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Abstract 

Carbonation of hydrous minerals such as calcium hydroxide (Ca(OH)2), is an important process in 

environmental and industrial applications for the construction industry, geological disposal 

repositories for nuclear waste and green technologies for carbon capture. Although the role of ions 

during the carbonation mechanism of Ca(OH)2 is still unclear, we identified the exchange of ions 

during the dissolution-and-precipitation process, by determining the change in isotopic composition 

of carbonation products using Time-of-Flight Secondary Ion Mass Spectrometry. Our samples of pure 

Ca(18OH)2 carbonated in air were characterized using Scanning Electron Microscopy and Raman 

spectroscopy, aided by Density Functional Theory calculations.  

Our results show that the carbonation process at high pH is a two-stage mechanism. The first stage 

occurs in a short time after Ca(18OH)2 is exposed to air and involved the dissolution of surface Ca ions 

and hydroxyl 18OH groups, which reacts directly with dissolved CO2, leading to 1/3 of 18O in the 

oxygen content of carbonate phases. The second stage occurs within 24h of exposure allowing a 

rebalance of the oxygen isotopic composition of the carbonate phases with higher content of 16O. 

Introduction 

The carbonation process of hydrous materials and minerals such as calcium and magnesium 

hydroxides (Ca(OH)2 and Mg(OH)2, respectively) is important for a number of environmental and 

technological applications. These include carbon capture and storage (CCS)1,2, scrubbing procedures 

of solid waste incinerators3, emerging low carbon building technologies for construction4-6, and 

geological disposal repositories for nuclear waste7,8 where portlandite content in cements becomes 

a critical factor. Despite its importance,2,4,9-14 the carbonation mechanism in high pH environments is 

debated and not yet fully understood. Hence, to devise successful and efficient strategies for carbon 

dioxide (CO2) sequestration, soil stabilization in geoengineering and building mortars with enhanced 

properties, a clear understanding of the details of carbonation mechanisms is required. 
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Two carbonation mechanisms have been proposed for portlandite at standard conditions, 25˚C and 

1atm, based on solid state and a dissolution-carbonation15-19 processes (the former is highly unlikely 

whereas the latter has been documented in a number of cases). Moorehead20 suggested that 

carbonation of Ca(OH)2 at room temperature in CO2-rich environments is a solid-state reaction, 

which entails substitution of hydroxyl groups (OH-) with carbonate groups (CO3
2-) in a topotactic 

transition, leading to a change of the portlandite d{001} spacing.11,20-22 Other authors suggested that 

the reaction occurs via a dissolution-and-precipitation mechanism catalyzed by water molecules 

adsorbed on the mineral surfaces11,23,26  Overall, these two mechanisms would be expected to lead 

to different reaction rates, and result in the formation of passivating carbonate layers25 effectively 

quenching the exploitation of Ca(OH)2 surface properties.11  

Recent work by Rodriguez-Navarro and colleagues has involved detailed analysis of calcium 

carbonate formation from saturated solution and through the carbonation of calcium hydroxide 

nano-particles.26-27  These show that the formation of thermodynamically stable calcite can proceed 

through a cascade of hydrated and dehydrated amorphous calcium carbonate phases and include 

(or not) intermediate crystalline phases of vaterite and/or aragonite.  In addition to the requirement 

for CO2 for carbonation the presence of water, adsorbed from a high RH atmosphere was 

demonstrated.  In the first instance the aim of the present work is to show that artificial doping of 

isotopes can be used to trace the history of the species involved in the formation of carbonate ions, 

and thus shed light on the mechanisms of portlandite carbonation. 

The natural variation of stable isotopes, such as carbon-13 (13C) or oxygen-18 (18O), can be exploited 

in the study of carbonation of surfaces, and thus provide complementary results to other 

techniques.29-32 An isotope can be traced during chemical reactions and, as different reaction 

mechanisms lead to different products with distinctive isotopic compositions29-34, it provides insights 

on the stages occurring during the reaction. Our research investigated the role of OH- ions in the 

carbonation mechanism of Ca(OH)2 by using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-

SIMS) on an artificial Ca(18OH)2 sample carbonated in air (rich in 16O) for 3 minutes (at 27% RH), 1, 8 
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and 137 days (50% RH).  Samples were characterized using Scanning Electron Microscopy (SEM) and 

Raman spectroscopy. Density functional theory calculations were also employed to corroborate the 

Raman shifts associated with different degrees of isotopic substitution in Ca(OH)2 and CaCO3. We 

finally discuss critical factors in the carbonation process, which provides new insights of the 

carbonation mechanism of Ca(OH)2. 

