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Abstract: Gears are important mechanical components for power transmissions. Tooth wear is one of the 

most common failure modes, which can present throughout a gear’s lifetime. It is significant to accurately 

monitor gear wear progression in order to take timely predictive maintenances. Motor current signature 

analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both 

electrical and mechanical systems. However, little research has been reported in monitoring the gear wear 

and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method 

through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear 

transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These 

oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly 

effective in characterising such small modulation signals. Based on these understandings, the monitoring 

process was implemented based on the current signals from a run-to-failure test of an industrial two stages 

helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB 

analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can 

be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable 

changes with gear loads. A monotonically increasing trend established by these features allows a clear 

indication of the gear wear progression. The dismantle inspection at 477 hours of operation, made when one 

of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear 

marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process 

during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable 

and accurate for monitoring gear wear deterioration. 
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1. Introduction 

Gears are commonly used as a means of power transmission in many industrial applications. Gear wear is a progressive material 

loss from contacting tooth surfaces, which is an inevitable phenomenon in the service lifetime of gears. Apart from the direct 

material loss, surface wear also affect significantly time-varying meshing stiffness [1-5], dynamic transmission error [4-6], and 

load fluctuation [4, 5, 7, 8]. As one of the major failure modes of gears, severe wear can lead to the occurrence of other types of 

gear failures such as surface pitting, scuffing and broken teeth [9]. Therefore, the subject of gear wear monitoring and diagnosis is 

receiving a lot of attention in the field of condition monitoring (CM). 

For gear wear monitoring, the wear debris analysis is mostly used [9-10], and there is an endeavor for its replacement by more 

popular vibration monitoring techniques [10-12] and acoustics analysis [13]. The wear debris analysis is carried out off-line and 

time-consuming. Moreover, wear particles analysis cannot timely reveal changes in gear transmission dynamic features, which can 

be used to examine if gears still work properly. Vibration based methods have several drawbacks, such as significant signal 

background noise caused by external excitations, over-sensitive to resonance distortions, and invasive measurements. Similarly, 

the noise signature is also affected by the interfering sources, transmission paths and background noise [13]. The above mentioned 

methods also require accessibility to the gearbox, either to collect samples or to mount the transducers on or near the gearbox.  

To avoid these shortages of prevalent techniques, the motor current signature analysis (MCSA) for the CM of motor-operated 

gearbox [14-20] has received growing attention in recent years and achieved considerable advancements. These publications show 

many interesting achievements in this direction. In all these publications, the use of MCSA for the detection of gear faults has been 

limited in that no deterministic approaches have been demonstrated. One of the main reasons for this lack of diagnostic clarity is 

that the harmonic content and noise contained within the real measured signals are high or the fault signals are low. Moreover, the 

gear transmission system usually produces significant nonlinear coupling phenomenon that will present sum and difference 

frequency components when the failure occurs. The methods such as fast Fourier transform [14-15] and power spectrum analysis 

[16] used in the above mentioned achievements, are based on stationary signals and are difficult to solve the nonlinear phenomenon 

and suppress noises. As a result they can be insufficient to properly correlate the stator current data with faulted conditions. 

Therefore, many researchers have investigated alternative signal analysis methods, such as empiric mode decomposition (EMD) 

[17], wavelet demodulation analysis [18] and combined methods [19-20], for analysing current signals for more accurate feature 

extraction. Although these efforts have shown promising results, they may be still deficient because these signal analysis methods 

possess limited noise reduction capability. 

