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Abstract: Multi-way parallel mathematical operations along arbitrary transmission paths are constructed based on 

realizable planar discrete metamaterials in this paper. The introduced method of “computational metamaterials” is used 

to perform the desired mathematical operations. For producing high-efficiency devices, the function of multi-way 

parallel mathematical operations is indispensable in advanced analog computers. Therefore, in this paper we propose 

the arbitrary transmission paths that can be implemented by the bending of the electromagnetic waves based on the 

finite embedded coordinate transformations, which has a strong potential to realize the function of multi-way parallel 

computation. Nevertheless, owing to the inherent inhomogeneous property, metamaterials are difficult to be achieved in 

nature currently. In order to make it possible for fabricating in practical applications, the planar discrete metamaterial is 

a promising medium due to its homogeneous property. Numerical simulations validate the novel and effective design 

method for parallel optical computation. 
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I. Introduction 

Traditional mathematical operations generally were performed in the past by analog computers in the form of 

mechanical [1] and electronic computers [2], which has been applied in various industrial applications including 

telecommunications, biomedicine, artificial intelligence, etc. However, these conventional analog computers have 

suffered from burning problems such as the slow response and a large size. Fortunately, in the rapidly changing 

technology age, optical computation brings about a brand-new concept to execute mathematical operations with an 

ultra-fast response in a relatively small size space. 

In recent years, we have seen a growing research interest in optical computation, which promises to deliver 

processing performance exponentially faster and more powerful than the existing computing technologies [3-9]. Fast 

and stable optical computation based on the micro-waveguides with loss using the operator marching method (OMM) 

has been reported to solve the Helmholtz equation efficiently with complex refractive index or wavenumber [5]. This is 

followed by the development of optical computation of the spatial Laplace operator on the electromagnetic field 

components of the incident beam using the phased-shifted Bragg grating (PSBG) [6]. In order to accurately compute 

optical wave propagation in the inhomogeneous waveguides, a modified operator marching method based on a new 

treatment for local base transformation was proposed [7]. In addition, a novel concept of “computational metamaterials” 

based on dedicated metamaterial blocks is introduced, which can perform mathematical operations including spatial 

differentiation, integration, or convolution on the profile of electromagnetic waves as it propagates through the blocks 

[8]. Furthermore, another new concept of “metalines” for manipulating graphene plasmon (GP) waves is employed to 

realize analog computations on an ultra-compact planar graphene-based configuration [9]. Although all aforementioned 

schemes can efficiently achieve analog computations, the underlining mathematical theories generally have a major 

limitation associated with the complex fabrication in practical applications due to their inhomogeneous property. 

In this paper, we present a novel scheme of performing the desired mathematical operations based on the 

easy-realizable planar medium, which is implemented on the basis of inhomogeneous metamaterials with the proper 
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design of permittivity according to the discrete theory [10]. Therefore, the proposed scheme is composed of a number of 

discrete units with basic homogeneous material parameters, which can be easily synthesized by the graphene when 

injected with the suitable external gate voltage [9], the tensor transmission lines [11], or 3D dielectric polyjet printing 

technology [12], etc. It is clear from the forgoing discussion that the designed discrete metamaterials would be a crucial 

step from the concept to reality in optical computation. We demonstrate the influence of discretization on mathematical 

operations through rigorous error analysis of the discrete degree. Furthermore, in order to achieve high efficient 

mathematical operations, the multi-way parallel operations have to be considered. By using finite embedded coordinate 

transformations, the transmission paths of incident waves can be bended arbitrarily on an anisotropic medium. 

Therefore, the essential function of arbitrary multi-way parallel mathematical operations for the advanced analog 

computers is achieved by means of controlling the transmission paths of incident waves based on the theory of 

transformation optics [13-15]. It should be noted that transformation optics is unlimited for the geometrical planar 

configuration, thus resulting in the possible of higher-efficiency multi-way operations. For convenience, the planar 

configuration is used to design and simulate multi-way parallel mathematical operations in this paper. Additionally, 

different from previous research works on transformation optics, the proposed scheme adopted easy-realizable planar 

discrete metamaterials as the designed medium. Hence, the proposed novel method of mathematical operations based on 

the planar discrete metamaterials offers certain advantages over the existing methods including that: i) two-dimensional 

or three-dimensional multi-way parallel operation with higher efficiency, ii) arbitrary controllable transmission paths, 

and iii) easy-realizable planar medium comprised of discrete metamaterials. 