Experimental and Theoretical Methods 

Material preparation 

18O-calcium hydroxide was produced by reacting calcium metal of 99% purity with isotopic 

labelled water containing >99% 18O (Taiyo Nippon Sanso Corporation), on a platinum (Pt) foil 99.9% 

pure. To prevent oxygen contamination and carbonation of the Ca(OH)2 sample, the reaction was 

performed in an inert atmosphere inside a glove bag filled with nitrogen, where CO2 and RH were 

monitored using a K-30 10,000ppm sensor for CO2, and a DHT22 sensor for temperature and 

humidity. Both sensors were controlled via an Arduino Uno microcontroller, which was also used for 

real time monitoring of the conditions. 

Experiments were conducted as follows. 1) The equipment and materials were placed into a glove 

bag that was then filled with nitrogen. 2) The residual air in the bag was flushed using dry nitrogen 

until the sensor readings were 0 ppm CO2 and <5% RH. 3) 20mg of Ca metal was weighed on a 

precision balance and deposited on a Pt foil, positioned inside an open crucible. 4) 800μl of 18O-

water was reacted with the Ca metal using a glass Hamilton syringe equipped with a metal needle. 

The reaction was carried out in an excess of 18O-water to promote the complete reaction of Ca. 5). 

To ensure the complete evaporation of excess of 18O-water, the bag was flushed several times with 

dry nitrogen. 6) When the majority of the water had evaporated, portions of the sample were 

removed from the Pt foil. Portions were sealed inside a glass cell with a quartz window for the 

Raman analysis; the N2-rich atmosphere prevented carbonation before completion of the analysis. 

The same procedure was followed for samples for SEM analysis except samples were placed in a 
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small vial and stored under low vacuum. Material for SIMS analysis remained on the Pt foil and 

stored in a glass vial under low vacuum. 

ToF-SIMS analysis 

In order to study the isotopic composition of carbonates at the very beginning of the reaction, the 

first ToF-SIMS analysis was carried out after approximately 3 minutes exposure to air at 23°±2°C and 

27±10% RH. Low RH levels were maintained to minimize the carbonation rate.26 After initial analysis, 

the samples were removed from the instrument and allowed to stand in a dust-free controlled 

environment at 23±2°C and 50±10% RH for 1, 8 and 138 days before further analysis. Care was taken 

to analyze fresh areas of the samples that had not previously been exposed to the ion and electron 

beams. An Analar CaCO3 powder was analyzed under similar conditions as a reference. 

Static ToF-SIMS analyses were carried out using an ION-TOF ‘TOF-SIMS IV – 200’ instrument (ION-

TOF GmbH, Münster, Germany) of single-stage reflectron design.32 Positive and negative ion spectra 

of the samples were obtained using a Bi32+ focused liquid metal ion gun at 20keV energy, incident at 

45° to the surface normal and operated in ‘bunched’ mode for high mass resolution. This mode used 

7ns duration ion pulses at 10kHz repetition rate. Charge compensation was effected by low-energy 

(ca. 20eV) electrons provided by a flood gun.  The total ion dose density was less than 5 × 1016 ions 

m-2 in all cases. The topography of the sample surface and the ion gun mode of operation limited the 

mass resolution in this work to ca. m/Δm = 4000.  

Positive and negative ion static SIMS spectra of the samples were recorded in triplicate at room 

temperature with a 128 × 128 pixel raster and a field of view of 50μm × 50μm. Sample preparation 

and data analysis was carried out according to the procedure detailed in the SI. 

