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The functional role of the observed neuronal variability (the disparity in neural responses across
multiple instances of the same experiment) is again receiving close attention in Computational
and Systems Neuroscience (e.g., Durstewitz et al., 2010; Moreno-Bote et al., 2011; Oram,
2011; Beck et al., 2012; Churchland and Abbott, 2012; Brunton et al., 2013; Masquelier,
2013; Mattia et al., 2013; Balaguer-Ballester et al., 2014; Renart and Machens, 2014; Bujan
et al., 2015; Lin et al., 2015; Pachitariu et al., 2015; Arandia-Romero et al., 2016; Doiron
et al., 2016; McDonnell et al., 2016). Special consideration is currently given to understanding
how spiking (Bujan et al., 2015; Deneve and Machens, 2016; Doiron et al., 2016; Hartmann
et al., 2016; Landau et al., 2016) and phenomenological (Goris et al., 2014; Lin et al., 2015;
Mochol et al., 2015; Arandia-Romero et al., 2016; Doiron et al., 2016) models account for
the wide range of classical and new phenomena associated with trial-to-trial uncorrelated
activity.

Specifically, it has often been proposed that a network state characterized by largely
asynchronous spike times whilst maintaining slow oscillations in the firing-rates, may represent
the default spontaneous cortical mode (e.g., Sanchez-Vives andMattia, 2014; Deneve andMachens,
2016; Sancristobal et al., 2016); and similar states could also underlie observed stimulus-driven
variability in rate (Litwin-Kumar and Doiron, 2012; Deneve and Machens, 2016; Hartmann et al.,
2016). However, the way in which such a computationally advantageous network state for neural
coding is achieved can differ substantially between modeling approaches; this challenge will be the
focus of this manuscript.

PREDICTABLE COMPONENTS OF NEURONAL VARIABILITY

The view that the intrinsic stochasticity of single cell activity is the major source of variability has
been questionedmultiple times over the last decades bymodeling (van Vreeswijk and Sompolinsky,
1996; Amit and Brunel, 1997; Shadlen and Newsome, 1998; Deneve et al., 2001; Stein et al., 2005;
Faisal et al., 2008; Renart et al., 2010; Rabinovich and Varona, 2011; Masquelier, 2013; Stiefel et al.,
2013; Rabinovich et al., 2014; Deneve and Machens, 2016; Hartmann et al., 2016) and empirical
studies (e.g., Bryant and Segundo, 1976; Mainen and Sejnowski, 1995; Britten et al., 1996; Stein
et al., 2005). It is well known that essentially deterministic networks of balanced excitation and
inhibition are able to generate a weakly correlated, often chaotic attractor state which presents
Poissonian statistical properties like the observed activity (van Vreeswijk and Sompolinsky, 1996;
Amit and Brunel, 1997; Shadlen and Newsome, 1998; Sussillo and Abbott, 2009; Litwin-Kumar and
Doiron, 2012). However, such a chaotic state is a non-mandatory modeling choice: recently, a range
of models has shown that part of the observed variability may also be explained by a different class
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of deterministic processes (Beck et al., 2012; Mattia et al., 2013;
Renart and Machens, 2014; Bujan et al., 2015; Abbott et al., 2016;
Deneve and Machens, 2016; Doiron et al., 2016; Gillary and
Niebur, 2016; Hartmann et al., 2016) such as the lack of specificity
in top-down processing of cognitively complex tasks (Beck et al.,
2012).

At the same time, empirical studies found mounting evidence
of deterministic patterns for some of the trial to trial variability.
For example, a range of indexes (Shadlen and Newsome, 1998;
Churchland and Abbott, 2012; Marcos et al., 2013) suggest
that variance is systematically reduced at the stimulus onset
(Churchland et al., 2010); and in general shows a predictable
trend during different events of the task (Churchland et al.,
2006, 2010; Churchland and Abbott, 2012; Ledberg et al., 2012;
Renart andMachens, 2014). Thus, there seems to be an increasing
consensus in that at least part of the trial to trial variability shows
a deterministic pattern which may play a functional role; and
hence cannot be simply neglected (Balaguer-Ballester et al., 2011,
2014; Masquelier, 2013; Ecker et al., 2014; Goris et al., 2014;
Renart andMachens, 2014; Lin et al., 2015; Schölvinck et al., 2015;
Arandia-Romero et al., 2016; Hartmann et al., 2016).

