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Abstract 

 
Urban road traffic congestion has been a constant problem both in UK and worldwide. Urban 

road transport authorities collect data from different sources. These data can be effectively 

utilised with an objective to minimize congestion and its impact. One of the ways for the same 

can be to find possible congestion in different routes beforehand and then plan accordingly 

either to reduce the effect or to avoid it entirely.   

 

So this project aims to make effective use of existing data to predict journey time for near 

future e.g. 15/30/60 minutes ahead for different routes within the urban road traffic network. 

It also produced a working prototype for the journey time prediction with necessary data 

visualisations. 

 

A complete data centric approach has been adopted to solve the problem of prediction by 

building a predictive model using machine learning algorithms with traffic volumes at different 

points as predictor and journey time for near future as the target. Given the nature and 

volume of the data, a big data platform (Apache Spark) was chosen as the analytics platform 

and the work also proposes a high level technical architecture for the end to end solution.  

 

The results for journey time prediction for near future are quite encouraging with a 

consistency for different routes under the area of consideration.   
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Chapter 1 Introduction 

Urban road traffic congestion in UK has been a constant problem for a number of decades, 

and with the recent rise of population and rapid growth in economy, the problem is becoming 

worse. According to a report [37] by INRIX, a leading provider of real-time traffic information 

and connected driving services, in the year 2014, the UK became the fifth most congested 

country in the Europe where a commuter wastes around 30 hours on the road annually. 

London was Europe’s most congested city in the year, with drivers spending 96 hours in traffic 

followed by Grater Manchester with drivers wasting 52 hours.  

 

Such a bad condition of road traffic is costing the economy a lot. In another report [38] by the 

same agency, it estimates the gridlock will be costing the UK economy around $480 billion 

cumulatively between years 2013 to 2030.  At the individual level, traffic congestion costed 

drivers on average $1,740 in 2014 alone and if unchecked, this number is expected to grow 

more than 60% to $2,902 annually by 2030. There is also a cost from damage to the 

environment due to the increase in road traffic.   

 

In relation to managing the traffic, the Highways Authority [42] has the responsibilities for 

motorways and trunk roads and the local authorities [43] has management roles for safe and 

efficient conduct of urban traffic.   

 

Problem Overview  
Urban road transport authorities collect data from different kinds of sensors like SCOOT [29] 

devices, Bluetooth devices etc. Currently most of the collected data are used only to generate 

static reports. At the same time the authorities are actively looking forward to solve the 

following problems: 
 What is the traffic condition across the network at any given point in time? 

 Can traffic incidents and abnormalities be predicted before they happen? 

 Can the existing data sources be utilised to make effective traffic plans? 

At the moment, a common way to monitor or to have a macroscopic view of a city’s traffic is 

by observing images captured through CCTVs in real-time. This is a manual process and not 

adequate to provide the information required by traffic controllers to take necessary decisions.  

 

There are different kinds of unexpected incidents that might occur on an urban traffic network 

e.g. an accident, congestion or traffic delay. If such an unwanted incident occurs, then the 

authority takes necessary action to mitigate the problem. At the moment, it is mostly reactive 

in nature – an action is taken only after an incident occurs. But, it will be quite efficient if an 

authority can predict incidents before they occur then the incident can be managed very 

efficiently and on certain occasions it can also be avoided. So, authorities can act proactively 

to manage an incident. 

 

Traffic authorities implement traffic plans to manage the network efficiently and conveniently 

for the commuters. One example of such plan is that they control different traffic signal times 

so that there is efficient, effective and safe flow of traffic on the roads. Currently, they run 

static plans which are predefined.  Given that they have now lots of data collected from 

different sources, transport authorities are interested in making use of the data to come up 

with more efficient plans.  Also, there is an increasing interest in making use of data to build 

dynamic plan based on changing conditions of a traffic network.   