Raman analysis 

Raman analysis was performed using a Renishaw inVia Raman Microscope equipped with a laser 

operating at a wavelength of 785 nm. The analysis was undertaken by focusing the laser with a 50x 

long distance objective. Laser power at the sample surface was set to 66mW at the sample surface 

and the acquisition time was set between 3 and 10s for each of the 10 accumulations acquired. Each 
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spectrum was taken over the wavenumber range 77–1290cm−1. Three spectra per sample were 

acquired to evaluate variations between different locations. Prior to the analysis, the spectrometer 

was calibrated using a monocrystalline silicon standard specimen. Renishaw WiRe 4.0 software was 

applied for peak fitting and deconvolution of Raman spectra. The sample was initially kept in a N2-

rich atmosphere inside the glass cell with quartz window to prevent contamination by atmospheric 

CO2. To investigate the initial stage of carbonation, the quartz window was removed and spectral 

acquisition of the carbonate phases formed at 23°C and 30%±10%RH was started. These conditions 

reduced the carbonation rate and, therefore provided better evidence of the phase transformations 

related to carbonation. Spectra were taken at intervals up to 55 minutes from initial exposure of the 

sample to air.  

SEM analysis 

SEM images were obtained using a JEOL field emission scanning electron microscope (FESEM) 

model JSM6301F. Working distance for scanning and acquiring the images was 7mm, accelerating 

voltage was of 5kV and the spot size 7nm. Prior to analysis the sample powder was fixed to a metal 

holder using a double-sided carbon tape and then dried for 24 hours in a vacuum chamber before 

application of a 10nm thick layer of chromium using a Quantum Q 150T Turbo-Pumped Sputter 

Coater to prevent surface charging. Once removed from the sputter coater, the sample was 

immediately inserted into the SEM and analyzed. 

Computational procedure 

Simulations were used to determine the vibrational shifts and Raman spectra for 16O and 18O-

calcium hydroxide (Ca(16OH)2, Ca(18OH)2 respectively), as well as calcite containing different amounts 

of 18O (CaC18Ox
16O(3-x) with x=0,1,2,3). Calculations were performed at the DFT level using the VASP36-

36 code with the PBE39-40 exchange-correlation functionals including the van der Waals correction 

optB86b-vdW41,42, which improves the description of layered materials. The Brillouin zone was 

sampled using 4 × 4 × 4 Monkhorst-Pack k-point mesh for portlandite and 4 × 4 × 1 for calcite with a 
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plane wave cut-off of 500 eV. Convergence criteria were 10−8 eV for the electronic relaxation and 

10−4 eV Å−1 for ionic forces, allowing both the atoms and lattice to relax. 

The calculated structure of portlandite contains 1 Ca(OH)2 unit and had lattice parameters of a = b 

= 3.573Å, c = 4.794Å, α = β = 90° and γ = 120°, which compared well with the experimental values of 

Desgranges et al.44.  The calculated structure of calcite contained 6 CaCO3 units and had lattice 

parameters of a = b = 5.03Å, c = 16.80Å, α = β = 90° and γ = 120°, and agreed with the experimental 

values of Effenberger et al.45 

From the minimized structures, the vibrational frequencies were obtained using finite 

displacements46 and the Raman activity47,48 was then estimated by calculating the polarizability of 

the vibrational modes. As noted, the minimized structure for portlandite compares well with the 

experimental values (Table S1) and this model has recently been shown to perform well for the 

calcium oxide and carbonate.49,50 Additional calculations were undertaken to predict the shift in 

Raman frequencies due to isotopic substitution and compared to the DFT predicted Raman active 

peaks. Each vibrational mode is composed of specific motions of the atomic species associated with 

it. The interaction between the species involved can be related to a bond and this can be illustrated 

by considering a diatomic molecule. From the initial calculation we obtain a force constant k from 

which the frequency, f, can be calculated according to Equation 1, where 𝜇 is the reduced mass of 

the components of the mode given by Equation 2, and, m1 and m2 are the masses vibrating. 

𝑓 = √
𝑘

𝜇
                       (1) 

𝜇 =
𝑚1𝑚2

𝑚1+𝑚2
                       (2) 

When accounting for the difference in mass between 16O and 18O the reduced mass changes 

according to the O isotope. In practice, we evaluate and diagonalise the complete mass-weighted 

force constant matrix.51-53  
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Figure 1 - FESEM image of the Ca(18OH)2 produced by reacting calcium with H2
18O.  Some hexagonal 

plate-shaped nano-particles typical of Ca(OH)2 are visible (A) but the material is mostly in smaller 

irregular shaped crystalline particles (B). 

