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Lay Summary: Social stress can lead to depression. The study of social bonding and stress using an 

animal model will inform understanding of the protective effects of social bonds. This study showed that 

social bonding in a rodent model can protect against behavioral responses to stress, and may also be 

protective against the elevation of stress hormones. This study provides evidence that bonding and social 

support are valuable for protecting against stress in humans.  



Grippo 3 

Abstract 

 

Positive social interactions may be protective against stress. This study investigated the potential 

beneficial effects of pairing with a social partner on altered behaviors and neuroendocrine function in 

response to chronic mild stress (CMS) in 13 male-female prairie vole pairs. Following 5 days of social 

bonding, male and female prairie voles were exposed to 10 days of CMS (mild, unpredictable stressors of 

varying durations, for instance, strobe light, white noise, and damp bedding), either in the same cage as 

their social partner (paired group) or individually (isolated group). Active and passive behavioral 

responses to the forced swim test (FST) and tail-suspension test (TST), and plasma concentrations of 

adrenocorticotropic hormone (ACTH) and corticosterone, were measured in all prairie voles following the 

CMS period. Both female and male prairie voles housed with a social partner displayed lower durations 

of passive behavioral responses (immobility, i.e., maladaptive behavioral responses) in the FST (mean ± 

SEM; females: 17.3 ± 5.4 s; males: 9.3 ± 4.6 s) and TST (females: 56.8 ± 16.4 s; males: 40.2 ± 11.3 s), 

versus both sexes housed individually (females, FST: 98.6 ± 12.9 s; females, TST: 155.1 ± 19.3 s; males, 

FST: 92.4 ±14.1 s; males, TST: 158.9 ± 22.0 s). Female (but not male) prairie voles displayed attenuated 

plasma hormones when they were housed with a male partner (ACTH: 945 ± 24.7 pg/ml; corticosterone: 

624 ± 139.5 ng/ml), versus females housed individually (ACTH: 1100 ± 23.2 pg/ml; corticosterone: 1064 

± 121.7 ng/ml). These results may inform understanding of the benefits of social interactions on stress 

resilience. 
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Introduction 

 

Depression is one of the leading health issues in the world today (Mathers & Loncar, 2005), and 

is hypothesized to be influenced by exposure to and an inability to adequately cope with psychosocial 

stressors (Hammen, 2005; Sapolsky, 2015; Tafet & Bernardini, 2003). In particular, stress of a social 

variety, such as social isolation and feelings of loneliness, may induce depressive symptomology, as well 

as alter neuroendocrine stress response activation and contribute to physiological dysfunction associated 

with depression (Cacioppo et al., 2015; Ramsay et al., 2008; Steptoe et al., 2013). Conversely, social 

support (in humans) and having a partner present (in animal models) can ameliorate many of the negative 

physiological outcomes of stress exposure (Burkett et al., 2016; Gobrogge & Wang, 2015; Heinrichs et 

al., 2003; Kiyokawa et al., 2004; Steptoe et al., 2013; Sun et al., 2014; Thorsteinsson et al., 1998).  

Several studies with animal models have further demonstrated the beneficial effects of social 

interactions on behavior and physiological health. For instance, when fear-conditioned rats were exposed 

to the box in which they had previously been shocked, but were paired with a partner, they showed 

attenuated stress-induced hyperthermia, freezing behavior, and neural activation in the hypothalamic 

paraventricular nucleus in response to the fearful context (Kiyokawa et al., 2004). Similarly, following a 

period of social defeat stress, male rats that were housed with a female partner displayed lower levels of 

depression-like behaviors (hypothesized to be represented by a reduction in sucrose consumption) and 

improved cardiac function and structure, versus those that were housed alone (Carnevali et al., 2012). 

This previous research provides evidence of the utility of animal models for the study of behavioral and 

physiological responses to social stressors. 