 

Transport for Greater Manchester or TfGM [39] is the authority responsible for all the urban 

traffic management for Greater Manchester area. TfGM was kind enough to allow access to 

one of its information system called C2 [44] and permitted us to use the data in the C2 system 

for the purpose of this project.  
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TfGM has installed Bluetooth sensors across the roads transport network. When a vehicle 

passes through a sensor, it makes a note of the unique identity of Bluetooth device enabled 

inside the vehicle along with the timestamp. Through these sensors, the traffic volume data 

at any sensor point or site (as per the convention of C2 system) is available up to every 

minute. The C2 software system takes this data and computes journey time between any two 

sites as the start and end of a route. The system also provides a web interface for historical 

reporting and allows data to be downloaded in excel or csv formats.  

 

Among the different problem areas identified before, the following one has been identified for 

further investigation: 

 
 Can traffic incidents and abnormalities be predicted before they happen? 

There are many abnormalities that can take place, like congestions, accidents, excess 

emission of pollutants like Nitrogen Oxide etc.  For this project, the datasets (including historic 

ones) were available from the C2 system which TfGM allowed us access to use the datasets 

for the research.   

 

Motivation 
Both traffic volume data and estimated journey time data for routes can used with a data 

centric approach to solve one of the concerns of the traffic authority: to predict if something 

is about to go wrong on the network. The traffic congestion or delay in a journey is one of the 

most important and most frequent undesired happenings on UK road networks including that 

of Grater Manchester.  

 

Traffic congestion [40] can be defined in terms of the difference between users’ expectations 

of the road network and how it actually performs e.g. suppose it usually takes 5 minutes to 

commute by car on a particular route and if it takes 7 minutes to commute on that instance 

then the additional 2 minutes will be contributed to congestion or traffic delay.  

 

So if the journey time for a route can be predicted, then it would be easy to predict the traffic 

congestion based on the time of the day. This project undertakes this objective to predict the 

journey time for the short future – 15/30/60 minutes ahead given the historic data and the 

live data for traffic volume at the time of consideration.  

 

The output of this work can be very useful for the transport authorities. They might be able 

to take some action if they get to know beforehand that it is going to be congested on a 

certain route. Also it would help them find out how the entire network is going to do in near 

future in terms of journey time and congestion. If this project is implemented in production 

to predict the journey time in real time, the result can be utilised by some other information 

system in run time.    

 

Real time prediction of journey time is an area of interest in academia. For researchers related 

to transport, statistics and artificial intelligence, this work may provide basis for further 

exploration and extension.  

  

Solution Overview 
The project, Real-time Analytics for Urban Road Transport aims to achieve following:  

 Making effective use of existing data to predict journey time for a route beforehand 

e.g. before 15 minutes. 

 
 To produce a working prototype for the above prediction and visualisation. 

A complete data centric approach has been adopted to solve the problem of predicting the 

journey time. A network has many routes, but for the scope of this project, a few routes, 
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including simple and complex ones have been selected for experimenting with the prediction. 

It was investigated to come up with a model for prediction of journey time which would make 

use of collected historic data for traffic volumes at different sites.  

 

The following figure (Figure 1) shows the traffic volumes at different sites (point of sensors) 

at a particular time. The height of the bars depends of the volumes of the traffic, more the 

height if higher the traffic volume. 

 

 

 
Figure 1 : Traffic volumes at different sites 

 

As part of the project, different approaches were investigated and finally got settled on 

machine learning based model. In supervised machine learning, the model learns from the 

examples or the historic data by finding right pattern. It finds the pattern after being trained 

with the examples. Then the trained model can be used to make prediction given a new 

dataset. The following diagram (Figure 2) explains supervised machine learning visually.  

 

 
Figure 2 : Supervised Machine Learning 

 

There are different algorithms for supervised machine learning. Decision tree algorithm [57] 

was selected to build the model. As huge data (traffic volumes for around 100 sites for nearly 

a year) was processed for training the model. This needed a big data platform as the huge 

dataset is not possible to be processed in a single machine setting. The Spark [85] 

implementation was used as the analytics platform for all the data processing. 
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The entire dataset considered was divided into two sets with 7:3 ratios. The former dataset 

was used to build or train the model and the rest was used for testing the model and 

evaluating the result. The final figures were obtained by running the experiments 3 times in 

a row and by taking the average of the results. The two metrics evaluated are MAE and MAPE. 