Results  

SEM and Raman results 

A microscopic FESEM image is shown in Figure 1 of a Ca(18OH)2 sample comprising hexagonal 

plate-shaped crystals of 200-400nm and crystalline particles of 70-150 nm. The presence of many 

irregular shaped crystals is consistent with the exothermic reaction of calcium with water.  The rapid 

evaporation of the excess H2
18O is likely to have resulted in a high nucleation rate.  This then 

subsequently led to numerous seed crystals competing for ions from which to grow and provided a 

limited opportunity for Ostwald ripening of typical hexagonal nanoparticles, The reaction and 

storage conditions ensured that no carbonation could take place and only Ca(OH)2 could form. 
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Figure 2 - Raman spectrum of the Ca(18OH)2 produced during the experiments, compared with the 

Raman spectrum of a generic 16O-Ca(OH)2 (lime putty). 

Figure 2 shows the Raman spectrum from 100 to 1200 cm-1 of Ca(18OH)2 after about 10 minutes 

from exposure to air, compared with the spectrum of a generic 16O-lime putty partially exposed to 

air. Both spectra contain portlandite and calcite peaks. Several peaks of Ca(18OH)2 are shifted to 

lower wavenumbers compared to the Ca(16OH)2.  Of the peaks due to portlandite the peak at 356cm-

1 is shifted ~-19cm-1 to 337cm-1, the peak at 251cm-1 is shifted ~-12cm-1 to 239cm-1.  We also observe 

that the peak at 1086 cm-1 resulting from some carbonation of the samples is shifted ~-19cm-1 to 

1067 cm-1. 
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Figure 3 - Raman spectrum of the Ca(18OH)2 produced partially carbonated. Spectra taken after 10’, 

30’ 55’ since the beginning of the tests, which exposes the sample to air. 

Figure 3 shows the Raman spectra from 100 to 1300 cm-1 of the Ca(18OH)2 produced, after 10, 30 

and 55 minutes from opening of the cell, which allowed contact of the sample with air. Peaks at 239, 

337 and 655 cm-1 are related to Ca(18OH)2 and become weaker over time. This provides evidence of 

Ca(18OH)2 reacting with atmospheric CO2 containing 16O and forming CaCO3. According to our 

simulations, peaks at 152, 271, 698 and 1067 cm-1 can be best modelled as calcite with each 

carbonate containing a single 18O (although it is possible that the peak at 1067cm-1 also includes a 

contribution of 18O-enriched ACC; see discussion later in this paragraph). These peaks are shifted to 

lower wavenumbers compared to literature spectra of 16O-calcite (Table S4). The intensity of the 

peak at 152 cm-1 remains unaltered over time, whereas the intensity of peaks at 271, 698 and 1083 

cm-1 increase, suggesting progression of the carbonation reaction with the formation of an 

increasing amounts of 16O-calcite. The broad peaks at 450 cm-1 disappearing after 10 minutes 
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reaction, suggests the presence of a metastable phase such as ACC (main peak included in the 

1067cm-1 peak as previously mentioned). 

 

Computation Results  

Table 1 compares Raman active modes of a natural (Ca(16OH)2) and an isotopically labelled 

(Ca(18OH)2) portlandite calculated using DFT with experimental values. Although, the relative 

positions of the peaks are captured for both minerals, there is a systematic displacement of the 

predicted peaks relative to the experimental positions53. This is a well-known effect of DFT 

calculations and relates to the estimation of bond strengths.  

 

Table 1 - Comparison of experimental and simulated Raman active modes of portlandite. The Raman 

shift due to the different O isotopes, denoted Δ, is compared to the theoretically derived values 

(Equation 1). 

