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Abstract

The paper presents an Eulerian derivation of the non-inertial Navier-Stokes

equations as an alternative to the Lagrangian fluid parcel approach. To the best

knowledge of the authors, this is the first instance where an Eulerian approach

is used for such a derivation. This work expands on the work of [1] who derived

the incompressible momentum equation in constant rotation for geophysical

applications. In this paper the derivation is done for the full set of Navier-

Stokes equations in incompressible flow for pure rotation. It is shown that the

continuity equation as well as the conservation of energy equation are invariant

under transformation from the inertial frame to the rotational frame. From

these equations the non-inertial boundary layer equations for flow on a flat

plate subjected to rotation is derived in both the Cartesian and cylindrical co-

ordinate systems.
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1. Introduction

Derivation of the non-inertial Navier-Stokes equations (conservation of mass,

momentum and energy) is generally done using a Lagrangian approach [2]. Al-

though this method, when used correctly, leads to a specific set of equations, it

does not clearly indicate the origin of the fictitious forces and can lead to miscon-5

ceptions. The correct set of equations are required for boundary layer analysis,

therefore this study firstly considers the form of the non-inertial Navier-Stokes

equations before it moves on the non-inertial boundary layer equations.

In deriving the conservation of momentum equation, the general approach

entails the modification of Newton’s second law to include the fictitious forces

as body forces in the same manner as which the gravity force is handled:

∑
F +

∑
Ffictitious = ma (1)

The fictitious forces are derived separately using a point mass method to

obtain a relation for the inertial acceleration in terms of the non-inertial accel-

eration components [3]:

a =
d2X
dt2

+ Ω̇ ∧ x + Ω ∧ (Ω ∧ x) + V̇ + 2Ω ∧V (2)

These accelerations are multiplied by the density to obtain the momentum

form of the fictitious effects and included on the right hand side of the momen-10

tum equation.

This approach, although simple and intuitive, is not rigorous and lends itself

to mistakes with regards to the nature of the fictitious forces. It has been

observed in literature that these fictitious effects are erroneously added in the

conservation of energy equation ([4], [5]). This can particularly occur when this15

Lagrangian approach is used.

The studies that make use of the non-inertial boundary layer equations ([6],

[7], [8], [9], [10]) are applied to blade configurations that is approximated as flat
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plates. The studies listed did not include the energy equation. The application

of blade geometries extend from wind turbines to helicopter rotors and while20

the Cartesian formulation can be used it is in some instances more appropriate

to make use of a Cylindrical co-ordinates system. The Cylindrical formulation

are required for applications where axis symmetry is present such as cone flows

and other aero-ballistic geometries.

[1] proposed an Eulerian method for the derivation of the Coriolis and Cen-25

trifugal forces in the momentum equation. The derivation was limited to the

incompressible conservation of momentum equation in pure rotation. The ap-

plication of the work was in the Geophysical field. In this paper the work is

expanded upon to include the full set of Navier-Stokes equations for incompress-

ible flow in pure rotation.30

In most studies, the non-inertial conservation of mass and momentum equa-

tions are not explicitly derived ([6], [7], [9]). The equations are merely stated

and used in subsequent analysis. No mention is made of the conservation of en-

ergy equation. [10] and [8] cited the Lagrangian method of derivation used in [2].

In this study the Eulerian method is used to derive the non-inertial conservation35

of mass, momentum and energy equations.

One study was found that investigated the effect of non-inertial reference

frames on the conservation of energy equation [11]. This article made use of

a point mass method to indicate that the energy and work in a non-inertial

system remain invariant. The total energy and work of the system was used40

here and was therefore not applied to the partial differential conservation of

energy equation.

The resulting boundary layer equations were solved using a combination of

parametric methods [6], perturbation methods [8] and numerical solution of

similarity equations [9], [10]. In this study the boundary layer are resolved45

directly using the finite volume method.

In this paper the non-inertial equations are derived in vector form using a

series of frame transformations. These equations are implemented in a finite

volume solver. Validation simulations are conducted for the rotating disk [12]
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as described in [13].50

The vector equations are subjected to an order of magnitude analysis to

obtain the general boundary layer equations. This is done for Cartesian and

Cylindrical co-ordinates. These equations are used to describe the behaviour of

the boundary layer.

2. Frame Transformations55

Assume that three (3) frames exist; O, O’ and Ô as indicated in Figure 1.

Frame O is the stationary, inertial frame. Frame O’ is an orientation preserving

frame(i and i’ has the same orientation), which can be either inertial or non-

inertial depending on the cases analysed. This frame shares an origin with the

rotational frame Ô. Frame Ô is the non-inertial, rotational frame and is therefore60

not orientation preserving.

Now consider a point P which can be observed from all the frames. Point P

is rotating around the origin of frame O, but it is stationary in frames O’ and

Ô. The set of equations will be developed to describe the motion of point P in

the rotational frame Ô.65

Figure 1: Frame Descriptions

This point is described in frame O from where a local Galilean transforma-

tion, GM, will be used to describe it in frame O’. The rotational transform, RΩt,

will then be used to transform the resulting equations (as described in frame

O’) to the rotational frame Ô.
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2.1. Local Galilean Transformation70

The standard Galilean transform is limited in its application to constant

translation velocity vectors. [1] modified it to accommodate constant rotational

conditions.

The Galilean transform is used to transform between two reference frames

that only differ by a constant vector of motion. In Figure 2 such a motion is75

described between frame O and O’.

Assume that the origins of the two frames intersect at time t = 0 and that

frame O’ is moving at a constant velocity V in the x-direction. At time t =∆t,

the frames O and O’ are then distance xrel from each other.

Figure 2: Galilean Transformation between Frames

The relationship between the co-ordinates points for this single event be-80

tween frames O and O’ is described by Equation 3. This is known as the

standard Galilean transform.

x′ = x− V∆t

y′ = y

z′ = z

t′ = t (3)

Let’s further assume at this point that the constant motion need not be

in the x-direction alone and that it can be presented as a vector of motion as

shown in Figure 3. Let’s further assume that it can be used to describe constant85

motion in rotation as well.
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Figure 3: Modified Galilean Transformation between Frames

In order to simplify this case let all the frames share the same origin and

let the point P be stationary in the rotational frame Ô. Therefore point P is

rotating with a constant angular velocity around the origin or the inertial frame

O. The xrel component can then be described as:

xrel = V∆t (4)

where

V = Ω ∧ x (5)

The local Galilean transform operator is introduced such that any vector

observed from the inertial frame O can be related to the vector observed from

the orientation preserving frame O’ as:

u′(x′, t) = GMu(x, t) (6)

This definition will lead to a mathematical description to directly relate

the vector fields in the inertial frame O, to the vector fields in the orientation

preserving frame O’:

u′(x′, t) = GMu(x, t)

= GΩ∧xu(x, t)

= u(x, t) + x ∧Ω (7)
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2.2. Rotational Transform90

In order to simplify this derivation the assumption will be made that for

this specific case all the frames share a common origin. Since frame Ô shares an

origin with the frame O’ the vector components in Ô is related to O’ by defining

a rotational transform, RΩt. Equation 7 can be used to describe a vector as

seen from frame Ô in relation to a vector in frame O.95

û(x̂, t) = RΩtu′(x′, t)

= RΩtGΩ∧xu(x, t) (8)

RΩt is therefore the rotational transform that operates on x′ to obtain the x̂

co-ordinates in the rotational frame. From Equations 7 and 8 it can be derived

that for the velocity vector the following relation holds:

û(x̂, t) = RΩt{u(x, t) + x ∧Ω} (9)

Let’s assume, for convenience sake, that the rotation is around the z-axis

of frame O. The vector Ω is then described as Ω = (0, 0,Ω). The rotational

transform in this case will be described by the following tensor:

RΩt =




cosΩt sinΩt 0

− sinΩt cos Ωt 0

0 0 1


 (10)

The first column of this tensor is the projection of the x′ component on x̂,ŷ

and ẑ. In the same manner is the second and third columns the projection of

y′ and z′ respectively on the rotational axes. The quantitative values of the

rotation tensor will be different for each case.

Now that the local Galilean invariance and the rotational transform has been100

described for constant rotational conditions, both can be used in the derivation

of the non-inertial Navier-Stokes equations for constant rotation.

3. Transformation of the Navier-Stokes Equations

In this section the non-inertial Navier-Stokes equations for conservation of

mass, momentum and energy for constant rotation in incompressible flow will105
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be derived using an Eulerian approach.

3.1. Conservation of Momentum Equation

The non-inertial momentum equation for incompressible flow in constant

rotation was previously derived by [1]. The method is shown in Appendix A for

the purpose of enhancing the understanding of the subsequent sections.110

The inertial equation for incompressible momentum conservation is describe

by the equation below [3]:

∂u
∂t

+ (u · ∇)u = −∇ψ + ν∇2u (11)

where

ψ =
p

ρ
(12)

Transformation of the temporal term, according to the method of [1], indi-

cates that the first part of the Coriolis term originates from this transformation:

∂û
∂t

(x̂t, t) = RΩt[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](u(xt, t))︸ ︷︷ ︸

Coriolis

(13)

Similarly, the origin of the of second part of the Coriolis term and the cen-

trifugal term originates from the transformation of the advection term.

(û · ∇̂)û = RΩt[(u · ∇)u + ((x ∧Ω) · ∇)u + (u ∧Ω)︸ ︷︷ ︸
Coriolis

− (x ∧Ω) ∧Ω︸ ︷︷ ︸
Centrifugal

] (14)

In the derivation of Appendix A it is shown that the non-inertial form of the

momentum equation is:

∂û
∂t

+ (û · ∇̂)û = −∇̂ψ̂ + ν∇̂2û + 2û ∧Ω︸ ︷︷ ︸
Coriolis

− x̂ ∧Ω ∧Ω︸ ︷︷ ︸
Centrifugal

(15)

It can be seen from the equation above that the fictitious forces associated115

with constant rotation is the Coriolis and centrifugal effects. The centrifugal

effect originates from the transformation of the advection term while the Coriolis

effect is form both the transient and advection terms.
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3.2. Continuity Equation

The conservation of mass, known as the continuity equation, in the inertial

frames takes the form [3]:

∂ρ

∂t
+ (∇ · ρu) = 0 (16)

The first term represents the temporal change in density due to compress-120

ibility of the flow. Since this case involves incompressible flow this term can be

neglected, but for the purposes of the derivation it will remain in the equation

until the last step. The second term is the divergence of density and velocity

which represents the residual mass flux of a given control volume.