Nevertheless, despite such recent advances, the mapping
between the cognitive state and variability is still challenging.
For instance, on the one hand, correlated rate variability between
pairs of neurons is often reduced by top-down attentional
processes (e.g., Cohen and Maunsell, 2009; Mitchell et al., 2009;
Cohen and Kohn, 2011; Doiron et al., 2016). On the other hand,
the opposite can be observed when attention is highly variable
across trials (Roelfsema et al., 2004; Renart and Machens, 2014;
Ruff and Cohen, 2014); and such noise correlation analyses show
a variety of mixed results (Cohen and Kohn, 2011; Eyherabide
and Samengo, 2013; Moreno-Bote et al., 2014; Ruff and Cohen,
2014, 2016; Doiron et al., 2016).

Importantly, compelling evidence suggests that a substantial
portion of the spontaneous and evoked total and shared
variability is attributable to global fluctuations (Ecker et al., 2014,
2016; Goris et al., 2014; Mochol et al., 2015; Pachitariu et al.,
2015; Schölvinck et al., 2015; Arandia-Romero et al., 2016);
and this has direct implications in neural coding in visual (Lin
et al., 2015; Arandia-Romero et al., 2016; Ecker et al., 2016)
and in auditory areas (Mochol et al., 2015; Pachitariu et al.,
2015). For instance, high population activity in monkey V1
increases the information that a subset of neuronal ensembles
carry about stimulus orientation, only the ones that show a strong
multiplicative modulation. In contrast, the stimulus-decoding
information of such multiplicative ensembles plummets for
low global activity states; whilst information increases in the
group additively-modulated neurons in the population (Arandia-
Romero et al., 2016).

Global modulations could either stem from the default
up/down state of ongoing activity (Mochol et al., 2015) or
from fluctuations within a single state (Arandia-Romero et al.,
2016). When controlled for this global co-modulations, noise
correlations are often negligible (Renart et al., 2010), but not
always (Pachitariu et al., 2015; Arandia-Romero et al., 2016).
Moreover, stimulus-driven input statistics can also have a strong
contribution to the observed evoked variability in parallel to the

global network state (Oram, 2011; Bujan et al., 2015; Pachitariu
et al., 2015; Doiron et al., 2016; Landau et al., 2016) and explain
noise correlations dynamics (Bujan et al., 2015).

This complex variety of results has been recently analyzed
using a range of phenomenological and spiking models. These
recent modeling efforts aim to pin down when precisely during
the course of the trial (Moreno-Bote et al., 2014; Bujan et al.,
2015; Doiron et al., 2016) and in which specific network state
(Arandia-Romero et al., 2016) noise correlations are informative
or deleterious for neural coding (Ecker et al., 2014, 2016;
Moreno-Bote et al., 2014; Lin et al., 2015; Pachitariu et al., 2015;
Schölvinck et al., 2015; Arandia-Romero et al., 2016; Doiron et al.,
2016).

DIVERSITY OF THEORETICAL
APPROACHES

The consensus on the network origin of a substantial part of
cortical variability led to the development of a multitude of
models for explaining the underlying neuronal mechanisms of
the asynchronous state (e.g., Boerlin et al., 2013; Deco et al., 2014;
Ostojic, 2014; Barral and Reyes, 2016; Hartmann et al., 2016;
Rosenbaum et al., 2017). A linking theme in these approaches is
the crucial contribution of fast inhibition in recurrent networks;
which is negatively correlated with excitation and strong enough
to counterbalance it to different degrees (Renart et al., 2010;
Deneve and Machens, 2016).