Higher order spectra (HOS) are useful signal processing tools that have shown significant benefits over traditional spectral 

analyses because HOS have unique properties of nonlinear system identification, Gaussian noise elimination and phase information 

retention [21-25]. Therefore, HOS analysis has received high concentrations. In [26], conventional bispectrum (CB) was applied 

to motor current signals for detecting different degrees of tooth breakage of a two-stage helical gearbox. Ref. [27] introduced MSB 

which is a significant improvement of the CB in that it enhanced CB to apply the modulation signal efficiently. The results showed 

reliable fault diagnosis and revealed that random noise can be suppressed effectively, being much better than that of the power 

spectrum (PS) and CB for diagnosing different seeded faults, such as tooth breakage and shaft misalignment. However, MSB 

method has not been evaluated for gear wear monitoring and severity assessment, which may be more challenging as the wear may 

induce current signatures far weaker than tooth breakages.  

To examine the performance and extend the applications of using MSB based MCSA to the monitoring of gearboxes, this paper 

investigates monitoring the deterioration process of an industrial multi-stage helical gearbox based on motor current measurements 

and MSB analysis. It applies MSB to current signals measured progressively from a run-to-failure experiment to obtain accurate 

modulation characteristics and their evolution behaviours with operating times, and thereby implementing the gear wear monitoring 

and severity evaluation. The paper has four sections. Section 2 presents the theoretical basis of gear wear detection based on the 

MSB-MCSA. Section 3 describes the run-to-failure experimental setups for validating the proposed method. Then, section 4 shows 

the monitoring results in conjunction with critical interpretations and finally, section 5 is the conclusion.  

2 Theoretical basis of gear wear detection based on MSB-MCSA 

2.1 Motor Current Model for Gearbox Condition Assessment  

When a motor driving mechanical transmission such as a gearbox is operating under healthy conditions, the ideal 

electromagnetic relationship of the driving motor can be examined by using just one of the three phases. To simplify analysis 

process, the electromagnetic relationships are examined in phase A and the higher harmonics in the phase is not considered. 

Referring to supply voltage, the current signal in phase A for a healthy motor drive can be expressed as 

2 cos(2 )A s Ii I f t                                   (1) 

Correspondingly, the magnetic flux in the motor stator is 

2 cos(2 )A sf t                                      (2) 
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The electrical torque produced by the interaction between the current and flux can be expressed as 

3 sin( )IT P I                                       (3) 

where I  and   denote the root mean squared (RMS) amplitudes of the supply current and the linkage flux respectively, I  and 

  are the phases of the current and flux respectively referring to the phase of supply voltage signal, sf  is the fundamental 

frequency of the electrical supply and P  is the number of pole pairs. 

Gear supporting systems usually have much higher stiffness, compared with gear dynamics systems. Tooth friction and wear 

can be regarded as one of the main sources corresponding to the changes in dynamic load [4]. Whenever there is a load fluctuation, 

there will be an additional torque component oscillating at rotating frequency around the electrical torque [28]. Gu et al. [27] have 

derived the effect of a single rotating frequency additional torque on the stator current. Hence, the effect of additional torque only 

relating to rotating frequencies have been considered in this article while deriving the resultant current signal in phase A, which is 

an extension of the derivation given in [27]. 

The total additional torques T in the induction motor consist of some additional oscillatory torques 
k

T  at corresponding 

rotational frequency 
k

f  with respect to current amplitude 
k

I  and phase 
k

  given by Eq. (4) 
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where k is the number of shafts in the downstream gearbox. The oscillatory torques cause corresponding angular variation is 
2
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where J is the inertia of the rotor system. This angular oscillation produces phase modulation to the linkage flux in Eq. (2) and 

yields 

2 cos[2 )]s k

k
A

f t                                          (6) 

Considering k  is very small, leading to approximates: kcos( ) 1   and sin( )k k    , the linkage flux now can be 

simplified and examined in three modulated components explicitly: 
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where 
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
  . The derivative of the first term of the flux in Eq. (7) is the fundamental electromagnetic force (EMF). 

By comparing Eq. (7) and Eq. (2), the change of linkage flux can be obtained as 

2
{cos[2 ( ) ] cos[2 ( ) 2 ]}

2A k s k k s k k

k
f f t f f t                                (8) 

Eq. (8) shows that the change of flux contains two sidebands around the fundamental frequency, each having different phases. 