In addition to studies with rats, previous research with prairie voles (Microtus ochrogaster) 

indicates that positive social interactions have a protective influence on both behavior and physiology.  

Prairie voles are rodents that display several features of social monogamy, such as bi-parental care of 

offspring, living in extended family groups, and the formation of strong male-female social bonds that is 

not often evident in other rodents such as rats, mice, or comparatively less monogamous vole species 



Grippo 5 

(Carter et al., 1995; Young et al., 2001; Young & Wang, 2004). Prairie voles are especially susceptible to 

social environmental stressors in a manner similar to humans, and previous research indicates that social 

bonds in this species can protect against behavioral and physiological consequences of stress. For 

example, social bonding in prairie voles attenuates several responses to stressors, including: (a) reducing 

responses that have been hypothesized to be operational indices of depression-like behaviors (such as 

reduced preference for a palatable sucrose solution and increased helpless behavior in a forced swimming 

task), (b) reducing HPA axis reactivity, (c) preventing or reversing autonomic imbalance, and (d) altering 

central nervous system production of hormones and peptides (Bosch et al., 2009; Grippo et al., 2007b; 

McNeal et al., 2014; Smith & Wang, 2014; Sun et al., 2014).    

Given previous findings indicating a protective role of social interactions on responses to stress in 

humans and various animal species, the current study used the prairie vole model to determine whether 

altered behaviors and neuroendocrine activation associated with exposure to chronic stressors are 

attenuated when experiencing these stressors with a pair-bonded social partner. One tool for investigating 

long-term stress in rodents is the chronic mild stress (CMS) paradigm, which involves extended exposure 

to a series of unpredictable mild stressors, such as a tilted cage, strobe light, white noise, or damp 

bedding. CMS has been hypothesized to induce depression-like behaviors in rodents, such as anhedonia 

(measured via a reduction in sucrose preference), decreased active coping behaviors (measured via a 

reduction in active behaviors in a forced swim test), reduced exploration, and altered physical activity; 

and has been used previously in rodent studies, including prairie voles, that have focused on depression-

relevant research questions (Bielajew et al., 2003; Grippo et al., 2015; Tannenbaum et al., 2002; Willner, 

2005). Therefore, the goal of the present study was to specifically investigate the potential protective 

effects of social pairing on behavioral and neuroendocrine responses to CMS in prairie voles. We 

hypothesized that pairing with a previously-bonded partner of the opposite sex would be associated with 

attenuated behavioral stress-coping responses and plasma concentrations of adrenocorticotropic hormone 

(ACTH) and corticosterone following exposure to CMS, relative to receiving CMS without the presence 

of a social partner.  
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Methods 

 

Animals 

 Subjects were 26 adult prairie voles (13 male, 13 female), descendants of a wild stock caught near 

Champaign, Illinois. All prairie voles were bred in-house. Prairie voles remained with the family group 

until post-natal day 21, at which time they were removed from the family group and housed in same-sex 

sibling pairs until the commencement of experimentation. For all procedures described here, only one 

animal from each sibling pair was used. The experiments commenced when all prairie voles reached a 

sexually-mature age, however all prairie voles were sexually naïve.  

Upon commencement of the experiments, males had a mean (± standard error of the mean; SEM) 

age of 77 ± 3 days, and a body weight of 41 ± 2g. Females had a mean (± SEM) age of 86 ± 4 days and 

body weight of 34 ± 1g. All prairie voles were maintained on a 14/10h light/dark cycle (lights on at 

06:30h and off at 20:30h), with a mean ± SEM ambient temperature of 25 ± 2C and relative humidity of 

40 ± 5%. Prairie voles were allowed food (Purina rabbit chow) and water ad libitum, unless otherwise 

noted. All procedures were conducted according to the National Institutes of Health’s Guide for the Care 

and Use of Laboratory Animals and approved by the local University Institutional Animal Care and Use 

Committees. A general timeline of all procedures is displayed in Table 1. 