125

The non-inertial form of the unsteady density term can be described as:

∂ρ̂

∂t
(x̂t, t) = lim

∆t→0

ρ̂(x̂t+∆t, t+ ∆t)− ρ̂(x̂, t)
∆t

(17)

A Taylor series expansion of the term ρ̂(x̂t+∆t, t+∆t) will provide a similar

result as shown in Appendix A:

ρ̂(xt+∆t, t+ ∆t) = ρ̂(xt, t) + [∆t(Ω ∧ x) · ∇]ρ̂(xt, t) + (∆t
∂

∂t
)ρ̂(xt, t) (18)

Substitution of this expansion in the Equation 17 and manipulation result

in an expression that relates the non-inertial, unsteady density to the inertial

frame.
∂ρ̂

∂t
= RΩt

[∂ρ
∂t

+ (Ω ∧ x) · ∇ρ
]

(19)

The second term of the continuity equation will be affected by both frame

transformations since it contains the velocity vector:

(∇̂ · ρ̂û) = RΩtGΩ∧x(∇ · ρu)

= RΩt[∇ · ρ(GΩ∧xu)] (20)

Equation 9 is used to complete the local Galilean transformation, and the130

equation becomes:

(∇̂ · ρ̂û) = RΩt[∇ · ρ(u + x ∧Ω)]

= RΩt[∇ · (ρu) +∇ · ρ(x ∧Ω)] (21)
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The equation can be manipulated to the convenient form where the second

term is of equal size and opposite sign on the second term in Equation 19.

∇̂ · ρ̂û = RΩt[∇ · (ρu)− (Ω ∧ x) · ∇ρ] (22)

The addition of Equation 19 and Equation 22 leads to a relation between

the continuity equation in the inertial and rotational frames:

∂ρ̂

∂t
+ ∇̂ · ρ̂û = RΩt[

∂ρ

∂t
+∇ · (ρu)] (23)

The right hand side of the equation is equal to zero since this represents the

continuity equation in the inertial frame (Equation 16):

∂ρ̂

∂t
+ ∇̂ · ρ̂û = 0 (24)

Since this is the incompressible case, the temporal term is equal to zero. The

continuity equation for the rotational frame therefore takes the form:

∇̂ · ρ̂û = 0 (25)

The physical meaning of this equation describes the very nature of incom-

pressible flow assumption; the residual mass flux in a specific control volume is

zero. This means that there are no compressible effects in the flow because the

same amount of mass flux that enters a domain will exit it. The transient den-135

sity term causes a change in the residual mass flux in the domain that manifests

itself in the form of compressibility.

3.3. Conservation of Energy Equation

The energy equation in the inertial frame takes the following form [3]:

∂ρe

∂t
+ u · ∇(ρe) = −p(∇ · u) +∇ · (k∇T ) + Φ (26)

The time dependant term is transformed in a similar manner as shown in

section 3.2 where the continuity equation was derived. The first term is therefore

transformed and the non-inertial component becomes:

∂ρ̂ê

∂t
= RΩt

[∂ρe
∂t

+ (Ω ∧ x) · ∇(ρe)
]

(27)
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The convective term is transformed between the frames with the use of the

rotational transform, local Galilean transform and substitution of Equation 9140

û · ∇̂(ρ̂ê) = RΩtGΩ∧xu · ∇(ρe)

= RΩt[(u + x ∧Ω) · ∇(ρe)]

= RΩt[u · ∇(ρe)− (Ω ∧ x) · ∇(ρe)] (28)

The terms that represents the rate of work done by the normal pressure

forces is transform between the frames and Equation 9 is inserted:

−p̂(∇̂ · û) = RΩtGΩ∧x[−p(∇ · u)]

= RΩt[−p∇ · (u + x ∧Ω)]

= RΩt[−p∇ · u− p∇ · (x ∧Ω)] (29)

The diffusion is invariant under transformation since the heat transfer co-

efficient (k) and temperature (T) are scalars. The transformation between the

frames then becomes:145

∇̂ · (k̂∇̂T̂ ) = RΩtGΩ∧x[∇ · (k∇T )]

= RΩt[∇ · (k∇T )] (30)

The parameter Φ is a scalar value that represents the rate at which mechani-

cal energy is expended in the process of deformation of the fluid due to viscosity

[14]. This property, in component form, can be described by:

τ : ∇u = 2µ
[(

∂u
∂x

)2
+

(
∂v
∂y

)2

+
(

∂w
∂z

)2 − 1
3 (∇ · u)2

]

+µ
[(

∂v
∂x + ∂u

∂y

)2

+
(

∂w
∂y + ∂v

∂z

)2

+
(

∂u
∂z + ∂w

∂x

)2
]

(31)

The above equation indicates that the dissipation function is a scalar and

therefore invariant under transformation:150

Φ̂ = RΩtGΩ∧xΦ

= RΩtΦ (32)
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All the transformed terms of the energy equation is summed to obtain the

equation below.

∂ρ̂ê

∂t
+ û · ∇̂(ρ̂ê)+ p̂(∇̂ · û)− ∇̂ · (k̂∇̂T̂ ) + Φ̂ = RΩt[∂ρe

∂t + u∇ · (ρe)

+p(∇ · u)−∇ · (k∇T ) + Φ] (33)

The right hand side of the equation is equal to zero, as shown in Equation 26.

The energy equation in the non-inertial frame for constant rotation is invariant

under transformation in this specific case:

∂ρ̂ê

∂t
+ û · ∇̂(ρ̂ê) = −p̂(∇̂ · û) + ∇̂ · (k̂∇̂T̂ ) + Φ̂ (34)

This equation can be further simplified with the assumption of incompress-

ibility and using Equation 25:

∂ρ̂ê

∂t
+ (∇̂ · ρ̂êû) = ∇̂ · (k̂∇̂T̂ ) + Φ̂I (35)

Note that the energy equation is invariant under transformation. The lack

of fictious work and energy terms in the non-inertial frame was confirmed by

[11] by using a point mass model.155

4. Non-Inertial Boundary Layer Equations for a Flat Plate in Rota-

tion - Cartesian Formulation

In this next section the non-inertial conservation of mass and momentum

equations will be used to derive the non-inertial boundary layer equations for a

flat plate subjected to rotations.160

Significant work was done by [15] to characterize the laminar boundary layer

in turbomachinery applications. The figure below indicates the notation from

[15] that will be used in this derivation. The boundary layer develops along the

x̂- and ẑ- directions and the rotations assumes constant values along all the axis

of rotations.165
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Figure 4: Flow over a Rotation Flat Surface [15]

4.1. Non-Dimensional Parameters for Semi-Infinite Flat Plate

The non-dimensional parameters that is selected for the spatial variables is

as follow:

x⋆ =
x̂

L

y⋆ =
ŷ

δ

z⋆ =
ẑ

L

(36)

L is the reference distance, the assumption is made that the plate is infinite

in the x̂- and ẑ-directions. δ is the boundary layer height in the ŷ-direction as

a distance of L.

The velocity components are non-dimensionalized as follow, where U is the

characteristic velocity:

u⋆ =
û

U

v⋆ =
v̂

U

L

δ

w⋆ =
ŵ

U

t⋆ = t
U

L

(37)

The angular velocity can be non-dimensionalized by multiplying it by t.
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The units of angular velocity is rad/s, but since radians are already a non-

dimensional quantity it can be normalized in this manner.

ωi
⋆ = ωit

(38)

The specific pressure and kinematic viscosity can be normalized as follow:

ψ⋆ =
ψ

U2

ν⋆ =
ν

ν∞

(39)

4.2. Continuity Equation for Boundary Layer Flows170

The non-inertial continuity equation was derived in previous sections of this

paper:

∂û

∂x̂
+
∂v̂

∂ŷ
+
∂ŵ

∂ẑ
= 0 (40)

Applying the normalization parameters to this equation results in the non-

dimensional form of the equation:

∂(u⋆U)
∂(x⋆L)

+
∂(v⋆ Uδ

L )
∂(y⋆δ)

+
∂(w⋆U)
∂(z⋆L)

= 0 (41)

The equation above is multiplied by:

L

U
(42)

leading to the final non-dimensional form of the equation:

∂u⋆

∂x⋆
+
∂v⋆

∂y⋆
+
∂w⋆

∂z⋆
= 0

(43)

No terms can be neglected from this equation and boundary layer continuity

equation thus remains the same:

∂û

∂x̂
+
∂v̂

∂ŷ
+
∂ŵ

∂ẑ
= 0

(44)
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4.3. Conservation of Momentum Equation for Boundary Layer Flows

The non-inertial conservation of momentum equation (Equation 15) must be

broken up into its direction components in order to treat the principle directions

separately. The x̂-direction is specified as the first principle directions, and the

ŷ- and ẑ-direction the second and third respectively.175

4.3.1. First Principle Direction Equation

The non-inertial conservation of momentum equation in the x̂-direction is

as follows:

∂û

∂t
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ
+ ŵ

∂û

∂ẑ
= −∂ψ̂

∂x̂
+ ν(

∂2û

∂x̂2
+
∂2û

∂ŷ2
+
∂2û

∂ẑ2
)

+ 2v̂ω3 − 2ŵω2

+ x̂(ω3
2 + ω2

2)− ŷω1ω2 − ẑω1ω3

(45)

