encrypted with the JavaScript library and a asymmetric key will be used to 

encrypt/decrypt this data.  

The Firefox extension file (XPI) file consists of Resource Description Framework 

(RDF) (it is like an Extensible Markup Language (XML) file with structure, Web Data) 

and the JavaScript library file. Also there is an installation file, which makes it possible 

for users to install the extension into browser automatically. 

When an application sends a request to the web browser to store the data onto the local 

file system, the cryptography library will encrypt the data to be stored securely. A 

secure key will be also generated and stored on the web server.  

Reading the data from the local file system will be possible only when a secure key is 

provided and the authentication between web applications and the server is established. 

Considering all of the points a connection is securely established, the data is decrypted by 

the cryptography library and displayed through the web browser to the user. 

5.4.3 Implemented Multifactor Authentication 

For implementation with the existing encryption library (Figure 5.1) we will use 

Multifactor authentication (MFA) (Ss 2.12). MFA is used to make the authentication 

process more secure by adding an extra layer of security. Mobile phones are used as a 

multi-factor authentication and replace token generated from software applications or 

physical secure key device for authentication. The extra layer will add something what 

the user have, for example a code sent to a mobile phone. Web applications such as 

Facebook or Twitter are using MFA when the user wants to sign in. This is used to verify 

the user when signing in with sending a verification code to phone via SMS message or 
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automated phone call. The user can sign in with password (something he know) and 

verification code from mobile device (something he have). 

The extra authentication will need to be passed to make sure the encryption library 

decrypts the data.  

5.4.4 Possible problems with IndexedDB 

There are two major problems with the data storage mechanism within IndexedDB; 

1. The data is stored in an unencrypted state on the disk. This allows for anyone 

with access to the device, potentially, to get access to that data. 

2. The data remains on the disk until either the site removes it or until the user tells 

the browser to remove it (e.g. when the user clears the browser cache). That 

means the data may remain on the disk indefinitely. 

 

Web applications can be used offline with the browser-based local storage, but without a 

secured connection to the server and an encryption key, a user will not be able to decrypt 

the database file. This might be an issue, because sometimes a user does not have an 

Internet connection, but has access to the database files (which, remain encrypted).  

Several issues arise with any encryption undertaken by the browser. Firstly, if the 

encryption library stores the key on the client-side (which is necessary for offline use), 

can be read via XSS and by any malware on the client. Secondly, if the encryption 

library stores the key on the server-side, XSS attack code will still be able to read the 

decrypted data during its usage.  

5.4.4.1 Same origin policy attack (spoofing) 

A brief overview of the attack: 

1. The user would land on an infected page. 

2. The page would load a legitimate website by making a request from the attacker’s 

server where Same Origin Policies are not applied. 

3. The attacker would inject code in the response to monitor the victims activity. 

4. After the victim’s credentials were stolen attacker would stop the attack and 

redirect the user to the original requested page. 

 

Below is an example of using JSON Padding (JSONP) with jQuery code. 
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 $.ajax({ 

url: "http://website.com/file.json 

dataType: 'jsonp', 

success: function (data) { 

// Manipulate the response here 

} 

}); 

 

JSONP allows setting url in the header, which is then sent to server and allowing to bypass 

the Same origin policy. 

5.5.  Evaluation 

In order to evaluate the security model, it was necessary to conduct a number of tests on its 

implementation(s). The kind of tests which were considered included security attacks – e.g. 

XSS attacks which bypass the browser's SOP mechanisms.  

First an attack on existing security was executed, without applying the new security 

model and then, with the enhanced and encrypted security model, executed the attack 

again. The thesis suggests that the model will prevent an attacker, from reading data, 

because of the authentication process in place. Also the data stored is now encrypted, 

which means that even if the authentication process is compromised, the data will not be 

readable in an unencrypted state. 

5.5.1 Cost of adding encryption 

To analyse the algorithm running, Big O notation (Rutanen, 2013; Danziger, 2010)  will be 

used. The notation determines the amount of steps which needs to be taken to perform a 

certain function, the complexity of the particular function and the running time. The 

number of operations can be calculated as the number of basic steps. A basic step is one 

which is a major part of the algorithm. If O(f(n)) is a time bound for the number n of basic 

step, then O(f(n)) is also a bound for the total number of operations, and the running time 

of the algorithm is O(f(n)).  

AES is a symmetric block cipher with block length of 128 bits. It allows three 

different key lengths 128,192 and 256 bits. In encryption process processing of 128 bit 

keys required for 10 rounds, 192 bit keys required for 12 rounds and 256 bit keys required 

for 14 rounds. AES is a round based algorithm. In a brute force attack on a cipher with 

128-bit keys, we have to check all 2abc key combinations by decrypting the ciphertext with 

each of these values.  For encryption and decryption each round has four functions 
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excepting last round. Last round required three functions. The encryption algorithm has 

four round functions SubByte( ), ShiftRows( ), MixColumn( )and AddRoundKey( ). The 

decryption, also has the same number of rounds with reverse transformation, order of 

round function is different, InvShiftRow( ), InvSubByte( ), AddRoundKey( ) and 

InvMixColumn( ).  

The algorithm will take different amounts of time with the same inputs depending on 

factors such as processor speed, instruction set, disk speed, brand of compiler. The way 

around is to estimate efficiency of each algorithm asymptotically. The measured time T(n) 

is the number of elementary steps, considering that each step takes constant time. 

Each pair of users will then have two symmetric keys, where only one key is 

necessary. The number of keys required will therefore be 0.5n(n-1) keys. This sum is a 

quadratic in n which is described in big O notation as show in equation 5.1. 

�	 = (�b)   (5.1) 

The algorithm inner loop is iterating (rounds), therefore the time can be calculated as show 

in equation 5.2. 

T(n) = O(n2)  (5.2) 

O(�b) represents an algorithm whose performance is directly proportional to the square of 

the size of the input data set. 

 

 

Figure 5-2 Insertion of data into IndexedDB with and without encryption in Firefox browser 
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The thesis examined the performance impact of adding an encryption/decryption step 

to the key-value stores of IndexedDB. The results have shown, that enabling encryption 

slows the process down to 10-40% of its original time as seen in experimental result Figure 

5.1. The consequences for the systems read/write latency reach from almost minimal 

impact (IndexedDB write latency for single read/write operations) to a double increase of 

latency. Conclusively, it can be said that there is indeed a price to pay in terms of increased 

latency when applying encryption and decryption to data. However, when using a stronger 

AES encryption with longer key length (changed from 128 to 256bits) does not gain more 

overhead than using a weaker encryption with shorter key length. Additionally, the latency 

of the encryption/decryption process depends on the hardware configuration and 

optimization. Computers with improved multicore CPU and higher RAM can process the 

data faster. New CPU has already built in AES functionality, which help to decrease the 

time of encryption and decryption. 

5.6.  Conclusion 

We have implemented a JavaScript encryption library within the browser in the form of 

an extension. This extension covers the security issue, that have been identified by the 

design of IndexedDB. Using the newly developed extension, all data stored on user’s 

device is in an encrypted state, and in order to decrypt, an authentication key is required 

to obtain private data. 

The thesis not considered non-functional requirements, such as speed, at this 

stage. The algorithm, together with the JavaScript library, will resolve the design issues 

that IndexedDB has – i.e. the storing of data in an unencrypted state. The steps 

undertaken in testing showed the functionality of the algorithm. This algorithm must be 

performed whenever data is to be saved or read in an encrypted form, locally. It will 

also resolve the issue whereby the data is deleted and then can be read in an 

unencrypted form afterwards, since the data will be saved in an encrypted state.  
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Chapter 6.  Conclusions and Future Work 

This chapter concludes the thesis by summarising the presented work and assessing the 

research aims and objectives set in Chapter 1. Firstly, a summary of the thesis is presented, 

then the significance of the contributions and the limitations issues are suggested for future 

work.  

6.1.  Conclusions 

The Web, or World Wide Web (WWW) (Gauntlett, 2011), is a network of online content, 

formatted in Hypertext Markup Language (HTML) and accessed via the Hypertext 

Transfer Protocol (HTTP), where people can share information, photos and videos, buy 

and sell products or services and participate in online marketing. Therefore, in short, it 

provides a way of connecting people to information. However, aligned with sharing are 

concerns about privacy and how personal information is stored and secured. 

Web technologies (Feizollahi et al. 2014; Stevens and Owen, 2014) and standards 

(Fink and Flatow, 2014; Jemel and Serhrouchni, 2014; Lim, 2014) have evolved, 

especially where different requirements such as local storage and cross-platform 

availability have been essential. Requirements for new standards arose from Web browser 

developers, when existing standards were unable to keep pace with rapidly evolving Web 

technologies (Baloian et al. 2013; Johansson and Andersson, 2013; Andersson and 

Johansson, 2012). One of these requirements involved finding a better way to store data 

locally, meaning that web applications (Karthik et al. 2014) could be used offline, without 

the need for a network connection. Another requirement was browser-based local storage, 

which would work on multiple browsers and have cross-platform compatibility (Mao and 

Xin, 2014; Heitkötter et al. 2013). Additionally, local storage or browser-based local 

storage provides a better alternative for storing data, which in turn reduces network 

latency (Rumble et al. 2011), reduces network traffic from the server, makes web 

applications available when a network or server is inaccessible and provides faster 

response times for web applications.  

One HTML5 browser-based storage technology is called IndexedDB (W3C, 2015), 

which is an asynchronous client-side storage API. IndexedDB offers fast access to large 

amounts of structured data. The current state of IndexedDB can be considered insecure, 

as security was not considered in the original specification (W3C, 2015; Chapter 4.). The 

primary security issue associated with the use of browser-based local storage 

(IndexedDB) is that data stored locally is in an unencrypted state and readable 

immediately (Chapter 4). The existing security mechanisms do not provide sufficient 
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security protection for storing data locally especially since such data may include 

personal or of sensitive information. This investigation focused on browser-based data 

storage in operating system files. The analyses described was performed with forensics 

tools EnCase (Bunting and Wei, 2006; EnCase, 2004) and XRY (XRY, 2015). The 

experiments focused on an investigation of how IndexedDB saves the data, and also how 

the data can be retrieved after deletion. Additionally we performed an investigation on a 

mobile device based on the steps we took for the forensic investigation of the desktop 

computer. The investigation was conducted on an Android mobile phone and we found 

the same security issues as on the desktop personal computer. Despite these security 

issues, browser-based local storages has significant advantages. The primary advantage is 

the non-functional requirement as speed, which was the principal reason for the 

development of browser-based local storage (Chapter 3). We designed a model which 

demonstrates the effectiveness of using the IndexedDB browser-based storage as 

compared to other browser-based storage and server-side databases. The results of 

browser-based storage to MySQL server-side databases, restricted WebSQL, and 

LocalStorage were compared. 

IndexedDB browser-based local storage still has issues: although its standardisation 

is completed (W3C, 2015). One of these issues is the complexity of code required to 

implement IndexedDB; another is the security implications of browser-based storage. The 

first concern is not as significant as the second: the code can be adopted from existing 

examples, and it is then cross browser and multi-platform compatible.  

We believe that the existing Web security model does not protect end user data 

sufficiently and Chapter 4 in this thesis supports this belief. As discussed in Chapter 4, 

potential security vulnerabilities in web applications can affect the data which is stored via 

browser-based storage. The existing literature, and Chapter 4 experiments provide 

evidence for the existence and importance of this problem. 

The current state of browser-based local storage design is currently insecure, but 

this thesis indicates that this can be remedied. An improved security model was proposed 

then implemented as a browser extension (Chapter 5). This proposed security model 

enhances the current Web browser security model; the Web browser extension has been 

implemented with a client-side encryption library (a JavaScript encryption framework). 

This helps to secure the data stored on the client's machine via the steps described in 

Section 5.3.1.  

We demonstrated that the client-side database is resistant to attacks when our client-

side security model is used. The data stored locally will be now remain safe since, even if 

an attacker gets to the data stored in the database because this data is now in an encrypted 
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form.  

Based on the presented findings, there is a case for browser-based databases, 

provided that the data security issue is adequately addressed. Conducted experiments 

show that the enhanced security model implemented fulfilled this requirement. When 

using the presented security model, all the data stored in the user’s machine is in an 

encrypted state, so that that in order to decrypt, an authentication key is required (to 

obtain private data). 

To protect the data in the browser-based local storage against attacks such as XSS, 

the encryption library has been extended with Multifactor Authentication (MFA). Using 

MFA, data in the browser-based storage will be encrypted after successful authentication 

.The advantage of MFA is that it is resistant to XSS attacks since it is not in the browser. 

The proposed model extends the current security model which is not sufficient for 

complex HTML5 browser-based applications. Based on the implemented evaluation, 

security model will correct the defence weaknesses in the current model, by protecting 

the client-side data. It will also resolve the issue of deleted data being available to be 

read in an unencrypted form, as the data will be saved in an encrypted state. This thesis 

argues that with the use of the proposed security mechanism, browser-based local storage 

will be at least as secure as server-side databases. 

Existing browser-based local storage security uses the Same Origin Policy (SOP) 

(Gollman, 2011; Ss 2.3.2) as the main security mechanism. SOP prevents one web page 

with malicious code to read or obtain access to data on another web page if does not have 

the same origin. The method checks to see if a request has come from the requesting 

domain as it is in the list of domain created. If the request domain matches the stored 

domain value then the application allows the retrieval of the data. The SOP method can be 

spoofed (Cao et al. 2013; Ss 5.4.4); it is not bullet proof. An attacker can use a third party 

application which may be programmed to bypass the SOP. Using an XSS attack the 

attacker can obtain all the data stored in the local database (Ss 5.4.4). Additionally, as data 

is stored in an unencrypted state, the attacker can easily read the data without using an 

extra method to decrypt it. Thus SOP is not sufficient to protect the data stored locally. 

6.2.  Findings 

From the experiments performed we have found that the storage of data in an unencrypted 

state is not the only problem. Browser-based storage faces another issue when deleted 

data is not fully removed from the hard drive. When utilising forensic and data recovery 

tools and techniques the recovery restoration of previously deleted data from a computers 
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and from mobile devices was achieved. 

Consequently, these issues which are related to the possible restoration of deleted 

data by storing data in an unencrypted state - whereby the attacker can get hold of multiple 

versions of browser-based local storage. Deleted data persists on the hard drive; when a 

request to delete is executed, the data is merely marked as deleted but still occupies disk 

space until overwritten. New requests to store data to the browser-based storage will 

generally result in new partition space being assigned; the old data will persists on the hard 

drive: it will not be overwritten. 

Browser-based local storage has a significant advantage over server-side database 

storage since the data can be read and written much faster. As part of thesis, we developed 

a performance model was developed which proved this speed advantage, and the results of 

the performance model was then compared to experimental results. There is a need for 

faster browser- based storage, and this study demonstrated that IndexedDB provides it.  

The main contribution of this thesis is in terms of a novel synthesis: a new security 

model for client-side web databases. This security model includes an encryption 

framework which helps to secure the data. The encryption framework consists, mostly, of 

an encryption library which is implemented into the browser. This, however, does not 

provide full security protection. In addition, an external functionality was required. As well 

as the encryption library, a multifactor authentication (MFA), or two factors authentication 

(2FA) (Fleischhacker et al. 2014; Banyal et al. 2013) had to be implemented to prevent 

XSS (Ss 2.4) attacks; (Ss 5.4.3) for more details on this implementation. 

Encrypting the browser-based storage data prevents information from compromise 

even if the hard disk drive is physically removed, or alternatively if the mobile phone or 

tablet is stolen. 

The encryption used by the security model presented in Chapter 5 was tested from 

a speed perspective. The proposed performance model includes variables such as 

encryption and decryption speed, which have an impact on accessing browser-based 

storage while saving or retrieving data.  

In practice the encryption libraries for client-side encryption are not as mature as 

server-side encryption. 

6.3.  Future Work 

Although the proposed security framework was successfully applied, here, to encrypt 

browser-based local storage, further improvements could be made to extend it. For 

instance, biometrics such as fingerprints, retina scans could be used (Chuang and Chen, 

2014; Haghighat et al. 2013; Rane et al. 2013; Tresadern et al. 2013), which would be 
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useful in relation to mobile devices (Meng et al. 2015), particularly since they provide 

existing hardware which can be used for biometrics. Additionally, present limitations in 

the performance model could be removed; it could be extended to cover the IE and Safari 

browsers. Future work might also include implementing a methodology for obtaining 

usage statistics. 

6.3.1 Extensions to the Security Model's Encryption 

For encryption, the Stanford JavaScript Crypto library (SJCL) was utilised which 

provided, an advanced and fully - functional encryption library. Additionally this library 

could be used across multiple browsers platforms: e.g. Chrome, Firefox, Internet 

Explorer, Safari and Opera on Windows, Macintosh and Linux. The SJCL library uses 

the industry standard AES (Ss 2.11.1) algorithm with the SHA256 hash function and the 

HMAC. SJCL library differs from typical AES implementations in that it uses an 

alternative approach which keeps the code small while speeds up encryption/decryption. 

The source code for the AES algorithm, also called Advanced Encryption Standard or the 

Rijndael algorithm, is available (Daemen and Rijmen, 2013; Hoang, 2012). 

One limitation of using client encryption relates to offline storage. When an 

application is using browser-based local storage for offline usage without a secure 

connection to the server (and thus access to the encryption key) the user may not be 

decrypt the database file. 

Therefore storing the key on the server-side may be an issue because sometimes a 

user does not have an Internet connection but has access to database files (in which the 

files are encrypted): the user will not be able to read or use the files (data). 

The problems associated with implementing encryption in the browser include:  

• If the encryption library stores the key on the client-side (which is necessary for offline 

use), then it can be read via XSS and by any malware present on the client.  

• If the encryption library stores the key on the server, and the server is vulnerable to an 

XSS attack, then the attacker will be able to read and decrypt data whilst the key is in 

use. More details are available in Section 5.4.4. 

6.3.2 Biometrics (Ss. 2.11) 

The use of biometrics (Ss. 2.11) is an interesting option: particularly in the case of touch-

screen devices as they have integrated sensors. Biometrics based verification should not be 

used independently but rather as an extension of existing password protection. Existing 

mobile and tablet devices often provide basic biometrics which can extend the 
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authentication process. Biometrics includes finger or face scanning - extending pattern or 

pin input. Dynamic biometrics provides better security than static biometrics; the latter 

can be easily circumvented. Static biometrics are difficult to use within a session-based 

security scheme where several levels of privacy and security policy are required – for 

more details Ss 2.11. Using dynamic biometrics, the security of stored data, especially on 

mobiles and tablets, could be significantly enhanced (Bo et al. 2013); this would be a 

valuable extension to the proposed security model. Such an extension might include 

biometrics as a way to authenticate web application requests to retrieve data from local 

storage - in the same way that biometrics are used for authenticating the action of 

unlocking the mobile or tablet device.  

Mobile and tablet devices are gaining in popularity (Liu et al. 2012), and it is 

suggested that they will, in future, take precedence over computers in terms of usage. 

 Mobile and tablet devices have built in sensors so they are more suitable for biometrics. 

6.3.2.1 How will biometrics work - future improvements 

Existing research is focusing on improving authentication for systems. One of the solutions 

is biometrics. Static biometrics authentication is not secure and does not provide an 

adequate security mechanism for modern devices in relation to the level of authentication 

required. Therefore dynamic biometrics provides a better and much more reliable solution, 

which is an extension to authentication already in use, such as pin or pattern lock. Existing 

work on biometrics for mobile devices (Xu et al. 2014; Tresadernet al. 2013; Angulo and 

Wästlund, 2012; Choraś and Kozik, 2012) suggests that biometrics provide better security 

for personal data stored on mobile and tablet devices. 