 

Initial Social Bonding 

 The initial social bonding period consisted of pairing unrelated male and female prairie voles. 

Each experimental prairie vole was removed from its sibling and paired with an unrelated prairie vole of 

the opposite sex of similar age and body weight in a clean, neutral cage for 5 days. This time period has 

been shown to be sufficient for male and female prairie voles to form a social bond (Bosch et al., 2009; 

McNeal et al., 2014). Previous research also indicates that prairie voles may mate during this 5-day social 

bonding period, given that female prairie voles are induced ovulators (females need physical contact with 

a male to be induced into an estrous cycle) (McNeal et al., 2014).   
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Social Isolation/Continued Pairing Period 

 Following the 5-day social bonding period, approximately half of the male-female pairs (n=7 

males, n=7 females) were separated into individual cages (without visual, auditory or olfactory cues from 

the partner) for 5 additional days; while the remainder of the male-female pairs remained paired during 

this period (n=6 males, n=6 females). This time period is consistent with previous studies showing that 5 

days of social isolation from an opposite-sex partner induces alterations in behavior and increased stressor 

reactivity in prairie voles, compared to social pairing (Bosch et al., 2009).  

 

Chronic Mild Stress  

Following the 5-day social isolation/continued pairing period all prairie voles were exposed to 10 

days of CMS while either in the presence (paired group) or absence (isolated group) of the social partner.  

Specifically, all males and females were exposed to CMS; those in the isolated group were exposed to the 

stressors while they were housed individually (without visual, auditory or olfactory cues from their 

respective previous partners), whereas those in the paired group were exposed to the stressors in the same 

cage as their respective partners. The CMS procedure was a variation of methods described previously 

(Willner, 2005). The prairie voles were exposed to a series of mild stressors on an unpredictable schedule 

for varying durations (Figure 1 for the full schedule), including: (a) 2 periods of continuous overnight 

illumination (10 hours each); (b) 1 period of water deprivation (6 hours) followed by exposure to an 

empty water bottle (1 hour); (c) 2 periods of stroboscopic illumination in a dark room (300 flashes/min; 3 

hours each); (d) 2 periods of background white noise (90 dB; 2 and 3 hours); (e) 3 periods of 40º cage tilt 

(7 hours, 7.5 hours, and 16.5 hours); (f) 2 periods of damp bedding (100ml water; 4 and 5 hours); and (g) 

2 periods of a foreign object in the cage [brick, 15x8x6cm; 4 and 6 hours; this stressor was used in lieu of 

the paired housing stressor, which is typical in CMS paradigms in other rodents (Willner, 2005) but 

would interfere with the current social housing manipulation]. 

 

\ 
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Tail Suspension Test 

A 5-minute tail-suspension test (TST) was used as an index of a passive (i.e., maladaptive) 

behavioral response to a short-term stressor in all prairie voles (paired and isolated). The procedure was 

adapted from Steru and colleagues (Steru et al., 1985), and has been used to measure stress-coping 

behaviors in prairie voles (Bosch et al., 2009). Following the final day of CMS, each prairie vole was 

suspended by its tail using adhesive tape attached to a metal bar (5mm diameter), in the middle of an 

opaque plastic box (32x28x29cm) approximately 25cm above the apparatus floor. Care was taken to 

ensure that the tail was appropriately affixed to the bar without compromising the tail itself during 

attachment, the 5-minute test, or detachment, by attaching the tape to the middle of the tail (equidistant 

between the tip and base of the tail; the tail is approximately 3 cm in length). The apparatus was cleaned 

thoroughly prior to testing each prairie vole. The prairie vole was returned to its home cage (paired or 

isolated) immediately following the test. Exposure to the TST occurred in all male-female pairs (whether 

in the paired or isolated group) at the same time in separate locations without visual, auditory or olfactory 

cues, to ensure consistency between the groups.  