By implementing the normalization parameters and multiplying by:

L

U2
(46)

the equation take on the non-dimensional form that allows for dimensional anal-

ysis of the separate terms:

∂u⋆

∂t⋆
+ u⋆ ∂u

⋆

∂x⋆
+ v⋆ ∂u

⋆

∂y⋆
+ w⋆ ∂u

⋆

∂z⋆
= −∂ψ

⋆

∂x⋆

+ ν⋆ν∞[(
1
LU

)
∂2u⋆

∂x⋆2 + (
L

Uδ2
)
∂2u⋆

∂y⋆2 + (
1
LU

)
∂2u⋆

∂z⋆2 ]

+ (
δ

Ut
)2v⋆ω⋆

3 − (
L

Ut
)2w⋆ω⋆

2

+ (
L2

U2t2
)x⋆[ω⋆

3
2 + ω⋆

2
2]

− (
δL

U2t2
)y⋆ω⋆

1ω
⋆
2 − (

L2

U2t2
)z⋆ω⋆

1ω
⋆
3

(47)

For the purposes of simplification the assumption is made that the boundary

layer thickness approaches a very small number (ε2) while the characteristic

length approaches a very large number (∞):

δ → ε2

ε << 1

L→∞

(48)
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At this stage not much can be said regarding the magnitude of the characteristic

velocity or the time parameter. In order to keep the solution as general as

possible, it will only be assumed that velocity and time has positive values:

ε ≤ U ≤ ∞

ε ≤ t ≤ ∞
(49)

From the above the following simplifications can be made:

1
LU

→ ε

L

δ2
→∞

δ

L
→ ε2

δL→∞

(50)

Implementing the above simplifications in Equation 45 leads to the general

conservation of momentum for the non-inertial boundary layer equation in the

x-direction:

∂û

∂t
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ
+ ŵ

∂û

∂ẑ
= −∂ψ̂

∂x̂
+ ν(

∂2û

∂ŷ2
)

+ 2v̂ω3 − 2ŵω2

+ x̂(ω3
2 + ω2

2)− ŷω1ω2 − ẑω1ω3

(51)

4.3.2. Second Principle Direction Equation

The non-inertial conservation of momentum equation in the haty-direction

is as follows:

∂v̂

∂t
+ û

∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ
+ ŵ

∂v̂

∂ẑ
= −∂ψ̂

∂ŷ
+ ν(

∂2v̂

∂x̂2
+
∂2v̂

∂ŷ2
+
∂2v̂

∂ẑ2
)

+ 2ŵω1 − 2ûω3

+ ŷ(ω3
2 + ω1

2)− x̂ω1ω2 − ẑω2ω3

(52)

Implementing the non-dimensional parameters previously defined and mul-

tiplication by:
δ

U2
(53)
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Leads to:

(
δ2

L2
)
∂v⋆

∂t⋆
+ (

δ2

L2
)u⋆ ∂v

⋆

∂x⋆
+ (

δ2

L2
)v⋆ ∂v

⋆

∂y⋆
+ (

δ2

L2
)w⋆ ∂v

⋆

∂z⋆

= −∂ψ
⋆

∂y⋆

+ ν⋆ν∞((
δ2

UL3
)
∂2v⋆

∂x⋆2 + (
1
LU

)
∂2v⋆

∂y⋆2 + (
δ2

UL3
)
∂2v⋆

∂z⋆2 )

+ (
δ

Ut
)2w⋆ω⋆

1 − (
δ

Ut
)2u⋆ω⋆

3

+ y⋆((
δ2

U2t2
)ω⋆

3
2 + (

δ2

U2t2
)ω⋆

1
2)

− (
δL

U2t2
)x⋆ω⋆

1ω
⋆
2 − (

δL

U2t2
)z⋆ω⋆

2ω
⋆
3

(54)

When the same simplifications is used as in the x̂-direction case, the gen-

eral conservation of momentum equation for the non-inertial boundary layer

equation in the ŷ-direction becomes:

0 = −∂ψ̂
∂ŷ

+ 2ŵω1 − 2ûω3 + ŷ(ω3
2 + ω1

2)− x̂ω1ω2 − ẑω2ω3
(55)

4.3.3. Third Principle Direction Equation

The non-inertial conservation of momentum equation in the ẑ-direction is as

follows:

∂ŵ

∂t
+ û

∂ŵ

∂x̂
+ v̂

∂ŵ

∂ŷ
+ ŵ

∂ŵ

∂ẑ
= −∂ψ̂

∂ẑ
+ ν(

∂2ŵ

∂x̂2
+
∂2ŵ

∂ŷ2
+
∂2ŵ

∂ẑ2
)

+ 2ûω2 − 2v̂ω1

+ ẑ(ω2
2 + ω1

2)− x̂ω1ω3 − ŷω2ω3

(56)

Implementing the non-dimensional parameters previously defined and mul-

tiplication by:
L

U2
(57)
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Leads to:

∂w⋆

∂t
+ u⋆ ∂w

⋆

∂x⋆
+ v⋆ ∂w

⋆

∂y⋆
+ w⋆ ∂w

⋆

∂z⋆
= −∂ψ

⋆

∂z⋆

+ ν⋆ν∞[(
1
LU

)
∂2w⋆

∂x⋆2 + (
L

δU
)
∂2w⋆

∂y⋆2 + (
1
LU

)
∂2w⋆

∂z⋆2 ]

+ 2(
L

Ut
)u⋆ω2 − 2(

δ

Ut
)v⋆ω1

+ (
L2

U2t2
)z⋆(ω2

2 + ω1
2)

− (
L2

U2t2
)x⋆ω1ω3 − (

δL

U2t2
)y⋆ω2ω3

(58)

When the same simplifications is used as in the x̂-direction case, the gen-

eral conservation of momentum equation for the non-inertial boundary layer

equation in the ẑ-direction becomes:

∂ŵ

∂t
+ û

∂ŵ

∂x̂
+ v̂

∂ŵ

∂ŷ
+ ŵ

∂ŵ

∂ẑ
= −∂ψ̂

∂ẑ
+ ν(

∂2ŵ

∂ŷ2
)

+ 2ûω2 − 2v̂ω1

+ ẑ(ω2
2 + ω1

2)− x̂ω1ω3 − ŷω2ω3

(59)

4.4. Validation of Equations

In [15] the non-inertial boundary layer equations are defined as follow:

ux + uy + uz = 0

uux + vuy + wuz + 2ω2w − ω2
rrx = −1

ρ
px + νuyy

2(ω3u− ω1w)− ω2
rry = −1

ρ
py

uwx + vwy + wwz − 2ω2u− ω2
rrz = −1

ρ
px + νwyy

(60)

[15] however stated that the total change of pressure through out the bound-

ary layer long a principle direction normal to the wall will be of O(δ) and may

therefore still be neglected. The equation in the ŷ-direction can thus be simpli-

fied to:

−1
ρ
py = 0 (61)
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The mass conservation equation for the boundary layer agrees with the equa-

tion of [15]:

∂û

∂x̂
+
∂v̂

∂ŷ
+
∂ŵ

∂ẑ
= 0 (62)

The boundary layer equations derived in the previous section represents

a general case where no assumptions was made with regards to the order of

magnitude of characteristic velocity (U) and time (t). If it is assumed that the

product of U and t is greater than one, the boundary layer equation in the

x-direction will reduce to:

∂û

∂t
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ
+ ŵ

∂û

∂ẑ
= −∂ψ̂

∂x̂
+ ν(

∂2û

∂ŷ2
)

− 2ŵω2

+ x̂(ω3
2 + ω2

2)− ŷω1ω2 − ẑω1ω3

(63)

This equation agrees with the equation provided in [15].

Under the same assumption as above, the boundary layer in the ŷ-direction

becomes:

0 = −∂ψ̂
∂ŷ

− x̂ω1ω2 − ẑω2ω3 (64)

If the assumption from [15], with regards to the total change of pressure

through out the boundary layer long a principle direction normal to the wall,

is used it is reasonable to assume the pressure is only dependant on the x̂- and

ẑ-directions and the above equation then becomes:

0 = −∂ψ̂
∂ŷ

(65)

In a similar manner as explained above, the equation in the ẑ-direction will

become:

∂ŵ

∂t
+ û

∂ŵ

∂x̂
+ v̂

∂ŵ

∂ŷ
+ ŵ

∂ŵ

∂ẑ
= −∂ψ̂

∂ẑ
+ ν(

∂2ŵ

∂ŷ2
)

+ 2ûω2

+ ẑ(ω2
2 + ω1

2)− x̂ω1ω3 − ŷω2ω3

(66)
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This is consistent with the equation provided in [15].180

Now consider that the rotation on the flat plate is only around the ŷ-axis.

In such conditions the values of the angular velocities becomes:

ω1 = 0

ω2 = Ω

ω3 = 0

(67)

Substituting for these values in Equations 63, 65 and 66 respectively results

in the following set of non-inertial boundary layer equations:

∂û

∂t
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ
+ ŵ

∂û

∂ẑ
= −∂ψ̂

∂x̂
+ ν(

∂2û

∂ŷ2
)− 2ŵΩ + x̂Ω2

0 = −∂ψ̂
∂ŷ

∂ŵ

∂t
+ û

∂ŵ

∂x̂
+ v̂

∂ŵ

∂ŷ
+ ŵ

∂ŵ

∂ẑ
= −∂ψ̂

∂ẑ
+ ν(

∂2ŵ

∂ŷ2
) + 2ûΩ + ẑΩ2

(68)

This results in the same equations as in the literature for a rotating blade ([6],

[7]) indicating consistency of the method. The differences in sign between the

above and the cases stated in the literature is due to the difference in direction

of rotation.