6.3.3 Automated attack (penetration) tests  

The proposed security model has been tested for resistance to attacks - an automated 

attack test could be developed for XSS attacks. The security model was tested in relation 

to XSS attacks (Ss 5.5), but with the further development of current browser-based local 

storage other attacks could be possible, such as JavaScript injection. Automated attacks 

tests could be designed as a framework, which will run a series of tests to check the 

security of browser-based local storage systems. The attacks could include bypassing 

SOP with CORS (Ss. 2.3.3), XSS attacks, and CSRF (Ss. 2.5.6) attacks. 

6.4.  Extensions to the performance model 

The limitations of this thesis include the lack of experiments on a wide range of web and 
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mobile browsers. The speed model was applied only to the Chrome and Firefox web 

browsers. To extend this work, Internet Explorer and Safari web browsers could be used. 

At the stage when the experiments were done, the functionality of Internet Explorer and 

Safari was limited: browser-based local storage was not developed to full functionality. 

Additionally, mobile browsers were not tested for performance. Future improvements of 

the performance model could include extensions of the model for SDD drives, both 

client-side and server-side. 

6.5.  IndexedDB usage statistics 

Finally, in terms of future work, there is a lack of usage statistics for browser-based 

storage. The statistics could be constructed via a survey form, which might show the 

current usage of IndexedDB by web applications. Additionally, this information could be 

obtained from the number of API calls from each browser. Based on the statistics results, 

it could be deduced whether IndexedDB gained the expected popularity or not.  

6.6.  Summary 

In this thesis the effectiveness of browser-based storage, and a solution to its associated 

security concerns was demonstrated and highlighted the speed advantage of the current 

browser-based local database IndexedDB. As a research contribution a proposed a model 

for evaluating this speed advantage in Chapter 3 was designed. The results predicted 

from this model were compared to experimental results, and the outcome showed that 

browser-based storage performs faster than server-side databases - even when other 

factors remain the same (CPU, disk speed, bandwidth, etc.). Additionally the 

experimental tests demonstrated that browser-based storage can generally store 

significantly more data for one query than can existing server-side databases without 

requiring additional resources. 

The security issues which have been identified in Chapter 5 were addressed; this 

thesis primarily focused on correcting these security concerns. Browser-based local 

storage, such as IndexedDB is insecure by design, due to the stored data being 

unencrypted. In this thesis the first version of a prototype security model for browser-

based storage was been proposed and implemented which helps to protect stored data. 

This security model corrects the aforementioned security issue, improving the security of 

the browser-based storage as a typical server-side database security.  

The Web holds a great deal of information which needs to be secured in order to 

protect the privacy of users. Browser-based local databases such as IndexedDB provide a 
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better methodology for the implementation of web applications since their performance 

and speed is considerably better than that of server-side databases. Browser-based 

storage provides for the storage of data from web applications, and the data persists even 

when the browser session is terminated. Additionally, the browser provides storage 

which can be used offline, and enable program functionality to be run from the browser 

without additional installation. Therefore offline storage provides a better user 

experience, especially on mobile and tablet devices with limited network connectivity 

and data limitation. 
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Appendix B: Firefox extension of encryption library 

The Firefox extension needs to be first compressed to xpi format and then copied over to 

extension fielder. When the browser is restarted the user is prompted to install the 

extension, as shown in the image below. Firefox changed it regulations, so only validated 

extensions from the Firefox store can be installed. There is a workaround to disable the 

security measures for installing unknown extensions. 

 

 

Above image is a security warning when installing, as it is not listed in Android store. 

 

 

The IDB Encryption tab can be found in tools menu in Firefox browser after installing 

the package. 
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Above image is displaying different options, which can be chosen to generate new key 

when encrypting IndexedDB stored on local disk. 

 

Above image displays successful generation of key, which means that the files on local 

disk are encrypted. 

 

Below are helper functions for EAS encryptions, which are included in IDB Encryption 

Firefox extension. 

 

ar t = void 0, u=!1; 

var sjcl = { 

    cipher: {}, 
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    hash: {}, 

    keyexchange: {}, 

    mode: {}, 

    misc: {}, 

    codec: {}, 

    exception: { 

        corrupt: function(a) { 

            this.toString = function() { 

                return "CORRUPT: " + this.message 

            }; 

            this.message = a 

        }, 

        invalid: function(a) { 

            this.toString = function() { 

                return "INVALID: " + this.message 

            }; 

            this.message = a 

        }, 

        bug: function(a) { 

            this.toString = function() { 

                return "BUG: " + this.message 

            }; 

            this.message = a 

        }, 

        notReady: function(a) { 

            this.toString = function() { 

                return "NOT READY: " + this.message 

            }; 

            this.message = a 

        } 

    } 

}; 

"undefined" != typeof module && module.exports && (module.exports = sjcl); 

sjcl.cipher.aes = function(a) { 

    this.j[0][0][0] || this.D(); 

    var b, c, d, e, f = this.j[0][4], g = this.j[1]; 

    b = a.length; 

    var h = 1; 

    4 !== b && (6 !== b && 8 !== b) && q(new sjcl.exception.invalid("invalid aes key size")); 
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    this.a = [d = a.slice(0), e = []]; 

    for (a = b; a < 4 * b + 28; a++) { 

        c = d[a - 1]; 

        if (0 === a%b || 8 === b && 4 === a%b) 

            c = f[c>>>24]<<24^f[c>>16 & 255]<<16^f[c>>8 & 255]<<8^f[c & 255], 0 === a%b 

&& (c = c<<8^c>>>24^h<<24, h = h<<1^283 * (h>>7)); 

        d[a] = d[a - b]^c 

    } 

    for (b = 0; a; b++, a--) 

        c = d[b & 3 ? a: a - 4], e[b] = 4 >= a || 4 > b ? c : g[0][f[c>>>24]]^g[1][f[c>>16 & 

255]]^g[2][f[c>>8 & 255]]^g[3][f[c & 

        255]] 

}; 

sjcl.cipher.aes.prototype = { 

    encrypt: function(a) { 

        return y(this, a, 0) 

    }, 

    decrypt: function(a) { 

        return y(this, a, 1) 

    }, 

    j: [[[], [], [], [], []], [[], [], [], [], []]], 

    D: function() { 

        var a = this.j[0], b = this.j[1], c = a[4], d = b[4], e, f, g, h = [], l = [], k, n, m, p; 

        for (e = 0; 0x100 > e; e++) 

            l[(h[e] = e<<1^283 * (e>>7))^e] = e; 

        for (f = g = 0; !c[f]; f^=k || 1, g = l[g] || 1) { 

            m = g^g<<1^g<<2^g<<3^g<<4; 

            m = m>>8^m & 255^99; 

            c[f] = m; 

            d[m] = f; 

            n = h[e = h[k = h[f]]]; 

            p = 0x1010101 * n^0x10001 * e^0x101 * k^0x1010100 * f; 

            n = 0x101 * h[m]^0x1010100 * m; 

            for (e = 0; 4 > e; e++) 

                a[e][f] = n = n<<24^n>>>8, b[e][m] = p = p<<24^p>>>8 

        } 

        for (e = 

        0; 5 > e; e++) 

            a[e] = a[e].slice(0), b[e] = b[e].slice(0) 



  

 137 

    } 

}; 

 

 

Sent from the page to the add-on, when the user clicks an element in the page. 

 
var pageModScript = "window.addEventListener('click', 
function(event) {" + 
                    "  self.port.emit('click', 
event.target.toString());" + 
                    "  event.stopPropagation();" + 
                    "  event.preventDefault();" + 
                    "}, false);" + 
                    "self.port.on('warning', function(message) {" 
+ 
                    "window.alert(message);" + 
                    "});" 
 
var pageMod = require('sdk/page-mod').PageMod({ 
  include: ['*'], 
  contentScript: pageModScript, 
  onAttach: function(worker) { 
    worker.port.on('click', function(html) { 
      worker.port.emit('warning', 'Do not click this again'); 
    }); 
  } 
}); 

 

 

Helper functions to include an array of strings in the payload. 

 

var pageModScript = "self.port.emit('loaded'," + 

                    "  [" + 

                    "  document.location.toString()," + 

                    "  document.title" + 

                    "  ]" + 

                    ");" 

 

var pageMod = require('page-mod').PageMod({ 

  include: ['*'], 

  contentScript: pageModScript, 

  onAttach: function(worker) { 

    worker.port.on('loaded', function(pageInfo) { 

      console.log(pageInfo[0]); 

      console.log(pageInfo[1]); 

    }); 

  } 

}); 

 

 

var element = document.createElement("MyExtensionDataElement"); 

         element.setAttribute("application_state", "ready"); 

         document.documentElement.appendChild(element); 
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         //create a custom event and dispatch it  

         // using the custom element as its target 

 

         var ev = document.createEvent("Events"); 

         ev.initEvent("MyExtensionEvent", true, false); 

         element.dispatchEvent(ev); 

 

 

 

The Firefox extension of IDB Encryption can be downloaded from  

https://github.com/stefankim/IDB-Encryption
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Abstract— A Cross-Site Request Forgery (CSRF/XSRF) is 

web application vulnerability where malicious code placed 

on a web site can make requests to another web site using 

the victim’s credentials. This kind of attack appears to come 

from the victim who still logged in, but is done without his 

knowledge. The attack can be constructed in many ways, as 

send email to other user or change password without user 

acknowledgment, using the permission the user has given. 

This paper discusses two CSRF attacks and a defense 

against them. The most commonly known defenses are 

discussed and explained and implemented into experimental 

scenarios. These defenses are implemented as a tool in PHP 

and are tested. The results are evaluated and compared with 

reported work. From the tests performed a defense using 

randomly generated token is recommended.  

Keywords-component web security; CSRF;XSRF; cross site 

request forgery 

I.  INTRODUCTION 

The Open Web Application Security Project (OWASP) 
[1] has identified the Cross-Site Request Forgery (CSRF) as 
one of the top 10 web security vulnerabilities. The attacker 
creates a web site that appears innocent, but when a victim 
loads the page, his browser inadvertently sends a request to 
a vulnerable web application that performs an action useful 
to the attacker [2]. A link, image, iframes, JavaScript or 
other content can execute the malicious code.  

A CSRF attack happens when a victim’s browser thinks 
that the request is coming from him, rather than from the 
attacker’s code on the malicious site. This is possible 
because the browser sends the victim’s cookie with the 
request, and the application assumes that request came from 
that particular user [3]. Cross-site request forgeries are often 
HTTP GET requests collected and sent through the use of 
some html feature that loads automatically (like an image, 
iframes or script tag). The user typically thinks that he is 
performing a different task but his web page requests have 
side effects. These exploit the users own browser to send the 
users security credentials to the attackers target site.  

CSRF are possible on any site that allows images or 
links to be posted even if the actions use the HTTP POST 
method [4]. 

This paper proceeds as follows. Firstly we describe 
possible defenses against CSRF attacks, which cover 
existing work in this area. Then we describe the 
experimental scenario, and possible simulated attacks this 
supports. Next we discuss the design and implementation of 
a tool that can protect against CSRF attacks. We then 
conclude with discussions and future work. 

II. DEFENCES 

In this section we review several possible defenses against 

CSRF attacks. Such are attacks are difficult to defend 

against, as they exploit the automatic loading features of 
images, iframes, etc that execute automatically when a web 

page is loaded. The following defenses are all executed at 

the server. That is, they try to ensure that the credentials 

used in a secure transaction are legitimately those of the 

authorized user. We describe in turn the Secret Validation 

Token, Referrer Header, and Challenge-Response. 

A. Secret Validation Token 

The session token is a randomly generated unique number 

that ensures a unique relationship between a web 

application and the user’s browser. In a secure application 

session tokens are included as variables in the http header. 

When an http request (i.e. web page request) is received the 

application verifies that the correct token is included. The 

attacker will not be able to perform an attack without 

knowing the session token [5]. 

B. The Referrer Header 

The referrer header defense consists of checking the HTTP 

header referrer URL to see if an action request comes from 

the same host that initiated the request [6]. This solution is 

not reliable since for privacy reasons the http referrer is not 

always sent. The user can also switch off sending the 

referrer in the browser. If a request ignores the referrer 
header then this request will be ignored. The referrer might 

be sent from another domain, but the server needs to have 

in place a cross-domain policy, which lists the authorized 

and secure domain [7]. 

This defense is also weak as is easy to spoof or trick, so 

that some web pages can have fake referrer header. Some 
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web pages do not use referrer checks, so this method is still 

not the most suitable. 

C. Challenge-Response 

CAPTCHA as the distorted graphic letters used to defend 

many web sites. The user must enter the correct letters to 
confirm the page on which they entered their password is 

the same page being sent to the server. This method 

prevents against robotic submissions of forms. 

 

We now move on to describe experimental scenario. 

 

III. EXPERIMENTAL SCENARIOS AND ATTACKS 

In this section we describe the experimental scenario and 

possible variation on the CSRF attack. These exploit the 

login form, a change password request, and related attacks. 

These attacks follow the general scenario fig (1) as 

described in [6]. 

A. Login form 

 

Fig. 12. Login CSRF, [6] 
 

In the Login CSRF attack an attacker uses CSRF to log a 

user in to a site using the user credentials. The attacker then 

waits for them to submit sensitive information. The attacker 

the forges request to an honest site. Attacker logs in with 

his own credentials, establishing a user session of the 

attacker. 

The following user requests to the honest site are done 

within the user session of the attacker. 

Scenario: 

• The victim visits a web page which requires user 

login 

• The page will contain attackers attack code, which is 

a automated submission form for login 

• The victim will be login to application, but with 

attackers credentials 

• The victim may add a credit card to his account, 

because the application contains purchasing 

goods. 

• The details will be added to attackers account, and 

the victim might not even realize it. 
Here, malicious code performs an automated submission 

of a web form. The form contains the attacker’s username 
and password, which will cause that a victim will login to an 
application inadvertently using the attacker’s credentials. 
Thus, all of the victim’s actions will be performed using the 
attacker account.  

An attack is possible even if the application is using 
POST method, as JavaScript code can be used here [9].  

B. Change password 

• Attacker finds a site1 from where he wants to steal 

victims or administrator account. 

• The site1 has a function, which can change a 

password (most of web sites has this function). 

• Now the attacker needs to trick the victim or 
administrator to change the password. 

• The attacker can trick administrator as a fake 

message on bulletin forum, the image loads 

automatically and the code changes the 

administrator password with his credentials. 

• The attacker sends an email to administrator with 

a fake link, which will point him to fake website 

and the action will be performed in the 

background without administrator knowledge. 

• The attacker places an image with an attack code 

into site2. 

• This site will execute the command, and unless the 

site had specific CSRF protections in place, the 

user’s password would end up being changed. 

• This attack succeed only when the victim or 

administrator are still logged on site1, where the 

session or cookies are still active. 

• The attacker can now log into site1 with the 

victims or administrator’s username, which is 

known and the changed password “1234”. 

C. Attacks 

1) Attack number 1 

This attack takes all the user’s cookies, which enters a site, 

grab then and insert into txt file or database, it depend of 

the php file structure. 

The user needs to click on the particular link to perform an 

attack. 

2) Attack number 2 

When a user load a site the attacking image loads a URL 
address, which will send an email on behalf and without 

knowledge of the user.  

 

IV. DESIGN AND IMPLEMENTATION 

PHPProxy is a web-based proxy written in PHP by the 

eProxies.info Team. It is used to hide ones identity on the 

Internet, protect privacy, and to speed up Internet 

connections. 
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PHPProxy is a web HTTP proxy designed to bypass 
restrictions such as global IP address permissions. The 
interface allows all the features to be switched on or off.  All 
HTTP requests and responses are filtered by PHPProxy, 
which sits down between the user browser and server. 

 

A. Implementation of the extension for the PHPMyProxy 

The extension will include interception from the server, 
which will include the link (source) of the image or iframes, 
header information, referrer, cookies and active sessions. 
The implementation of the extension will be divided into 
few subsections, which will include functions to parse the 
html, interception of the header and form submitted, and 
checks for analysis of the code. 

 

B. Parse the HTML 

A function to parse the HTML page was implemented 
using the simple html DOM library from sourceforge [10]. 
The function parses the html source code into a string. The 
function creates a DOM object from the html page, which 
will be processed. 

The code allows looping through the DOM objects, 
which will find all the images [11]. The images might be 
printed or passed to other function where their can be 
checked. 

The code will output a source of the image, and will 
loop till all sources URL of images are shown. The images 
source will be displayed parsed or non-parsed, depended 
from the web page. The parsed source will include URL as 
http://example.com/image.jpg, and non-parsed source will 
list only path to image as /example/images/bg/image.jpg. 

 

C. Interception 

The code below gets HTTP request and print on screen all 

header information.  
The code will output a response header, with hostname, 

referrer and cookies available for the current session.  

The main information about the response header from 
the server will be shown, as it will be a necessary part when 
testing the extension of defenses. The response header 
cannot be modified, but the cookies for each session will be 
stored into text file for testing purposes. 

 

D. Checks for analysis  

The codes in table I are a part of the implemented library, 
which checks the URL for possible attacks and compares 

them with already known attacks. The URL is broken into 

parts and each part must be checked. The code checks for 

example for the extension of the URL, so if it is a jpg, png, 

or gif image. It also checks if the image is stored on the 

same domain, and informs the user if any possible attack is 

found. The user can decide if wants to show the image or 

not, but by default the images will be discarded and not 

shown. Basically the code takes the URL strings, break 

them down into their domain and compare them. The steps 

involved are described in Table I. 
 

CODES FOR PARSING HTML PAGE 

	

Number	

Parsing	HTML	code	

Codes	 Description	

1.	 if(isset($_POST["url"])){		
$url	=	$_POST["url"];	

Get	the	url	address	from	the	
form	 entered	 in	 the	 main	
form	

2.	 include('simple_html_dom.
php');	

Create	 DOM	 from	 URL	 or	
file,	 which	 will	 include	 a	
Dom	library	

3.	 $html=@file_get_html($url;		
$html2	="$url";	

Read	 an	 html	 file,	 which	
will	be	the	url	entered.	

4.	 “foreach($html->find('img')	
as	$element)	{“	[10]	

Find	all	the	images	tags	and	
put	 then	 in	 element	
variable	

 

The codes in table II checks if the image has the same host. 

If so then continue to display the image. If not, check the 

extension of the file and if it is not an image then do not 

display it. 

CODES FOR THE ANALYSIS OF THE IMAGE SOURCE 

Number	 Analysis	of	the	image	source	

Codes	 Description	
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1.	 $test_domains	=	$element->src;	

$test_domains	 =	 explode(",",	
$test_domains);	

Get	 the	 source	 of	 each	

image	 stored	 in	 the	
variable	element	

2.	 $looking_for=parse_url($html2,	
PHP_URL_HOST);		
foreach	($test_domains	as	$url)	{	

Parse	 url	 and	 get	 the	
host	 of	 the	 particular	
url	address	

3.	 $parsed	=	parse_url($url);	
if	 (array_key_exists('host',	
$parsed))	{	
$host	 =	 explode('.',	
$parsed['host']);		

$found	 =	 implode('.',	
array_slice($host,	-2,	2));	

Parse	 the	 url	 and	 get	
the	host	
	

4.	 $filename	=	basename($url);	
$ext	 =	 substr(strrchr($filename,	
'.'),1);	

Get	the	extension	of	the	
image	file	

5.	 if	 (preg_match("/$looking_for/",	
"$url",	$matches))		{	
echo	"Match	was	found	<br	/>";	
echo	$matches[0];	}	

Check	the	whole	host	of	
image	 for	 matching	
word	 against	 the	 host	
from	the	url	

6.	 if($ext	==	'jpg'	||	$ext	==	'png'	||	

$ext	==	'gif')		{	

Checks	 if	 the	 extension	

of	 the	 image	 is	 an	 jpg,	
png	or	gif	format	

7.	 if($looking_for	==	$found)	{	
echo	 $parsed['host']	 .	 '	 is	 a	
match	 with	 '	 .	 $looking_for	 .	
'<br>';}	

looking_for	 ==	 $found	
where	 found	 is	 the	
entered	url	host	and	the	
looking	for	is	the	host	of	
the	image	

8.	 else		 	 {	
echo	"Not	the	same	<br>";}}	
else		 	 {	

echo	"Not	an	image	<br>";}}	
else		 	 {	
echo	"No	parsed	url	<br>";	

Else	 statements,	 if	 the	
domains	 are	 not	 the	
same,	 images	 don’t	

have	 an	 extension	 or	
the	 url	 can	 not	 be	
parsed	

 

 

E. Checks for analysis Defences miniform 

The definition miniform came from the existing PHPProxy. 