Durations of behaviors during the TST were recorded with a digital video camera, and scored 

manually by three trained, experiment-blinded coders. Behaviors were defined as: (a) active coping 

behaviors, involving active movements such as contortions of the body and/or flailing of the limbs; or (b) 

immobility, involving no movement besides those required for respiration; these are mutually-exclusive 

and exhaustive categories. Active coping behaviors were defined as adaptive responses to the stressor, 

whereas immobility was defined as a passive (i.e., maladaptive) behavioral response, and has been 

hypothesized to be related to a depressive phenotype according to previous tests of validity and reliability 

(Bosch et al., 2009; Cryan et al., 2005a). Durations of each behavioral category were averaged among the 

three coders. 
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Forced Swim Test 

 Investigation of swimming behavior in the FST was used as an additional index of a passive (i.e., 

maladaptive) behavioral response to a short-term stressor. Twenty four hours following the TST, all 

prairie voles were exposed to a 5-minute period of forced swimming using procedures described 

previously in rodents (Cryan et al., 2005b). A clear, cylindrical Plexiglas tank (height 46cm; diameter 

20cm) was filled to a depth of 18cm with tap water at room temperature  (25-26C). Each vole was placed 

individually into the tank for 5 minutes. The tank was cleaned thoroughly and filled with clean water prior 

to testing each vole. The prairie vole was returned to its home cage (paired or isolated) immediately 

following the swim period, and was given a heat lamp for 15 minutes. Exposure to the FST occurred in all 

male-female pairs (whether in the paired or isolated group) at the same time in separate locations, without 

visual, auditory or olfactory cues.  

Durations of behaviors during the swim test were recorded using a digital video camera, and 

scored manually by three trained, experimentally-blind coders. Behaviors were defined as: (a) swimming, 

involving movements of the fore- and hind-limbs without breaking the surface of the water; (b) 

struggling, involving forelimbs breaking the surface of water; (c) climbing, involving attempts to climb 

the walls of the tank; and (d) immobility, involving no limb or body movements (passive floating) or 

using limbs solely to remain afloat without corresponding trunk movements; these are mutually-exclusive 

and exhaustive categories. Struggling, climbing and swimming were summed to provide one index of 

active coping behaviors, and were defined as adaptive behavioral responses; immobility was defined as a 

passive (i.e., maladaptive) behavioral response, and has been hypothesized to be related to a depressive 

phenotype according to previous tests of validity and reliability (Bielajew et al., 2003; Cryan et al., 

2005b). Durations of each behavioral category were averaged among the three coders.  

 

Collection of Blood 

Seventy two hours following the FST, all prairie voles were anesthetized with a combination of 

ketamine and xylazine (ketamine, 67mg/kg, NLS Animal Health, Owings Mills, MD; xylazine, 
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13.33mg/kg, NLS Animal Health; a ratio of 5:1 ketamine:xylazine, injected subcutaneously at a volume 

of approximately 0.07 ml) during the light period (2.5-4.5 hours following light onset, from 09:00h to 

11:00h). Blood was collected from all male-female pairs (whether in the paired or isolated group) at the 

same time in separate locations, without visual, auditory or olfactory cues. Blood collection in all prairie 

voles was conducted across a total period not exceeding 2 hours, to reduce variability owing to circadian 

rhythmicity of hormone levels. Each prairie vole was anesthetized within 1 minute of being removed from 

the housing room. Blood was sampled within 2 minutes of the anesthetic injection, from the periorbital 

sinus via a heparinized capillary tube, and collected during a period not exceeding 1.5 minutes (which 

resulted in approximately 0.5 – 1 ml of blood from each animal), to avoid possible rapid fluctuations in 

hormone levels. Blood was placed immediately on ice, centrifuged at 4°C, at 1100g, for 15 minutes to 

obtain plasma. Plasma aliquots were stored at -80C.  