5. Non-Inertial Boundary Layer Equations for a Flat Plate in Rota-185

tion - Cylindrical Formulation

In some instances,such as asymptotic expansions and other analytical meth-

ods, it will be more convenient to make use of a cylindrical formulation for the

boundary layer equations. Therefore the cylindrical form of the equations will

now be obtained.190

Consider the same plate as shown in Figure 4, but with the x̂- and ẑ-axis

written in terms of the r̂- and θ̂-axis cylindrical co-ordinates. The same method

of comparative orders will be used to obtain the boundary layer equations in

cylindrical co-ordinates.
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5.1. Non-Dimensional Parameters195

The non-dimensional parameters used in this analysis is indicated below. R

is the characteristic distance where, at a characteristic angle of β, the boundary

layer height in the ŷ-direction is δ.

r⋆ =
r̂

R

θ⋆ =
θ̂

β

y⋆ =
ŷ

δ

(69)

The normalized velocity components are a function of the characteristic ve-

locity in the free stream and in the case of the velocity in the ŷ-direction, R and

δ.

u⋆
r =

ûr

U∞

u⋆
θ =

ûθ

U∞

u⋆
y =

ûy

U∞

R

δ

(70)

The remainder of the parameters are normalized in the same manner as in the

previous section:

t⋆ = t
U∞
R

ωi
⋆ = ωit

ψ⋆ =
ψ

U2∞

ν⋆ =
ν

ν∞

(71)
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5.2. Continuity Equation for Boundary Layer Flows

The continuity equation in the cylindrical form is:

∂ûr

∂r̂
+
ûr

r̂
+

1

r̂

∂ûθ

∂θ̂
+
∂ûy

∂ŷ
= 0 (72)

The non-dimensional form of this equation is obtained by substituting the200

parameters form section 5.1 into the equation:

∂(u⋆
rU∞)

∂(r⋆R)
+
u⋆

rU∞
r⋆R

+
1

r⋆R

∂(u⋆
θU∞)

∂(θ⋆β)
+
∂(u⋆

y
U∞δ

R
)

∂(y⋆δ)
= 0 (73)

Multiplying this equation with,

R

U∞
(74)

Results in the non-dimensional form of the continuity equation where the

order of magnitude can be used to group the terms that are of comparable order.

∂u⋆
r

∂r⋆
+
u⋆

r

r⋆
+

1

β

1

r⋆

∂u⋆
θ

∂θ⋆
+
∂u⋆

y

∂y⋆
= 0 (75)

If it is considered that β is of finite value since 0◦ 6 β 6 360◦, and therefore

of an order comparable to 1, no terms can be neglected from the equation above.205

The boundary layer equation for continuity there remains:

∂ûr

∂r̂
+
ûr

r̂
+

1

r̂

∂ûθ

∂θ̂
+
∂ûy

∂ŷ
= 0 (76)

5.3. Conservation of Momentum Equation for Boundary Layer Flows

The vector form of non-inertial conservation of momentum equation is de-

rived in Appendix A and shown in Equation 15. The component form of this

equation can either be expressed in Cartesian co-ordinates (Equations 45, 52210

and 56) or in cylindrical co-ordinates as indicted in the next section.
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5.3.1. First Principle Direction Equation

The component form of the non-inertial momentum equation in the first

principle direction (in this case taken as the r̂-direction) is indicated below:

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+
ûθ

r̂

∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ŷ
= −∂ψ̂

∂r̂

+ ν̂
[∂2ûr

∂r̂2
+

1

r̂

∂ûr

∂r̂
+

1

r̂2
∂2ûr

∂θ̂2
− 2

r̂2
∂ûθ

∂θ̂
− ûr

r̂2
+
∂2ûr

∂ŷ2

]

−2ûθωy + 2ûyωθ︸ ︷︷ ︸
Coriolis

− ŷωrωy + r̂ω2
y + r̂ω2

θ︸ ︷︷ ︸
Centrifugal

(77)

Substitution of the non-dimensional parameters, as defined in Section 5.1 ,

into the equation, results in the non-dimensional form of the equation:
[U2

∞
R

]∂u⋆
r

∂t⋆
+

[U2
∞
R

]
u⋆

r
∂u⋆

r

∂r⋆
+

[U2
∞
Rβ

]u⋆
θ

r⋆

∂u⋆
r

∂θ⋆
−

[U2
∞
R

]u⋆
θ
2

r⋆
+

[U2
∞
R

]
u⋆

y
∂u⋆

r

∂y⋆
=

−
[U2

∞
R

]∂ψ⋆

∂r⋆
+

[U∞
R2

]
ν⋆ν∞

∂2u⋆
r

∂r⋆2
+

[U∞
R2

]
ν⋆ν∞

1

r⋆

∂u⋆
r

∂r⋆

+
[ U∞
R2β2

]
ν⋆ν∞

1

r⋆2

∂2u⋆
r

∂θ⋆2 −
[ U∞
R2β

]
ν⋆ν∞

2

r⋆2

∂u⋆
θ

∂θ⋆
−

[U∞
R2

]
ν⋆ν∞

u⋆
r

r⋆2

+
[U∞
δ2

]
ν⋆ν∞

∂2u⋆
r

∂y⋆2
−

[U∞
t

]
2u⋆

θω
⋆
y +

[U∞δ
Rt

]
2u⋆

yω
⋆
θ −

[ δ
t2

]
y⋆ω⋆

rω
⋆
y

+
[R
t2

]
r⋆ω⋆

y
2

+
[R
t2

]
r⋆ω⋆

θ
2

(78)

Multiplying the equation above with,

R

U2∞
(79)

Results in a non-dimensional form where the order of magnitude of the terms

can be evaluated:

∂u⋆
r

∂t⋆
+ u⋆

r
∂u⋆

r

∂r⋆
+

[ 1

β

]u⋆
θ

r⋆

∂u⋆
r

∂θ⋆
− u⋆

θ
2

r⋆
+ u⋆

y
∂u⋆

r

∂y⋆
= −∂ψ

⋆

∂r⋆
+

[ 1

U∞R

]
ν⋆ν∞

∂2u⋆
r

∂r⋆2

+
[ 1

U∞R

]
ν⋆ν∞

1

r⋆

∂u⋆
r

∂r⋆
+

[ 1

U∞Rβ2

]
ν⋆ν∞

1

r⋆2

∂2u⋆
r

∂θ⋆2 −
[ 1

U∞Rβ

]
ν⋆ν∞

2

r⋆2

∂u⋆
θ

∂θ⋆

−
[ 1

U∞R

]
ν⋆ν∞

u⋆
r

r⋆2
+

[ R

U∞δ2

]
ν⋆ν∞

∂2u⋆
r

∂y⋆2
−

[ R

U∞t

]
2u⋆

θω
⋆
y +

[ δ

U∞t

]
2u⋆

yω
⋆
θ

−
[ δR

U2∞t2

]
y⋆ω⋆

rω
⋆
y +

[ R2

U2∞t2

]
r⋆ω⋆

y
2

+
[ R2

U2∞t2

]
r⋆ω⋆

θ
2

(80)

As was done previously for the purposes of simplification, the assumption is

made that the boundary layer thickness approaches a very small number (ε2)
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while the characteristic length approaches a very large number (∞):

δ → ε2

ε << 1

R→∞

(81)

In order to keep the solution as general as possible, it will be assumed that

velocity, time and characteristic angle has positive values:

ε ≤ U∞ ≤ ∞

ε ≤ t ≤ ∞

0◦ 6 β 6 360◦

(82)

From the above the following simplifications can be made:

1
U∞R

→ ε

R

δ2
→∞

δR→∞

(83)

Following from the above, the most general form of the r̂-momentum bound-

ary layer equation becomes:

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+
ûθ

r̂

∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ŷ
= −∂ψ̂

∂r̂
+ ν̂

∂2ûr

∂ŷ2
− 2ûθωy + 2ûyωθ

− ŷωrωy + r̂ω2
y + r̂ω2

θ

(84)

5.3.2. Second Principle Direction Equation215

The components form of the momentum equation in the θ̂-direction is ex-

pressed as:

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+
ûθ

r̂

∂ûθ

∂θ̂
+
ûθûr

r̂
+ ûy

∂ûθ

∂ŷ
= −1

r̂

∂ψ̂

∂θ̂

+ ν̂
[∂2ûθ

∂r̂2
+

1

r̂

∂ûθ

∂r̂
+

1

r̂2
∂2ûθ

∂θ̂2
− 2

r̂2
∂ûr

∂θ̂
− ûθ

r̂2
+
∂2ûθ

∂ŷ2

]

−2ûyωr + 2ûrωy︸ ︷︷ ︸
Coriolis

− r̂ωrωθ − ŷωθωr︸ ︷︷ ︸
Centrifugal

(85)
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Substituting the non-dimensional parameters of Section 5.1 into the equation

above yields:
[U2

∞
R

]∂u⋆
θ

∂t⋆
+

[U2
∞
R

]
u⋆

r
∂u⋆

θ

∂r⋆
+

[U2
∞
βR

]u⋆
θ

r⋆

∂u⋆
θ

∂θ⋆
+

[U2
∞
R

]u⋆
θu

⋆
r

r⋆
+

[U2
∞
R

]
u⋆

y
∂u⋆

θ

∂y⋆
=

−
[U2

∞
βR

] 1

r⋆

∂ψ⋆

∂θ⋆
+

[U∞
R2

]
ν⋆ν∞

∂2u⋆
θ

∂r⋆2
+

[U∞
R2

]
ν⋆ν∞

1

r⋆

∂u⋆
θ

∂r⋆

+
[ U∞
β2R2

]
ν⋆ν∞

1

r⋆2

∂2u⋆
θ

∂θ⋆2 −
[ U∞
β2R2

]
ν⋆ν∞

2

r⋆2

∂u⋆
r

∂θ⋆
−

[U∞
R2

]
ν⋆ν∞

u⋆
θ

r⋆2

+
[U∞
δ2

]
ν⋆ν∞

∂2u⋆
θ

∂y⋆2
+

[U∞δ
Rt

]
2u⋆

yω
⋆
r −

[U∞
t

]
2u⋆

rω
⋆
y

−
[R
t2

]
r⋆ω⋆

rω
⋆
θ −

[ δ
t2

]
y⋆ω⋆

θω
⋆
r

(86)

Multiplying the equation above with,

βR

U2∞
(87)

Results in the non-dimensional form of the θ̂-momentum equation.