This means that it is a kind of form where the options can 

be checked, which means that will become active. The 

miniform is available on every page on default, for the 

purpose of user awareness.  

Miniform with options to apply specific defense methods 

and functions will be included as an extensive div to 
existing miniform. The form will be hidden, but if the user 

clicks the show button the form will appear. From there the 

user can choose a specific method, which will be applied to 

proxy.  

The defense extension form will be available on each page, 

and the user can click each defense, which will be straight 

applied to each shown page. 
When the user request a page, page that shows some 
information, which might be sensitive, and after user opens 
new tab or windows, the defense can be applied to page, 
which the user wish to protect. So if the user opens new tab 
and the page requested include an attack file in form an 
image or iframes, the page will be analyzed for safe images 
or iframes and after display only safe elements. If the user 
wish to protect or prevent the page with sensitive data can 
apply defenses 1-3, which will be applied by refreshing the 
page. The best-known protection defense will be set by 
default, and will be evaluated. 

 

F. DEFENCES MINIFORM 

The tables III, IV and V show the defenses included in the 

miniform, with short description and a code example. The 

code examples are part of implementation of the extension 

for the existing PHP proxy. 

SECRET VALIDATION TOKEN (TOKEN) 

Defenses 

Defense 

name 

Defense 

description 
Code example 

Generate random 

token 

Secret 
Validation 

Token 
(Token) 

Check against 
the session 
value (rather 

than cookie 
value) 
Rewrites the 

<form>and 
add CSRF 
token to them. 

This will be 
after 
submitting the 

form checked 
if the token is 
the same or 

not. 
 

$input="<in

put 

type='hidde

n'name='$na

me'value=\"

$tokens\"$e

ndslash>"; 

$form=preg_

replace('#(

<form[^>] 

*method\s*=

\s*["\']pos

t["\'][^>]*

>)#i', 

 '$1' . 

$input, 

$form); 

function 

generateFormTok

en($formName)  

{ 

$token = 

md5(uniqid(micr

otime(), 

true));  

$_SESSION[$form

Name.‘ token‘] 

= $token;  

return $token; 

} 

 

The table III shows a defense using tokens. The token 
will be applied to every form and the token value will be 
random md5 number. As this is a random number, it is hard 
to guess it, so the attack might be less efficient. When the 
user requests a page, the proxy will append a token to each 
form. This is possible, because the proxy is parsing the 
entire page and will look only for the forms tags. Every 
form tag will be secured with this random token and after 
the user submits the form the function of valid token will 
check if the token is valid or not. A token will be then 
assigned to every form, so that every form will have 
different token. 

If the token is still valid, then the form will be submitted. 
Otherwise the page will send an error message. The whole 
operation will be done on the server side, so no user 
interaction is needed. In that case an attacker will need to 
compromise the server itself to configure the code. The 
token is submitted encrypted will the form value.  
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THE REFERRER HEADER 

Defenses 

Defense 

name 
Defense description Code example 

The 
Referrer 
Header 

Authentication data in the same 
HTTP Request checks the referrer 

header from submitted page against 
all other pages opened in 
PHPProxy, compare them and 

submit request only if the header 
match. 

“eregi($_SERVER["
HTTP_HOST"], 

str_replace("www.", 

"", 
strtolower($_SERV
ER["HTTP_REFER

ER"]))))” 
[12] 

 

CHALLENGE-RESPONSE 

Defenses 

Defense 

name 

Defense 

description 
Code example 

Challenge-
Response 

CAPTCHA, Re-

Authentication 
(password), 
One-time Token  

 

 

This defense is based on the user authentication if a 
requested action will be performed. The main idea is to use 

a CAPTCHA (a challenge-response which is used to ensure 

that a request is made by human), which will generate a 

random word, and the use will need to enter it correct to 

perform requested action. This defense will be most used in 

forums or blogs, where the prevention of automated posting 

is necessary. Example is shown in table V. 

 

Other defenses implemented will be checking the 

referrer header, as shown in table IV. In that case the code 

implemented checks if the submitted form is from the same 
page or different URL address. If the headers match then 

the form value is submitted to the requested page and the 

action would be done. PHPProxy compare these headers as 

shown in the code example, so if the header is coming form 

example.com and the host of the requested page match with 

it, then the form value will be submitted. The main 

principle consists in cross checking the referrer value. 

V. TESTING 

Table VI and VII contains test results for each scenario. 

In this scenario each attack and defense was applied. 

Whenever a different operating system or browser has been 

used, the attack implemented in particular scenario has 
been tested. The test was then repeated and the result 

recorded. 

SCENARIO 1 

	Test	number		
	

Testing	Results	

Defense	

applied	

Browser

/OS	

Attack	 Result	

Test	number	1	

	

Token	 Firefox/

Windows	
Attack 

number 1	
PASS	

Test	number	2	

	

Token	 Firefox/O
SX	

Attack 
number 1	

PASS	

Test	number	3	

	

Header	 Safari/Wi
ndows	

Attack 
number 1	

PASS	

Test	number	4	

	

Header	 Safari/OS
X	

Attack 
number 1	

PASS	

 

From the test result can be seen that the applied 

defenses in the scenario 1 has been successful in all test 

numbers.  

Scenario is described in Section III A, which is login 

scenario. 

Attack number 1- Described in Section III C. 

The defenses applied here are randomly generated token, 

which is applied to every submitted form and referrer 

header. 

SCENARIO 2 

	Test	number		
	

Testing	Results	

Defense	

applied	

Browser

/OS	

Attack	 Result	

Test	number	1	

	

Token	 Firefox/

Windows	
Attack 

number 2	

PASS	

Test	number	2	

	

Token	 Firefox/O

SX	
Attack 

number 2	

PASS	

Test	number	3	

	

Header	 Safari/Wi
ndows	

Attack 

number 2	
PASS	

Test	number	4	

	

Header	 Safari/OS
X	

Attack 

number 2	
PASS	

 

From the test result can be seen that the applied defenses in 
the scenario 2 has been successful in all test numbers. The 

defenses applied here are randomly generated token, which 

is applied to every submitted form and referrer header. 

Attack number 2- Described in Section III C. 

Scenario is described in Section III A, which is message 

board (forum), change password. 

A. Evaluation of the experiment results 

The tests of experimental tool have been performed and the 

results are shown in testing Section V.  

Defense against token has been discussed in Section II.A as 

the most commonly used by today’s web applications. The 

results indicated that generation of random tokens has 

stopped more than 90% of attacks. This defense is easy to 

implement and with a designed class, which can be 

included in every file, making it the best known defense for 

web applications. 



Appending C: An Experimental Analysis and Possible Solution for the Cross Site Request Forgery 

Attack  

 

 

 

 

 

 145 

The disadvantage to this defense is that the attacker can 

predict a random token. This can be done be observing the 

web application in detail, and find the generated algorithm.  

 

The referrer header defense has stopped many attacks, but 

still has some major complications. The main advantage to 

this defense is when a server is using cross domain policy; 

the method works as expected and stopped most of the 

attacks. The disadvantage is that a user can switch off 

sending referrer header on their browser, which makes the 

defense useless.   
  

Captcha is very simple and easy to spoof defense, and 

many attackers need just short time to pass it. The defense 

has the advantage to stop attacks from computer based 

attacks like robotic attacks, because a confirmation is 

required. 

 

VI. FUTURE WORK 

Securing web applications against flash attacks needs to 
be implemented. Increasing the extension of the PHPProxy 
to handle such kinds of attacks could be done in the future. 
The report has concentrated mostly on defense against 
images and iframes attacks, but it has been mentioned that 
flash files can affect the users and web pages in the same 
way.  

The PHPProxy server is a working on the server side, so 
it can handle only the responses, which are coming back 
from the server to user. The request is made by user side, 
which means that different programming language could be 
applied, as JavaScript.  The future work may include 
implementation of the interception of the user side to 
process http requests. This could help the end user to see 
what requests browser makes to server. 

VII. CONCLUSION 

This paper has described several cross site request 
forgery (CSRF) attacks that are used against web 
applications. We have also given examples of the most 
widely used defenses. These defenses have been 
implemented in an existing tool, PHPProxy, which is a 
server side HTTP proxy. Attacks were modified and 
implemented into scenarios to test defenses. From the 
results it can be seen that some of the expected defenses, 
which are used in most web applications, have been 
completely successful. 

The extension tool PHPProxy has been successful in 
demonstrating the defenses against possible attacks. CSRF 
tool has been designed to protect end user against several 
attacks. 

Defenses using tokens are the most commonly used by 
today’s web applications. The results indicated that 
generation of random tokens has stopped more than 90% of 
attacks. This defense is easy to implement and with a 

designed class, which can be included in every file, making 
it the best-known defense for web applications. 

The disadvantage to this defense is that the attacker can 
predict a random token. This can be done be observing the 
web application in detail, and find the generated algorithm.  

Presented and demonstrated attacks show that CSRF 
attacks are dangerous and web applications needs to be 
better secured. Web developers and users can use tools as 
the one designed to protect their web applications and 
themselves. 
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Abstract- over the past 20 years web browsers have changed 

considerably from being a simple text display to now supporting 

complex multimedia applications. The client can now enjoy 

chatting, playing games and Internet banking. All these 

applications have something in common, they can be run on 

multiple platforms and in some cases they will run offline. With 

the introduction of Hyper Text Markup Language v.5 (HTML5) 

this evolution will increase, with browsers offering greater levels 

of functionality. However, with the introduction of HTML5, new 

persistent database security vulnerabilities could impact on this 

functionality. IndexedDB functionality involves storing 

application data on the client computer. As client data including 

sensitive information is now stored locally, consequently 

vulnerabilities within HTML5’s IndexedDB scheme could have 

devastating consequences. This paper will investigate potential 

vulnerabilities, and propose security framework for HTML5’s 

IndexedDB files that could be included as part of an inherited 

web browser security. 

 

Keywords-component web security; HTML5; IndexedDB 

VIII. INTRODUCTION 

HTML5 is still in the standardisation process. The 

motivation for the changes and enhancements coming with 

HTML5 is that the web browser should be capable of running 

client side applications. That is, client side process will be able 

to avoid the ineffectiveness and network connectivity issues 

found in server side applications. Consequently, major 

browsers now support the majority of the new HTML5 
components and Application Programming Interfaces (API). 

Therefore an HTML5 browser client side database may well 

contain stored data from online services that makes use of the 

new functionality of HTML5. It is suggested that this new 

level of client side data storage will ensure that such HTML5 

enabled browsers are going to be a “juicy target for cyber-

attacks” [1]. Consequently HTML5 opens up entirely new 

security challenges and loopholes [2]. 

This paper is going to investigate possible vulnerabilities 

and attacks, which might be possible in HTML5’s IndexedDB. 

These attacks are mostly known, as Web applications attacks, 

however, with HTML5 and greater level of data stored on the 
client side, then these attacks will have potentially greater 

consequences. 

This paper presents a solution to possible attacks, which 

might be a framework to provide the client database with input 

validation. The following section will discuss the background 

to the new HTML5 standard, security issues and 

vulnerabilities. In section IV a possible security framework 

designed to circumvent these issues will be presented. 

IX. BACKGROUND 

HTML is the main programming language for web pages. 

Since it arrived in 1990 [3] the versions have evolved to allow 

web applications to act as desktop applications [4]. The World 
Wide Web Consortium (W3C) and Web Hypertext 

Application Technology Working Group (WHATWG) are 

currently collaborating on the latest development of HTML 

and its features and capabilities. These are collectively known 

as HTML5 [5]. 

An important aspect of HTML5 is that the web applications 

can run offline using local storage. This means that client data 

will be stored on client side and accessed anytime that the 

application requires it [6].  

 

Fig 1.  HTML5’s IndexedDB functionality 

 

When a client connects to a HTML5 web application for 

the first time, an API transaction will be created. The 

application will ask the client to store data locally. This data 

will be stored in a client side database, IndexedDB. If a 

network failure occurs, the data from the database will be read 

and the client can still use the application. This means that an 

application can be run offline as seen in Fig. 1. Pictures and 

text from pages could be stored in IndexedDB. 
The advantage of HTML5 compared to desktop programs 

is that web applications do not require any installation or 

startup configuration and will also run on any device that 

supports HTML5, such as laptops, phones or tablets. This 
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reduces the barrier of entry for new customers since clients 

can begin taking advantage of the web applications just by 

visiting the relevant web site [7]. Benefits of client side 

storage include connectivity failure, where an application can 

be used even a connection is not available. Offline content 

also allows access to and creation or modification of data 

stored locally that the application may use offline. Currently, 

websites behave as desktop applications; the application 

reloads the content instantly, without needing to reload the 
page. The performance improvements include less bandwidth 

usage as data is stored on client side and the data is transferred 

only when the web application requires it [8]. 

Web-based software is increasingly popular data as 

applications are constantly available on the Web as services. 

This means that end client software will be developed using 

web technologies  [9]. Such applications and services consist 

of data and code that can be located anywhere in the world. 

This allows a wide range of applications to support multiple 

clients and share data worldwide. With the help of client-side 

storage, data can be periodically saved to the browser while 

the client completes it. After the data has been processed the 
information is then transmitted to the server [10]. This will 

speed up application load time [11]. 

HTML5's IndexedDB is a client side database integrated 

into the client’s web browser. The application uses local data 

stored on a client system. [12]. It caches large data from server 

to client side using JavaScript Object Stores, equivalent to 

tables in relational databases [13]. An application stores 

JavaScript objects into IndexedDB when the application is 

connected to the Internet. When the connection terminates for 

any reason the application can fetch data from the IndexedDB 

and the application may then be run offline [14]. The 
application runs as if it were a desktop application. This will 

be beneficial to mobile clients as they can use the application 

even if the connection is lost due to poor signal for example, 

however it can be run on many platforms such as tablets or 

smartphones [15]. 

A. Related Work 

HTML5 is a new standard, so obviously not many security 

investigations and preventions against vulnerabilities exist. 

Anyways, client side vulnerabilities might be secured by 

existing preventions, such as input validation. Domain Name 

Systems (DNS) spoofing attacks can be prevented by using 

Transport Layer Security (TLS). Also encryption of client data 

is required for a better security. Some possible vulnerability in 

HTML5 and client side databases has been point out by West 

[5]. These vulnerabilities are going to be discussed more in 

detail, also possible attacks, which might be possible from 

these vulnerabilities. 
 

B. Structuring the database 

Unlike other web-based databases such as Structured 

Query Language (SQL) databases that use tables for storing 

data, IndexedDB uses object stores. Multiple object stores use 

a single database. Keys are assigned to every value in an 

object store within a database, with keys being assigned by 

key path or by a key generator.  

IndexedDB was created to allow local storage of data, 

however this does not include the following features:  

1) Internationalised sorting – Internationalised sorting 

cannot be supported with IndexedDB due to the wide 

variety of scripting languages in use in modern day web 

applications.While the database can't store data in a 

specific internationalised order, the client can sort the data 
that is read out of the database manually. 

2) Synchronising - Server-side databases currently cannot be 

synchronised due to the time-consuming implementation 

required for its development. Developers have to write 

code that synchronises a client-side indexedDB database 

with a server-side database, which is time consuming.  

3) Full text searching- The API does not have an equivalent 

of the LIKE operator in SQL. W3Schools [16] describes it 

as, “The LIKE operator is used to search for a specified 

pattern in a column”. 

By assuming that these limitations do not have an important 

impact of security issue, the explanation is very crucial part of 
IndexedDB. IndexedDB does not use SQL; it uses queries on 

an index that produces a cursor, which is used to iterate across 

the result set. Index is a data structure (a way of storing and 

organizing data) that improves the retrieval of data from 

database. Anyways an IndexedDB is a No Sequel (NOSQL) 

database, which means that to perform an SQL injection is not 

possible. IndexedDB is built on a transactional database 

model. Everything the client does in IndexedDB always 

happens in the context of a transaction. The IndexedDB API 

provides lots of JavaScript objects that represent indexes, 

tables, cursors, but each of these is tied to a particular 
transaction. Although, applications cannot execute commands 

or open cursors outside of a transaction. Transactions have a 

defined lifetime, so if someone attempts to use a transaction 

after it has completed the process of passing the object, it will 

throw error message (exception). The transaction model 

carries many advantages, including the prevention of instances 

whereby a client may try to run more than one instance of a 

web application at the same time. Without transactional 

operations, the two instances could create database issues and 

affect functionality.  

C. HTML5 vs. HTML4 storage 

Web developers have used cookies for storing data on the 

client side since Netscape Corp introduced the idea in 1994 

[17]. Cookies are limited as a website could only store a very 

small amount of data. Cookies are sent to server with every 

HTTP request, which is slowing down the connection. 

HTML5 introduces several alternatives to cookies and storing 
data on the client side, which is a Local storage [15]. Part of a 

local storage is indexedDB [18]. 

X. SECURITY VULNERABILITIES 

As HTML5 can be run on multiple platforms, potential 

attackers may be more able to attack clients of a wider range 
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of browsers. Any security breaches that occur in a web 

application do not open the client’s data to attack, as this 

information is stored only locally on the client machine, and 

therefore can only be accessed when this machine itself is 

compromised [19]. 

IndexedDB operates by using the same-origin policy 

(SOP), which involves linking stored data to a particular 

domain or subdomain, so that the data cannot be accessed 

from any other source [20]. 
The same-origin policy is the only form of browser protection 

against potential security threats. It works by not allowing 

access to client data from sources that could be deemed to be 

the original source, perhaps by the use of cross-site scripting 

(XSS) for example. That is, if applications in multiple 

windows or frames are downloaded from different servers, 

they should not be able to access each other’s data and scripts 

[21]. The prevention of data or attacks coming from a different 

domain is possible. Web browsers are using this prevention 

technique against untrusted site attacks.  

HTML5’s new functionality allows attackers to access 

untrusted sites, even if they are on a different domain, 
meaning that the SOP will not apply here. Security 

vulnerability and potential attacks might be possible here, and 

the attacker will be able using hacking techniques to reach and 

access the database from a different domain [22]. If the 

website or application is vulnerable to XSS attacks, then the 

attacker could steal the data from client database. When the 

SOP is not correctly configured, then content from different 

web sites will allow attackers to manipulate the data through 

their code access. 

The SOP prevention is not enough to prevent an attacker to get 

the data from a different domain. As the data is stored on the 
local machine in database, the applications are limited to 

access only data created by particular application on a domain. 

This is a security vulnerability of web browsers, where the 

client database is situated and an attacker might compromise 

the client data [22].  

[23] states, “The SOP is not the correct security mechanism 

and requires redesign to meet the access-control requirements 

of Web-based assets”. 

The data stored in IndexedDB is not using any kind of client 

input validation, which may be why possible flaws exist. The 

data is stored on a client’s machine as unencrypted files. This 
means that any attacker with access to the file system can 

directly extract the information from the files. In order to 

mitigate this, the application must obviously encrypt any 

sensitive information before writing it to the database. In 

addition, operating system level mechanisms (file system 

permissions, file system level encryption, etc.) should be used 

to prevent access to the files by unauthorized users. 

The validation hasn’t been implemented by W3C, but 

needs to be implemented by the browser [24]. The database 

and API is still in draft, but the validation of data needs to be 

strictly applied. As there is not any input validation, any site 

can store potentially dangerous JavaScript code into client 
local machine. As the client is not aware what code is stored 

onto their local disk, security vulnerabilities apply here.   

Coming back to same origin weaknesses, that can lead to 
attacks such as cross-site request forgery (CSRF), XSS, and 

Web cache poisoning [23]. 