 

Assessment of Pregnancy 

Each prairie vole was euthanized via cervical dislocation followed by decapitation immediately 

after the blood collection. All females were assessed for pregnancy by visual inspection of the uterine 

horns. A prairie vole was determined to be pregnant if embryos were evident. 

 

Analysis of Circulating Hormones 

Plasma concentrations of ACTH and corticosterone were measured using commercial enzyme-

linked immunosorbent assay kits, according to the kit instructions (ACTH, EK-001-21, Phoenix 

Pharmaceuticals, Burlingame, CA; corticosterone, Enzo Life Sciences, ADI-900-097, Farmingdale, NY). 

Plasma was diluted in assay buffer as necessary (1:7 for ACTH; 1:500 for corticosterone) to yield results 

reliably within the linear portion of the standard curve. The minimum detection limits are 80 pg/ml for 

ACTH and 0.027 ng/ml for corticosterone. Inter- and intra-assay coefficients of variation are <5% for 

both ACTH and corticosterone. Cross-reactivity with other steroids or peptides is <0.1% for ACTH and 

<1.7% for corticosterone.  
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Data Analyses 

Data are presented as means ± SEM for all analyses and figures. A value of p<0.05 was 

considered to be statistically significant. For behavioral and plasma data, independent-groups analyses of 

variance (ANOVA) were used for comparisons between housing (paired or isolated) and sex; followed by 

Student’s t-tests with a Bonferroni correction for multiple comparisons. Results of t-tests indicate 

statistically-significant effects after the Bonferroni correction was applied. A Fisher’s exact test was used 

to test for a difference in pregnancy rate between housing groups (paired or isolated). 

Because the active and passive behavioral categories in the TST and FST are mutually-exclusive 

and exhaustive for each test, the duration of passive/maladaptive response of immobility during each 5-

minute test period is the dependent measure that is presented in the results and figures; the remainder of 

the 5 minutes is comprised of the active/adaptive responses.  

 

Results 

 

Tail Suspension Test Responses 

 A main effect of housing was observed for immobility duration (i.e., passive, maladaptive 

behavioral response) during the TST [F(1,21)=35.11, p<0.001; Figure 2A]. The main effect of sex and the 

housing by sex interaction were not statistically significant (main effect of sex, p>0.6; housing by sex 

interaction, p>0.99); no follow-up tests were conducted.  

 

Forced Swim Test Responses 

 A main effect of housing was observed for immobility duration (i.e., passive, maladaptive 

behavioral response) during the FST [F(1,21)=50.43, p<0.001; Figure 2b]. The main effect of sex and the 

housing by sex interaction were not statistically significant (main effect of sex, p>0.6; housing by sex 

interaction, p>0.5); no follow-up tests were conducted. 
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Plasma Adrenocorticotropic Hormone Concentration 

 A main effect of housing [F(1,21)=9.74, p<0.005], sex [F(1,21) =9.45, p<0.006], and housing by 

sex interaction [F(1,21)=25.14, p<0.001] were observed for plasma ACTH concentrations (Figure 3A). 

Isolated females displayed significantly higher concentrations of ACTH versus isolated males 

[t(12)=5.93, p<0.001], paired males [t(11)=4.75, p<0.001], and paired females [t(11)=4.56, p<0.001]. 

There were no significant differences in ACTH concentrations among isolated males, paired males, or 

paired females (isolated males vs. paired males, p>0.06; isolated males vs. paired females, p>0.5; paired 

males vs. paired females, p>0.1). 

 

Plasma Corticosterone Concentration 

A main effect of housing [F(1,21)=8.22, p<0.009], sex [F(1,21)=6.32, p<0.020], and a housing by 

sex interaction [F(1,21)=11.73, p<0.002] were observed for plasma corticosterone concentrations (Figure 

3B). Isolated females displayed significantly higher concentrations of corticosterone versus isolated males 

[t(12)=2.90, p<0.007], paired males [t(11)=3.83, p<0.001], and paired females [t(11)=2.39, p<0.018]. 