β
∂u⋆

θ

∂t⋆
+ βu⋆

r
∂u⋆

θ

∂r⋆
+
u⋆

θ

r⋆

∂u⋆
θ

∂θ⋆
+ β

u⋆
θu

⋆
r

r⋆
+ βu⋆

y
∂u⋆

θ

∂y⋆
= − 1

r⋆

∂ψ⋆

∂θ⋆

+
[ β

U∞R

]
ν⋆ν∞

∂2u⋆
θ

∂r⋆2
+

[ β

U∞R

]
ν⋆ν∞

1

r⋆

∂u⋆
θ

∂r⋆
+

[ 1

U∞Rβ

]
ν⋆ν∞

1

r⋆2

∂2u⋆
θ

∂θ⋆2

−
[ 1

U∞Rβ

]
ν⋆ν∞

2

r⋆2

∂u⋆
r

∂θ⋆
−

[ β

U∞R

]
ν⋆ν∞

u⋆
θ

r⋆2
+

[ βR

U∞δ2

]
ν⋆ν∞

∂2u⋆
θ

∂y⋆2

+
[ βδ

U∞t

]
2u⋆

yω
⋆
r −

[ βR
U∞t

]
2u⋆

rω
⋆
y −

[ βR2

U2∞t2

]
r⋆ω⋆

rω
⋆
θ −

[ βδR
U2∞t2

]
y⋆ω⋆

θω
⋆
r

(88)

The same simplifications that was done for the r̂-momentum equation is em-

ployed here to obtain the θ̂-momentum equation:

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+
ûθ

r̂

∂ûθ

∂θ̂
+
ûθûr

r̂
+ ûy

∂ûθ

∂ŷ
= −1

r̂

∂ψ̂

∂θ̂
+ ν̂

∂2ûθ

∂ŷ2
+ 2ûyωr − 2ûrωy

− r̂ωrωθ − ŷωθωr

(89)

5.3.3. Third Principle Direction Equation

The component form of the conservation of momentum equation in the ŷ-

direction is expressed as follow:

∂ûy

∂t
+ ûr

∂ûy

∂r̂
+
ûθ

r̂

∂ûy

∂θ̂
+ ûy

∂ûy

∂ŷ
=− ∂ψ̂

∂ŷ
+ ν

[∂2ûy

∂r̂2
+

1

r̂

∂ûy

∂r̂
+

1

r̂2
∂2ûy

∂θ̂2
+
∂2ûy

∂ŷ2

]

+2ûrωθ − 2ûθωr︸ ︷︷ ︸
Coriolis

− r̂ωrωy + ŷω2
r + ŷω2

θ︸ ︷︷ ︸
Centrifugal

(90)
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Substitution of the equations as shown in Section 5.1 will result in the ex-

pression:
[U2

∞δ

R2

]∂u⋆
y

∂t⋆
+

[U2
∞δ

R2

]
u⋆

r

∂u⋆
y

∂r⋆
+

[U2
∞
R2

]u⋆
θ

r⋆

∂u⋆
y

∂θ⋆
+

[U2
∞δ

R2

]
u⋆

y

∂u⋆
y

∂y⋆
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[U2
∞
δ
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∂y⋆
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[U∞δ
R3
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ν⋆ν∞

∂2u⋆
y
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∂u⋆
y

∂r⋆
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[ U∞δ
β2R3

]
ν⋆ν∞

1

r⋆2

∂2u⋆
y

∂θ⋆2

+
[U∞
δR

]
ν⋆ν∞

∂2u⋆
y

∂y⋆2
+

[U∞
t

]
2u⋆

rω
⋆
θ −

[U∞
t

]
2u⋆

θω
⋆
r −

[R
t2

]
r⋆ω⋆

rω
⋆
y

+
[ δ
t2

]
y⋆ω⋆

r
2

+
[ δ
t2

]
y⋆ω⋆

θ
2

(91)

Multiply the equation above with,

δ

U2∞
(92)

results in the non-dimensional form of the equation:
[ δ2
R2

]∂u⋆
y

∂t⋆
+

[ δ2
R2

]
u⋆

r

∂u⋆
y

∂r⋆
+

[ δ

R2

]u⋆
θ

r⋆

∂u⋆
y

∂θ⋆
+

[ δ2
R2

]
u⋆

y

∂u⋆
y

∂y⋆
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y
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1

r⋆
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y

∂r⋆
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U∞β2R3
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ν⋆ν∞

1

r⋆2

∂2u⋆
y

∂θ⋆2 +
[ 1

U∞R

]
ν⋆ν∞

∂2u⋆
y

∂y⋆2
+

[ δ

U∞t

]
2u⋆

rω
⋆
θ

−
[ δ

U∞t

]
2u⋆

θω
⋆
r −

[ Rδ

U2∞t2

]
r⋆ω⋆

rω
⋆
y +

[ δ2

U2∞t2

]
y⋆ω⋆

r
2

+
[ δ2

U2∞t2

]
y⋆ω⋆

θ
2

(93)

The simplification assumptions that was made in Section 5.3.1 is used here

to arrive at the boundary layer equation in the ŷ-direction for cylindrical co-

ordinates:

0 = −∂ψ̂
∂ŷ

+ 2ûrωθ − 2ûθωr − r̂ωrωy + ŷω2
r + ŷω2

θ (94)

5.4. Validation of Equations

The cylindrical form of the Navier-Stokes equations can be expressed, as

in the Cartesian case, in the inertial or the non-inertial form. Expressing a

set of equations, that was originally in the Cartesian system, in cylindrical220

co-ordinates does not place it in the non-inertial frame. This misconception

was noted in [16] as shown in Equation 95 where certain cylindrical terms (as

marked in the equation) where described as the Centrifugal and Coriolis forces
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respectively. Those terms are merely part of the material derivative in the

cylindrical system and has bears no relevance to the fictitious forces. This will225

we shown in the sections below.

∂ur

∂t
+ ur

∂ur

∂r
+
uθ

r

∂ur

∂θ
−

((((
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θ
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+uy

∂ur
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+ ν
[∂2ur

∂r2
+

1

r

∂ur

∂r
+

1
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∂2ur
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− 2
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∂uθ

∂θ
− ur
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+
∂2ur

∂y2

]

∂uθ

∂t
+ ur

∂uθ

∂r
+
uθ

r

∂uθ

∂θ
+

���Coriolis︷ ︸︸ ︷
uθur

r
+uy

∂uθ

∂y
= −1

r

∂ψ

∂θ

+ ν
[∂2uθ

∂r2
+

1

r

∂uθ

∂r
+

1

r2
∂2uθ

∂θ2
− 2

r2
∂ur

∂θ
− uθ

r2
+
∂2uθ

∂y2

]

(95)

The cylindrical system is just an alternative way of describing the motion (see

Figure 5) and has, as in the Cartesian formulation, different forms in the inertial

and non-inertial frames. The vector form of the non-inertial Navier-Stokes equa-230

tions are independent from co-ordinates system. The differences in the system

of equations (Cartesian and Cylindrical), only becomes apparent when written

in component form.

Figure 5: Cartesian vs Cylindrical descriptions of point P

Validation of the equations in Sections 5.2 and 5.3 will be done by converting

Equations 44, 51, 55, 59 to the cylindrical system. This should result in a set235

of equations that is exactly the same as Equations 76, 84, 94, 89.
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5.4.1. Conversion

The Cartesian positions is related to the Cylindrical positions as shown

below where it will be assumed that the ŷ-axis remains common between the

co-ordinates systems:

x̂ = r̂cosθ̂

ŷ = ŷ

ẑ = r̂sinθ̂

(96)

The velocity components is therefore related by:

û = ûrcosθ̂ − ûθsinθ̂

v̂ = ûy

ŵ = ûrsinθ̂ + ûθcosθ̂

(97)

The derivatives of one system are converted by means of the matrix:



∂ϕ̂
∂x̂

∂ϕ̂
∂ŷ

∂ϕ̂
∂ẑv


 =




cos θ̂ − sinθ̂
r̂

0

0 0 1

sin θ̂ cosθ̂
r̂

0







∂ϕ̂
∂r̂

∂ϕ̂

∂θ̂

∂ϕ̂
∂ŷ


 (98)

The relations above will be used to convert between the co-ordinates systems

in the section below to obtain the non-inertial boundary layer equations.

5.4.2. Continuity240

The continuity equation for the boundary layer was derived in Section 4.2

en resulted in Equation 44:

∂û

∂x̂
+
∂v̂

∂ŷ
+
∂ŵ

∂ẑ
= 0 (99)

Substitution with the equations as shown in the previous section, and re-

ordering of the terms, leads to the following expressions:

(
cosθ̂

∂

∂r̂
− sinθ̂

r̂

∂

∂θ̂

)
(ûrcosθ̂ − ûθsinθ̂) +

(
sinθ̂

∂

∂r̂
+
cosθ̂

r̂

∂

∂θ̂

)
(ûrsinθ̂ + ûθcosθ̂)

+
∂ûy

∂ŷ
= 0

∂ûr

∂r̂

(
cos2θ̂ + sin2θ̂

)
+
ûr

r̂

(
cos2θ̂ + sin2θ̂

)
+

1

r̂

∂ûθ

∂θ̂

(
cos2θ̂ + sin2θ̂

)
+
∂ûy

∂ŷ
= 0

(100)
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When the identity,

cos2θ̂ + sin2θ̂ = 1 (101)

is considered, the final equation becomes:

∂ûr

∂r̂
+
ûr

r̂
+

1

r̂

∂ûθ

∂θ̂
+
∂ûz

∂ẑ
= 0 (102)

This is the equation for the boundary layer in cylindrical coordinates and is te

same as Equation 76 derived in Section 4.2

5.4.3. Momentum Equations

The non-inertial x̂-momentum equation, as derived in Section 4.3 Equation

51, is:

∂û

∂t
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ
+ ŵ

∂û

∂ẑ
= −∂ψ̂

∂x̂
+ ν(

∂2û

∂ŷ2
) + 2v̂ω3 − 2ŵω2

+ x̂(ω3
2 + ω2

2)− ŷω1ω2 − ẑω1ω3

(103)

This can be converted to the Cylindrical co-ordinates system piece by piece245

to result in the final equation.