Experiment [cm-1] Simulation [cm-1] 
Theory  

[cm-1] 

Ca(16OH)2 Ca(18OH)2 Δ Ca(16OH)2 Ca(18OH)2 Δ Δ 

251 239 -12 256 242 -14 -14 

356 337 -19 381 361 -20 -19 

675 675 0 715 715 0 0 

 

The two low frequency peaks of portlandite are associated with vibrations of the hydroxide ions 

relative to each other in plane and out of plane. In the case where two hydroxide ions are vibrating 

as whole units the individual masses in the pure case are m1=m2=17 while for full isotopic 

substitution with 18O these increase to m1=m2=19. The reduced masses are 17/2 and 19/2 

respectively, and thus the theoretical treatment as in Equation 1 predicts the isotopically doped 

system has a frequency to (17/19)1/2 of the natural case corresponding to shifts of -14cm-1 (for peak 

1 at 251cm-1) and -19cm-1 (peak 2). In contrast, the high frequency portlandite peak at 675cm-1 is 
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associated with the rocking mode of individual hydroxide ions. Since this is a rotational vibration, 

any shift is due not to the change in effective mass associated with isotopic substitution but with the 

moment of inertia. The resulting Raman shift due to isotopic composition is predicted to be ~0.3% 

(compared with ~5% in the previous cases) which is consistent with no observed shift in the 

experimental and simulated spectra. While Raman can be used to identify isotopic variation,54 the 

comparison with calculation can help to identify the constitution of our samples and give insight into 

the processes during their formation. 

Calcite with different isotopic composition (CaC16O3-x
18Ox) shows Raman shifts to lower wave 

number with increasing x, the number of 18O per carbonate ion (Table 2). The peak at about 152 cm-1 

in the experimental spectra is noisy and difficult to isolate in both the natural and 18O-sample but 

the remaining Raman active peaks are relatively well defined and more easily characterized. Overall, 

the computational results are in good agreement with the measured spectra. The advantage of the 

calculation is that the vibrational motion associated with each active mode can be identified.52 For 

example, we can clearly identify the peak at 1086cm-1 as the symmetric stretch of the C-O bond in 

the carbonate ions, whereas the peak at 700 cm-1 is an antisymmetric coupling between carbonate 

ions in different layers. The vibrations of the remaining peaks are complex motions of carbonate 

bending in different layers. 

 

Table 2 - Comparison of experimental and simulated Raman active modes of calcite. In brackets the 

Raman shift due to the different O isotopes compared to CaC16O3. The two columns in the 

experimental results are related to carbonate phases with different 18O content. 

Peak 

Experiment [cm-1] Simulation [cm-1] 

CaCO3 

18O > 16O 

CaCO3 

18O < 16O 
CaC16O3

 CaC18O16O2 CaC18O2
16O 

CaC18O3 

1 152 152 159-165                 156-162 (-3)  154-160 (-5)  151-157 (-8) 

2 277 282 293 288 (-5) 285 (-8) 282 (-11) 
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3 698 713 680 672-665 (-8/-15) 661-652 (-19/-28) 645 (-35) 

4 1066 1086 1055 1036 (-19) 1015 (-40) 995 (-60) 

 

ToF-SIMS Results 

Tof-SIMS allows the determination of the elemental, isotopic, or molecular composition of 

surfaces to a maximum depth of 1-2 nm. It is a destructive technique that reveals, using a mass 

spectrometer, the mass:charge ratio of secondary ions ejected from the surface when a primary ion 

beam is fired against it. Therefore, during the analysis secondary ions may be positively and 

negatively charged depending on their composition and mass. Data analysis has therefore to take 

into account both polarities. Full details of mass:charge ratio of ejected secondary ions considered in 

this study are in Tables S2 and S3 where a detailed analysis of the results is also reported. To assess 

the accuracy of the ToF-SIMS measurement, we tested an Analar CaCO3 reference sample, which 

gave an average 18O:16O ratio of 0.021 (Table 3) in agreement with the isotopic ratio between 0.019 

and 0.02157-59 of naturally occurring samples. Data for the carbonated Ca(18OH)2 samples, show a 

reduction in the relative intensities of species containing 18O over time, and a simultaneous increase 

of the intensities of species containing 16O (Figures S1-S3 in the SI). Simultaneously, species 

containing carbon such as [HC18O3]- and [C18O3]- (Figures S1-S3) show an increase. This is clear 

evidence of the carbonation of portlandite surfaces as secondary ions ejected from the surface 

destruction have greater carbon content. 