 

II. Multi-way parallel mathematical operations with metamaterials 

As shown in Figure 1, the proposed system is composed of four cascaded sub-modules of i) a transformation 

optics for controlling the transmission paths of incident waves (anisotropic medium), ii) a Fourier transform (GRIN (+)), 

iii) a metasurface (MS) filter for obtaining the desired output function in the Fourier domain (MS), and iv) an inverse  
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Figure 1 |. Ideal model of metamaterials-based computing system. The whole designed system is limited by the width W in the 

transverse direction y and by the total length 2(c+Lg)+Δ in the longitudinal direction x. Consider an appropriate coordinate 

transformation in the anisotropic medium, the 90°-wave bending with radius c is realized to control the transmission paths of the 

incident wave. The two GRIN blocks (GRIN (+) and GRIN (-)) with positive and negative parameters are utilized to perform the 

Fourier transform and the inverse Fourier transform, respectively. And then the desired mathematical operations can be worked out in 

the metasurface (MS) with pre-defined permittivity and permeability. 

 

Fourier transform (GRIN (-)). 

For the 1st sub-modules, the permittivity εij’ and permeability μij’ of the transformation optical medium can be 

determined using the following expressions [14]: 
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where εij and μij are the constitutive parameter in the original space, respectively, and AT indicates the transposed matrix 

of the Jacobi matrix of the transformation A, which is given as: 
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Therefore, an appropriate coordinate transformation centered at the origin for wave-bending in the anisotropic 

medium can be prescribed by [15]: 
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where θ is the radian of the bending angle and h denotes the length of the original incident wave. If the original space is 

free space, then the values of εij and μij are ε0 and μ0, respectively. According to equations (1)-(3), the relative 

permittivity and permeability in the transformed medium can be obtained by [15]: 
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where 
2 2

0 0( ) ( )r x x y y     and k h . It should be noted that x0 and y0 are the center coordinate of 

wave-bending. For simplicity, the values of θ and h are set as π/2 and λ0 in this work, respectively. Hence, the 

transmission direction of an incident wave can be controlled by x0 and y0 artificially so that different coordinate 

transformations can make it possible for arbitrary multi-way parallel operation. 

As for the other three sub-modules, we have adopted the concept of “computational metamaterials” developed by 

silva et al. [Science 343, 160 (2014)] to perform the desired mathematical operations. For the purpose of making GRIN 

(+) slab operate as a Fourier transformer, the material parameters of GRIN (+) are defined as [8]: 

 

2

2

0( ) 1 ( ) , and (y)= ,
2

c

g

y y c
L


   

  
    

    

  (5) 

where εc is the permittivity at the central plane of the GRIN and Lg is the characteristic length. Similarly, for the inverse 

Fourier transform, the material parameters of GRIN (-) should be negative. Considering n-order differentiation, the 

relative permittivity and permeability of the inhomogeneous MS with thickness Δ can to be deduced as [8]: 
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where ‘±’ denotes the center position of the GRIN along the y-axis.  

To sum up, combining transformation optics with the concept of computational metamaterials, arbitrary multi-way 

parallel mathematical operation can be implemented with the planar inhomogeneous medium. To confirm the validity of 
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Figure 2 |. Two-to-two-way parallel mathematical operations with metamaterials (TTWPMOM); (a) snapshots of the electric field 

distribution for the z-component with designed first- and second-order differentiators; (b) and (c) simulation results of parallel 

mathematical operations at the output terminal for (b) first-order differentiation and (c) second-order differentiation. The dimensions 

are W=10λ0=30 μm, Lg=11.67λ0=35 μm, Δ=1 μm, d=λ0/8=0.375 μm, and λ0=3 μm. Note that the range of horizontal axis in (b) and (c) 

are depended on the designed vertical position of differentiator. For facilitating the comparison, output results are multiplied by the 

constant factor indicated in the top corner of the panel. 

 

this method, we carry out full wave simulations using the multiphysics simulation tool as a finite element solver. 