Mean Absolute Error (MAE) [65] is the average of the absolute difference between actual 

journey time and predicted journey time in seconds. Mean Absolute Percentage Error (MAPE) 

[66] is the average of the absolute difference between actual journey time and predicted 

journey time divided by the actual journey time. While MAE depends on the unit of journey 

time like minutes or seconds, MAPE does not.    

 

Table 1 : Evaluation Result for one of the routes 

Prediction Ahead 
MAE 

(seconds) 
MAPE 

15 min 15 9% 

30 min 16 10% 

60 min 22 14% 
 

 

Dissertation Plan 
The rest of the dissertation is organized as follows:  

 

Chapter 2 covers the detailed problem analysis and the literature review. 

 

Chapter 3 discusses the solution design in detail and the approach adopted. 

 

Chapter 4 provides a brief of algorithm for scale and how it is designed and implemented.  

  

Chapter 5 discusses the prediction results and explains the evaluation metrics. 

 

The last chapter brings the conclusion and also discusses the next steps.  
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Chapter 2 Background and Literature Review  

Delay in a journey may result from many reasons [70] apart from the increase in traffic flow 

like events, incidents, weather conditions etc. Few examples are as below:  

 An event like a football match organised in the city can cause unexpected flow of traffic 

which can result in traffic jam and delay.  

 An incident like an accident [100] may cause road blockage and result in delay.  

 Bad weather like snow fall or good weather like a sunny summer day may impact the 

traffic flow and can result in traffic delay.  

So one ways to predict traffic delay may be to map all such events, incidents and conditions 

along with traffic flow and come up a solution to predict a delay in journey time as a function 

of all the enumerations.  There are following problems in this approach:  

 It is difficult to enumerate all such events, incidents and conditions in real time. These 

are also interdependent and varies in nature. For example, bad weather may cause an 

incident which leads to traffic delay.  

 If there is a new kind of event or condition or incident which was unknown during the 

solution design, then it may lead to fail the solution.  

 For this project, data was available from one source, C2 system of TfGM. C2 [44] has 

very limited data about events, incidents and conditions.  

So the above approach was not considered and an alternative approach was investigated.  

C2 system primarily provides following two kinds of data: 

1. Traffic Volume: There are Bluetooth based sensors installed throughout the city which 

capture traffic volumes – count of vehicles passing through a sensor. The traffic 

volume is captured every minute. The visualisation in Figure 1 displays traffic volumes 

captured at a particular instance.  

2. Journey time: C2 allows identifying different routes and can mark a route with two 

sensor points as source and destination. With some algorithms it provides estimated 

journey time from the source to destination. So it doesn’t provide journey time for all 

the possible routes but the ones already identified in the system or defined by the 

user. And hence historical data for different journey time is only available for those 

identified routes. A route can be one of two types: 

 Normal Route: A normal route is one which has only two sites – one as its 

starting point and other as destination point.  

 Compound Route: A compound route is one where there are more than two 

sites on the way.  

Journey Time Analysis 
Following is the journey time analysis for one of the compound routes with the route id, 

9800ZFG0V7IO in C2 system. This route is of length 3 miles stretching from A6042 Trinity 

Way / Regent Rd, Salford to A665 Great Ancoats St / Pin Mill Brow, via IRR, Manchester. It is 

a compound route as shown in the following figure (Figure 3).  
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Figure 3 : Route Map for route id: 9800ZFG0V7IO 

 

The journey time (in minutes) for the route has been explored through different plots in the 

following figures. The histogram and pareto chart in Figure 4 shows that the journey time 

often lies in between 6 to 12 minutes. Nearly 30% of the time it also lies in between 12 to 18 

minutes. As it shows in the Box & Whisker plot (Figure 5) as well, any journey time above 18 

minutes can be considered outliers.  

 

The following are some of the descriptive statistics of the journey time for the route: 

 Mean  : 12 

 Median  : 11 

 Mode  : 9 

 Min  : 6 

 Max  : 37 

 

 
Figure 4 : Journey Time - Pareto Chart 
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Figure 5 : Journey Time Box & Whisker plot 

 

However, it is typical for any route that the journey time differs at different times of the day. 