Using HTML5 localStorage to replace session data stored in a 

cookie improves the application’s scalability and prevents 

simple CSRF attacks because, unlike a cookie data in 

localStorage is not automatically sent [25]. 
An example of client side vulnerability might be XSS. 

XSS is an attack technique that forces a web site to execute 

malicious code in a client’s Web browser [22]. XSS may be 

used to steal all the data stored in a client’s browser or to 

change client settings  [26].  

Web application security is crucial in managing threats. If a 

security hole exists as XSS the whole client database might be 

compromised [27]. An attacker is able to read the complete 

client database of a domain exploiting XSS vulnerability. 

Storing sensitive data is dangerous in this case, as there is a 

possibility that all the data of domain can be compromised and 
accessed by attacker. 

XI. POSSIBLE PREVENTIONS 

The following framework could be used in the development 

of IndexedDB web applications for the prevention of such 

attacks outlined above. The framework will be divide into 

parts as: 

• Client side data encryption 

• Code analysis 

• Input validation 

• SOP 

The framework will be implemented to browser. This will add 
the required security for storing data in a database. The data 

will be stored as encrypted files and will encrypt data every 

time an application writes the data into a database. When the 

application reads the data back then the decryption process 

will be initiated. Client side encryption and decryption of data 

stored in IndexedDB, which will be a part of browser 

extension. This will be based in web browser as extension. 

The extension will be a third party encryption component as 

JavaScript Microsoft Exchange ActiveSync (EAS) or Secure 

Hash Algorithm (SHA)-256 implementation [28]. This method 

of encryption use verification hash, which ensure that the 

encryption is correct, without the decryption of data on the 
server. The data cannot be decrypted on the server, only in the 

web browser.  

The data could be safely manipulated and only be retrieved by 

origin of the site that creates it. 

The framework will protect the client database from 

various attacks. This is done be static and dynamic analysis of 

code. The code or data will be analyzed when the data will be 

written or read from a database. In some cases the data can 

include JavaScript code, which might be potentially 

dangerous.  

The framework will consist of static and dynamic data 
validation.  

The solution is to build a framework, which will check the 

data in IndexedDB. The data will be checked every time the 

application requires transaction to database. The transaction 



Appendig D: An Investigation into Possible Attacks on HTML5 IndexedDB and their Prevention  

 

 

 

 

 

 151 

might be read or written. The framework will consist of two 

parts:  

• The first part is static analysis of code, which is going to 
be written to database.  

• The second parts will be more complex in the dynamic 
code analysis, where the code will be analysed during 

run time. 

Static analysis of code will aim to highlight any possible 

attacks that become apparent. 
Dynamic analysis will be done when the application has 

been launched. The analysis will be based on checking the 

API call from web application to client side database and 

reverse. Before the actual action gets executed the code 

analysis checks the call and after the successful processing of 

the call, the action will be performed. Other method to secure 

the code and the client side data is to use the HTML5 sandbox. 

This method provides the functionality of locking down the 

content from third party content. 

When sandbox is enabled it locks down the harmless content 

that behind the scenes attempts to access privileged 

information. This means that third party content couldn’t 
access all the data in client side database. 

Input and output validation to secure the client side 

application and database will be build on the top of 

IndexedDB API. The validation takes the string and returns 

true if the input is permitted by the input validation policy) 

otherwise returns false. 
Possible solution to prevention against XSS attacks will be 

to secure the input validation. Other solutions might include 
using a different policy, as the current same origin-policy is not 
secure. Potential policies might include Content Security 
Policy (CSP). The CSP restricts common attack vectors in the 
client browser. The CSP employs a set of directives that define 
the security policy for all types of webpage content on the 
webpage [23]. 

XII. CONTRIBUTION 

The main contribution of this paper will be the 

investigation of security mechanisms for IndexedDB, also the 

implementation of a security framework to address these 

issues. 

This framework will be developed from an analysis of 

identified vulnerabilities in HTML5. 
 A series of experiments will be trialed by using static and 

dynamic code analysis will be used to test the proposed 
framework. The outcome of this work will aid in securing 
HTML5 and will be available to W3C and Web Hypertext 
Application Technology Working Group. 

XIII. CONCLUSION 

This paper has presented possible vulnerabilities and 

attacks in HTML5’s IndexedDB. Although attacks are 

possible because the standard is not completed yet, but mostly 

because vulnerabilities such as XSS are a crucial part of 

todays web applications. Vulnerabilities exist in all web 

application, but securing client side, especially when the 

sensitive data is going to be stored is a crucial part. This paper 

has point out vulnerabilities as XSS and the downfalls of same 

origin policy in HTML5’s IndexedDB. 

This paper also briefly presents a possible solution to input 

validation, where the data needs to be encrypted before it has 

been read or written. Possible solutions to XSS in HTML5’s 

IndexedDB may include developing a new security policy that 

improves on the same origin policy.  
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Abstract- Databases are a crucial part of today’s Internet based 

web applications. To date, almost all web applications have used 

server side databases. With the adaption of HTML5, which is 

currently in the process of being standardized by W3C, new 

client side databases are being introduced that will be embedded 

in the web browser. Client side databases have the advantage of 

reducing load on the web server, but the disadvantage that 

database performance will vary depending on the user’s web 

browser and in particular how the browser’s designers have 

chosen to implement the IndexedDB API. 

In this paper we describe appropriate database benchmarks and 

apply these to three current web browsers, Google Chrome 24, 

Firefox 17. We also compare these results with the popular server 

side database MySQL. The benchmarking is based on writing, 

reading and deleting database data. The comparison of 

benchmarks shows the suitability of client side versus server side 

databases.  

Our findings are that there are significant performance 

differences between the indexedDB implementations. The main 

differences are discussed in relation to the benchmark results. 

Irrespective of browser differences, the results show that client 

side databases perform well in comparison to server side 

databases whilst reducing network latency concerns. 

 

Keywords-component; HTML5; IndexedDB, Benchmarking 

XIV. INTRODUCTION 

The World Wide Web Consortium (W3C) is currently 

standardizing HTML5 for the next generation of web 

applications. With the new HTML5 standard come new 

functionalities. These include IndexedDB , which is a client 

side browser based database.  The need for IndexedDB 

reflects requirements for more storage space, that persists 

beyond page refreshes whilst avoiding data transfers to the 

server. Storing the data on the client machine can resolve this 

issue. Traditional SQL relational databases have been used 

since 1976 (Chamberlin, 1976). The changes some companies 

made were to use object-oriented databases, as these have 

some advantages over SQL. The motivation for the changes 

and enhancements coming with HTML5 is that the web 

browser should be capable of running client side applications 

in the same way that it can run desktop applications. That is, 

client side process will be able to avoid the ineffectiveness and 

network connectivity issues found in server side applications. 

Consequently, major browsers now support the majority of the 

new HTML5 components and Application Programming 

Interfaces (API). Therefore an HTML5 browser client side 

database may well contain stored data from online services 

that makes use of the new functionality of HTML5. 

Traditional desktop applications, like word processors and 

spreadsheets, might be used with Web applications. This 

means that client will not need to install any software on the 

computer, and will only need a Web browser (Stuttard, 2008). 

As Internet access is crucial for Web applications, and it 

should be possible to use these Web applications regardless of 

connection, so offline applications are an important part of this 

development.  

The paper will compare various databases in different browser 

environments. Both client and server side databases are tested 

are. Client side databases include IndexedDB, LocalStorage 

and the depreciated WebSQL. Server side databases include 

MySQL with InnoDB and MyISAM. The benchmarking 

contains data from various testsets, which include the common 

create, read, update and delete (CRUD) data operations  to and 

from a database. A comparison of databases will be discussed 

in the next section, where some background data will close up 

the details about particular database.  

IndexedDB is implemented differently across browsers. 

Firefox uses SQLite and Chrome uses LevelDB (LevelDB is 

not a SQL database (W3C, 2011)). Like other NoSQL and 

Dbm stores, it does not have a relational data model, it does 

not support SQL queries, and it has no support for indexes, so 

even if IndexedDB is built into Firefox, a SQL-backed 

technology with SQL-like overhead is actually used. (MDN, 

2011).   

XV. BACKGROUND 

A. Relational Database 

A Relational Database Management Systems (RDMS) 

represent records organized in tables. The structure of tables 

consists of columns and rows. Columns represent data 

categories and row the data (Eaglestone, 1991). The structure 

of relational databases is good for managing large amount of 

structured data. The disadvantage is their inflexibility, because 

their only data structure is tables. They have a problem 

handling complex multimedia files, which is important for 

complex web applications (Harrington, 1998). 
Relational databases are computer programs used to store 

information in tables. These tables contain rows and columns 

used to sort and retrieve information. The rows and columns 

contain related information about the subject of the table. The 
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database administrator can define the relationships among the 

various types of data. Relational databases require data to be 
entered as integers, strings or real numbers. This data must 

then be accessed through SQL queries (Conolly and Begg, 

2004).  

An entity relationship diagram (ERD) is a useful technique for 

managing the development of a database information system. 

An ERD models data into logical and easy to understand 

graphical representations (Thalheim, 1998). Entity relationship 

diagrams illustrate the logical structure of databases. Boxes 

are used to represent entities, diamonds are normally used to 

represent relationships and ovals are used to represent 

attributes. The relationship between the boxes can be: 

• One to one 

• One to many 

• Many to many 

	
The relationships from the ERD are going to be used when 

creating the database tables to create relationships between 

them. So the diagram is showing the relationship between the 

objects.  

B. SQLlite server Side Database 

SQLite is the most widely used database for web sites 

according to survey by Netcraft (Netcraft, 2006). The main 

advantage of SQLite is it is availability (it is used by mobile 

browsers on Android and iOS, by PhoneGap for mobile 

applications and by Chrome 15 and Safari 5).  
The main disadvantage of SQLite is that the W3C do not 

support SQLite anymore and some browsers, like Firefox, 

removed the SQLite support in their latest versions. 

Embedding SQLite in web browsers has resulted in adding 

SQLite to the HTML5 Web Storage standard and after 

discussion inside the W3C Web Applications Working Group 

(Mozilla, 2009). 

C. NoSQL Client Side Database 

NoSQL (Not only SQL)(Strozzi, 1998) is the solution of 

database that is not relational or object oriented. It does store 

data in key/value format. The database can handle a large 

amount of data, where the relational model is not needed.  

They were really used only at the time when the designers of 

web services with very large number of users discovered that 

the traditional relational database management systems 

(RDBMS) are fit either for small but frequent read/write 

transactions or for large batch transactions with rare write 

accesses, and not for heavy read/write workloads (which is 

often the case for these large scale web services as Google, 

Amazon, Facebook, Yahoo and such)( Tudorica, 2011).  

Advantages of NoSQL databases 

NoSQL databases generally process data faster than 

relational databases (Leavitt, 2010). Relational databases are 

usually used by businesses and often for transactions that 

require great precision. Developers usually do not have their 

NoSQL databases support ACID (atomicity, consistency, 
isolation, durability) in order to increase performance, but this 

can cause problems when used for applications that require 

great precision. NoSQL databases are also often faster because 
their data models are simpler (Banker, 2010). According to 

Leavitt (2010) there is a trade-off between speed and model 

complexity  but it is frequently a trade off worth making. 

 

Disadvantages of NoSQL databases 

NoSQL databases face several challenges, which are 

overhead and complexity. They do not work with SQL queries, 

which means that they need to be manually programmed. In 

cases of simple tasks they perform fast, but is time consuming 
for complex queries (Leavitt, 2010). 

Reliability- Relational databases natively support ACID 

(Conolly and Begg, 2004), while NoSQL databases do not. 

Therefore NoSQL databases do not offer reliability. For 

performing this functionality additional programming is 

required. 

Consistency- The lack of support ACID transactions leads 

to compromising consistency. Banking sites are using 
Consistency in their applications; therefore usage of NoSQL 

databases might be a problem (Shashank, 2011). On the other 

hand their provide better performance and scalability. Most 

organizations are unfamiliar with NoSQL databases and thus 

may not feel knowledgeable enough to choose one or even to 

determine that the approach might be better for their purposes 

(Stonebraker, 2010). Unlike commercial relational databases, 

many open source NoSQL applications do not yet come with 

customer support or management tools. Each NoSQL database 

has its own set of APIs, libraries and preferred languages for 

interacting with the data they contain. 

Few examples document-oriented NoSQL database include 

MongoDB, LevelDB, BerkleyDB. The first two databases 

store the data on HDD. The BerkleyDB uses ordered 

key/value store. 

 

D. LevelDB Client Side Database 

LevelDB is a fast key/value storage library written at 

Google that provides an ordered mapping from string keys to 

string values. The stored data is sorted by key and it provides 

an ordered mapping from string keys to string values (Dean, 

2011). 

 

E. WebSQL Client Side Database 

W3C (2010) wrote that the WebSQL database API is off 

active maintenance. They cited lack of independent 

implementations as being the reason because most of the 

browser relied on SQLite as the underlying database. 

WebSQL database brought real relational database 

implementation onto browsers. Data could be stored in a very 

structured way. 

 

F. IndexedDB Client Side Database 

HTML5’s IndexedDB is a client side database integrated 

into the client’s web browser. The application uses local data 
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stored on a client system (Casario, 2011). It caches large data 

from server to client side using JavaScript Object Stores, 
equivalent to tables in relational databases (Windows, 2011). 

An application stores JavaScript objects into IndexedDB when 

the application is connected to the Internet. When the 

connection terminates for any reason the application can fetch 

data from the IndexedDB and the application may then be run 

offline (Gihan, 2011). The application runs as if it were a 

desktop application. This will be beneficial to mobile clients 

as they can use the application even if the connection is lost 

due to poor signal for example, however it can be run on many 

platforms such as tablets or smart phones (Ijtihadie, 2011).  

IndexedDB databases store key/value pairs. The values can 
be complex structured objects, and keys can be properties of 

those objects. Indexes use property of the objects for quick 

searching and sorted enumeration. A key is a data value by 

which stored values are organized and retrieved in the object 

store. 

IndexedDB is built on a transactional database model. 

Everything done in IndexedDB always happens in the context 

of a transaction. A transaction is an atomic and durable set of 

data-access and data-modification operations on a particular 

database. It is how a browser interacts with the data in a 

database. Any reading or changing of data in the database 

must happen in a transaction (MSDN, 2012). The IndexedDB 
API provides lots of objects that represent indexes, tables, 

cursors, but each of these is tied to a particular transaction. A 

command cannot be executed or cursor opened outside a 

transaction. Transactions have a defined lifetime, so 

attempting to use a transaction after it has completed throws 

exceptions (W3C, 2011). IndexedDB does not use SQL; it 

uses queries on an index that produces a cursor, which is used 

to iterate across the result set. Index is a data structure (a way 

of storing and organizing data) that improves the retrieval of 

data from database.  The structure of an IndexedDB database 

can only be modified during a versionchange transaction. This 
means that the only time ObjectStores or indexes can be 

created or removed is during the versionchange transaction. 

Basically, the IndexedDB API automatically creates a 

versionchange transaction anytime a database is opened trough 

the open method and one of the following two conditions 

occur:  

• The requested database does not exist. 

• The requested database version number is greater 

than the version number of the database on the client 

machine. 

 
New implementation of open database 

Chrome currently still implements the old specification rather 

than the new one. Similarly it still has the prefixed 

webkitIndexedDB property even if the unprefixed indexedDB 

is present. 

 

New IndexedDB projects: 

 

PouchDB - An implementation of CouchDB on top of 

IndexedDB. One of the premises is to offer the same 

synchronization (master-to-master) decentralized 

capabilities of CouchDB on the browser. 
BrowserCouch - A similar project but using WebSQL as 

browser storage. 

Html5sql is a light JavaScript module (jQuery library) that 

simplifies working with IndexedDB. Its primary function is to 

provide a structure for the SEQUENTIAL processing of SQL 

statements within a single transaction. This alone greatly 

simplifies the interaction with the database. Many other 

smaller features have been included to make things easier, 

more natural and more convenient for the programmers. 
(http://html5sql.com/index.html). Table with 11000 entries 

created in: 1.405s. 
 

G. Differences Between NoSQL and SQL Database 

The main difference between NoSQL and a SQL database 

is how the data is stored. NoSQL uses key/value as the main 

storage. On the other hand SQL is a relational database, which 

means that it uses relations (called tables). The databases are 
different in scalability and performance. NoSQL database has 

advantages over SQL database because it allows scaling an 

application to new levels. The new data services require 

scalable structures, which can work in the cloud. In 

comparison the NoSQL database does not need a database 

administrator, or complicated SQL queries and still is 

considered faster in managing high amount of data. NoSQL 

does not however support SQL Joins, and relations between 

tables need to be manually programmed. The differences 

between relational and IndexedDB are in storing the data. 

Relational databases store tables with rows and columns of 

types of data. IndexedDB requires creating an object store for 
type of data and saving JavaScript objects to that store. Each 

object can have collection of indexes that make it faster to 

query and search across. IndexedDB does not support joins, 

where relational database does. The comparison of the query 

results using joins shows, that IndexedDB performs the query 

and renders the data faster. On the other hand the code in 

IndexedDB is much more complicated, as all the code needs to 

be manually done in JavaScript that is otherwise provided 

natively by SQL. IndexedDB can split array in chunks of 

small pieces and using setTimeout, instead of loop inserted the 

data faster in database. 
 

XVI. TEST SUITE ENVIRONMENT 

IndexedDB is the client side database. The database 

supports blobs and JavaScript objects. The applications were 

tested in Firefox (v.15) and Chrome (v.22). Both of these 

browsers fully support the IndexedDB API. The application is 

setup on the server, because IndexedDB doe not support local 

servers. While Firefox uses the latest W3C specifications an 

onupgradeneeded event to determine if a database should be 

created or upgraded, Chrome still uses the older and now 

obsolete setVersion method.  
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A. Benchmark for Client Side Database 

The benchmark consists of functionality that adds records 

to database. The records are randomly generated as follow 

example: ssn:"111-11-

1115",name:"Donna",age:12,email:"donna123@gmail.org" 

The records are objects of size 151 Bytes. 

The ssn is the key of the object stored in the database, which is 

also randomly generated. The generator is a JavaScript 
random number generator. Purpose of the ssn key is a keyPath 

that is the property that makes an individual object in the store 

unique. The benchmark measures the time needed to generate 

the values and the time needed for insertion. For the 

benchmarking and comparison the insertion is the only 

important part. 

The benchmark firstly opens a database connection, and 

creates an object store to store the generated records. 

 

B. Benchmark for Server Side Database 

For server side database a JavaScript function will 

generate a random name and surname and insert these data 

into database. The JavaScript function consists of array of 

names, which will be randomly put together and inserted as 

one array into database. The scenario is based on a real 

application, where the data of people is stored and retrieved 

from/to a database. 
This scenario is based for benchmarking; it does not consider 

security of browser side databases.  

The code calls the onsucess function for every record, as the 

cursor points the records retrieve it one by one and shows it. 

All the retrieved data is stored in memory and from there 

output to the browser. Since there is no other way to get all 

records from database, this way might be slow in some cases, 

where the database contains a large quantity  of data. 

 

For insert- The benchmark is measures the time or request for 

insertion to time of response. 
 

For retrieve- For the retrieve the benchmark measures time of 

request to actual data appearing on the screen. This code 

structure is not optimized, as the record retrieval  to actual 

output of the screen might take longer than just measuring the 

time of the response. 

 

XVII. RESULTS AND ANALYSIS 

The performance testing of IndexedDB has been compared 

to others alternatives as local storage and WebSQL (which has 

been deprecated). The tests performed were inserting data in 

client side database to show the time of actual insertion. The 
IndexedDB has shown that it can insert the data very quickly, 

in most cases faster than the others alternatives. This 

demonstrates  why   IndexedDB was chosen by W3C as client 

side database, due to the potential of fast inserting and reading 

the data. The tables below show  insertion of records into 

MySQL with MyISAM and InnoDB types. Comparison 

between SQL and IndexedDB databases are visibly different 

and the results are showing the big potential of client side 

storage. 
Databases are tested on web server and local machine. These  

show data insertion time. Results in tables show the storage 

size of data in databases and it can be seen that IndexedDB 

uses more storage than a traditional relational SQL database.  