Furthermore, to estimate the errors due to discretization and numerical simulations, the mean squared error (MSE) and 

the coefficient of determination (R2) in signal processing are used, which are given as [16]: 
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where Ii and Si are the numerical values of ideal and simulated curves, respectively. As expected with MSE  0 and R2 

 1, the errors will be smaller. The corresponding simulation cases of the multi-way parallel mathematical operations 

with multi-input are illustrated in Figures 2 and 3, respectively. First, the input function
2( ')( ) ( ') x c bf x a x c e   , with 

a=0.7 μm and b=10 μm, is performed at the bottom of the designed panel while the output results are displayed on two 

sides of the panel. Note that the value of c’ is depended on the position of zero point of the input function. Next, for the  
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Figure 3 |. Four-to-four-way parallel mathematical operations with metamaterials (FFWPMOM); (a) snapshots of the electric field 

distribution for the z-component with the designed first-order to forth-order differentiator; (b) to (e) simulation results of parallel 

mathematical operations at the output terminal for (b) first-order differentiation, (c) second-order differentiation, (d) third-order 

differentiation, and (e) forth-order differentiation. The dimensions are W=10λ0=30 μm, Lg=11.67λ0=35 μm, Δ=1 μm, d=λ0/8=0.375 

μm, and λ0=3 μm. Note that the ranges of horizontal axis in (b)-(e) are depended on designed vertical position of differentiator. For 

facilitating the comparison, output results are multiplied by the constant factor indicated in the top corner of the panel. 

 

TABLE I. All the designed parameters for multi-way parallel mathematical operations with n-order differential. 

 W (μm) Lg (μm) Δ (μm) d (μm) x0 (μm) y0 (μm) h (μm) θ (rad) 

TTWPMOM 30 35 1 0.375 ±60.375 -15 3 π/2 

FFWPMOM 30 35 1 0.375 ±60.375 -15 3 π/2 

OTWPMOM 30 35 1 - 30 -15 3 π/2 

TTWPMODM 30 35 1 0.545 ±60.545 -15 3 π/2 

 

sub-modules of transformation optics, the medium parameters are determined using (4). Due to the symmetry, the 

parameters of the right and left sides in transformation optical sub-modules are identical except for the “±” of center 

coordinate of wave-bending (i.e., x0, y0). Moreover, the design parameters of transformation optical sub-modules in 

Figure 2 are also identical to those used in Figure 3 due to the same input position and center coordinate of 

wave-bending. In other words, the proposed method theoretically can provide arbitrary multi-way transmissions with 

the same design parameters. Finally, the medium parameters in mathematical operations are calculated using (5) and  
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TABLE II. The calculated values of MSE and R2 for designed multi-way parallel mathematical operations with n-order differential. 

 
1st differential 2nd differential 3rd differential 4th differential 

MSE R2 MSE R2 MSE R2 MSE R2 

TTWPMOM 0.0030 0.9380 0.0021 0.9123 - - - - 

FFWPMOM 0.0028 0.9409 0.0018 0.9262 0.0014 0.9161 0.0020 0.8677 

OTWPMOM 0.0032 0.9327 0.0020 0.9164 - - - - 

TWPMODM 0.0031 0.9348 0.0029 0.8780 - - - - 

 

(6). In addition to the dimensions indicated in Figures 2 and 3, the design parameters in all aforementioned equations 

are assumed as x0=±(2W+d)= ±60.375 μm, y0=W/2=15 μm, k=θ/h=π/6 rad▪μm-1, and εc=2.01ε0. For convenience, all the 

designed parameters are illustrated in Table I. As shown in Figures 2 and 3, the arbitrary transmission paths can be 

implemented based on 90°-wave bending using equations (1)-(4), whereas the mathematical operations are performed 

based on equations (5) and (6). As a comparison, the ideal plots are depicted in Figures 2(b)-(c) and Figures 3(b)-(e) 

based on derivate of the input function
2( ')( ) ( ') x c bf x a x c e   . It is clear that there are excellent agreements between 

simulated and the ideal plots, thus confirming the function of parallel mathematical operations. In order to further assess 

and prove the reliability of the proposed method, the values of MSE and R2 are calculated according to (7) and (8) as 

illustrated in Table II. For the two-way parallel mathematical operations with two-input, the values of MSE for 1st- and 