This linkage flux will produce new electromagnetic forces (EMFs) and hence induce the corresponding additional current signals 

in the stator based on the motor equivalent circuit [29] as follows: 

2 2
cos[2 ( ) ] cos[2 ( ) 2 ]

2 2

k

A lk s k I k k rk s k I k ki I f f t I f f t                                  (9) 

where k  is the angular displacement of motor equivalent circuit impedance at supply frequency, lkI  and rkI  are the RMS values 

of the lower sideband component and the upper sideband component, respectively. Combining Eq. (1) with Eq. (9) yields the final 

current signal under the condition of the wear in multi-stage gearbox: 
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      (10) 

As seen from Eq. (10), any torque oscillating with a specific frequency 
k

f  will have sidebands across the supply frequency 

sf  in the motor current signature. And the phase angles of both sidebands are completely different. Nevertheless, based on the 

changes in magnitudes and sidebands it is feasible to assess the tooth wear from the gear transmission. 

2.2 Modulation Signal Bispectrum 

Previous studies [27] has shown the consequence of ignoring phase information using power spectrum may degrade diagnosis 

performance for the case of incipient faults when the sideband amplitude is very small and masked by various random noises: 

measurement instruments and additional induction currents induced by environment and random magnetic fields. On the other 

hand, MSB analysis allows the retention of both the amplitude and the phase information, the suppression of random noise and the 

identification of nonlinear modulation effects.  

For a discrete time current signal )(tx with corresponding Discrete Fourier Transform (DFT) )( fX , the MSB can be defined 

in the frequency domain as [27] 
* *

( , ) ( ) ( ) ( ) ( )
MS k s s k s k s s

B f f E X f f X f f X f X f                            (11) 

where sf  and kf  are the carrier or supply frequency and modulation or fault frequency respectively, 
*
( )

s
X f is the complex 

conjugate of ( )
s

X f  and E  denotes the statistical expectation operator, showing that a statistical average operation is necessary 

for the MSB estimation process and therefore achieve effective noise reduction, which is important to accurately estimate the 

sideband magnitudes for measuring fault severity.  

The overall phase of MSB in Eq. (11) can be calculated by 

( , ) ( ) ( ) ( ) ( )
MS k s s k s k s s

f f f f f f f f                                (12)

 When two components sf  and kf  are in coupling, their phases are related by 

( ) ( ) ( )

( ) ( ) ( )

s k s k
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f f f f

f f f f
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  

  

  
                                 (13)

 
By substituting Eq. (13) into Eq. (12) the total phase of MSB will be zero and the amplitude of MSB will be the product of the 

four magnitudes, which is the maximum of the complex product. Thus, a bispectral peak will appear at bifrequency ( , )k sf f  

considering both sidebands simultaneously. This is more accurate and apparent in representing the sideband characteristics of 

modulation signals. 

With this definition, the MSB phase of faulty current signals presented in Eq. (10) can be obtained as  

( , ) 2 2 2MS k s F kf f                                        (14) 

Eq. (14) shows that MSB phase of motor current signals only relates to the sideband component i.e. the angular position of 

faults and motor design and operation parameters, but excludes the phase of the fundamental component. It means that MSB is 

independent of the angular position of the rotor or the start point of a signal acquired. This will allow sufficient averages in MSB 

estimation to be performed using a data set collected or framed at any time. The average in turn will suppress random noise and 

non-modulating components to obtain a reliable estimation of MSB and of the hidden modulating signals. 

The amplitude value of MSB at bifrequency ( , )k sf f  can be denoted as 

( , )=
MS k skV B f f                                     (15) 

This MSB based approach has been shown to yield outstanding performance in characterizing the small modulating components 

of motor current signals for diagnosing different electrical and mechanical faults [21] [27] [30]. Therefore, it is also based on MSB 

in this study to extract accurately the amplitude of sidebands in current signals for the purpose of gear wear monitoring and severity 

detection. 