 

 
Table 1. MySQL database performance testing with MYISAM  

 

 

Fig. 1 Performance testing: Insertion of records into database 
(IndexedDB in Firefox and Chrome) 

From the results can be seen that IndexedDB perform faster 
in Firefox. The reason is that Firefox implements and 
maintains the newest code architecture, as Chrome is still 
behind. The results show a visible difference in time, where 
the possible reason is usage of backend database. 
 

 

Fig. 2Performance testing: Insertion of records into database 

(Firefox) 

Test Amount 

of data 

Time for 

insertion 

Type / Browser 
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B	Chrome

Indexedd
b	Firefox

Test Amount 

of data 

Time for 

insertion 

1 

Time for 

insertion 

2 

Size of 

file 

Type 

Test1 1000 1.09s 1.04s 48KB MYISAM 

Test2 2000 2.05s 2.04s 94KB MYISAM 

Test3 5000 5.58s 5.14s 232KB MYISAM 

Test4 10000 12.178s 11.175s 461KB MYISAM 

Test5 20000 23.47s 20.31s 923KB MYISAM 

Test6 30000 31.84s 36.24 1.4MB MYISAM 
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Test1 1000 0.05s LocalStorage/ Chrome 

Test2 2000 0.2s LocalStorage / Chrome 

Test3 5000 0.75s LocalStorage / Chrome 

Test4 10000 1.38s LocalStorage / Chrome 

Test5 20000 2.93s LocalStorage / Chrome 

Test6 25000 4.61 LocalStorage / Chrome 

Test7 29000 5.1s LocalStorage / Chrome 

Test8 30000 Failed LocalStorage / Chrome 

Test9 200000  LocalStorage / Chrome 

Table 2. LocalStorage database performance testing in Chrome 

 
Test Amount 

of data 

Time 

for 

inserti

on 

Type / Browser 

Test1 1000 0.09s WebSQL/Chrome 

Test2 2000 0.17s WebSQL/Chrome 

Test3 5000 0.37s WebSQL/Chrome 

Test4 10000 0.81s WebSQL/Chrome 

Test5 20000 1.73s WebSQL/Chrome 

Test6 30000 2.24s WebSQL/Chrome 

Test7 50000 3.45s WebSQL/Chrome 

Test8 100000 7.35s WebSQL/Chrome 

Test9 200000 20.45s WebSQL/Chrome 

Test10 500000 50s WebSQL/Chrome 

Test11 600000 76s WebSQL/Chrome 

Test12 700000 80s WebSQL/Chrome 

Test13 800000 91s WebSQL/Chrome 

Test 14 1000000 Failed WebSQL/Chrome 

Table 3. WebSQL database performance testing in Chrome 

 
Test Amount 

of data 

Time for 

insertion 

Size of 

file 

Type / Browser 

Test1 1000 0.06s 918KB IndexedDB/FF 

Test2 2000 0.09s 1,4MB IndexedDB/FF 

Test3 5000 0.15s 2,8MB IndexedDB/FF 

Test4 10000 0.35s 4,8MB IndexedDB/FF 

Test5 20000 0.77s 9MB IndexedDB/FF 

Test6 30000 1.25s 13,3MB IndexedDB/FF 

Test7 50000 1.89s 22.2MB IndexedDB/FF 

Test8 100000 2,21s 43,8MB IndexedDB/FF 

Test9 200000 4,57s 87,5MB IndexedDB/FF 

Test10 500000 12s 136MB IndexedDB/FF 

Test11 1000000 113s 218MB IndexedDB/FF 

Test12 2000000 127s 350MB IndexedDB/FF 

Test13 5000000 460s 665MB  

Table 4. IndexedDB database performance testing in Firefox 

 
 

The tables are showing results of various databases in different 

browsers. 

 

 

Fig. 3 Performance testing: Insertion of records into database 

(Firefox, WebSQL, Local Storage, IndexedDB) 

 

 

XVIII. DISCUSSION OF ANALYSIS 

A Comparison of the results of inserting the records into 

database in Chrome and Firefox can be seen in table 8. This 

shows that IndexedDB in Firefox handles the insertion of data 

faster than in Chrome. In many forums and support discussion 

groups, developers note that  Chrome performance is worse  

because the support and code architecture is not updated to 

support fully IndexedDB. From the results it can be seen that 

IndexedDB performs faster than the MySQL database. The 

insertion size of object data into database starts at 1K, up to 

500K. The insertion of the objects comparing between the 

databases is shown in the table.  
 

Network Latency 

Client side database process the data on the client side, where 

the network latency is minimal. All of the data is stored and 

retrieved from the client machine disk, based on the web 

application coding. Comparing the results of benchmarking 

the client side database handle the data much faster.  

 

Scalability 

Data scalability is very important for any web-based business. 

The web applications are becoming more scalable to fit the 
current market, so there is need for a database, which will 

handle this requirement. 

 

Client side databases may have an advantage as they avoid 

communications costs and other overheads that server side 

databases may incur. 

 

XIX. FUTURE WORK AND MOTIVATION 

Internet Explorer 10 (IE10) benchmarking  remains to be 

done, since currently IE10 does not support IndexedDB 

completely. Further experiments will look at various 

optimization of retrieving the data from database in a faster 
manner.  
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New features of web browsers and new technologies such 

as HTML5 bring databases to web browsers. I believe that 
these features are the future of upcoming technologies, where 

the performance for the end user is important. The motivation 

is a investigation into performance of client side databases. 

Future work will include discussion on how to properly 

merge those two to get good features from both sides or how 

do we need to extend one side or the other to avoid certain 

overheads. 

 

XX. CONTRIBUTION 

The main contribution of this paper is a benchmark that 

has the potential to compare performances of client side 
databases such as IndexedDB in different browser 

implementations. 

The implementation of the benchmarking tool to perform 

various tests as inserting and reading data has been described 

and the results were compared and analyzed. 

Future development will include a tool to delete data and 

measure the deletion time. 

 

 

XXI. CONCLUSION 

HTML5 IndexedDB performance has been examined in 

multiple client browsers. From the results it can be seen that 
IndexedDB performs faster in Firefox, but in Chrome the 

performance is lacking.  Chrome  still uses WebSQL, 

notwithstanding its deprecation since its performance is fast 

when compared to IndexedDB. 

In conclusion the backend technology in Firefox uses SQLite 

to implement IndexedDB, which supports SQL queries and 

indexes for search optimisation. On another hand Chrome is 

using its own backend LevelDB, which does not support SQL 

queries and indexes. We conclude then that the Firefox 

implementation of IndexedDB is a better solution. The 

performance depends on the browser as Firefox 
implementation of IndexedDB API is much more developed 

than Chrome or IE. Firefox uses SQLite as a backend 

database, and IndexedDB is implemented on the top of it. 

Researchers and developers note that IndexedDB performs 

faster with SQL as a backend.  Comparing to Chrome 

implementation where IndexedDB is implemented on the top 

of LevelDB (which is NoSQL) is much slower than Firefox. 

On the other end WebSQL (deprecated) performs well in 

Chrome, whilst Firefox support for WebSQL has ceased. 
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Abstract 

The new HTML5 standard provides much more access to 
client resources, such as user location and local data storage 

etc. Unfortunately, this greater access may create new 

security risks that potentially can yield new threats to user 

privacy and web attacks. One of these security risks lies with 

the HTML5 client-side database. It appears that data stored 

on the client file system is unencrypted. Therefore, any 

stored data might be at risk of exposure. This paper explains 

and performs a security investigation into how the data is 

stored on client local file systems. The investigation was 

undertaken using Firefox and Chrome web browsers, and 

Encase (a computer forensic tool), was used to examine the 
stored data. This paper describes how the data can be 

retrieved after an application deletes the client side database. 

Finally, based on our findings, we propose a solution to 

correct any potential issues and security risks, and 

recommend ways to store data securely on local file systems. 
 

1 Introduction 

While HTML5 is still in the process of being standardized by 

the W3C [1], its adoption will greatly help developers 

resolve recognized problems, such as media and online data 

handling; thereby providing a more robust method for 

handling data [20].  Furthermore, the enhanced 

functionalities of HTML5, such as a client-side database 

called IndexedDB (which will be embedded within the web 

browser), will provide additional benefits, such as reducing 

the web server load. However, while client-side databases 

have the advantage of reducing load on the web server, their 

performance will be dependent on the user’s web browser; 

particularly, how the browser implements the new client side 

database API; otherwise known as the IndexedDB API. 
   This paper will focus on the security of this new browser-

based storage capability, and a series of experiments will 

show how vulnerable the IndexedDB API is to attacks. These 

attacks will be described in more detail later, after which we 

will propose methods of protecting against such attacks. This 

paper will also investigate how the web application will store 
the data in the client-side database, and a series of tests will 

be conducted to retrieve the deleted database files. A possible 

solution for storing and retrieving data in secure manner will 

be proposed and described in further detail. 

The testing will use Firefox and Chrome browsers, as they 

currently support the IndexedDB client-side database. The 

investigation will focus on the data storage mechanism of the 
client-side database. To help us analyse the results, a forensic 

tool called Encase was used; Encase is an industry standard 

computer forensics tool, used in the majority of criminal 

cases involving the collection and presentation of digital 

evidence [5]. Encase is a software to access raw data, and 

provide the functionality to create disk images. 

2 Background 

The development of new Web technologies faces a trade-off 

between stronger security (thereby protecting the user), and 

increased functionality (thereby helping the user). 
Unfortunately, this trade-off may have resulted in the 

development and implementation of an insecure API, namely 

IndexedDB API. It should be noted that the implementation 

of the IndexedDB into Web browsers is not yet fully 

completed; consequently these some of the security risks 

may no longer exist in future implementations of the 

IndexedDB API. The security issue with the unencrypted 

data stored into IndexeddB is considerably a structure flaw. 

This means that the database is designed to store all of the 

data in unencrypted state.  

 

2.1 Problem identification 

IndexedDB is storing data in unencrypted state. This 

information might not be sensitive, such as usernames or 

password, but can include client name, address, place of 

birth or date of birth.  
If some of the information is put together, then this can lead 

to identity theft.  

To prevent leaking of data all over the place, we propose an 

algorithm to secure this information, and prevent the end 

user from identity theft. 

IndexedDB also works on mobile devices, where the data is 

stored into internal phone memory. Therefore, the problem 

also exists on mobile device, which is more serious 

compared to desktop. The deleted data can be retrieved 

from any mobile device. As the data is unencrypted, the 

security issue is much higher. Considering the scenario 
where the mobile phone is lost or stolen, it will be possible 

to retrieve the deleted data. This risk of data exposure is 

much higher in this case. 
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Compared to storing data on server, where data is not 

available to recover after deletion, storing on client side is 

going to be more insecure.   

2.2 IndexedDB Structure 

Files and data stored by the browser are retained on the file 

storage system, on the computer’s hard drive. The client-side 

database, IndexedDB, is a persistent client-side database, 

consequently the files reside on the user file system and can 

be recovered until they are overwritten by other files. 

IndexedDB treats file data just like any other type of data. An 

application can write a file (or Blob), into IndexedDB, as 

well as storing strings, numbers and JavaScript objects [6]. 

This is detailed in the IndexedDB specifications and, so far, 

implemented in both the Firefox and Chrome applications of 

IndexedDB. In Firefox and Chrome’s IndexedDB 
implementation, the files are stored transparently, externally 

to the actual database; the performance of storing a file in 

IndexedDB is just as good as storing it in a filesystem. It 

does not bloat the database and slow down other operations. 

Moreover, reading from the file means that the 

implementation reads from an OS file; therefore, it is just as 

fast as a filesystem. 

The Firefox IndexedDB implementation will, if it is 

storing the same Blob in multiple files, create only one copy. 

Writing further references to the same Blob just adds to an 

internal reference counter. This is completely transparent to 
the web page; it writes data faster while using fewer 

resources. 

 

2.3 Value in Database 

   Each record has a value, which could include anything that 

can be expressed in JavaScript, including: Boolean, number, 

string, date, object, array, regexp, undefined, and null. 

IndexedDB enables the storage of structured data, and unlike 

cookies and DOM Storage, IndexedDB provides features that 

enable to group, iterate, search, and filter JavaScript objects 

[18].  Each record consists of a key path and a matching 

value. These can be a simple type, such as string or date, or 

more advanced, such as JavaScript objects and arrays. It can 

include indexes for faster retrieval of records and can store 

large amount of objects.  

   IndexedDB is a key-value store in the same way as Local 

storage. However, Local storage just retains strings only key; 

therefore, the usual approach to local storage is to 

JSON.stringify it. While this is suitable for finding the object 

with key uniq, the only way to retrieve the properties of 

myObject from local storage is to JSON.parse the object and 

examine it. IndexedDB can store data other than strings in 

the value, including simple types such as DOMString and 
Date as well as Object and Array instances [16]. 

Furthermore, it can create indexes on object properties 

containing a specific value. So while IndexedDB can hold 

the same one-thousand objects, it can also create an index on 

the b property and use that to retrieve only the objects where 

b==2 without having to scan every object in the store.  

Furthermore, IndexedDB is aware of ranges; therefore, it can 

search and retrieve all records beginning with 'ab' and ending 

with abd' in order to find 'abc' etc.  

   IndexedDB is implemented differently across browsers. 

Firefox uses SQLite and Chrome LevelDB.  It should be 

noted that LevelDB is not a SQL database. Like other 

NoSQL and Dbm stores, it does not have a relational data 

model, it does not support SQL queries, and it has no support 

for indexes.  

   IndexedDB is implemented in the browser on top of 
another database. This mean that it does not work on its own, 

as it is an API layer. IndexedDB is storing the value in local 

filesystem, which means that the limit of storage is limited to 

space on user hard drive. When compared to other databases, 

IndexedDB is updating the whole data rather that just the bits 

of specific data values.  

 

3 Potential attack vector 

This section is considering an unauthorized physical access 

attack to IndexedDB file, from outside the user local 

machine. 

3.1 CORS (Cross-origin resource sharing) Attack 

   CORS is a mechanism that allows JavaScript on a web 

page to make XMLHttpRequests to another domain, not the 

domain the JavaScript originated from. Normally, web 

browsers would otherwise forbid such ‘cross-domain’ 

requests. CORS defines a way in which the browser and the 

server can interact to determine whether or not to allow the 

cross-origin request [23]. By letting third party applications 

accessing the data created with other domains application can 

lead to security issues, such as information leakage. 

Therefore user agents must implement Cross-origin resource 
sharing with IndexedDB in greater security details. Also, in 

some CORS should not be allowed, to protect the privacy of 

the end user. 

 

   Scenario 1: Unauthorized physical access to the OS file 

system, where the data from the browser database 

(IndexedDB) is stored unencrypted. 

 

   CORS expands on the design of the Same Origin Policy. 

Each resource declares a set of origins, which are able to 

issue various kinds of requests (such as DELETE, INSERT, 
UPDATE) to, and read the contents of, the resource. CORS 
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is a “blind response” technique controlled by an extra HTTP 

header (origin), which, when added, allows the request to 

reach the target. This means, that an application creates an 

IndexedDB database, which is saved with the domain name. 

Another application cannot access the database files, as the 

access is restricted for the particular domain.  This attack is 

based on bypassing the Same Origin Policy and establishing 

cross-domain connections to allow the deployment of a 

Cross-site Request Forgery attack vector [21]. 

 

   Scenario 2 (Data Breach): Unauthorized access from an 
external machine (bypassing the Same Origin Policy (SOP)) 

to read the data and retrieve the information stored in the 

IndexedDB files.  

But why is the ability to read and retrieve data stored in the 

IndexedDB files such an issue.  In order to demonstrate the 

problem, we will firstly conduct an analysis of the 

IndexedDB database file. 

4 Analysis of indexedDB database file 

 

The first step in conducting this analysis is to build a ‘clean’ 

Hard Disk Drive (HDD) on a PC [HP Z400 6-DIMM with 

12GB RAM and XEON 4 physical cores (8logical cores)], 

that will include the operating system (Windows 7, 64-bit) 

and web browsers (Firefox v.20.0.1; Chrome 

v.29.0.1547.620. after which some initial Internet browsing 

will be conducted. The HDD will then be ‘acquired’ using 

Encase v.6.11.1.  This will be the starting point for each 

investigation. After each experiment, the image needs to be 
restored to a ‘clean’ state, and following each experiment, the 

disk will be forensically wiped, and then same component 

(operating system, web browsers) will be installed. 

The aim of these experiments is to investigate and show how 

the data is deleted from IndexedDB (local file) and also if the 

data is in unencrypted state. We will also perform an reuse of 

recovered file and show, if it can be successfully achieved. 

 

EXPERIMENT 1: RECOVERY OF DELETED INDEXEDDB SQLITE 

DATABASE FILE 

   In this experiment, the SQLite database file will be deleted 

from a Hard Disk Dive (HDD), in a PC [HP Modified to i5 
processors and 16GB Ram] running a Windows 7 64-bit 

Operating System.  Then using Encase v.6.11.1, locate the 

deleted data and perform a data recovery. The structure of the 

web browsers (Firefox v.20.0.1 and Chrome v.29.0.1547.62) 

will also be examined to assess how the data is stored. 

 

EXPERIMENT 1: RESULTS 
 

   Firefox stores all data in a temporary table (SQLite 

database) from where the data is copied into an Object Store, 

complete with key/value link. After the data has been copied 

successfully, the temporary table is dropped. The browser 

always stored the SQL file in the same location in the file 

system. On Firefox the location is C:\Users\[user-

name]\Application Data\Mozilla\Firefox\Profiles\[profile 

name.default]\indexedDB\[domain-name]\[database-name]  

where on Chrome C:\Users[user-

name]\AppData\Local\Google\Chrome\User 

Data\Default\IndexedDB. Consequently, and previously 
stored data is always overwritten. Interestingly, when the 

data is deleted from the application (using delete function), 

the location within the file system is reserved for that deleted 

file. It is keeping the reserved location, because the deleted 

file still persists on the HDD. So when running the 

application again, the browser always allocates a different 

location for the newly created Object Store.  

 

   Allocation of file storage in Chrome is slightly different; all 

of the databases are stored in the same file. Consequently, it 

is assumed that Chrome is using compression for storing 
browsing data. 

 

   In Encase we choose the option for Copy/UnErase the 

deleted file. This exported the deleted file with all the data.  

While the deleted file data can be read from Encase, we 

choose to export the file and opened with SQLite Manager 

(Figure 1). In this way all the data in table was visible, and 

the field values in the Blob could be exported unencrypted. 

 

 
 
Figure	1:	Exported	deleted	database	file.	

 

EXPERIMENT 2: CLEARING THE BROWSER CACHE 

 
   Experiments in Firefox will include deleting the data by 

clearing the browser cache (deleting the offline data option). 

Each experiment will store 300K records with a file size of 
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127MB. Experiments in chrome will include deleting the 

data by clearing the browser cache (clearing browsing data- 

Hosted app date). Each experiment will store 300K records 

with a file size of 128MB. 

 

EXPERIMENT 2: RESULTS 

 
   Clearing the browser cache in Chrome clears the databases 

and deletes the file where it is stored. 

In Firefox the clearing the cache does not delete the database 

file from local file system. 

 

EXPERIMENT 3: REUSE OF RECOVERED INDEXEDDB 

DATABASE 

 

   In this experiment the possibility of reusing a recovered 
IndexedDB database in a different web browser was 

investigated.  This involved identifying the location (physical 

address on the HDD), of the file after it had been deleted.  In 

addition, this experiment also considered if the database 

name is changed after it has been deleted; to see if the Web 

application can read deleted file with different filename. 

When deleting a database from the application, everything in 

the folders is deleted; including those that can be stored 

locally (image, document, video, audio).  