There were no significant differences in corticosterone concentrations among isolated males, paired 

males, or paired females (isolated males vs. paired males, p>0.08; isolated males vs. paired females, 

p>0.4; paired males vs. paired females, p>0.27). 

 

Pregnancy Status of Females 

Analysis of pregnancy status at the end of the study indicated that a total of 5/6 (83%) of the 

female prairie voles in the paired group were pregnant, compared to a total of 2/7 (29%) in the isolated 

group.  These values were slightly, but not significantly, different according to a Fisher’s exact test 

(p>0.10). This lack of a statistically-significant difference may be due to the small sample sizes in the 

current study.  
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Discussion  

 

The present study used a prairie vole model to specifically investigate the potential protective role 

of social pairing on behavioral and neuroendocrine responses to CMS. The findings indicate that stress-

coping behavioral responses to CMS are attenuated in both male and female prairie voles by pairing with 

a social partner of the opposite sex (versus social isolation), as indicated by a reduction in passive 

behavioral responses to both the TST and the FST. Further, the pituitary-adrenal axis responses to CMS 

are protected by social pairing in females, but not males, as indicated by a reduction in plasma 

concentrations of ACTH and corticosterone in females that were paired with male partners (versus 

females that were isolated from their respective male partners). These findings contribute to 

understanding of the protective effects of social bonding on behavioral and physiological responses to 

CMS. 

Specifically, the current study employed the CMS paradigm to investigate whether social pairing 

in a socially monogamous rodent species can serve a protective role against stress-coping behaviors and 

associated neuroendocrine activation. The CMS paradigm is hypothesized to be a useful rodent model 

associated with depression, designed to provide a realistic simulation of the stressors of daily life via 

chronic exposure to a variety of rather minor environmental manipulations (Willner, 2005). This 

paradigm has been shown to reliably induce behavioral changes that are hypothesized to be relevant to a 

depressive phenotype, and several correlated physiological changes, in other rodent species (Bouzinova et 

al., 2012; Li et al., 2008; Willner, 2005). Exposure to CMS also produced increases in helpless behavior 

in a forced swim test in both paired and isolated prairie voles (compared to unstressed controls in each 

housing condition), and further exacerbated these behavioral consequences in socially isolated prairie 

voles (Grippo et al., 2015). The results of the present study provide additional insight into the interactions 

of the social environment and CMS, by demonstrating that both male and female prairie voles that 

experienced CMS in the presence of an opposite-sex socially-bonded partner displayed lower levels of 
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passive behavioral responses in the TST and FST, compared to prairie voles that experienced CMS in the 

absence of a previous social partner. Given that an inability to cope with chronic stressors appears to be a 

precipitating factor in the development of depression-relevant behaviors (Gobinath et al., 2014; Hammen, 

2005), the results of the present study may provide insight into the importance of emphasizing stress-

coping strategies and social support for protecting against depression in both men and women.  

In addition to protecting against behavioral disturbances in the TST and FST, social pairing in 

female prairie voles also attenuated the circulating concentrations of ACTH and corticosterone following 

CMS, compared to social isolation. There was a significant effect of sex on circulating stress hormones, 

mediated by the elevated levels in isolated female prairie voles relative to paired females, paired males, 

and isolated males. Considering the effects of CMS generally in prairie voles, this observed increase in 

circulating stress hormone concentrations only in females is consistent with research in rats demonstrating 

that, although both males and females exposed to CMS displayed behavioral disruptions (versus 

unstressed controls), an increase in corticosterone level was observed only in female rats (Dalla et al., 

2005). By contrast, other studies have observed increases in HPA axis reactivity to CMS in male rats 