Table 3 reports the 18O:16O ratio calculated for all the secondary ions produced by the destruction 

of the surface over the duration of the experiment. Data shows an initial isotope ratio of 0.62 for 

positive ions and a ratio of 0.51 for negative ions. The weighted average value of 0.54 suggests that, 

at very early stages of the carbonation reaction, for every atom of 18O in carbonate ions, there would 

be two 16O (theoretical 18O:16O ratio 0.5). However, from day 0 to day 1 the data shows a dramatic 

decrease in the 18O:16O ratio to a value of 0.038 that shows little variation in the following days. This 

value shows little variation after 137 days of carbonation. The isotope ratio for positive and negative 
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species converges towards the same value of 0.046, which is approximately double the value for 

natural samples. 

 

Table 3 - 18O:16O ratio calculated from the intensity of the ToF-SIMS counts for the ionic species with 

positive and negative polarity 

 
Analar 

CaCO3 

Carbonated Ca(18OH)2 

Day 0 Day 1 Day 8 Day 137 

[ 𝑂18 𝑂16⁄ ]
+

 0.035 0.616 0.057 0.044 0.046 

[ 𝑂18 𝑂16⁄ ]
−

 0.007 0.509 0.032 0.029 0.046 

Weighted 

Average 
0.014 0.537 0.038 0.033 0.046 

 

Discussion 

The combination of complementary results from the vibrational fingerprint of the materials with 

different isotopic composition and the ToF-SIMS experiments show that we can elucidate the 

carbonation mechanism of hydrous materials. However, before discussing our data, the role of the 

pH in the carbonate precipitation and on the behavior of different isotopes during the process 

should be highlighted. 

Recent work on the precipitation of carbonates in natural systems (i.e. at approximately neutral 

pH) shows that an isotopic equilibrium is reached between the solution and the precipitated solid, 

which only depends on temperature. 34,59 On the other hand, precipitation of carbonates from 

saturated solutions of Ca(OH)2 take place under high pH (12.4 at 23°C)14 and therefore is in non-

equilibrium conditions. As a consequence, the main phenomenon producing fractionation during 

precipitation is the reaction kinetics related to the solution  high pH.29-33  At pH values above 9, 

various authors29,31-33 suggested that the direct reaction of CO2 with the hydroxyl group (OH-) 

produced by the dissociation of water is the primary pathway for carbonate ion formation (Equation 

3). 29 This pathway is suggested to be faster than the one leading to the formation of CO3
2- from the 
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reaction of CO2 in natural waters at neutral pH58 (Equations 4-7) and, consequently, it prevents 

isotope equilibration of gaseous CO2(g) with the dissolved CO2(aq) (Equation 4). Since heavier isotopes 

react slower than lighter isotopes, in the carbonate precipitates at high pH we would expect a lower 

concentration of 18O and 13C compared to the carbonates precipitated under equilibrium 

conditions.29 Examples of carbonate phases with a very different isotope signature are limestone of 

marine and continental origins, and carbonates produced during cement setting.31-33 

 

𝐶𝑂2(𝑎𝑞) + 𝑂𝐻− ↔ 𝐶𝑂3
2− + 𝐻+     (3) 

𝐶𝑂2(𝑔) ↔ 𝐶𝑂2(𝑎𝑞)       (4) 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂(𝑙) ↔ 𝐻2𝐶𝑂3(𝑎𝑞)     (5) 

𝐻2𝐶𝑂3(𝑎𝑞) ↔ 𝐻𝐶𝑂3(𝑎𝑞)
− + 𝐻(𝑎𝑞)

+      (6) 

𝐻𝐶𝑂3(𝑎𝑞)
− ↔ 𝐶𝑂3(𝑎𝑞)

2− + 𝐻(𝑎𝑞)
+       (7) 

 

Equilibrium in Equation 3 implies that the carbonate ion contains a mixture of the isotopic 

composition of aqueous CO2(aq) (similar to the isotopic composition of gaseous CO2(g)) and OH- 

ions.29,31,33 The 18O composition of these carbonates (n18O) can be described by considering the 

abundance of 18O in the different species, according to Equation 8. 