SQLite is not a typed database, which means that any data 

type can be put into any cell, regardless of the type declared 
for the column, and the database will attempt to convert it. 

Similarly, a different type than the column type is requested, 

SQLite will also convert this value. 

 

 
 

Figure 2: The physical address, and data in database file. 

EXPERIMENT 3: RESULTS 

 

   Figure 2 displays the physical address of the file before and 

after deletion. Also the physical address of the newly created 

database file persists on the same location.  The deleted files 

are marked with red cross. This file was restored with Encase 

and exported to another hard drive.  The file was restored 

into database folder, and application was run to check if the 

data could be accessed.  The result is that the application read 

the file and all of the data in unencrypted state was available 

for us to see.  

 

5   Analyses and Possible Solution 

 

   The results were as expected; the deleted data has been 
marked as deleted, but it can be exported and all the 

information inside the database could be read.  Moreover, 

exported data that has been imported to another PC running 

Windows 7 can be accessed and re-used.  However a possible 

solution to this security issue is presented below. 

 

 

5.1 A Proposed Solution to Security issue in IndexedDB 

 

   In this section we are going to propose a solution to 

IndexedDB storage security issue.  

The prevention against such scenarios might include 

encryption of the files stored by the browser on the file 

system. All the data stored by the browser will be encrypted 

and stored to the file system. When retrieving the data, a 

secure key will be required to read the data from the file 

system. An encryption library will generate this key, which 

will permit access to read the data. Otherwise, the data 

remains encrypted and impossible to read.  The encryption 

key will be downloaded dynamically and the key (password) 

will be stored in session key. When the key is secure, then it 

will encrypt data. When a user closes browser, then the key is 

overwritten in RAM. This will help to prevent attacker 

getting access to secure key when reading data from RAM. 

 
The algorithm to secure saving of data could be a JavaScript 

library (proposed Stanford JS Encryption library), which will 

help us to prevent saving data in unencrypted state. 

We going to explain steps to write, update and read the data 

with algorithm in pseudo code. 

 
The following steps are described writing or updating data to 

database. 

 

1. Ensure we have established the secure connection trough 
OAuth - The first step is to provide a secure login 
functionality, which can be provided by web application. 
The web application will use the login to authenticate a 
user and securely logged the user into system. 
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2. Open a connection to database - When an application 
requests a new transaction for IndexedDB to open 
database and save data, the designed encryption library 
extension will encrypt the data. This way the data will be 
stored in an encrypted state and not readable to others.  

3. Encryption library generates public and private key - 
When the data is encrypted a key will be generated and 
stored with the user information on server. Client-side 
encrypts sensitive data using the public key, which will 
be generated and stored on sever side. This public key is 
used when encrypting information using the JavaScript 
library.  
Public and private key are created simultaneously using 
the same algorithm (RSA- Rivest-Shamir-Adleman). 

4. Encrypt data - When Client-side encryption is enabled, an 
RSA keypair is generated and user will be given a 
specially formatted version of the public key. RSA is the 
algorithm that is used to encrypt data with a private key 
to produce a digital signature [15]. The private key, 
however, is never revealed to user or anyone else. Once 
the data servers, the data is decrypted using the keypair’s 
private key [16]. Private key is used to decrypt text that 
has been encrypted with public key. It uses the industry-
standard AES algorithm at 128, 192 or 256 bits; the 
SHA256 hash function; the HMAC authentication code. 

5. Save the file and close the connection 
	

When reading the data, the following steps needs to be 
fulfilled. 
 

1. Checking user credentials - When the user request the 
read the data from database, the web application will 
check user credentials (if the session is active) and get the 
key from server to allow decryption of data.  

2. Get the key to decrypt data - Upon successful 
authentication user will be given a public key, which will 
be used for decryption of the data. This private key will 
be stored on server side, with all the user information, 
which is used for decrypt the data. We are going to use 
OAuth 2, which is an open standard for authorization. 
This will be used to securely transfer private key to 
server. 

3. Decrypt Data – Encryption library will check for 
matching combination of private and public key, and 
perform decryption of data. 

4. Show the decrypted data to user 
5. Close the connection	
 

  

   For a secure authentication with server we are going to 

consider OAuth. This will provide authentication between 

the application and web server using a security token. We do 

not consider security issues with OAuth, because this will be 

done in later stage, when the implementation is done. 

The data is stored unencrypted to file system, which can be 

accessed by the web application. When an application send a 

request to web browser to store the data on local file system, 

the cryptography library will encrypt the data, to be stored 

secure. A secure key will be also generated and stored on 

web server.  Reading the data from local file system will be 

possible only when a secure key is provided and the 

authentication between web application and server is 

established. Considering all of the points are made and 

connection is securely established, the data is decrypted by 

cryptography library and displayed trough web browser to 

user. In fig. 3 we highlight the proposed solution showing 

how the cryptography library will be implemented. The 

library will be implemented on top of web browser API.  It 

should be noted, that at this stage this solution is only 

theoretical, however further work will be undertaken to prove 

this hypothesis. 

 
The algorithm will consist of the following components, 

which are build into browser (Figure 4).  

 

• Mechanism for generating private and public key 

• Mechanism for checking the combination of keys 

• Encryption 

• Decryption 

 

 Figure 3: Proposed Encryption Library 

 

 

Figure 4: Encryption and decryption using keys 
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   Encryption/Cryptography library is a piece of software or 

code, which encrypts readable text into unreadable data. This 

data can be accessed by using an encryption key. Some 

examples of encryption libraries are listed below. These are 

just few encryption libraries, which are considered for 

implementation into browser. This libraries were chosen, 

because provide the functionality to encrypt on client side, 

and also are available as open source. 

 

OpenSSL: Open Source toolkit implementing the Secure 

Sockets Layer (SSL v2/v3) and Transport Layer 
Security (TLS v1) protocols as well as a full-strength general 

purpose cryptography library (Engelschall, 1999). 

 

BeeCrypt: A C++ API cryptography library (Doxygen, 

2009). 

 

Crypto++: A free C++ library for cryptography: includes 

ciphers, message authentication codes, one-way hash 

functions, public-key cryptosystems and key agreement 

schemes (Dai, 2004). 

 
GPGME: (GnuPG Made Easy) a C language library that 

allows support for cryptography to be added to a programme. 

It is designed to provide easier access to public key crypto 

engines like GnuPG or GpgSM. GPGME provides a high-

level crypto API for encryption, decryption, signing, 

signature verification and key management (Koch,1999) 

 

Libgcrypt: GNU's basic cryptographic library (Werner, 

2007). 

 

Off course, another possible solution to problem might 

include usage of an external device to store data from a 
browser. For example, a user could specify to a location to 

which any IndexedDB files should be stored when browsing 

the web or running some applications. This includes an 

option where the data could be written and read from an 

external source, such as USB. The USB key will need to be 

secured with access encryption and restricted to access data 

when the master password is entered. 
 

6 Conclusion 

In this paper, we have demonstrated security related flaws 

within IndexedDB. While the browser can delete IndexedDB 

files stored on the local filesystem, they can be retrieved by 

Encase. Unfortunately, the retrieved data is in an 

unencrypted format, and given the nature of the data held 

within the IndexedDB API, a potential security issue exists. 

All the data in IndexedDB is exposed. We have demonstrated 

a solution for this security issue, which includes a secure 
‘library’, located between the browser and the filesystem. All 

data stored by the Indexed DB application will be encrypted 

and saved to the library. Therefore, if the application needs to 

read the data, an encryption key will be required. Without a 

key, the data will not be decrypted and reading the data will 

not be possible. This will help to secure the data stored on the 

client side and prevent retrieval in an unencrypted state. 

Future work will focus on implementing the cryptography 

library into web browser and testing for possible attacks. 
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Abstract—Over the past 20 years web browsers have changed 

considerably from being a simple text display to now 

supporting complex multimedia applications. The client can 

now enjoy chatting, playing games and Internet banking. All 

these applications have something in common, they can be run 

on multiple platforms and in some cases they will run offline. 

With the introduction of HTML5 this evolution will continue, 

with browsers offering greater levels of functionality. This 

paper outlines the background study and the importance of new 

technologies, such as HTML5’s new browser based storage 

called IndexedDB. We will show how the technology of storing 

data on the client side has changed over the time and how the 

technologies for storing data on the client will be used in future 

when considering known security issues. Further, we propose a 

solution to IndexedDB’s known security issues in form of a 

security model, which will extend the current model. 

Keywords-component; Cookies; HTML5; IndexedDB 

XXII.  INTRODUCTION  

This paper attempts to answer several questions. Firstly, 
what is HTML5 IndexedDb; where did the technology come 
from, and what motivated its development; what is its current 
status and what is inhibiting its take up, and finally, what is 
the future for HTML5 IndexedDb. 

HTML5 is the latest W3C standard for the language in 
which web pages are written. It also defines Application 
Programming Interfaces (APIs) that are expected to be 
provided by a web browser that supports HTML5. The 
motivation for the changes and enhancements coming with 
HTML5 is that the web browser should be capable of running 
browser based applications in the same way that it supports 
desktop applications. That is, client side processes will be able 
to avoid the ineffectiveness and network connectivity issues 
found in server side applications and the inherent visual 
instability caused by their required web page refreshes. 
Consequently, major browsers now support the majority of the 
new HTML5 components and APIs. Therefore HTML5 
browser based storage may well contain stored data from 
online services that makes use of the new HTML5 
functionality [1]. The process of accessing this data might in 
some cases be slow, due to network latency or database query 
process [2].  It is suggested that this new level of browser 
based storage will ensure that such HTML5 enabled browsers 
are going to be a significant target for cyber-attacks [3].  

Web browsers store history, and other data using cookies on 
client computers, which is attractive for those marketing 
products or services. Being browser based is critical for 
developers, because modern browser based web applications 

are able to store large amount of data and access that data 
much faster than any server side database. Consequently 
HTML5 opens up entirely new security challenges and issues 
[4]. As is well known, user information is tracked on every 
move on the Internet. eCommerce sites store customer details, 
orders and saved products, sites store cookies on user 
computers to track returning customers. The data can be later 
used for marketing purposes and to target new customers. 
Sometimes consumers and the general public do not realize 
the quantity of personal data that is shared over the Internet 
and how that data can be used or misused. Data privacy and 
information leakage is then a serious concern. 

XXIII. INDEXEDDB – THE PAST 

In this section we consider the drivers behind HTML5 
IndexedDB. That is, why the technology was considered at all, 
and what motivates current standard. We proceed as follows, 
firstly we overview the status of eCommerce, with particular 
attention to its mobile variant mCommerce. Then we consider 
browser based cookies that are IndexedDB’s intellectual 
antecedents. 

A. eCommerce 

The term eCommerce began to be widely used in early 
2000, and it is defined as commercial transactions conducted 
electronically on the Internet, such as purchasing goods and 
services online. eCommerce has a significant and positive 
impact on businesses everywhere [5,6]. The eCommerce 
market grew slowly until 2007 when its proportion of GDP 
was about 3%, but the biggest expansion happened in the last 
decade when the retails sales increased to 40 %. In 2012, 
eCommerce accounted for 18% (£492 billion) of UK business 
turnover. 21% of UK businesses in 2012 made eCommerce 
sales to their own country; 9% of UK businesses made  
eCommerce sales to EU countries and 7% to non-EU countries 
based on the Office of National statistics (ONS) [7]. Of the 
United Kingdom's total £1.45 trillion GDP, the Internet value 
chain represented 2.6% of GDP, and the eCommerce 
conducted over it a further 3.1%. The UK boasts 54.6 million 
Internet users and has a penetration rate of 86%, with a typical 
user spending 42 minutes per week browsing virtual stores and 
buying on the web. The use of eCommerce, by both 
organizations and individual consumers continues to grow, as 
more people are connected to the Internet and with the 
increased availability of fibre broadband. 

eCommerce has several advantages over offline stores and 
mail catalogues.  Online stores eliminate the 3rd party 
middleman costs required by wholesalers and distributors. It 
also removes the overheads of physical shops, both of which 
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lower operational costs. eCommerce stores also provide search 
functionality so that a customer is looking exactly the item for 
which they are looking. Additionally, customers can easily 
browse through large amounts of products and services 
eCommerce has been expanded to the business to business 
(B2B) and business to consumer (B2C) [8] markets. Many 
retailers have moved to invest in online sales that target more 
online customers in categories such as electronics, books, and 
transport. eCommerce gives retailers an opportunity to expand 
outside their domestic markets with minimum upfront 
investment [9]. Consumers can also see prices, allowing 
simple price comparison and can then place orders quickly. 
eCommerce stores allow the customer to add products to a 
wish list, which can then be sent to friends or family to be paid 
for.  

Consumers can also check existing online product reviews 
and compare prices before buying any goods or services. 
Some of the eCommerce stores provide video product reviews 
where the customer can see the product in action without the 
need to leave the house. One of the most important advantages 
of eCommerce stores is access to the global market and the 
creation of new business opportunities Online stores can be 
available to everyone everywhere. For most businesses the 
eCommerce is an excellent alternative supply channel that is 
cost effective but continuously can reach consumers directly 
and extensively. The Internet helps companies to engage in 
eCommerce by collecting, storing, and exchanging personal 
information obtained from visitors to their websites [10].  
eCommerce stores can target customers in many ways, most 
widely used is by email and online ads. This way has a cost 
advantage over offline stores, where print flyers must be 
produced. eCommerce can target a greater number of 
customer in a shorter space of time, as everything is done 
electronically. eCommerce retailers have also advantage of 
through popular social media to attract new customers. 
Additionally, online retailers use customer buying habits to 
target new and existing customers with social media 
advertisements and special offers. Since the late 90’s it was 
predicted that every step on the Internet could be traced and 
that this information might be stored [11]. Information from 
web browsing is stored in the browser history, eCommerce 
sites store user preferences and shop orders to better 
understand the customer with the aim of targeting advertising 
at them for related products or services. [12]. 

B. The importance of mobile commerce (mCommerce) 

HTML was first focused on the desktop computer, since 
when the web started in 1993 mobile (cell) telephones did not 
have Internet connectivity. Tablet computers (e.g. the Grid 
Compass) were a rarity and limited to specialised applications. 
In 2015, combined, mobile phones and tablets now account for 
38% of all web pages served globally (StatCounter). 
Smartphone user penetration in 2011 was 9.6%, whilst by 
2015 it is 28%. Here in UK the mobile penetration rate is 
72%.  

The U.K. Internet ecosystem is worth £82 billion a year, 
with mobile connections accounting for 16% of this. 

mCommerce sales will continue to grow at a double-digit rate 
until 2017 when it is expected to reach £17.2 billion and drive 
over 26% of online retail sales. Since 2007 mCommerce sales 
have rapidly grown from less than 5% to 21% of sales in 2015, 
which opened a new market for online stores. Online stores 
needed to change their strategy and embrace the mobile 
market. 

Businesses operating over the Internet need to maintain 
relations with their customers to ensure continuity, recognize 
previous customers, and simplify the eCommerce process.  
This is done using cookies. 

C. Cookies 

Cookies are small quantities of data that are stored by 

websites in the client browser, and sent to that web site with 

each http request. Cookies were introduced by Netscape 

Communications in 1994 in their Netscape Navigator 

Browser. Cookies allow users to store their sessions and state 

with websites.  

eCommerce applications use cookies to store customers’ 

preferences. This both makes the online buying experience 

more convenient and focused as cookies allow the tracking of 

customer preferences. Cookies support functionality such as 
customer shopping carts and the recognition of returning 

customers who are then recommended appropriate products 

and made offers using individually tailored marketing. 

The problem with cookies is privacy since third party 
applications could potentially steal information from cookies.  
There are also several security issues with cookies such as 
cookie poisoning [13], and cookie injection. Cookie poisoning 
attacks involves the modification of the cookie contents (user 
IDs, passwords, account numbers, time stamps) in order to 
bypass security mechanisms. Using cookie-poisoning attacks, 
attackers can gain unauthorized information about another 
user and steal their identity. Cookie injection attacks inject a 
cookie string or code into the HTTP header to modify server 
page execution, which may lead to SQL injection attacks [14].  

The Cookie Law is the result of a EU directive in 2011 and 
enacted into law across the majority of the European Union. It 
requires websites to obtain visitors’ agreement to store or 
retrieve any information on a computer, smartphone or tablet 
[15]. 

It was designed to protect online privacy, by making 
consumers aware of how information about them is collected 
and used online, and give them a choice to allow it or not.  

Cookies are limited in size to 4KB, and therefore are rarely 

used to directly store site-specific information. Rather, a 

typical cookie will store a unique database key. That key will 

usually point into the web server’s customer database that is 

not accessible publicly. That database may contain any 

amount of information about the customer including their 

personal details, transaction and purchase history, preferences 
and so on. Cookies, and their limitations in size and flexibility, 
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have lead to the specification and development of HTML 

IndexdDB. 

XXIV. INDEXEDDB - PRESENT 

Browser storage has been proposed in HTML5 to extend 
the cookies functionality to provide web developers and web 
applications with better alternatives to store data locally. With 
browser based storage eCommerce companies can store user 
preferences, shopping cart and product images locally. This 
can help eCommerce applications to speed up the process of 
loading products and displaying them to end-users.  

By using browser-based storage, eCommerce sites can also 
be used offline. The user will have the ability to add products 
to a shopping cart, even if the network connection is down. 
The greatest advantage of using offline storage is with mobile 
devices, where network connectivity and data caps are a 
concern. 

If a Web service allows only a certain number of calls per 
hour but the data does not change that often, web applications 
could store the information in local storage and so help 
prevent mobile users breaching data limits [16]. Online stores 
could save new images every six hours, rather than every 
minute, which would improve the bandwidth utilization. 

Local caching keeps users from being banned from 
services, and it also means that when a call to the Application 
program interface (API) fails, user will still have information 
to display. For example, shopping cart data could be stored 
locally and synchronized with the eCommerce site when 
network connectivity is restored.   

The main problem with HTTP as the main transport layer 
of the Web is that it is stateless. This means that when an 
application is closed, its state will be reset the next time is 
opened. If an application on the desktop is closed and then re-
opened, its most recent state is restored. Local storage is better 
than cookies since it allows for storage across multiple 
windows. It also has better security and performance and data 
will persist even after the browser is closed [17]. Therefore, 
local storage provides functionality similar to that of desktop 
applications, where application state is persistent. 

In 1995 Netscape Corp’s vision of the future was to run 

multimedia application, spreadsheets and word processing 

programs from the web browser. Netscape’s main product was 

a browser (Naviagator), which was written to run across 

multiple operating systems (Windows, Unix, and Macintosh). 

The vision was that application would run on the top of any 

operating system with their sets of APIs, so that third party 
applications developers would not need to worry about the 

underlying operating system and hardware. These days, 

Netscape’s vision is a reality, where applications like 

YouTube and Facebook can be run from any web browser.  
As the HTML5 standard evolved, new browser based 

storage concepts were introduced. These are targeted at storing 
larger data volumes. Additionally they have satisfied the key 
non-functional requirement of speed, since stored data was not 
transmitted with every HTTP request, whilst cookies are. 

HTML5 provides two new features to store data locally. The 
first browser based storage feature is called ‘local storage’. It 
allows the storage of information locally within a web browser 
in object stores, which are persistent and stored on disk. The 
storage is limited to 5MB and the stored data is in name/value 
pairs.   

IndexedDB is another HTML5 browser based storage 
technology. It is a NoSQL (Not only SQL) [18], 
asynchronous, key-value browser-based data store, where 
NoSQL is an approach to databases that is not relational or 
object oriented. Rather, NoSQL stores data in key/value 
format. The database can handle a large amount of data. 
IndexedDB supports an API that offers fast access to 
unlimited amount of structured data. IndexedDB may be 
considered to be insecure, since security was not considered in 
its specification. In a previous paper [19] we have described 
how standard forensic tools may be used to identify data 
stored, and then deleted from IndexedDB data stores. 