(females were not specifically studied) (Bielajew et al., 2002; Grippo et al., 2005a). However, there is 

also evidence that CMS does not produce elevations in ACTH or corticosterone secretion in either male 

or female rats (Grippo et al., 2005b). It has been suggested that genetic factors, individual differences in 

stress susceptibility, and/or the duration of CMS may mediate some of the inconsistencies in sex 

differences in neuroendocrine reactivity to CMS, at least in rats (Bielajew et al., 2002; Dalla et al., 2005; 

Grippo et al., 2005b). In addition to these hypotheses, it is also possible that the duration and timing of 

HPA axis reactivity differs between male and female prairie voles, such that the collection of blood 

following the end of the CMS paradigm allowed for the detection of ACTH and corticosterone changes in 

females, but not males. Further investigation of the duration of HPA axis elevations and (potential) 

recovery over time in response to CMS is warranted. 

Considering the effects of CMS more specifically in combination with social bonding in prairie 

voles, the current observation that only females were protected against pituitary-adrenal axis activation 
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following CMS is consistent with previous findings showing sex differences in HPA axis reactivity in 

prairie voles exposed to a combination of different social conditions and additional stressors. For instance, 

although no differences in circulating ACTH and corticosterone were observed in prairie voles of either 

sex following only social pairing with (versus social isolation from) a same-sex sibling, when paired or 

isolated animals were exposed to a novel resident-intruder stressor, the short-term ACTH and 

corticosterone responses were buffered by social pairing only in females, but not males (Grippo et al., 

2007a). However, other findings indicate a lack of sex differences in the protective effects of social 

pairing on basal and acute stressor-induced HPA axis responses in prairie voles. Both male and female 

prairie voles paired with an opposite-sex partner (versus isolated males and females) displayed attenuated 

short-term ACTH and corticosterone elevations following a novel acute swim stressor (McNeal et al., 

2014). Further, lower levels of basal corticotropin-releasing factor and corticosterone were observed in 

male prairie voles paired with a socially-bonded female partner, versus those that were housed in isolation 

(females were not specifically investigated) (Bosch et al., 2009; Sun et al., 2014). Taken together, these 

previous findings may indicate that HPA axis responses may differ by sex in prairie voles as a function of 

the type of social relationship (e.g., sibling pairing vs. opposite-sex partner pairing), as well as presence 

or absence of additional stressors (e.g., social pairing alone vs. social pairing coupled with either an acute 

stressor or a series of chronic stressors).  

When considering previous evidence from studies that focus specifically on CMS, along with 

those that focus specifically on social bonding, the sex difference in HPA axis reactivity to CMS in the 

present study may have resulted from a particular combination of behavioral and endocrine benefits of 

social bonding. For instance, Dalla and colleagues (Dalla et al., 2005) suggest that sex differences in the 

HPA responses to CMS are associated with differential actions of sex hormones in females versus males, 

as well as disruption of the hypothalamic-pituitary-gonadal axis specifically in females. Consistent with 

this hypothesis, CMS produces disruptions in estrous cycling in female rats (Dalla et al., 2005; Grippo et 

al., 2005b). Behavioral and physiological changes in females as a function of CMS may be associated 

with cyclical changes in the secretion of estrogen and progesterone, whereas the lack of physiological 
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changes in males may indicate that either CMS does not alter testicular function or that male behavior is 

less dependent on testicular hormones (Dalla et al., 2005). The present study design does not allow for 

specific conclusions regarding the role of sex hormones in behavioral and HPA responses to CMS. 