The transient term, with substitution of the conversions indicated in Sec-

tion 5.4.1 can be expanded to the following:

∂û

∂t
→ ∂

∂t
(ûrcosθ̂ − ûθsinθ̂)

∂

∂t
(ûrcosθ̂ − ûθsinθ̂) =

∂ûr

∂t
cosθ̂ +

∂cosθ̂

∂t
ûr − ∂ûθ

∂t
sinθ̂ − ∂sinθ̂

∂t
ûθ

(104)

If it is assumed that θ̂ → ε where ε→ 0, then cosθ̂ → 1 and sinθ̂ → 0. The

equation above will then simplify to:

∂û

∂t
→ ∂ûr

∂t
(105)
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The remainder of the terms is converted in a similar manner:

Advection terms

û
∂û

∂x̂
→ ûr

∂ûr

∂r̂

v̂
∂û

∂ŷ
→ ûy

∂ûr

∂ŷ

ŵ
∂û

∂ẑ
→ ûθ

r̂

∂ûr

∂θ̂
− û2

θ

r̂

Pressure term,

∂ψ̂

∂x̂
→ ∂ψ̂

∂r̂

Diffusion term,

∂2û

∂ŷ2
→ ∂2ûr

∂ŷ2

Coriolis terms,

2v̂ω̂3 − 2ŵω̂2 → [2ûy(ω̂rsinθ̂ + ω̂θcosθ̂)− 2(ûrsinθ̂ + uθ̂cosθ̂)ω̂z]

→ 2ûyωθ − 2ûθωy

Centrifugal terms,

x̂(ω̂2
3 + ω̂2

2)− ŷω̂1ω̂2 − ẑω̂1ω̂3 → −ŷω̂rω̂y + r̂ω̂2
y + r̂ω̂2

θ

(106)

This conversion will lead to the non-inertial form of the r̂-momentum, which is

the same as as the derived Equation 84:

∂ûr

∂t
+ ûr

∂ûr

∂r̂
+
ûθ

r̂

∂ûr

∂θ̂
− û2

θ

r̂
+ ûy

∂ûr

∂ŷ
=− ∂ψ̂

∂r̂
+ ν̂

∂2ûr

∂ŷ2
− 2ûθωy + 2ûyωθ

− ŷωrωy + r̂ω2
y + r̂ω2

θ

(107)

In a similar manner similarly the conversion of Equations 55 and 59 will lead

to equations that is the same as the derived Equations 89 and 94 respectively.

θ̂-momentum

∂ûθ

∂t
+ ûr

∂ûθ

∂r̂
+
ûθ

r̂

∂ûθ

∂θ̂
+
ûθûr

r̂
+ ûy

∂ûθ

∂ŷ
= −1

r̂

∂ψ̂

∂θ̂
+ ν̂

∂2ûθ

∂ŷ2
+ 2ûyω̂r

− 2ûrω̂y − r̂ω̂rω̂θ − ŷω̂θω̂r

0 = −∂ψ̂
∂ŷ

+ 2ûrω̂θ − 2ûθω̂r − r̂ω̂rω̂y + ŷω̂2
r + ŷω̂2

θ

(108)

Implementing the same conditions as in Equation 67 where rotation about
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the ŷ-axis was considered,

ω̂r = 0

ω̂θ = 0

ω̂y = Ω

(109)

results in the following set of non-inertial boundary layer equations:

∂ûr
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∂ûr
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+
ûθ
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∂r̂
+
ûθ
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+
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0 =− ∂ψ̂

∂ŷ

(110)

For exactly the same conditions, [9] made use of a set of boundary layer

equations where both the Coriolis and Centrifugal terms where present in the

r̂- and θ̂-momentum equations respectively. The work of [10] on the other hand

has the Centrifugal force only present in the r̂-direction and the Coriolis force250

only in the θ̂-direction. The derivation above indicates that in pure rotation

about the ŷ-axis, the Coriolis force is present in both the r̂- and θ̂-directions,

but it follows mathematically (and logically) that the centrifugal term should

only be present in the r̂-momentum equation.

6. Numerical Verification of Formulations255

The open source code OpenFOAM was utilized as a platform for the non-

inertial solver development and subsequent numerical analysis. Implementation

of the solver is discussed in a manner that facilitates reproduction of the code.

The theoretical formulation and numerical methods used in the subsequent anal-

ysis are provided to add to the reproducibility of results.260

The case analysed is a laminar rotating disk (6). Analytical results are

available from the literature ([12],[17]). This is compared with the steady state

numerical results.

In the non-inertial frame the velocity is zero at the wall since no-slip con-

ditions is assumed. The velocity profile further away from the wall increases265
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Figure 6: Graphical Representation of the Boundary Layer on a Rotating Disk

monotonically to approach the free-stream value in the far field. The free-

stream value is dependant on the distance from the centre of rotation and the

rotational velocity.

The boundary layer in the radial direction occurs as a result of secondary

effects of due to tangential rotation. In an ideal flow ur is zero through the entire270

domain. Viscous and secondary flow effects results in a boundary layer that is

approaches zero velocity in the near-wall and far-field respectively. In the central

regions of the boundary layer, the velocity profile is monotonically increasing

closer to the wall, and monotonically decreasing closer to the boundary layer

edge.275

The boundary layer behaviour is discussed in terms of the boundary layer

height, δ, displacement thickness, δ∗, momentum thickness, θ, and the Shape

Factor, H (Figure 7).

The boundary layer height is the distance from the wall where the stream-

wise velocity is 99% of the free stream velocity. The mathematical definitions280

of the displacement and momentum thickness are shown below.

δ∗ =
∫ y∗→∞

0

(
1− u

U∞

)
dy (111)
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Figure 7: Physical Interpretation of the Boundary Layer Parameters

θ =
∫ y∗→∞

0

u

U∞

(
1− u

U∞

)
dy (112)

A comparison of the parameters are shown in Figure 8 . This indicates that

the boundary layer thickness is be higher than the displacement thickness which

in turn is be higher than the momentum thickness.

δ > δ∗ > θ (113)

Figure 8: Comparison between the Boundary Layer, Displacement and Momentum Thick-

nesses

The parameters above are used to obtain a numerical approximation of the285

displacement and momentum thicknesses. The displacement thickness is the

area under the 1 − u
U∞

curve. The momentum thickness is the area under the
u

U∞
(1− u

U∞
) curve. This is demonstrated in Figure 9.
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Figure 9: Boundary Layer Parameters on a Flat Surface

The Shape factor is determined from the displacement and momentum thick-

nesses.290

H =
δ∗

θ
(114)

6.1. Theoretical Formulation

The following assumptions were made with regards to the flow field:

• The flow can be completely described in the non-inertial reference frame.

• The fluid is Newtonian i.e. the viscous stresses in the fluid is linearly

proportional to the strain rate.295

• The ideal gas law is an appropriate equation of state to utilize as a closure

model.

• The compressible form of the governing equations accurately describes the

flow.

• The flow is well within the laminar regime, no turbulence models are300

employed.

• Viscous dissipation terms, ϕ̂, in the energy equation can be neglected since

this is a laminar case and the dissipation term is associated with turbulent

behaviour.
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• The bulk viscosity is zero, as per Stoke’s Law.305

• Heat conduction is described by Fourier’s Law.

The governing equations implemented in the code are Equations 25, 15 and

35 respectively.

∇̂ · ρ̂û = 0 (115)

∂û
∂t

+ (û · ∇̂)û = −∇̂ψ̂ + ν∇̂2û + 2û ∧Ω︸ ︷︷ ︸
Coriolis

− x̂ ∧Ω ∧Ω︸ ︷︷ ︸
Centrifugal

(116)

∂ρ̂ê

∂t
+ (∇̂ · ρ̂êû) = ∇̂ · (k̂∇̂T̂ ) + Φ̂I (117)

The system of governing equations above requires additional equation to

close the system of equations. An equation of state, transport model and ther-310

modynamic model is required to ensure that for the number of unknowns, there

are the same number of equations. This specifies the equation of the state,

transport model and thermodynamic model.

The equation of state used in this case is the ideal gas law. This relates the

pressure to the density, gas constant and temperature of the fluid.

p = ρRT (118)

The transport model makes use the equation below, where the Prandtl num-

ber is expressed as a ratio of viscous diffusion rate over the thermal diffusion

rate:

Pr =
Cpµ

κ
(119)

In this implementation either the internal energy or enthalpy can be used to315

determine the temperature profile in the fluid.

The enthalpy is a function of internal energy and pressure.

hs = es +
p

ρ
(120)
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This equation can be re-written to make the internal energy the subject

of the equation. The known quantities in the flow is then used to model the

internal energy.

es = hs −
p

ρ

=
∫ T

T0

CpT −
ruT0

Mw

(121)

The total enthalpy can also be expressed as the sum of the static enthalpy

and the enthalpy of the dynamic pressure ([18]).

ht = hs + 0.5U ·U (122)

The static enthalpy is replaced with known quantities in the flow, and the

equation becomes:

ht =
∫ T

T0

CpdT + 0.5U ·U (123)

The solution algorithm that is used in the simulation is the Pressure Implicit

Method with Splitting of operators, referred to as the PISO method. The

method consist of one predictor and two corrector steps for each local iteration

and was used in its standard implementation in openFOAM.320

The openFOAM code allows for the separate discretization treatments of

divergence, gradient and laplacian terms. Time integration was done using the

implicit Euler method ([19, 20]). In the steady state solutions the Courant num-

ber was kept below 0.9 and in the accelerating and decelerating cases a constant

time step was used since time accurate results were required. Discretization of325

the divergence terms were done using Gauss’s theorem ([19, 20]) with a to-

tal variate diminishing (TVD) scheme. The gradient and laplacian term terms

were both discretised with Gauss’s theorem and a central differencing scheme

([19, 20]).