3 Test method 

In this paper, a run-to-failure test was carried out to examine gear wear process monitoring through motor current measurements. 

The test is based on a two-stage gearbox test system as shown in the schematic diagram of Figure 1. The transmission system 
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consists of a 3-phase AC motor, a two-stage helical gearbox, flexible couplings and a DC motor which acts as a mechanical load. 

The gearbox is driven by AC drive motor. The required speed and load are approved via a touch screen interface of the resistor 

bank controller, which sends the required values to both AC motor and DC generator. The induction motor is rated at 11kW at 

1470 rpm and controlled by a variable speed drive to operate under different operating conditions. The gearbox under test is also 

rated at 11kW at 1470 rpm with splash lubrication. The technical specification of the helical gearbox is given in Table 1. To speed 

up gear failure, the tooth width of the driving gear at the input shaft is halved, as shown in Figure 2. This increases local contact 

stress by about 40% and is often adopted for an early failure test. 

 

 
 

Figure 1 Schematic diagram of test facility 

 

 
 

Figure 2 The driving gear of the first stage 
(a) initial (b) half removed 

 

During the course of the test, both current and vibration signals were continuously recorded with a time interval of 50 minutes, 

detailed in Figure 3. Electrical current signals are measured by a Hall-effect sensor with the sensitivity of 5A/V and frequency 

response range of 1Hz to 4000 Hz. A 16-bit resolution data acquisition system with 16 analogy input channels is used to capture 

and convert the analogy signals acquired from the transducers to digital signals and then transfer to the host computer for post 

MSB and spectrum analysis. All the measurements are sampled at a rate of 100 kHz and with a data length of 16 seconds at each 

acquisition. Such a high rate is mainly for a high accuracy of speed calculation based on the encoder pulse train. For MSB based 

MCSA, the sampling rate can be as low as 5 kHz if the rotor bar passing frequency is interested. In addition, the vibration of 

gearbox is also measured simultaneously by an accelerometer with a sensitivity 4mv/m/s2 in order to benchmark the MCSA.  

  
Table 1. Specification of Two-Stage Helical Gearbox 

 

Gear Parameters 1st Stage 2nd Stage 

Number of teeth 58/47 13/59 

Module (mm) 1.25 2 

Pressure angle (deg) 20 20 

Helix angle (deg) 27 13 

Actual Face width (mm) 13/25 36 

Contact ratio 1.45 1.469 

Overlap ratio 1.445 1.289 

Centre distance (mm) 74 

Meshing frequency (Hz) 1mf =1421 2mf =393.04 

Shaft frequency (Hz) 1rf =24.5 2rf =30.23 3rf =6.66 

 

In order to examine the effect of wear on motor current under different loads, five different operating loads at full speed are 

applied to the system, as illustrated in Figure 3 below. The test has been conducted with no intermediate installation interruptions 

to avoid any inevitable installation uncertainty errors. 

 



 
 

The test was terminated after 477 hours, due to a significant increase in the monitored current amplitude, and high vibration 

level, which indicates there is a clear abnormality occurring in the system. The gearbox was then dismantled and inspected. It has 

found that clear tooth defects are present on the gear teeth surface as illustrated in Figure 4. It shows that the tooth surface of the 

driving gear has obvious scuffing markers, as illustrated in Figure 4 (b) and (c) in which excessive wear effect is more significant 

on the tooth flank below the pitch line, compared with the initial surfaces in Figure 4(a). Moreover, it also shows that the wear 

marks in Figure 4 (c) look slightly higher, showing non-uniform wear across the circumference of the gear or unsymmetrical wear 

due to inevitable eccentricity and run-out errors. These phenomenas are typical features caused by the excessive wear under higher 

contact stress, which are common failures and have been observed in many studies [31-37]. 