𝑛 𝑂𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 ↔18  
1

3
𝑛 𝑂𝑂𝐻 +18 2

3
𝑛 𝑂𝐶𝑂2(𝑔)

18     (8) 

 

Letolle et al.29 have calculated that one third of the oxygen in the carbonates formed under high 

pH conditions, is provided by the OH- ions originated from the dissociation of H2O molecules 

catalyzing the reaction between Ca(OH)2 and aqueous CO2(aq). This implies that the 18O content of 

OH- groups is related to the isotopic composition of H2O. Letolle et al.29, however, did not provide 

any information on the role of OH- ions produced by the dissolution of Ca(OH)2 on the isotopic 

composition of carbonate phases. 
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To demonstrate that hydroxyl groups from the surface have a fundamental role in the formation 

of carbonate phases, we have studied Ca(18OH)2 samples containing 18O. Therefore, during the 

carbonation of Ca(18OH)2, the sample itself is by far the most significant source of 18O (a very limited 

contribution can be due to the CO2 and H2O 60,61) whereas the atmospheric water and CO2 are the 

only source of 16O. Any mixture of the isotope in the resulting carbonate phases provides the most 

likely source of oxygen in the formation of carbonate ions and therefore the carbonation 

mechanism. 

The Raman spectrum of Ca(18OH)2 confirms the purity of the sample but also the high surface 

reactivity, as demonstrated by the formation of carbonate phases after 10 minutes from exposure to 

atmospheric CO2. This is in agreement with the results of previous studies on the carbonation 

kinetics and on the role of water vapor on the Ca(OH)2/CO2 solid-gas reaction.12,62 The shift observed 

for the Raman peaks of portlandite and calcite can be associated with variations in the isotopic 

composition of the minerals and are supported by ab initio calculations. In the case of portlandite, 

the shifts in the Raman peaks arise from substitution of all the 16O with 18O (Figure 2), whereas the 

shift in the Raman peaks of carbonate phases formed after the reaction with atmospheric CO2 arise 

from partial substitution of 16O with 18O (Figure 3). DFT data (Table 2) support that the experimental 

peaks at 152, 271, 698 and 1066 cm-1 are associated with calcite containing 1/3 of 18O (18O:16O ratio 

0.5). The main vibrational fingerprint of this phase could be identified in the peak at 1066 cm-1 

(Figure 3). The peak at 1083 cm-1 belongs to 16O-calcite, which is a minor phase at the beginning of 

the reaction which then grows over the time. 

SIMS results allow calculation of the 18O:16O ratio for the secondary ions ejected from surface 

destruction. At the early stage of carbonation (~3 minutes exposure to air), the ratio is of 0.51 (Table 

3). This value is in good agreement with the results of our theoretical analysis of Raman shifts and 

with Letolle’s proposition29.  This indicated that in carbonate precipitates at high pH, 2/3 of oxygen is 

supplied by CO2 whereas 1/3 of the oxygen is provided by OH- ions. However, unlike Latolle’s 

proposition suggesting that the OH- groups involved in the carbonation originate from the 
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dissociation of H2O molecules, our results clearly demonstrate that the Ca(OH)2 plays an important 

role in the formation of hydroxyl groups. ToF-SIMS data displays carbonate species that contain 1/3 

of 18O (the remaining 2/3 comes from C16O2), which in our case can only be produced by the 

dissolution of the surface and not by the dissociation of adsorbed water molecules, which comprise 

mainly 16O. This is also supported by PHREEQC57,63 modelling (see model description and Table S5 in 

the SI) showing that the concentration of OH- ions produced by the dissolution of Ca(OH)2 in pure 

water at 25°C, is several orders magnitude greater than the concentration of OH- ions produced by 

the natural dissociation of pure water. Therefore, the OH- ions from Ca(OH)2 are more likely to take 

part in the carbonation reaction compared to those from water. As a consequence, it is possible to 

infer that in highly alkaline conditions, the isotopic composition of precipitated carbonates, which is 

generally described by Equation 8, can be rewritten by considering the abundance of 18O in the CO2 

and in the Ca(OH)2 as reported in Equation 9. This new equation marks the very early stage of the 

carbonation reaction where the dissolution of the surface is the rate-limiting step.  Although this 

equation is a simplification of the real process, since it omits contributions from the equilibration of 

18OH- from the surface and from water, it can be used to describe the process in basic terms. 