However, paired females were more likely than isolated females to be pregnant at the end of the protocol 

(83% vs. 29% in paired vs. isolated females, respectively), which may provide indirect support for the 

hypothesis of Dalla and colleagues (Dalla et al., 2005). For instance, while both groups were paired first 

for 5 days during which time mating may have occurred, the paired group had an additional 15 days for 

possible fertilization to occur. By contrast, a combination of social isolation and CMS may have disrupted 

the estrous cycle in female prairie voles, preventing fertilization in some isolated females. This is a 

limitation of the current study. It is possible that the lower levels of ACTH and corticosterone observed in 

paired females resulted from sexual contact (and subsequent pregnancy), rather than social contact, with a 

male partner. Given the small sample sizes in the current study, it is not possible to confirm this 

hypothesis by statistically comparing the responses of pregnant vs. non-pregnant females, however some 

research in other mammalian systems has found that the sympathetic nervous system and HPA axis 

responses to stressors are attenuated from mid-pregnancy through lactation (Slattery & Neumann, 2008). 

In contrast, other research indicates that basal circulating levels of ACTH, cortisol, and catecholamines 

are elevated during pregnancy (de Weerth & Buitelaar, 2005). Therefore, future studies should investigate 

the interactions of the HPA/hypothalamic-pituitary-gonadal axes, as well as the specific influence of 

pregnancy on responses to CMS in prairie voles. 

To further understand the sex differences observed in HPA axis reactivity to CMS in the present 

study, future studies may also consider specifically investigating the role of oxytocin. Not only do 

concentrations of this neuropeptide shift during pregnancy (Slattery & Neumann, 2008), but oxytocin has 

been shown to play an important role in mediating physiological responses to social stressors and social 

bonding (Gobrogge & Wang, 2015; Hurlemann & Scheele, 2016). For example, oxytocin has been shown 

to interact with positive social interactions both in humans (Heinrichs et al., 2003) and prairie voles 

(Burkett et al., 2016; Smith & Wang, 2014) to facilitate adaptive responses to stress. Therefore, 
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alterations in central and/or peripheral oxytocin function may mediate responses to CMS in a sex-

dependent manner.  

In conclusion, social pairing with an opposite-sex partner attenuates the behavioral effects of 

CMS in both male and female prairie voles, and may attenuate HPA axis reactivity to CMS in females 

(but not males). These findings highlight the importance of effective coping strategies, including social 

support, for dealing with mild daily stressors in humans. These data also shed light on the influence of 

social bonding on behavioral and physiological responses to stressors in males and females, and may 

provide insight into previously reported gender differences in human stress reactivity in the context of 

social experiences and depression (Kiecolt-Glaser & Newton, 2001; Kim et al., 2013; Rivera-Torres et al., 

2013). The neurobiological and behavioral mechanisms underlying the beneficial effects of social 

bonding, and the mechanistic underpinnings of possible sex differences in response to stress and social 

support, deserve further attention. Future studies involving the use of translational animal models can 

inform the understanding of mechanisms through which social experiences have protective benefits for 

humans.  
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FIGURE LEGENDS 

 

Figure 1. Detailed 10-day chronic mild stress procedure. 

 

Figure 2. Mean (+ standard error of the mean, SEM) duration of immobility (passive/maladaptive 

behavioral response) during a 5-minute tail suspension test (Panel A) and a 5-minute forced swim test 

(Panel B) in isolated male (n=7), isolated female (n=7), paired male (n=6) and paired female prairie voles 

(n=6) following 10 days of chronic mild stress. *P < 0.05 vs. paired groups (main effect of housing, 

mixed-design ANOVA). Note: because active and passive behavioral responses were mutually-exclusive 

and exhaustive behavioral categories, active coping behaviors comprised the remainder of the 5-minute 

period for each test. 

 

Figure 3. Mean (+ standard error of the mean, SEM) plasma adrenocorticotropic hormone (ACTH; Panel 

A) and corticosterone concentrations (Panel B) in isolated male (n=7), isolated female (n=7), paired male 

(n=6) and paired female prairie voles (n=6) following 10 days of chronic mild stress. *P < 0.05 vs. both 

paired groups; ^P < 0.05 vs. isolated male group (main effect of sex, housing, and housing by sex 

interaction, mixed-design ANOVA; t-tests with a Bonferroni correction). 

 

 