 

   
 

Figure 4 Scuffing on gear teeth of tested gear 
(a) initial tooth surface (b) scuffing markers on one tooth surface (c) scuffing markers on the other tooth surface 

4 Results and Discussion 

In order to evaluate the performance of MSB-MCSA approach in monitoring gear wear progression, the recorded current data 

are processed using MSB methods in which a 60 times of average is achieved based on the data length. In addition, a Hanning 

window is applied to the data frame during the fast Fourier transform to suppress spectral leakages.  

To find effective diagnosis features, MSB has been calculated up to 3000 Hz, in which the components at the stator slot, rotor 

bar pass frequencies and the two mesh frequencies can be explored. However, it was observed that the most significant information 

lies in the range below 35Hz, particularly relating to gear shaft rotation frequencies at which MSB exhibits high amplitudes. This 

shows high correlation with gearbox operations. As discussed in Section 2, this observation agrees with the view of additional 

torque components oscillating at rotating frequency. In the meantime, any additional torque changes in the high frequency range 

can be smoothed significantly by the induction mechanisms as the flux change is inversely proportional to the squared frequency 

according to (5) and [15, 18, 28]. Therefore, MSB analysis is carried out in a low arrangement up to 80Hz in this study. In addition, 

to show the power of modulation components, a root squared MSB magnitude is presented according to: 
0.5

( , )=
MS k skA B f f                                     (16) 

In this paper, 
kA  at each shaft rotation frequency is selected as the monitoring feature and presented against the operating time 

to show the gear wear progression and location. 

 
 

Figure 3 Load and speed in a test operation cycle 
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4.1 MSB Characteristics and Monitoring Features 

Figure 5 shows representative results of MSB for the current signals in early operating periods, specifically at the 4th hour, under 

the different load levels in the run-to-failure test. In the graphs, there are three distinctive peaks at the supply frequency of 50 Hz 

for all load cases. In particular, 
1rA and 

2rA are very dominant. These components correspond to the first two rotational frequencies 

of r1 24.3f   Hz and r2 29.8f   Hz respectively. Thus they reflect the dynamic behaviour of the gear transmission for the 1st 

stage of the gearbox. In the meantime, the peak value 
3rA  at r3 6.6f   Hz is also visible, showing that this MSB magnitude can 

also provide desired information of the transmission dynamics at the second stage. This shows that the testing gearbox exists 

inherent manufacture errors such as eccentricity and run-out which cause oscillations in speed and loads. In addition, the highest 

peak is at r1f  and the lowest is at r3f  , showing that the rational dynamics are very different i.e. the speed fluctuation at the low 

speed shaft is the lowest even though it may have higher dynamical load. In general, these bispectral peaks show that MSB can 

reveal the nonlinear interaction between the current signals and the downstream gearbox with its shaft frequencies as the 

modulating components. This is in agreement with the proposed analysis made in Section 2.1. 

 

 

 

 
 

Figure 5 MSB spectrum at the 4th hour under different load cases 



 

Furthermore, it also can be observed clearly from Figure 5 that
1rA ,

2rA  and 
3rA  have a clear increase with the load increasing. 

It shows that the higher loads induce more elastic deformations to both the tooth profiles and the gear supporting system and 

thereby severer modulation to the supply components. This shows that these peaks are very sensitive to gear loads. Moreover, any 

gear faults either local tooth breakages or distributed gear wears can cause increases in not only dynamic loads but also static loads. 

Consequently, these peaks will also increase to reflect these load changes. This is consistent with the fault symptoms that appear 

to be more clearly pronounced at a higher load than a lower load condition [26].  

In Addition, Figure 5 also shows that MSB slices at sf =50Hz can provide sufficient information to characterize the modulations 

due to gear dynamic effect. Therefore, only peaks appearing at this slice will be extracted in establishing the diagnostic features. 