𝒏 𝑶𝒄𝒂𝒓𝒃𝒐𝒏𝒂𝒕𝒆 ↔𝟏𝟖  
𝟏

𝟐
𝒏 𝑶𝑪𝒂(𝑶𝑯)𝟐

+𝟏𝟖 𝟐

𝟐
𝒏 𝑶𝑪𝑶𝟐(𝒈)

𝟏𝟖                        (9) 

 

Subsequent to the formation of 18O rich carbonate phases in the first stage of the carbonation 

mechanisms, when the dissolution of portlandite surfaces must occur, our ToF-SIMS data show a 

dramatic reduction in 18O:16O ratio within the first day of carbonation (Table S6). This is also shown 

by the growth of the Raman peak at 1083 cm-1 of 16O-calcite over time (Figure 3) and can be 

explained by the transformation of the initial metastable carbonates into more stable phases over 

time.64-77 Figure 3 shows the disappearance over time of a peak at 495cm-1 that can be related to 

metastable hydrated phases55. A possible explanation of this re-equilibration of 18O:16O ratio is the 

dissolution of metastable phases that give up some 18O and the subsequent recrystallization of more 
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stable phases that acquire 16O during the precipitation process occurring under equilibrium 

conditions. 

This marks the second stage of carbonation, which involves the transformation carbonate phases 

from lesser stable to more stable forms. A detailed explanation of this transformation has been 

recently provided by Rodriguez Navarro et al.27 

Earlier, Rodriguez-Blanco et al.70 described the transformation mechanism of ACC to calcite as a 

two stage process: 1) ACC particles rapidly dehydrate and crystallize forming individual particles of 

vaterite; 2) the vaterite dissolves and re-precipitates as calcite (Ogino et al.71 also confirmed the 

latter stage also for aragonite). Stage 1, mainly entails the release of water molecules initially 

embedded in the structure of hydrated phases. Stage 2, involves the release of CO3
2- ions that, 

according to equations 2-5, can lead to an exchange of oxygen atoms with the water molecules. We 

infer that our data is consistent with this proposition. The oxygen exchange and the formation of 

new carbonate phases richer in 16O at the top of the carbonate phases initially formed (stage 1) 

explains the sudden variation of the 18O:16O ratio within the first 24h. Therefore, it is possible to infer 

that, whereas precipitation of meta-stable phases takes place under non-equilibrium conditions (i.e. 

at high pH, which does not allow isotope equilibration), the dissolution-and-precipitation mechanism 

leading to the formation of stable carbonate phases and the precipitation of new carbonate phases 

richer in 16O, occurs at lower pH allowing an isotopic equilibrium of carbonates. It is worth noting 

that in our experiments this equilibration occurred within the initial 24 hours even at 50% RH (a 

relatively low RH value for carbonation) and this suggests that stage 2 of the carbonation is a fast 

kinetic pathway. 

Conclusions 

Our results show new insights in the carbonation mechanism of portlandite. They demonstrate 

that during the early stage of the carbonation reaction (first 3 minutes, in our experiments) the 

surface hydroxyl groups are the source of oxygen for the formation of carbonate ions and hence the 

growth of carbonate begins by the dissolution of hydroxyl and calcium ions followed by the 
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formation of metastable calcium carbonate. The second stage of the reaction occurs within the 24h 

after the carbonation started. This involves the transformation of the metastable carbonate phases 

into stable calcite. During this transformation there is a release of water, which is the source of 

oxygen for the formation of new carbonate ions.  

Our results show how artificial isotopic doping can be used to study processes such as carbonation 

and have brought new insights into the early carbonation process.  This knowledge should further 

the understanding of many processes involving carbonation such as carbon sequestration 

technologies, carbonation of construction materials, precipitated carbonate products and geological 

disposal facilities for nuclear waste. 
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SYNOPSIS: At pH above 9, the direct reaction of CO2 with the hydroxyl group produced by 

the dissolution of Ca(OH)2 is the primary pathway for carbonate ion formation. This pathway 

is faster than the one leading to the formation of CO3
-2 from the dissolution of CO2 in natural 

waters at neutral pH 