So one average journey may not well describe the journey time for entire day. And also, the 

perception of congestion [40] depends on the time of the day. So what might be considered 

congested at 2 PM, might be normal at 8 AM.  The following figure (Figure 6) plots average 

journey time, maximum journey time and minimum journey time against different time of the 

day with an interval of every 15minute. This shows and confirms that at any point of the day, 

the average journey time limits to 16 minutes. This plot also shows that at different point of 

time the maximum journey time are different and much above than the average and so also 

minimum journey time. So just considering historical averages over different point of time 

may not help in predicting delay in journey time.  

 

 
Figure 6 : Average journey time, maximum journey time and minimum journey time plotted 

for 15minute interval 

 

Journey time related to a route is seasonal in nature. So these seasonal factors like time of 

the day, day of the week etc. might prove to be strong data points for finding journey time. 

However, there is a drawback in this approach. Once these seasonal factors are considered, 

this would have strong influence on the model to find the journey time. But here we are 

finding journey time with an intention of predicting delay or congestion. So these seasonal 

factors being strong influencer will generalise the model and would miss the delay in journey 

time which are corner cases, most of the time. Here is a scenario to illustration the idea: 

Consider there is a route usually quiet at around 8 pm on a Wednesday. But on a certain 

Wednesday there is a football match going on a nearby stadium and hence more traffic flow 

on the route and hence causing congestion or delay. If a model has been built to predict 

congestion with the seasonal factors like day of the week (Wednesday), time of the day (8 

pm) and these would take the average case and bring shadow on the real influencer to the 

traffic delay (e.g. here, the sudden increase of traffic flow) and may miss to predict the 
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congestion or delay. So it may not make sense to include these seasonal factors while building 

a model to predict congestion. 

 

Assumptions and Hypothesis  
A hypothesis has been made that there exists a pattern in the traffic volumes from different 

sensors which correlates to near future journey time involving a route within an area covered 

through the sensors.     

 

So it was decided to take a pure data-centric approach and predict the journey time of a given 

route from the historic data - journey time for the given route and the traffic volumes captured 

from all the sensors. This approach has the following advantages: 

1. It does not need any other data points like events or incidents to predict journey time 

or traffic delay. So the model can work independent of any external factors. 

2. The journey time for a given route is being predicted using all the sensor data available 

or the traffic volumes from the all sensors without selecting a few traffic volumes for 

a given route. No prior knowledge is being applied about a route with respect to the 

possible influencing traffic volumes at few sites. So the model can be applied to any 

identified route within the sensor areas given availability of historic data.  

3. If certain traffic volumes are influencing the journey time of a routes more than the 

rest, then the model won’t assume anything to begin with but can find out those 

influencing points as output.     

Problem Definition 
The problem of predicting the journey time for a given route can be defined in the following 

form. The predicted journey time in near future can be described as a function of current 

journey time and near past traffic volumes of all the sites.   

 

𝑗𝑡𝑡+15  = 𝑓(𝑗𝑡𝑡 , 𝑣𝑖,𝑡 , 𝑣𝑖,𝑡−1 , 𝑣𝑖,𝑡−2 , … 𝑣𝑖,𝑡−14  )  
Where,  

𝑗𝑡𝑡+15   → Journey time at time, (t +15) 

𝑗𝑡𝑡    → Journey time at time, t  

𝑣𝑖,𝑡    → Traffic volume at ith site at time, t 

𝑣𝑖,𝑡−1   → Traffic volume at ith site at time, t-1 

… 

𝑣𝑖,𝑡−14   → Traffic volume at ith site at time, (t-14)  

 

The above descries a model for predicting journey time before 15 minutes. So the interval 

here is 15 minutes. The assumption is to look back into the near past for traffic volume data 

for all the sites for equivalent time interval as here we are looking back 15 minutes’ worth 

traffic volumes data for different sites.  

 

So the model to predict 30 minutes ahead may be as below: 

𝑗𝑡𝑡+𝟑𝟎  = 𝑓(𝑗𝑡𝑡 , 𝑣𝑖,𝑡 , 𝑣𝑖,𝑡−1 , 𝑣𝑖,𝑡−2 , … 𝑣𝑖,𝑡−𝟐𝟗  ) 

 

However, the duration to look back may differ to get the best result, but currently it has been 

the default choice. The solution will decide the right interval to look back. Traffic volume for 

all the sites have been considered so that the model can be generalised for all the routes in 

the traffic network. It is expected that the model would pick the right data points to make the 

prediction.  