6.2. Case Setup330

Computational grids are required with a sufficient amount of cells in the

near-wall viscous region. In the near-wall region a sufficient resolution between
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Figure 10: Computational Domain for the Rotating Disk

discrete points are required to obtain a solution that is representative on the

flow. At least 15 cells are required in the boundary layer region on a steady

solution to achieve this. Grids were generated with between 25 - 50 cells in the335

boundary layer (Figure 10). The first dimensionless cell node height is in the

order of y+ = 1 ([19]). Grids were designed according to these parameters.

y+ =
u∗y
ν

≈ 1 (124)

The grids have been designed and tested to ensure grid independence. Re-

sults from the grid independence study is shown in 11 .

The boundary condition locations for the rotating disk are graphically rep-340

resented in Figure 12 . Table 1 indicates the velocity, pressure and temperature

boundary conditions.

The flow conditions were select to ensure that the fluid remains well within

the laminar regime. To this effect the Reynolds number for a rotating disk must
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Figure 11: Grid independence of the laminar rotating disk

be below 500 ([21], [22]).345

Table 2 shows the range of Reynolds numbers for each cases analysed.

Table 1: Boundary Conditions of the Rotating Disk

Boundary Velocity Pressure Temperature

axis symmetryPlane symmetryPlane symmetryPlane

bottomWall no-slip wall zeroGradient zeroGradient

sidesLower zeroGradient zeroGradient inletOutlet

sidesUpper ARFFreeStreamVelocity zeroGradient inletOutlet

top ARFFreeStreamVelocity zeroGradient inletOutlet

front/back cyclic cyclic cyclic

Rer = r

√
ω

ν
(125)
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Figure 12: Graphical Representation of Rotating Disk Boundary Condition

Table 2: Minimum and Maximum Reynolds Numbers of the Rotating Disk

Condition ω[rad/s] Rer Recrit

min 10 150 500

max 80 424.2 500

6.3. Results

In [12] a similarity solution is derived for the boundary layer on a rotating

disk. This solution is discussed in detail by [13]. A solution is obtained by intro-

ducing a similarity variable, η, to the boundary layer equations (in cylindrical

coordinates).

η = y

√
ωy

ν
(126)

In the above equation y is the height normal to the wall, ωy is the rotational

velocity (in rad/s) about the y-axis and ν is the kinematic viscosity. Using this

equation the partial differential equations (PDE) is reduced to a set of ordinary350

differential equations (ODE), as shown by [13]. This is solved numerically to

obtain the velocity profiles.

Simulations were conducted for rotational velocities of 10 rad/s, 45 rad/s and
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80 rad/s to obtain the steady state solution in the non-inertial frame (Figures

13 and 15). This solution was transformed to the inertial frame in order to355

compare it with the analytical result ([13, 12]) presented in Figures 14 and 16.

Figure 13: Non-Inertial Tangential Velocity Profiles

The tangential non-dimensional velocity profile is consistent with the ana-

lytical result near the wall region. Slight differences are observed in the far-field

of the boundary layer. The non-dimensional value is slightly higher than the

analytical value. This difference is increased with decreasing rotational velocity.360

Similar behaviour is observed for in the radial direction. The radial non-

dimensional velocity profile is overall consistent with the profile of the analytical

result. The apex of the simulated curves are in the same order as the analytical

apex. However, the simulated results are slightly higher than the analytical

result.365

The von Karman equations do not account for instabilities in the flow. The

differences between the numerical and analytical results are due to the formation

of laminar instabilities. Instabilities associated with rotating disks are mostly

of Type I and Type II ([23], [24]). Type I instabilities occur due to inviscid
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Figure 14: Comparison between Numerical and Analytical Tangential Velocity Results

cross flow interactions. An example of Type I is the spiral vortices occurring370

above a Reynold number of 500. These vortices facilitates flow transition. Type

II is instabilities that occur due to interaction between the Coriolis and viscous

forces in the boundary layer. The differences observed here are due to cyclonic

vortices at the centre of rotation. [25] investigated the sudden start of rotating

disks. They experimentally observed the growth of the cyclonic vortices due to375

Ekman suction. It was noted that the growth rate of the vortices diminishes

over time for steady state spin up conditions. This indicates that the cyclonic

vortices are stationary in steady state conditions. This instability is classified

as Type I since it operates in the inviscid region of the flow.

An increase in rotational velocity, adds to the momentum in the inviscid380

regions of the flow. The effect of the cyclonic vortice on the boundary layer

are reduced since the increased momentum dominates the formation of cyclonic

vortices. Therefore, with increasing rotational velocity, the cyclonic vortices

decrease and the numerical solution approximates the von Karman solution.
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Figure 15: Non-Inertial Radial Velocity Profiles

The boundary characteristic properties in the radial and tangential direc-

tions were determined for the numerical and analytical results.

ûθ

U∞

1− ûθ

U∞
ûθ

U∞
(1− ûθ

U∞
)

(127)

ûr

U∞

1− ûr

U∞
ûr

U∞
(1− ûr

U∞
)

(128)

The comparison of the boundary layer properties are shown in Tables 3 and385

4 for the tangential and radial direction respectively.

Comparisons are graphically represented for 10 rad/s and 80 rad/s in Fig-

ures 17-20. The effect of the cyclonic vortices on the boundary layer can be

observed in the graphs. In the near wall regions deviation from the von Kar-
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Figure 16: Comparison between Numerical and Analytical Radial Velocity Results

Table 3: Tangential Boundary Layer Properties of the Rotating Disk at 0.14 m radius

δθ [m] δ∗θ [m] θθ [m] Hθ

10 rad/s

Analytical 6.0e−3 1.283e−3 6.0102e−4 2.13

Numerical 6.2e−3 1.475e−3 7.5953e−4 1.94

Difference % 3 15.01 26.37 -8.98

45 rad/s

Analytical 2.8e−3 6.0482e−4 2.8332e−4 2.13

Numerical 2.83e−3 6.5632e−4 3.2964e−4 1.99

Difference % 1.14 8.51 16.34 -6.73

80 rad/s

Analytical 2.1e−3 4.5362e−4 2.1249e−4 2.13

Numerical 2.12e−3 4.7743e−4 2.2977e−4 2.07

Difference % 1.05 5.25 8.13 -2.66

man results are small. The regions near the free-stream flow deviated from the390

analytical result. The deviation is indirectly proportional to rotational velocity.
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Table 4: Radial Boundary Layer Properties of the Rotating Disk at 0.14 m radius

δr [m] δ∗r [m] θr [m] Hr

10 rad/s

Analytical 6.0e−3 5.5865e−3 3.6386e−4 15.35

Numerical 6.2e−3 5.7001e−3 4.2472e−4 13.42

Difference % 3 2.03 16.72 -12.58

45 rad/s

Analytical 2.8e−3 2.6335e−3 1.7152e−4 15.35

Numerical 2.83e−3 2.6184e−3 1.8724e−4 13.98

Difference % 1.14 -0.57 9.16 -8.91

80 rad/s

Analytical 2.1e−3 1.9751e−3 1.2864e−4 15.35

Numerical 2.12e−3 1.9619e−3 1.3964e−4 14.04

Difference % 1.05 -0.66 8.55 -8.49

Figure 17: Comparison of Tangential Boundary Layer Characteristic Profiles for 10 rad/s
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Figure 18: Comparison of Radial Boundary Layer Characteristic Profiles for 10 rad/s

Figure 19: Comparison of Tangential Boundary Layer Characteristic Profiles for 80 rad/s
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Figure 20: Comparison of Radial Boundary Layer Characteristic Profiles for 80 rad/s

7. Conclusion

This paper presented an Eulerian derivation of the non-inertial Navier-Stokes

equations for incompressible flow in constant rotational conditions. It further

extends to derive the non-inertial boundary layer equations for flat plate and395

cone configurations.

It was shown that the continuity equation and the energy equation is invari-

ant under transformation. Some instances have been observed in the literature

where the fictitious effects were added to the energy equation due to misconcep-

tion that arise when using the fluid parcel (Lagrangian) approach. This work400

indicates that no fictitious effects are present in the energy equation.

In the derivation of the non-inertial momentum equation the origin of the

fictitious forces could be observed. The Coriolis force originates from the trans-

formation of both the transient and the advection terms. The centrifugal force
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originates from the transformation of the advection term.405

The Eulerian approach does not allow for the misconceptions that can arise

when using the Lagrangian approach. The method is mathematically rigor-

ous, but more so the meaning of the terms is clear and leads to a improved

understanding of the origin of the fictitious effects in the rotational frame.

The derived boundary layer equations are consistent with the equations avail-410

able from the literature. Numerical solution of the boundary layer using a finite

volume approach compared well with the analytical solution for a rotating disk.