IndexedDB, which was previously known as 
WebSimpleDB came from the W3C specification of 
implementing web storage into web browser in 2009. 
IndexedDB is a persistent client-side database implemented 
into browser and is an alternative to WebSQL, which has been 
deprecated.  Mozilla and Microsoft supported the introduction 
of IndexdDB, which was most influenced by Oracle's Berkley 
DB. The application uses local data stored on a client system 
[20]. It caches large data from server to the web browser client 
using JavaScript Object Stores, which may be considered to be 
equivalent to tables in relational databases. 

Files and data stored by the browser are retained on the 

user file storage system, on the user's computer hard drive. 

The client-side database, IndexedDB, stores the data, even 

when the browser terminates. IndexedDB is then a persistent 

client-side database, which means that the data can be 

retrieved even the browser is offline. Therefore, the files 

reside on the user file system and can be recovered until other 

files overwrite them. IndexedDB treats file data just like any 

other type of data. An application can write a File or a Blob 
into IndexedDB, as well as storing strings, numbers and 

JavaScript objects. This is detailed in the IndexedDB 

specifications and, so far, implemented in both the Firefox and 

Chrome applications of IndexedDB. Using this, storing all 

information in one place and a single query to IndexedDB can 

return all the data. 

In Firefox and Chrome’s IndexedDB implementation, the 
files are stored transparently external to the actual database; in 
other words, the performance of storing some data in 
IndexedDB is just as efficient as storing it directly in the OS 
filesystem. Storing files does not extend the database size and 
slow down other operations. Moreover, reading from the file 
means that the implementation reads from an OS file. The 
Firefox IndexedDB implementation is even smart enough to 
recognize if is storing the same Blob in multiple files. If this 
happens it creates only one copy. Writing further references to 
the same Blob just adds to an internal reference counter. This 
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is completely transparent to the web page, so it writes data 
faster while using fewer resources. 

Browser based storage such as IndexedDB can be used on 
multiple browsers and is cross platform compatible. Web 
applications can take advantage of using IndexedDB on 
desktop, mobile and tablet, without additional programming. 
Web applications can use browser-based storage without the 
need for network connections. The HTML5 standard provides 
the functionality where data can be stored on client machine, 
and can be accessed anytime without the need of network 
connection.  

An important aspect of HTML5 is that the web 
applications can run offline using local storage. The advantage 
of HTML5 compared to desktop programs is that web 
applications do not require any installation or start-up 
configuration and will also run on any device that supports 
HTML5, such as laptops, phones or tablets. In an eCommerce 
scenario, this reduces the entry barrier to new customers since 
customers can begin taking advantage of web applications just 
by visiting the relevant web site. 

IndexedDB extends local storage by providing web 
applications with offline storage. This may be used by 
eCommerce stores to store customer preferences without 
sending these with every HTTP request. Consequently, HTTP 
request and response traffic will decrease and customer 
preferences or other information will be accessed only when 
requested. An important aspect of HTML5 is that the web 
applications can run offline using local storage. This means 
that client data will be stored on user’s browser and accessed 
anytime that the application requires. Offline storage and 
cached pages provide a better user experience, since network 
latency is minimal.  

The new HTML5 IndexedDB functionalities bring new 
security issues, since there is increased access to the client 
computer’s resources. One of the biggest disadvantages or 
disappointments is that the new standard does not provide any 
additional security. HTML5 video and audio are replacing 
third party application as Adobe and closing a common attack 
vector with FLASH applications or plug-ins. Additionally 
HTML5 provides greater access to computer resources, which 
includes local storage, and therefore opens new opportunities 
for attacks. 

The problem with the current browser based storage, such 
as IndexedDB is that there is concern that another application 
on the client computer may also access that offline data. To 
prevent web applications from reading each other’s data, a 
mechanism known as the same origin policy (SOP) applies to 
all of the web storage technologies. By implementing the same 
origin policy, browsers check and record the origin of all the 
data they store based on the hostname of the web application 
(www.example.com), the port number on which the web 
application runs (80) and the protocol through which the data 
was delivered (typically http or https). When a web 
application wants to access data stored locally, the browser 
will check the current origin and the origin of the data and 

only allow access if these match. Data is protected through the 
use of the same origin policy. 

From the experiments performed, we have confirmed 

IndexedDB stores data as received, so that it is not encrypted. 

However, this is not the only problem. Browser based storage 

faces another issue, where the deleted data is not fully deleted 

from the hard drive. With the help of standard forensic tools 

we were able to restore current and deleted IndexedDB data 

from both desktop and mobile drives. 

The issue of restoring deleted data just extends the security 

concern of storing data in unencrypted state, where the 
attacker could get multiple versions of browser based local 

storage. The deleted data persists on the hard drive and when 

delete data request is executed, the data is just marked as 

deleted but still occupies the associated space. A further data 

storage request just assigns additional disk space but the old 

data will persist on the hard drive and it will be not 

overwritten. 
We have than a complex scenario with IndexedDB. It has 

the advantages of persistence, storage size, and better network 
utilization, but the disadvantages of security weakness.  

XXV. INDEXEDDB - FUTURE 

The future of IndexedDB is to support secure of browser-
based offline usage. Existing browser-based storage has not 
become popular with web developers, because they face 
several problems.  The first problem is the complexity of code 
required, where the developers need extra time to understand 
the structure. Saying that, there are many online tutorial 
examples, which can help developers to start implementing 
browser, based storage into their web applications. 

The second problem with IndexedDB is security. Currently 
IndexedDB stores data in an unencrypted state so that is 
neither protected, nor securely deleted. Therefore IndexedDB 
storage cannot be recommended for the storage of personal 
information. This makes it limited in functionality. As with 
data stored on desktop, mobile or tablet in an unencrypted 
state, an attacker can get the data without bypassing any 
protection. For example, with a Cross-site scripting attack 
(XSS), such as hidden in email link an attacker could find the 
stored data. IndexedDB is inherently vulnerable to such 
attacks.  

Security flaws are inevitable when considering web 
applications and storage of information. This is due not only to 
the sophistication of the attacks, but also to the fact the many 
attacks, such as cross-site scripting, are based on social 
engineering and exploit human error, so are extremely difficult 
to protect against.  Browser based storage security design is a 
concern, but that can be corrected. The correction is to use 
client side encryption, which would mean that browser based 
storage is at least as secure as that on the server. 

We have proposed a security model, which will be 
implemented as a browser extension. The proposed security 
model extends that of the current web browser. Furthermore, 
we have implemented a browser extension with a client side 
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encryption library, which will help to secure the data on a 
client’s machine. When an application requests a new 
transaction for IndexedDB to open the database and save data, 
the proposed library extension will encrypt the data. This data 
will then be as safe as the encryption scheme even should an 
attacker get physical access to the device, which would 
happen if a laptop were lost, or a mobile handset stolen. 

The security model consists of an encryption framework, 
which will help to secure the data. The encryption framework 
cannot though provide full security protection. We argue that 
such protection is not achievable in a single machine, since 
any single browser could be the target of an XSS attack. 
Therefore, functionality external to be browser needs to be 
implemented.  On top of the encryption library a multifactor 
authentication (MFA) or two factors authentication (2FA) has 
been implemented.  

Based on our findings, we can state that there is a case for 
browser-based databases. We have implemented a JavaScript 
encryption framework, which is a part of the security model 
implemented into the browser in a form of an extension. The 
proposed security model extension addresses the security issue 
that IndexedDB has as a product of its design. Also, the 
implemented security model fulfils the security requirements. 

XXVI. CONCLUSION AND FUTURE WORK 

Based on these findings, we can state, that there is a case 
for browser-based databases. Browser based databases though 
face security problems over and above those on the server, and 
this has inhibited their uptake. Nevertheless, despite the 
existing issues faced by browser-based storage, there is a 
future for the technology due to its convenience, performance, 
reduced reliance on continuously available network 
connection.  

Considering the issues and concerns of storing data locally, 
browser based storage has the potential to be widely used, 
where the main advantage is the performance speed, cross 
platform (desktop, mobile, tablet) and browser availability. 
The advantages of local storage outweighs the disadvantages, 
keeping in mind that the issues identified can be corrected and 
browser-based storage can be widely used by developers 
without any concerns of security issues introduced as by 
design limitations. 

Our future work includes more details of the security 
mechanism in [21]. Although the proposed security 
framework has been successfully applied to browser based 
local storage, further improvements can be made in extending 
the security and performance model. These could be addressed 
by extending the current model to use further security factors 
such as biometrics. 
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Abstract  

Over the past 20 years web browsers have changed 

considerably from being a simple text display to now 

supporting complex multimedia applications. The client can 

now enjoy chatting, playing games and Internet banking. All 

these applications have something in common, they can be run 

on multiple platforms and in some cases they will run offline. 

With the introduction of HTML5 this evolution will continue, 

with browsers offering greater levels of functionality. This 

paper outlines the background study and the importance of new 

technologies, such as HTML5’s new browser based storage 

called IndexedDB. We will show how the technology of storing 

data on the client side has changed over the time and how the 

technologies for storing data on the client will be used in future 

when considering known security issues. Further, we propose a 

solution to IndexedDB’s known security issues in form of a 

security model, which will extend the current model. 

 

1. Introduction 

 

This paper attempts to answer several questions. Firstly, 

what is HTML5 IndexedDb; where did the technology come 

from, and what motivated its development; what is its current 

status and what is inhibiting its take up, and finally, what is 
the future for HTML5 IndexedDb. 

HTML5 is the latest W3C standard for the language in which 

web pages are written. It also defines Application 

Programming Interfaces (APIs) that are expected to be 

provided by a web browser that supports HTML5. The 

motivation for the changes and enhancements coming with 

HTML5 is that the web browser should be capable of running 

browser based applications in the same way that it supports 

desktop applications. That is, client side processes will be able 

to avoid the ineffectiveness and network connectivity issues 

found in server side applications and the inherent visual 

instability caused by their required web page refreshes. 
Consequently, major browsers now support the majority of the 

new HTML5 components and APIs. Therefore HTML5 

browser based storage may well contain stored data from 

online services that makes use of the new HTML5 

functionality [1]. The process of accessing this data might in 

some cases be slow, due to network latency or database query 

process [2].  It is suggested that this new level of browser 

based storage will ensure that such HTML5 enabled browsers 

are going to be a significant target for cyber-attacks [3].  

Web browsers store history, and other data using cookies on 

client computers, which is attractive for those marketing 
products or services. Being browser based is critical for 

developers, because modern browser based web applications 

are able to store large amount of data and access that data 

much faster than any server side database. Consequently 

HTML5 opens up entirely new security challenges and issues 

[4]. As is well known, user information is tracked on every 

move on the Internet. eCommerce sites store customer details, 

orders and saved products, sites store cookies on user 

computers to track returning customers. The data can be later 

used for marketing purposes and to target new customers. 

Sometimes consumers and the general public do not realize 

the quantity of personal data that is shared over the Internet 
and how that data can be used or misused. Data privacy and 

information leakage is then a serious concern. 

 

2. Importance of Indexeddb 
 

In this section we consider the drivers behind HTML5 
IndexedDB. That is, why the technology was considered at all, 

and what motivates current standard. We proceed as follows, 

firstly we overview the status of eCommerce, with particular 

attention to its mobile variant mCommerce. Then we consider 

browser based cookies that are IndexedDB’s intellectual 

antecedents. 

 

2.1 eCommerce 

The term eCommerce began to be widely used in early 

2000, and it is defined as commercial transactions conducted 

electronically on the Internet, such as purchasing goods and 

services online. eCommerce has a significant and positive 

impact on businesses everywhere [5,6]. The eCommerce 

market grew slowly until 2007 when its proportion of GDP 

was about 3%, but the biggest expansion happened in the last 

decade when the retails sales increased to 40 %. In 2012, 

eCommerce accounted for 18% (£492 billion) of UK business 
turnover. 21% of UK businesses in 2012 made eCommerce 

sales to their own country; 9% of UK businesses made  

eCommerce sales to EU countries and 7% to non-EU countries 

based on the Office of National statistics (ONS) [7]. Of the 
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United Kingdom's total £1.45 trillion GDP, the Internet value 
chain represented 2.6% of GDP, and the eCommerce 

conducted over it a further 3.1%. The UK boasts 54.6 million 

Internet users and has a penetration rate of 86%, with a typical 

user spending 42 minutes per week browsing virtual stores and 

buying on the web. The use of eCommerce, by both 

organizations and individual consumers continues to grow, as 

more people are connected to the Internet and with the 

increased availability of fibre broadband. 

eCommerce has several advantages over offline stores and 

mail catalogues.  Online stores eliminate the 3rd party 

middleman costs required by wholesalers and distributors. It 
also removes the overheads of physical shops, both of which 

lower operational costs. eCommerce stores also provide search 

functionality so that a customer is looking exactly the item for 

which they are looking. Additionally, customers can easily 

browse through large amounts of products and services 

eCommerce has been expanded to the business to business 

(B2B) and business to consumer (B2C) [8] markets. Many 

retailers have moved to invest in online sales that target more 

online customers in categories such as electronics, books, and 

transport. eCommerce gives retailers an opportunity to expand 

outside their domestic markets with minimum upfront 

investment [9]. Consumers can also see prices, allowing 
simple price comparison and can then place orders quickly. 

eCommerce stores allow the customer to add products to a 

wish list, which can then be sent to friends or family to be paid 

for.  

Consumers can also check existing online product reviews 

and compare prices before buying any goods or services. 

Some of the eCommerce stores provide video product reviews 

where the customer can see the product in action without the 

need to leave the house. One of the most important advantages 

of eCommerce stores is access to the global market and the 

creation of new business opportunities Online stores can be 
available to everyone everywhere. For most businesses the 

eCommerce is an excellent alternative supply channel that is 

cost effective but continuously can reach consumers directly 

and extensively. The Internet helps companies to engage in 

eCommerce by collecting, storing, and exchanging personal 

information obtained from visitors to their websites [10].  

eCommerce stores can target customers in many ways, most 

widely used is by email and online ads. This way has a cost 

advantage over offline stores, where print flyers must be 

produced. eCommerce can target a greater number of 

customer in a shorter space of time, as everything is done 

electronically. eCommerce retailers have also advantage of 
through popular social media to attract new customers. 

Additionally, online retailers use customer buying habits to 

target new and existing customers with social media 

advertisements and special offers. Since the late 90’s it was 

predicted that every step on the Internet could be traced and 

that this information might be stored [11]. Information from 

web browsing is stored in the browser history, eCommerce 

sites store user preferences and shop orders to better 

understand the customer with the aim of targeting advertising 
at them for related products or services. [12]. 

 

2.2 The importance of mobile commerce 

(mCommerce) 

 

HTML was first focused on the desktop computer, since 

when the web started in 1993 mobile (cell) telephones did not 

have Internet connectivity. Tablet computers (e.g. the Grid 

Compass) were a rarity and limited to specialised applications. 

In 2015, combined, mobile phones and tablets now account for 

38% of all web pages served globally (StatCounter). 
Smartphone user penetration in 2011 was 9.6%, whilst by 

2015 it is 28%. Here in UK the mobile penetration rate is 

72%.  

The U.K. Internet ecosystem is worth £82 billion a year, 

with mobile connections accounting for 16% of this. 

mCommerce sales will continue to grow at a double-digit rate 

until 2017 when it is expected to reach £17.2 billion and drive 

over 26% of online retail sales. Since 2007 mCommerce sales 

have rapidly grown from less than 5% to 21% of sales in 2015, 

which opened a new market for online stores. Online stores 

needed to change their strategy and embrace the mobile 
market. 

Businesses operating over the Internet need to maintain 

relations with their customers to ensure continuity, recognize 

previous customers, and simplify the eCommerce process.  

This is done using cookies. 

 

2.3 Cookies 

 

Cookies are small quantities of data that are stored by 

websites in the client browser, and sent to that web site with 

each http request. Cookies were introduced by Netscape 

Communications in 1994 in their Netscape Navigator 

Browser. Cookies allow users to store their sessions and state 

with websites.  

eCommerce applications use cookies to store customers’ 

preferences. This both makes the online buying experience 

more convenient and focused as cookies allow the tracking of 
customer preferences. Cookies support functionality such as 

customer shopping carts and the recognition of returning 

customers who are then recommended appropriate products 

and made offers using individually tailored marketing. 

The problem with cookies is privacy since third party 

applications could potentially steal information from cookies.  

There are also several security issues with cookies such as 

cookie poisoning [13], and cookie injection. Cookie poisoning 

attacks involves the modification of the cookie contents (user 

IDs, passwords, account numbers, time stamps) in order to 

bypass security mechanisms. Using cookie-poisoning attacks, 

attackers can gain unauthorized information about another 
user and steal their identity. Cookie injection attacks inject a 
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cookie string or code into the HTTP header to modify server 
page execution, which may lead to SQL injection attacks [14].  

The Cookie Law is the result of a EU directive in 2011 and 

enacted into law across the majority of the European Union. It 

requires websites to obtain visitors’ agreement to store or 

retrieve any information on a computer, smartphone or tablet 

[15]. 

It was designed to protect online privacy, by making 

consumers aware of how information about them is collected 

and used online, and give them a choice to allow it or not.  

Cookies are limited in size to 4KB, and therefore are rarely 

used to directly store site-specific information. Rather, a 
typical cookie will store a unique database key. That key will 

usually point into the web server’s customer database that is 

not accessible publicly. That database may contain any 

amount of information about the customer including their 

personal details, transaction and purchase history, preferences 

and so on. Cookies, and their limitations in size and flexibility, 

have lead to the specification and development of HTML 

IndexdDB. 

 

3. Current state of IndexedDB 
 

Browser storage has been proposed in HTML5 to extend 

the cookies functionality to provide web developers and web 

applications with better alternatives to store data locally. With 

browser based storage eCommerce companies can store user 

preferences, shopping cart and product images locally. This 

can help eCommerce applications to speed up the process of 

loading products and displaying them to end-users.  

By using browser-based storage, eCommerce sites can also 
be used offline. The user will have the ability to add products 

to a shopping cart, even if the network connection is down. 

The greatest advantage of using offline storage is with mobile 

devices, where network connectivity and data caps are a 

concern. 

If a Web service allows only a certain number of calls per 

hour but the data does not change that often, web applications 

could store the information in local storage and so help 

prevent mobile users breaching data limits [16]. Online stores 

could save new images every six hours, rather than every 

minute, which would improve the bandwidth utilization. 
Local caching keeps users from being banned from 

services, and it also means that when a call to the Application 

program interface (API) fails, user will still have information 

to display. For example, shopping cart data could be stored 

locally and synchronized with the eCommerce site when 

network connectivity is restored.   

The main problem with HTTP as the main transport layer 

of the Web is that it is stateless. This means that when an 

application is closed, its state will be reset the next time is 

opened. If an application on the desktop is closed and then re-

opened, its most recent state is restored. Local storage is better 
than cookies since it allows for storage across multiple 

windows. It also has better security and performance and data 

will persist even after the browser is closed [17]. Therefore, 
local storage provides functionality similar to that of desktop 

applications, where application state is persistent. 

In 1995 Netscape Corp’s vision of the future was to run 

multimedia application, spreadsheets and word processing 

programs from the web browser. Netscape’s main product was 

a browser (Naviagator), which was written to run across 

multiple operating systems (Windows, Unix, and Macintosh). 

The vision was that application would run on the top of any 

operating system with their sets of APIs, so that third party 

applications developers would not need to worry about the 

underlying operating system and hardware. These days, 
Netscape’s vision is a reality, where applications like 

YouTube and Facebook can be run from any web browser.  

As the HTML5 standard evolved, new browser based 

storage concepts were introduced. These are targeted at storing 

larger data volumes. Additionally they have satisfied the key 

non-functional requirement of speed, since stored data was not 

transmitted with every HTTP request, whilst cookies are. 