2nd-derivate are 0.0030 and 0.0021, respectively, and the values of R2 for 1st- and 2nd-derivate are 0.9380 and 0.9123. For 

the four-way parallel mathematical operations with four-input, the values of MSE for 1st-, 2nd-, 3rd, and 4th-derivate are 

0.0028, 0.0018, 0.0014 and 0.0020, respectively, and the values of R2 for 1st-, 2nd-, 3rd, and 4th-derivate are 0.9409, 

0.9262, 0.9161 and 0.8677, which further validate the proposed theory and method. 

Besides the multi-way parallel mathematical operations with multi-input, the two-way parallel mathematical 

operation with only one input has also been investigated. The input function
2( ')( ) ( ') x c bf x a x c e   , with a=0.7 μm 

and b=10 μm, is performed at the center of the designed transformation optical sub-modules with medium parameters 

calculated using (4). All the key designed parameters are illustrated in Table I. There is a good agreement between 

simulated and the ideal plots as shown in Figures 4(b) and 4(c). In order to further validate the proposed theory and  
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Figure 4 |. One-to-two-way parallel mathematical operations with metamaterials (OTWPMOM); (a) snapshots of the electric field 

distribution for the z-component with designed first- and second-order differentiators; (b) and (c) simulation results of parallel 

mathematical operations at the output terminal for (b) first-order differentiation and (c) second-order differentiation. The dimensions 

are W=10λ0=30 μm, Lg=11.67λ0=35 μm, Δ=1 μm, and λ0=3 μm. Note that the range of horizontal axis in (b) and (c) are depended on 

the designed vertical position of differentiator. For facilitating the comparison, output results are multiplied by the constant factor 

indicated in the top corner of the panel. 

 

method, the values of MSE and R2 are calculated based on (7) and (8) as illustrated in Table II. 

 

III. Multi-way parallel mathematical operations with discrete metamaterials 

Although parallel mathematical operations are realized by introducing the concept of “computational 

metamaterials”, it is rather challenging to realize practically due to its inhomogeneous property. Therefore, for 

fabrication purposes the method of discrete metamaterials is adopted as outlined in this section. As illustrated in Figures 

5 and 6(a), original four cascaded sub-modules are decomposed into a number of discrete units with the dimension g. 

The homogeneous materials parameters of transformation optical sub-modules are needed to be rewritten as: 
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Figure 5 |. Simulation results for discretization of 90°-wave bending; (a) the size of discrete unit is 6×6 μm2 (W=60 μm), and the 

calculated values of MSE and R2 are 0.0026 and 0.9837; (b) the size of discrete unit is 4×4 μm2, and the calculated values of MSE and 

R2 are 0.0025 and 0.9844; (c) the size of discrete unit is 3×3 μm2, and the calculated values of MSE and R2 are 0.0021 and 0.9869. 

Note that the range of horizontal axis in (a)-(c) is depended on the designed vertical position of output terminal. 

 

where 
2 2

0 0 0 0( ) ( )r g ng x g ng y       and 
0 2g g . Similarly, the sub-modules of mathematical operations 

can be determined as follows:  
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and 
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From equations (9)-(11), each of the discrete unit has basic homogeneous material parameters. Therefore, the 

discrete metamaterials will have a wider range of applications compared to the existing concepts. For the sake of 

depicting the impacts of discretization on the whole system, we have carried out simulations for discretization of 

90°-wave bending and mathematical operations with different discrete degrees, respectively. As we can see in Figure 5, 

the simulated output plots are almost the same as the ideal input plots by 90°-wave bending even though the dimensions 

of discrete units are a bit large. Moreover, compared with the calculated corresponding MSE and R2 for different 

discrete units’ dimensions, the influence of discretization on the input distribution would decrease with the decreasing 

of the discrete units’ dimensions. Besides, the simulated plots of the 1st differential in the discrete metamaterials shown  
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Figure 6 |. Simulation results for discretization of mathematical operations; (a) snapshots of the electric field distribution for the 

z-component of the designed first-order differentiator, with the size of discrete unit as 3×3 μm2 (W=30 μm); (b) the curves of MSE 

and R2 for different discrete units’ dimensions. The ranges of discrete units’ dimensions is from 3 μm (W/10) to 1 μm (W/30); (c)-(e) 

simulation results of mathematical operations at the output terminal for first-order differentiation with (c) g= W/10, (d) g= W/20, and 

(e) g=W/30. 