Nomenclature

Super Scripts and Sub Scripts

′ Orientation preserving frame415

ˆ Rotational frame

⋆ Non-Dimensional quantity

rel Relative conditions

t Time

∆t Change in time420

y projection on y-axis

z projection on z-axis

∞ Free-stream conditions

Alphabet425

a Acceleration vector

b Vector

e Internal energy

k Heat transfer coefficient

p Pressure430

r Distance from axiz of rotation

t Time
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u Veloctiy vector

x Distance in x-direction

x Position vector435

y Distance in y-direction

z Distance in z-direction

G Galilean operator

H Shape factor

I Identity matrix440

L Characteristic length

O Frame designations

R Rotational transform operator

T Temperature

U Characteristic velocity445

V Velocity in x-direction

V Velocity vector

X Position vector

Greek Letters

β Characteristic angle450

δ Boundary layer height

δ∗ Displacement thickness

ε Pertubation parameter

θ Momentum thickness

λ Second viscosity455

µ Dynamic viscosity

ν Kinematic viscosity

ρ Density

ψ Specific pressure p
ρ

Ω Rotational speed around the z-axis460

Ω Rotational speed vector
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Appendix A

The inertial equation for incompressible momentum conservation is describe

by the equation below:535

∂u
∂t

+ (u · ∇)u = −∇ψ + ν∇2u (129)

where

ψ =
p

ρ
(130)

The first term that will be transformed to obtain an expression that relates

the inertial to the rotational frame is the time dependant term. It will be done

by finding an expression for the time derivative in the limit:

∂û
∂t

(x̂t, t) = lim
∆t→0

û(x̂t+∆t, t+ ∆t)− û(x̂, t)
∆t

(131)

An expression for û(x̂t+∆t, t + ∆t) must be found. The form that the ex-540

pression must take, will directly relate the frames to each other:

û(x̂t+∆t, t+ ∆t) = RΩ(t+∆t)GΩ∧xt+∆t [u(xt+∆t, t+ ∆t)] (132)

The tools that is required to obtain an expression for the relation above is

described in the derivation below.

Perform a Taylor series expansion for xt+∆t:

xt+∆t = xt + ∆tV +O(∆t2) (133)

The resulting series is truncated at the second order term and the derivative545

term is substituted through Equation 5. Re-arrangement of the terms will lead

to an expression for displacement over the specific time interval:

xt+∆t − xt = x∆t = ∆t(Ω ∧ x) (134)
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A Taylor series expansion is done for u(xt+∆t, t+∆t), and with substitution

of Equation 134 it results in:

u(xt+∆t, t+ ∆t) = u(xt, t) + [∆t(Ω ∧ x) · ∇]u(xt, t) + (∆t
∂

∂t
)u(xt, t) (135)

Equation 135 is substituted into Equation 132 to get the expression:550

û(x̂t+∆t, t+ ∆t) = RΩ(t+∆t)GΩ∧xt+∆t{u(xt, t) + [∆t(Ω ∧ x) · ∇]u(xt, t)

+ (∆t
∂

∂t
)u(xt, t)} (136)

GΩ∧xt+∆t can be simplified as shown below if Equation 133 is substituted in

the operator and truncated at the second order:

GΩ∧xt+∆t = GΩ∧{xt+∆t[Ω∧xt+O(∆t2)]}

≈ GΩ∧xt +GΩ∧(∆tΩ∧xt) (137)

The expression for û(x̂t+∆t, t+ ∆t), then becomes:

û(x̂t+∆t, t+ ∆t) = RΩ(t+∆t)[GΩ∧xt +GΩ∧(∆tΩ∧xt)]{u(xt, t)

+ [∆t(Ω ∧ x) · ∇]u(xt, t) + (∆t
∂

∂t
)u(xt, t)} (138)

A final set of tools is required before the expressions for Equation 131 can

be completed.555

The assumption was made that point P is fixed in the rotating frame and the

rotation is around the shared origin or the frames, then an expression can be

derived for xt:

x̂ = RΩ(t+∆t)xt+∆t = RΩtxt

xt = RΩ∆txt+∆t (139)
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This relation is substituted in the Taylor series expansion for xt+∆t:560

xt+∆t = xt + ∆tV +O[∆t2]

= RΩ∆txt+∆t + ∆t(Ω ∧ xt) +O[∆t2] (140)

Re-arrange this equation and consider in the limit as ∆t approaches 0:

lim
∆t→0

RΩ∆txt+∆t − xt+∆t

∆t
= lim

∆t→0
(xt ∧Ω) (141)

Considering this relation for any vector b, and take into account that xt+∆t → xt

as ∆t → 0, the following equation is arrived at:

lim
∆t→0

RΩ∆tb− b
∆t

= b ∧Ω (142)

Substitute Equation 138 into Equation 131 to obtain the equation:

∂û
∂t

(x̂t, t) = lim
∆t→0

RΩ(t+∆t)[GΩ∧xt +GΩ∧(∆tΩ∧xt)]{[1− 1
RΩ∆t

∆t
+(∆t(Ω ∧ x) · ∇)]u(xt, t) + (∆t ∂

∂t )u(xt, t)}
∆t

(143)

By using Equation 142, and after re-arrangement of the terms the following565

expression is arrived at:

∂û
∂t

(x̂t, t) = RΩt[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧][GΩ∧xu(xt, t)] (144)

Substitute Equation 9 into the equation above will result in:

∂û
∂t

(x̂t, t) = RΩt[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](u(xt, t))

+ RΩt[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](x ∧Ω) (145)

In the equation above the transient component of [ ∂
∂t +(Ω∧x)·∇−Ω∧](x∧Ω)

is equal to zero:

∂

∂t
(x ∧Ω) =

∂x
∂t

∧Ω + (x ∧ ∂Ω
∂t

) = 0 (146)
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The first term is zero because the magnitude of x is constant over the time570

domain; its magnitude does not change with respect to the origin since this case

involves pure rotation. The second term is zero due to constant rotation of the

point P.

By introduction of the identity below, the terms [(Ω ∧ x) · ∇ −Ω∧](x ∧Ω)

can be simplified:575

(a · ∇)(x ∧Ω) = a ∧Ω (147)

The entire term is hence cancelled out:

[(Ω ∧ x) · ∇ −Ω∧](x ∧Ω) = [(Ω ∧ x) · ∇](x ∧Ω)−Ω ∧ (x ∧Ω)

= Ω ∧ (x ∧Ω)−Ω ∧ (x ∧Ω)

= 0 (148)

This leads to the final description of the unsteady terms in the momentum

equation. Note the appearance of one part of the Coriolis effect manifesting in

the relation below.

∂û
∂t

(x̂t, t) = RΩt[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](u(xt, t)) (149)

The relation of the inertial to the rotational advection term is described in580

the following manner:

(û · ∇̂)û = RΩtGΩ∧x(u · ∇)u = RΩt(GΩ∧xu · ∇)GΩ∧xu (150)

Substitution of Equation 9 into the equation above results in:

(û · ∇̂)û = RΩt[(u + x ∧Ω) · ∇](u + x ∧Ω)

= RΩt[(u + x ∧Ω) · ∇]u +RΩt[(u + x ∧Ω) · ∇](x ∧Ω) (151)
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Dividing out all the terms gives the final relation of the advection term

between the frames. Note the appearance of the centrifugal effect and the other

part of the Coriolis effect from the transformation of the advection term.585

(û · ∇̂)û = RΩt[(u · ∇)u + ((x ∧Ω) · ∇)u + (u ∧Ω) + (x ∧Ω) ∧Ω] (152)

The gradient of the specific pressure term in the momentum equation is

described between the frames in the following manner:

∇̂ψ̂ = RΩtGΩ∧x∇ψ (153)

It was discussed earlier that scalars are invariant under the local Galilean

transformation. Scalars will not be invariant under the rotational transform if

spatial operations is performed on it since the axis along which the discretization590

is performed, changes between frames. The relation between the gradient of

specific pressure in the inertial and rotational frames is therefore described by:

∇̂ψ̂ = RΩt∇ψ (154)

The diffusion term in the inertial frame can be related to the rotational

frame in the following manner:

ν∇̂2û = RΩtGΩ∧xν∇2u

= RΩtν∇2GΩ∧xu

= RΩtν∇2(u + x ∧Ω)

= RΩtν[∇2u +∇2(x ∧Ω)] (155)

If it is considered that:595

∇2(x ∧Ω) = 0 (156)
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It can be shown that the diffusion term is invariant under constant transfor-

mation:

ν∇̂2û = RΩtν∇2u (157)

Note that the pressure and viscous terms are Galilean invariant in this in-

stance and combine the two components in a vector f(x, t):

f(x, t) = −∇ψ + ν∇2u (158)

The new, combined parameter in the inertial and rotational frames is related600

in the following manner due to the invariance:

f̂(x̂, t) = RΩtf(x, t) (159)

The transformation of the momentum is completed through the summation

of the unsteady and advection terms in the rotational and inertial frames as

determined in Equation 149 and Equation 152:

∂û
∂t

+ (û · ∇̂)û = RΩt[
∂u
∂t

+ (u · ∇)u + 2u ∧Ω + x ∧Ω ∧Ω]

= RΩt[
∂u
∂t

+ (u · ∇)u] +RΩt[2u ∧Ω + x ∧Ω ∧Ω](160)

The first term grouping of the equation above is simplified as shown in the605

equations below. This was done using Equation 129, Equation 158 and Equation

159.

RΩt[
∂u
∂t

+ (u · ∇)u] = RΩt[−∆ψ + ν∇2u]

= RΩtf(x, t)

= f̂(x̂, t) (161)

The second term grouping, with the insertion of Equation 9, becomes:
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RΩt[2u ∧Ω + x ∧Ω ∧Ω] = 2(RΩtu) ∧Ω + (RΩtx) ∧Ω ∧Ω

= 2[û−RΩt(x ∧Ω)] ∧Ω + (RΩtx) ∧Ω ∧Ω

= 2û ∧Ω− x̂ ∧Ω ∧Ω (162)

The two simplifications above is filled back into Equation 160 and results in

the non-inertial momentum equation for constant rotation.610

∂û
∂t

+ (û · ∇̂)û = −∇̂ψ̂ + ν∇̂2û + 2û ∧Ω− x̂ ∧Ω ∧Ω (163)

It can be seen from the equation above that the fictitious forces associated

with constant rotation is the centrifugal and the Coriolis effects. The centrifu-

gal effect originates from the transformation of the advection terms while the

Coriolis effect is form both the transient and advection terms.
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