HTML5 provides two new features to store data locally. The 

first browser based storage feature is called ‘local storage’. It 

allows the storage of information locally within a web browser 

in object stores, which are persistent and stored on disk. The 

storage is limited to 5MB and the stored data is in name/value 
pairs.   

IndexedDB is another HTML5 browser based storage 

technology. It is a NoSQL (Not only SQL) [18], 

asynchronous, key-value browser-based data store, where 

NoSQL is an approach to databases that is not relational or 

object oriented. Rather, NoSQL stores data in key/value 

format. The database can handle a large amount of data. 

IndexedDB supports an API that offers fast access to 

unlimited amount of structured data. IndexedDB may be 

considered to be insecure, since security was not considered in 

its specification. In a previous paper [19] we have described 
how standard forensic tools may be used to identify data 

stored, and then deleted from IndexedDB data stores. 

IndexedDB, which was previously known as 

WebSimpleDB came from the W3C specification of 

implementing web storage into web browser in 2009. 

IndexedDB is a persistent client-side database implemented 

into browser and is an alternative to WebSQL, which has been 

deprecated.  Mozilla and Microsoft supported the introduction 

of IndexdDB, which was most influenced by Oracle's Berkley 

DB. The application uses local data stored on a client system 

[20]. It caches large data from server to the web browser client 

using JavaScript Object Stores, which may be considered to be 
equivalent to tables in relational databases. 

Files and data stored by the browser are retained on the 

user file storage system, on the user's computer hard drive. 

The client-side database, IndexedDB, stores the data, even 

when the browser terminates. IndexedDB is then a persistent 

client-side database, which means that the data can be 

retrieved even the browser is offline. Therefore, the files 

reside on the user file system and can be recovered until other 
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files overwrite them. IndexedDB treats file data just like any 
other type of data. An application can write a File or a Blob 

into IndexedDB, as well as storing strings, numbers and 

JavaScript objects. This is detailed in the IndexedDB 

specifications and, so far, implemented in both the Firefox and 

Chrome applications of IndexedDB. Using this, storing all 

information in one place and a single query to IndexedDB can 

return all the data. 

In Firefox and Chrome’s IndexedDB implementation, the 

files are stored transparently external to the actual database; in 

other words, the performance of storing some data in 

IndexedDB is just as efficient as storing it directly in the OS 
filesystem. Storing files does not extend the database size and 

slow down other operations. Moreover, reading from the file 

means that the implementation reads from an OS file. The 

Firefox IndexedDB implementation is even smart enough to 

recognize if is storing the same Blob in multiple files. If this 

happens it creates only one copy. Writing further references to 

the same Blob just adds to an internal reference counter. This 

is completely transparent to the web page, so it writes data 

faster while using fewer resources. 

Browser based storage such as IndexedDB can be used on 

multiple browsers and is cross platform compatible. Web 

applications can take advantage of using IndexedDB on 
desktop, mobile and tablet, without additional programming. 

Web applications can use browser-based storage without the 

need for network connections. The HTML5 standard provides 

the functionality where data can be stored on client machine, 

and can be accessed anytime without the need of network 

connection.  

An important aspect of HTML5 is that the web applications 

can run offline using local storage. The advantage of HTML5 

compared to desktop programs is that web applications do not 

require any installation or start-up configuration and will also 

run on any device that supports HTML5, such as laptops, 
phones or tablets. In an eCommerce scenario, this reduces the 

entry barrier to new customers since customers can begin 

taking advantage of web applications just by visiting the 

relevant web site. 

IndexedDB extends local storage by providing web 

applications with offline storage. This may be used by 

eCommerce stores to store customer preferences without 

sending these with every HTTP request. Consequently, HTTP 

request and response traffic will decrease and customer 

preferences or other information will be accessed only when 

requested. An important aspect of HTML5 is that the web 

applications can run offline using local storage. This means 
that client data will be stored on user’s browser and accessed 

anytime that the application requires. Offline storage and 

cached pages provide a better user experience, since network 

latency is minimal.  

The new HTML5 IndexedDB functionalities bring new 

security issues, since there is increased access to the client 

computer’s resources. One of the biggest disadvantages or 

disappointments is that the new standard does not provide any 

additional security. HTML5 video and audio are replacing 
third party application as Adobe and closing a common attack 

vector with FLASH applications or plug-ins. Additionally 

HTML5 provides greater access to computer resources, which 

includes local storage, and therefore opens new opportunities 

for attacks. 

The problem with the current browser based storage, such 

as IndexedDB is that there is concern that another application 

on the client computer may also access that offline data. To 

prevent web applications from reading each other’s data, a 

mechanism known as the same origin policy (SOP) applies to 

all of the web storage technologies. By implementing the same 
origin policy, browsers check and record the origin of all the 

data they store based on the hostname of the web application 

(www.example.com), the port number on which the web 

application runs (80) and the protocol through which the data 

was delivered (typically http or https). When a web 

application wants to access data stored locally, the browser 

will check the current origin and the origin of the data and 

only allow access if these match. Data is protected through the 

use of the same origin policy.  

The SOP is the only form of browser protection against 

potential security threats. SOP works by not allowing access 

to client data from sources that could be deemed to be the 
original source, perhaps by the use of cross-site scripting 

(XSS) for example. That is, if applications in multiple 

windows or frames are downloaded from different servers, 

they should not be able to access each other’s data and scripts 

(Takesue, 2008). The prevention of data or attacks coming 

from a different domain is possible. Web browsers are using 

this prevention technique against untrusted site attacks. 

Attackers use multiple techniques that can easily inspect the 

browser history or get data of another domain. 

From the experiments performed, we have confirmed 

IndexedDB stores data as received, so that it is not encrypted. 
However, this is not the only problem. Browser based storage 

faces another issue, where the deleted data is not fully deleted 

from the hard drive. With the help of standard forensic tools 

we were able to restore current and deleted IndexedDB data 

from both desktop and mobile drives. 

The issue of restoring deleted data just extends the security 

concern of storing data in unencrypted state, where the 

attacker could get multiple versions of browser based local 

storage. The deleted data persists on the hard drive and when 

delete data request is executed, the data is just marked as 

deleted but still occupies the associated space. A further data 

storage request just assigns additional disk space but the old 
data will persist on the hard drive and it will be not 

overwritten. 

We have than a complex scenario with IndexedDB. It has 

the advantages of persistence, storage size, and better network 

utilization, but the disadvantages of security weakness.  

 

4. Potential attacks 
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4.1 CORS 

 

Cross origin resource sharing (CORS) is a mechanism that 

allows JavaScript on a web page to make XMLHttpRequests 

(XHR) to another domain, not the domain the JavaScript 

originated from. XHR is an API available to web browser 
scripting languages such as JavaScript. It is used to send 

HTTP or HTTPS requests to a web server and load the server 

response data back into the script. 

Normally, web browsers would otherwise forbid such 

‘cross-domain’ requests. CORS defines a way in which the 

browser and the server can interact to determine whether or 

not to allow the cross-origin request. By letting third party 

applications accessing the data created with other domains 

application can lead to security issues, such as information 

leakage. Therefore user agents must implement Cross-origin 

resource sharing with IndexedDB in greater security details. 

Also, CORS expands on the design of the Same Origin Policy. 
Each resource declares a set of origins, which are able to issue 

various kinds of requests (such as DELETE, INSERT, 

UPDATE) to, and read the contents of, the resource. CORS is 

a “blind response” technique controlled by an extra HTTP 

header (origin), which, when added, allows the request to 

reach the target. This means, that an application creates an 

IndexedDB database, which is saved with the domain name. 

Another application can not access the database files, as the 

access is restricted for the particular domain. This attack is 

based on bypassing the Same Origin Policy and establishing 

cross-domain connections to allow the deployment of a Cross-
site Request Forgery attack vector. We mention a CORS 

attack, which can be used to bypass the restriction and read 

data from other domains. 

 

4.2 XSS 

 
Cross-site scripting is one of the most popular web 

application attack, third on the OWASP list. WhiteHat 

security has provided a statistic report where XSS regains the 

number one vulnerability in web applications. XSS is popular 

attack, because even the web application is secured the attack 

rely on the end user, which can be tricked to click a link and 

therefore authorize the attack. 

XSS is taking advantage of web applications, where the 

user input is not filtered properly. Cross site scripting filtering 

is a process of filtering out parameter values that look 

suspicious, this includes special characters. Attackers may also 
manipulate indirect inputs such as session variables and 

database records. This can be prevented with sanitizing or 

validation of user input. XSS is an attack technique that forces 

a Web site to display malicious code, which then executes in a 

user’s Web browser. 

New client side database provide the functionality to store 

data on user machine. Stored data might contain information, 

which is considered sensitive, such as user personal 

information.  If a web application is vulnerable to XSS attack, 
then an attacker could get access to client side storage. The 

client side storage data can be accessed through the browser, 

so the execution of XSS attack might output the stored data. 

 

4.3 Social engineering attacks 

 

Social engineering is the art of manipulating people so they 

give up confidential information. The attackers usually trick 

people into giving them passwords or bank information, or 

access to computer to secretly install malicious software with 

the purpose access information or control. Attackers use social 

engineering tactics because it is usually easier to exploit 

human nature to trust than it is to discover ways to hack web 

applications or software. For example, it is much easier to fool 

someone into giving the attacker their password than it is 

trying to hack their password.  

Example of social engineering can be a email from a friend. 
If attacker manages hack or socially engineer one person’s 

email password, then the attacker would have access to the 

victim contact list. The attacker can send email or leave 

message to victim’s contacts list with a link, which could be 

result that the victims computer will be infected by malware or 

the victim is redirected to attackers site. The link could also 

contain a download, such as picture, movie, document, or 

audio file that has malicious code embed in. When the victim 

downloads the file, the victim’s computer will be infected and 

the attacker could have access to victims machine, emails, 

accounts and contacts. 
 

4.4 Physical Access 

 

Physical access is possible when the attacker has the 

physical contact to user machine. When the device or stored 

data is unencrypted, the attacker might get access to all data. 
Physical access controls to the location where the computers 

are kept. Employees who are authorized to work in that 

location can use either a RFID card or some magnetic stripe or 

barcode on their ID badge to gain access through a locked 

door. This allows the accesses to the location to be assessed on 

a per employee basis. When considering physical access, the 

attacker or any person with access to the filesystem could 

potentially get the file and the data, which will mean that it 

could be transferred to an external drive and used with the 

appropriate application. 

Possible solution to prevent an unauthorized person to gain 
access to filesystem is to lock the screen, where a password 

would need to be entered before any of the files could be 

viewed.  

 

5. Encryption For IndexedDB 
 

The future of IndexedDB is to support secure of browser-
based offline usage. Existing browser-based storage has not 
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become popular with web developers, because they face 
several problems.  The first problem is the complexity of code 

required, where the developers need extra time to understand 

the structure. Saying that, there are many online tutorial 

examples, which can help developers to start implementing 

browser, based storage into their web applications. 

The second problem with IndexedDB is security. Currently 
IndexedDB stores data in an unencrypted state so that is 
neither protected, nor securely deleted. Therefore IndexedDB 

storage cannot be recommended for the storage of personal 

information. This makes it limited in functionality. As with 

data stored on desktop, mobile or tablet in an unencrypted 

state, an attacker can get the data without bypassing any 
protection. For example, with a Cross-site scripting attack 

(XSS), such as hidden in email link an attacker could find the 

stored data. IndexedDB is inherently vulnerable to such 

attacks.  

Security flaws are inevitable when considering web 

applications and storage of information. This is due not only to 

the sophistication of the attacks, but also to the fact the many 

attacks, such as cross-site scripting, are based on social 

engineering and exploit human error, so are extremely difficult 

to protect against.  Browser based storage security design is a 

concern, but that can be corrected. The correction is to use 
JavaScript client side encryption, which would mean that 

browser based storage is at least as secure as that on the 

server. 

With the implementation of the encryption library in the 

browser (Firefox v. 29) we are hoping to address the 

ineffectiveness of the insecure storing of data. We are going to 

propose and develop an algorithm, which will be implemented 

into the Mozilla Firefox browser in an extension format. Also, 

our algorithm will ensure that the database transaction for 

storing or retrieving data will only be possible when a secure 

and valid authentication is completed. This also relies upon 
providing the private key to encrypt/decrypt data. 

We have proposed a security model, which will be 
implemented as a browser extension. The proposed security 
model extends that of the current web browser. Furthermore, 
we have implemented a browser extension with a client side 
encryption library, which will help to secure the data on a 
client’s machine. When an application requests a new 

transaction for IndexedDB to open the database and save data, 

the proposed library extension will encrypt the data. This data 
will then be as safe as the encryption scheme even should an 
attacker get physical access to the device, which would 
happen if a laptop were lost, or a mobile handset stolen. 
Steps to encrypt the data are: 

[21] a)Get a secure Login 

The first step is to provide a secure login functionality, which 

can be provided by the web application. The web application 

will use the login process to authenticate a user and securely 

log the user into system. 

[21] b)Encrypt data 

When an application requests a new transaction for 

IndexedDB to open the database and save data, the designed 

encryption library extension will encrypt the data. This way 

the data will be stored in an encrypted state and will not be 
readable to others.  

[21] c)Store public and private key 

When the data is encrypted a key will be generated and stored 

with the user information on the server.  

Client-side encrypts sensitive data using the public key, which 

will be generated and stored on the server side. This public 

key is used when encrypting information using the JavaScript 

library. When Client-side encryption is enabled, an RSA 

keypair is generated and the user will be given a specially 

formatted version of the public key. RSA is the algorithm that 

is used to encrypt data with a private key to produce a digital 

signature. The private key, however, is never revealed to the 
user or anyone else. The data is decrypted using the keypair’s 

private key. 

Public and private keys are created simultaneously using the 

same algorithm (RSA- Rivest-Shamir-Adleman). Private keys 

are used to decrypt text that has been encrypted with a public 

key. 

[21] d)Decryption of data 

When the user requests to read the data from the database, the 

web application will check user’s credentials (if the session is 

active) and get the key from the server to allow decryption of 

data.  

e)User Authentication 

Upon successful authentication, the user will be given a public 

key, which will be used for the encryption/decryption of the 

data. This private key will be stored on the server side, with all 

the user information which is used for decrypt the data. We are 

going to use OAuth 2, which is an open standard for 

authorization. This will be used to securely transfer the private 

key from the server to the encryption library. 

[21] f)Deletion of data 

Secure deletion of data will be required to overwrite the space 

of data with zeros. This means that the data cannot be read 

again, as all of the values are set to zero. 

If running over HTTPS, then things are more secure as the 
browser will detect a modified JavaScript file. The SSL layer 

of HTTPS protocol handles this. 
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5.1 Proposal 

 

Hashing and encryption can be done within browsers 
through the JavaScript encryption library. Algorithm will use a 

JavaScript encryption library (proposed Stanford JS 

Encryption Library), where the library will be implemented 

into the browser (Firefox) as an extension. This extension will 

be based on the top of IndexedDB API and therefore every 

time during the reading or writing of data, the data will be 

encrypted. The library consists of encryption with private and 

public keys. The private key will be saved on the server.  The 

public key will be given to the user and stored on the user’s 

machine, the same way as a cookie. The extension will 

provide encryption/decryption of data on the user’s machine, 

which will resolve the issue of storing data in an unencrypted 
state. 

 

5.2 Algorithm Used 

 

It differs from typical AES implementations (different 
approach that keeps the code small and speeds up 

encryption/decryption). The source code for the AES 

algorithm, also called Advanced Encryption Standard or the 

Rijndael algorithm. The benchmarking tests have shown that 

the Stanford JS Encryption library performs faster than other 

client side encryption libraries. The benchmark has been 

achieved in multiple browsers on Windows, Mac and Linux 

Operating Systems. One of the reasons we proposed to use and 

implement the library into algorithm was the speed and 

multiplatform usage. 

The algorithm is going to contain the JavaScript encryption 

library, which will be implemented into the browser. The 
algorithm will consist of a few steps, with the higher security. 

This will allow the end user to save and retrieve data from 

IndexedDB. The data will be encrypted with the JavaScript 

library and a private and public key will be used to 

encrypt/decrypt this data. 

 
5.3 Implementation 

 
The model will add an extra layer between the web browser 

and IndexedDB API. The security model consists of an 

algorithm framework, which adds extra protection against 

issues identified, by reading each other’s data through XSS 

vulnerabilities. 

Algorithm is using JavaScript encryption library (proposed 

Stanford JS Encryption Library), where the library is 

implemented into the browser (Firefox) as an extension. This 

extension is placed on the top of IndexedDB API and therefore 

every time during the reading or writing of data, the data will 

be encrypted. The library consists of encryption with private 
and public keys. As expected, the private key will be saved on 

the server. The public key will be given to the user and stored 

on the user’s machine, the same way as a cookie. The 

extension will provide encryption/decryption of data on the 

user’s machine, which will resolve the issue of storing data in 

an unencrypted state. It will also provide better security for 

possible attacks, where the attacker can manipulate with user 

data. 

The browser based local storage security model (BBLS) is 

relying on the web browser security model (WBSM), which is 

using Same origin policy. The security mechanism is not 
enough to preserve the security confidence among the end 

user. 

The BBLS security model differs from WBSM in few 

ways, which includes the security mechanism. The main 

difference is that BBLS security model is trying to secure the 

data between browser and the end user file system, where 

comparing to WBSM, which is securing the data between web 

applications and user browser. 

The goal of BBLS security model is to secure the data, 

which is stored in client side database. User should be able to 

visits other websites, without they databases to be 

compromised.  
The current WBSM is not sufficient protection for complex 

web application and stored data on client side is becoming 

more important.  

The security model consists of an encryption framework, 

which will help to secure the data. The encryption framework 

cannot though provide full security protection. We argue that 

such protection is not achievable in a single machine, since 

any single browser could be the target of an XSS attack. 

Therefore, functionality external to be browser needs to be 

implemented. For implementation to existing encryption 

library we will use Multifactor authentication (MFA). MFA is 
used to make the authentication process more secure by 

adding an extra layer of security. The extra authentication will 

need to be passed to make sure the encryption library decrypts 

the data. Mobile two-factor authentication use phones to 

replace fobs or software-based tokens that were commonly 

used for remote authentication. When a person tries to log into 

an online service, a security pin is sent to his or her mobile 

phone via voice or SMS message, rather than to the token. 

 

5.4 Evaluation 

 

To evaluate the security model, we will run tests to 

conclude the effectiveness of the model. This will include 

attacks, which will be bypassing the SOP trough XSS attacks. 

First we will perform and attack with existing security, 

without applying the security model. 

Then we will add the security model, and perform the 
attack again. We suggest that the model will prevent an 

attacker to read data from other source, by adding the 

authentication process to place. Also the data stored will be 
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encrypted, which means that even the authentication process is 
compromised, the data will not be available to read in 

unencrypted state. 

Based on our findings, we can state that there is a case for 

browser-based databases. We have implemented a JavaScript 

encryption framework, which is a part of the security model 

implemented into the browser in a form of an extension. The 

proposed security model extension addresses the security issue 

that IndexedDB has as a product of its design. Also, the 

implemented security model fulfils the security requirements.  

 

6. Conclusion and Future Work 
 

Based on these findings, we can state, that there is a case 

for browser-based databases. Browser based databases though 

face security problems over and above those on the server, and 

this has inhibited their uptake. Nevertheless, despite the 

existing issues faced by browser-based storage, there is a 

future for the technology due to its convenience, performance, 
reduced reliance on continuously available network 

connection.  

Considering the issues and concerns of storing data locally, 

browser based storage has the potential to be widely used, 

where the main advantage is the performance speed, cross 

platform (desktop, mobile, tablet) and browser availability. 

The advantages of local storage outweighs the disadvantages, 

keeping in mind that the issues identified can be corrected and 

browser-based storage can be widely used by developers 

without any concerns of security issues introduced as by 

design limitations. 

Although the proposed security framework has been 
successfully applied to browser based local storage, further 

improvements can be made in extending the security and 

performance model. These could be addressed by extending 

the current model to use further security factors such as 

biometrics.  
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