This also shows that using one MSB slice for wear monitoring will reduce computational work significantly and hence the method 

can be implemented on-line. 

 

 
 

Figure 6 MSB slice of 50 Hz at different operating times under different loads 

 

Figure 6 shows the MSB slices at 50 Hz under three higher loads: 3rd=60%, 4th=80%, and 5th=90% of full load for four increments 

of operating times: 4 hours, 141 hours, 293 hours, and 477 hours. By comparing them across the operating times, it can be found 

that the amplitudes of 
1rA

 

have a clear increase, indicating that wear produces higher nonlinear interaction between the input shaft 

frequency r1f  and the fundamental supply component and hence shows the higher load oscillations due to gear wear accumulated 

over the operating period. At the same time, the amplitudes of 
2rA also show a slight increase. Moreover, the amplitudes of 

3rA  

keep constant throughout the whole period. These change patterns of MSB peaks show that the gear wear is much severer on the 

first shaft, that is the testing driving gear shows severe wear defects, which are illustrated in Figure 4 (b) and (c). Therefore, the 

MSB peaks can be based to locate which gear is faulty and assess the degree of the wear severity. 
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4.2 MSB-MCSA based Wear Severity Monitoring 

Based on aforementioned analysis, MSB peaks value at bifrequency ( , )k sf f  can be used to monitor the gear healthy condition. 

For underline gearbox, there are three rotating shaft frequencies: r1f , r2f  and r3f  detailed in Table 1. Their MSB peak values can 

be obtained by 

1

2

3

0.5

1

0.5

2

0.5

3

( , )

( , )

( , )

=

=

=

MS r s

MS r s

MS r s

r

r

r

A B f f

A B f f

A B f f
                                  (17) 

Figure 7 shows the monitoring trends of 
1rA , 

 

2rA

 

and 

 

3rA  respectively under the three higher loads (3rd=60%, 4th=80%, and 

5th =90% of full load). It can be clearly seen from Figure 7 that there are obvious differences in the trend between the worn and 

baseline operations, especially for all three higher load operations. 
1rA  increases slowly to the peak at the 20th hour of operation, 

and then fluctuates and drops slightly to a lower level at the 52nd hour. From the 52nd hour onwards, the peak values exhibit a steady 

increasing trend, showing that the gear deterioration exhibits a steady enlargement but with different rates.  

The slow changes in peak values in the first 20 hours indicate the gear set experiences the run-in process. In this period the tooth 

surface asperities are removed. The peak value decreases during 20th-52nd hours of operation. This can be viewed as the gear pair 

self-modify their profiles through the wear effect. As a result, the run-out errors become less and gear engagement is becoming 

more conformity. This also clearly indicates that the run-in process occurred during the first 52 hours, which means the gear mesh 

condition is improved during this period. However, after run-in period, the wear would lead to the gradual deterioration in gear 

meshing conditions. 

The slight increasing trend of peak values from the 52th to 220th hours is a clear indication of the initial wear development, which 

also is called a mild wear period because it is usually characterized by slow but steady material removal. This then shows that the 

MSB-MCSA can accurately indicate the occurrence of incipient wear in the driving gear at the first stage of gearbox.  

After the 220th hour, the MSB peaks increase more significantly with slight fluctuations, which show the gradual enlargement 

of the gear wear during this moderate wear period. It also can be seen that the MSB fluctuation becomes higher from about the 

411st hour up to the test termination (the 477th hour), which reveals that the gear wear started to be severe at that time due to faster 

and larger material removals. During this stage of the process, the wear may lead to temporary improved engagements, resulting 

in smaller oscillations. This behaviour of MSB peaks can indicate severe wear period. 