FIGURE 1 | Three dimensions in models of neuronal variability. The

diamond shows an example of a spiking model with random connectivity and

a tight Excitation/Inhibition (E/I) balance as in Renart et al., 2010; the circle

represents a substantially different modeling choice such as in Hartmann et al.,

2016. A range of modeling approaches typically fall between these two

examples (triangles); such as semi-structured connectivity architectures which

modulate the E/I balanced dynamics in realistic networks (Litwin-Kumar and

Doiron, 2012; Landau et al., 2016).
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This scenario is currently the subject of a lively debate;
and a variety of processing architectures of spiking units have
been developed to explain the observed variability phenomena
from different perspectives. It has recently been proposed that a
much tighter synchronization between excitation and inhibition
than considered so far, at the spike level, has an even stronger
experimental support and would enable the network to operate
optimally by reducing the minimum coding error (Renart et al.,
2010; Boerlin et al., 2013; Abbott et al., 2016; Deneve and
Machens, 2016). The precise way in which the asynchronous state
is achieved however, is not unique. For example, connectivity
weights are specifically learnt in the design termed spike-coding
network (Boerlin et al., 2013; Schwemmer et al., 2015; Abbott
et al., 2016; Deneve and Machens, 2016); whilst connectivity
is clustered in Litwin-Kumar and Doiron (2012), shaped by
plasticity in Vogels et al. (2011) and Landau et al. (2016) and
much less structured in many other dense (Renart et al., 2010;
Abbott et al., 2016) or sparse (Ostojic, 2014) networks.

In contrast, other recent approaches rely on non-closely
balanced excitatory-inhibitory dynamics in networks of
simplified units. For instance, Hartmann et al. (2016) proposed
a fully deterministic approach to describe spontaneous and
stimulus evoked variability; consisting of an architecture
of schematic noise-free units. In this approach, excitatory
connectivity is specifically set by plasticity and homeostasis;
and is not necessarily balanced. In Deco et al. (2014), the
spontaneous state also stems from not necessarily tightly
balanced architectures, where elements are field equations
derived from spiking units with background input noise. In
this and related models, connectivity is also set; but in the latter
case local inhibition is regulated by a different homeostatic
control. In addition, it has been recently shown that most of
the evoked variability could be accounted for by essentially
feedforward architectures (Bujan et al., 2015; Doiron et al.,
2016).

Asymmetry and slightly unbalanced configurations are also
considered to promote the so called metastable state (Mattia
et al., 2013; Tognoli and Kelso, 2014a,b; Deco and Kringelbach,
2016), in which high dimensional ensembles flexibly re-organize,
synchronize and disengage, possibly by changing their role in
a high-dimensional setting (Lapish et al., 2015; Fusi et al.,
2016). Such state also exhibits advantageous computational
properties (Hellyer et al., 2015; Deco and Kringelbach, 2016).
In an instantiation of such ideas, essentially deterministic
structures of simplified units generate itinerancy through robust
transient states. These states enable the model to process
cognitive entities without the compelling need for attractors
(Rabinovich et al., 2008, 2014; Varona and Rabinovich, 2016).
Moreover, combinations of attractor-based and transient-based

computations could also underlie motor plans (Mattia et al.,
2013). Other state-dependent computational ingredients such

as neuromodulation could also play a major role in shaping
the observed variability (Mattia et al., 2013; Lapish et al., 2015;
Doiron et al., 2016).

FUTURE CHALLENGES FOR MODELS

This non-exhaustive summary of few recent examples suggests
the availability of a plethora of recurrent and feedforward
network models for understanding the source of variability
during cognitive processing and in the resting state. These
configurations often differ at least in the level of detail of the
computational units, in the connectivity structure and in the
degree of balance between excitation and inhibition (Figure 1).

This challenging scenario perhaps compels to the
development of novel approaches for probing the networks
in order to identify the suitable architecture or architectures for
each specific cognitive process and cortical area. However, the
question remains how to effectively dissect a recurrent network,
beyond the linearization of the network dynamics, in order
to investigate the components originating the asynchronous
state (Sussillo, 2014). Recently, Doiron et al. (2016) proposed
a framework to identify the physiological processes underlying
decorrelation in feedforward circuits by analysing state-
dependent correlations in different time windows. However,
applying this approach is more problematic in recurrent circuits
when coupling is not weak and is highly nonlinear; as is often
the case in models.

Hence, inferring which level of detail and architecture
are mostly probably responsible for the neuronal variability
phenomena is perhaps one of the major challenges for the
next years, which possibly requires the development of novel
theoretical tools for scrutinizing network behavior.
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