 

in Figure 6 are nearly identical with the ideal plots from Figures 6(c)-(e). For further studying the possible errors of 

discrete metamaterials, the curves of MSE and R2 for different discrete units’ dimensions are depicted in Figure 6(b), 

which shows that the errors are decreased with the decreasing of the discrete units’ dimensions according to the 

calculated MSE and R2. Furthermore, even though the dimensions of discrete units are a bit large, the simulation results 

obtained still are excellent. Hence, the simulation involving two-way parallel mathematical operations with discrete 

metamaterials is implemented as shown in Figure 7. Note that all the designed parameters of the simulation in Figure 7 

are almost identical with the simulation in Figure 2 except the value of d from Table I. As depicted on the bottom of the 

designed panel in Figure 7, the input function used is also the same as multi-way parallel mathematical operations with 

metamaterials, whereas the output results are displayed on two sides of the panel. The calculated values of MSE and R2 

are outlined in Table II. As we can see, the values of MSE are almost 0.003 and the values of R2 are greater than 90% for 

most, thus confirming the feasibility and viability of the proposed novel method. 
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Figure 7 |. Two-to-two-way parallel mathematical operations with discrete metamaterials (TWPMODM); (a) snapshots of the electric 

field distribution for the z-component with the designed first- and second-order differentiators; (b) and (c) simulation results of 

parallel mathematical operations at the output terminal for (b) first-order differentiation and (c) second-order differentiation. The 

dimensions are W=10λ0=30 μm, Lg=11.67λ0=35 μm, Δ=1 μm, d=λ0/5.5=0.545 μm, and λ0=3 μm. Note that the ranges of horizontal 

axis in (b) and (c) are depended on the designed vertical position of differentiator. For facilitating the comparison, output results are 

multiplied by the constant factor indicated in the top corner of the panel. 

 

IV. Discussion 

Multi-way parallel mathematical operations are performed based on the discrete metamaterials in this paper. Apart 

from the excellent function of mathematical operations, the proposed structure can effectively achieve arbitrary 

multi-way transmission paths. To make it straight forward and relative easy for fabrication, we introduced the concept 

of discrete metamaterials for realizing the homogeneous property. Although the simulation results depicted in Table II 

indicate that the discrete metamaterials will result in errors comparing with MS, the errors almost do not affect the 

expected mathematical operations. Moreover, the errors can be reduced by increasing the dimension of discrete unit 

based on Figure 6(b). Although no experimental validation of the proposed method has been outlined in this paper, we 

have validated the theory by means of excellent simulation results and the corresponding calculated MSE/R2.  

In recent years, for experimental validation of metamaterials, researches have provided a number of effective 

methods, including the graphene with the suitable external gate voltage [9], the tensor transmission lines [11], or 3D 

dielectric polyjet printing technology [12], etc. In [9], by applying appropriate external gate voltage and a well-designed 
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ground plane thickness profile beneath the dielectric spacer holding the graphene layer, the desired homogeneous 

surface conductivity values used to calculate metamaterial parameters can be obtained at different segments of the 

graphene layer. Additionally, based on the designed tensor transmission-line metamaterial unit cell in [11], an isotropic 

and homogeneous medium was achieved with the calculated permeability tensor and permittivity. Recently, an 

all-dielectric lens prototype based on transformation optics was fabricated using 3D dielectric polyjet printing 

technology [12]. However, the most basic condition for achieving these schemes is the homogeneous material parameter. 

Therefore, the proposed novel method in this paper not only produces high-efficient parallel mathematical operations, 

but also is the essential step from the concept to the reality in optical computation, which makes it possible for further 

experimental validation. 

 

V. Methods 

The simulated results are obtained by using the multiphysics simulation tool based on the finite element method 

(FEM). In all simulations, the whole system is contained within a cascaded area with scattering boundary condition 

(SBC). The corresponding values of MSE and R2 are calculated according to equations (7)-(8). 
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