Although 
1rA  MSB peak value of the input shaft exhibits a clear increasing trend, 

2rA  and 
3rA  the other two shafts exhibit very 

marginal increases throughout the operation course. However, 
2rA  exhibits a relatively clearer increase at the onset of the moderate 

wear period and during late operations. Comparatively, 
3rA  does not exhibit such increase features, instead it increases with a very 

slow rate, correspondingly largely to the mild wear process. The average MSB peak values of ten sets selected and beginning 

(baseline) and the end of operations (termination) for comparison are listed in Table 2. 
1rA  is at least 123% higher than its baseline. 

2rA  increases by 20% and 
3rA  almost remains the same. These results also confirm that there are different wear severity occurring 

at the identified gear. Therefore, it can be concluded that the tooth wear at the first gear set is significantly more severe and that 

the second stage of the gearbox is relatively healthy.  

 
Table 2. The average MSB peak values 

 

 Load Baseline (A2) Termination (A2) Increase rate (%) 

1rA  

3rd 0.0358 0.0799 123 

4th 0.0574 0.1498 161 

5th 0.0685 0.2090 205 

2rA  

3rd 0.0145 0.0176 22 

4th 0.0302 0.0387 28 

5th 0.0452 0.0527 17 

3rA  

3rd 0.0059 0.0060 2 

4th 0.0106 0.0108 2 

5th 0.0142 0.0139 -2 



Based on the above analysis, the change in MSB peaks at different rotational frequencies can be used to determine which gear 

sets are faulty and how severe the wear progressions are. This gradual steady trend can be used to achieve a high accuracy in 

predicting the fault advancement for implementing timely maintenances. 

 

 
 

Figure 7 The monitoring trends based on MSB peak values 

 

4.3 Vibration Based Wear Severity Trend 

To benchmark the performance of the MSB-MCSA based gear wear monitoring, the vibration signals for the run-to-failure test 

under the same conditions were also collected using one accelerometer mounted on the gearbox casing close to the tested gear to 

reduce the vibration influences of the other part and path transitions attenuation, detailed in see Figure 8.  

The RMS value which is a common diagnostic feature and used widely for vibration based monitoring is used to monitor wear 

process. Figure 9 shows the RMS trends for the test period. It can be seen that RMS trends fluctuate greatly with operating time 

and differ significantly between loads. The trends may provide information to show that the gear is very faulty at late operations 

such as at 460 hours.  

However, they exhibit very large drops at the start of the moderate wear period. This makes it difficult to judge the gear meshing 

conditions. In addition, there are many local jumps in the trend which will add more uncertainties in implementing condition 

prognosis. The vibration behaving in these ways show the vibration is very sensitive to the nonlinear effect of gear meshing 

dynamics and vibration transmission paths [38], which often require significant efforts in signal processing and feature 

optimization in order to develop a consistent trend for monitoring and prognosis. The authors have tried different methods such as 
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the popular time synchronous average, wavelet transforms and MSB. Unfortunately, it has not obtained a monitoring trend as good 

and direct as that of MSB-MCSA.  

 

  
 

Figure 8 Accelerometer position on gearbox 
 

 
Figure 9 RMS of the vibration signal for gear wear process 

 

5 Conclusion  

 

Based on this study and results achieved, it can be concluded that MSB-MCSA is an effective approach to non-intrusively and 

can remotely monitor the slow gear process and diagnose wear severity and fault location of multi-stage helical gearbox. The 

theoretical analysis shows that the induction motor current signals contain the small modulation components relating to the gearbox 

wear deterioration process. In particular, tooth wear causes load oscillations, which can be characterised accurately by MSB 

because MSB possesses the high performance of noise suppression while enhancing the nonlinear effect of modulations, presenting 

in the conventional power spectrum as the lower and higher sidebands corresponding gear rotating frequency across the supply 

frequency. In addition, MSCA mainly relies on the information of the torsional dynamics of the gear transmission system. It has 

been much less influenced by the nonlinearity of translational vibration responses. Therefore, a more steady and consistent 

monitoring trend can be obtained by MSB-MCSA, allowing a depiction of different gear wear stages and the progressive 

deterioration. 
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