 

The proposed model as a solution need to solve the function defined as above.    
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Related Work 
A recent study in Huddersfield [1] suggests that all or a section of the data coming from traffic 

management centres can be input into to a data mining tool leading to discover associative 

relations between attributes of the data. A prediction model can be formed for different 

incidents, for example accidents occurring at points in the network, or of patches of 

congestion.  

 

The TIME project (Transport Information Monitoring Environment) [6] has focussed on urban 

traffic, using the city of Cambridge as an example. It has shown that traffic data can be used 

for a number of purposes. Firstly, archived data can be analysed statistically to understand 

the behaviour of traffic under a range of “normal” conditions at different times, for example 

in and out of school term. Secondly, periods of extreme congestion resulting from known 

incidents can be analysed to show the behaviour of traffic over time. Thirdly, with such 

analysis providing background information, real-time data can be interpreted in context to 

provide more reliable and accurate information to citizens. 

 

Numerous other research papers are available on short-term traffic flow forecasting. In a 

classic paper [2], they suggest four models for the freeway traffic flow forecasting problem, 

which is defined as estimating traffic flow 15 minute into the future. The models were the 

historical average, time-series, neural network, and nonparametric regression. The 

nonparametric regression model significantly outperformed the other models. This finding 

also gets strengthened in a recent study [7] which proposes a k nearest neighbour 

nonparametric regression (KNN-NPR) forecasting methodology tested against vast quantities 

of real traffic volume data collected from urban signalized arterials. The results show that the 

KNN-NPR model is clearly superior to two parametric models, Kalman filtering and seasonal 

autoregressive integrated moving average (ARIMA), in terms of both prediction accuracy and 

the construction of the directionality of temporal state evolution without a time-delayed 

response. It also concludes that KNN-NPR, even though it is very simplified, is able to 

efficaciously capture the complex behaviour of urban signalized traffic flow. 

 

Another article [3] presents the theoretical basis for modelling univariate traffic condition data 

streams as seasonal autoregressive integrated moving average processes. In a recent paper 
[4] it shows how to forecast urban road short-term traffic flow based on the delay and nonlinear 

grey model. Another study [5] reports on the application and performance of an alternative 

neural computing algorithm which involves ‘sequential or dynamic learning’ of the traffic flow 

process.  

 

Overview of Statistical Learning 
The main goal of statistical learning theory [76] is to provide a framework for studying the 

problem of inference that is of gaining knowledge, making predictions, making decisions or 

constructing models from a set of data.  

 

It is the process of inductive inference that can be explained in briefly in the steps below: 

1. Observe the phenomenon 

2. Construct a model of that phenomenon 

3. Make predictions using this model 

 

It aims to automate this process and the goal of Learning Theory is to formalize it. In short, 

Statistical learning theory deals with the problem of finding a predictive function based on 

data. Most of the statistical learnings can be categorised either as supervised or unsupervised 

learning.   

 

The supervised learning can be defined as below [77]: 

Given a training set of N example input–output pairs 

 
(x1, y1), (x2, y2), …, (xN, yN) 
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where each yi was generated by an unknown function yi = f (xi).  
The supervised learning discovers a function, h that approximates the true function, f 
or h ≈ f. 
 

Here x and y can be any value; they need not be numbers. The function h is a hypothesis. 

Learning is a search through the space of possible hypotheses for one that will perform well, 

even on new examples beyond the training set. To measure the accuracy of a hypothesis a 

test set of examples are applied that are distinct from the training set. A hypothesis 

generalizes well if it correctly predicts the value of y for novel examples. 

 

There are different algorithms [80] that can be used to achieve the supervised learning like 

Neural Networks, decision trees, random forests etc. The following table compares different 

algorithms.  
Table 2 : Comparison of different Supervised Learning Algorithms 

Comparisons Decision 

Trees 

Random Forests & 

Ensembles 

Neural Networks 

Easy to interpret Yes A little No 

Ease of Training Yes Somewhat No 

Training Speed Fast Slow Slow 

Prediction Speed Fast Moderate Fast 

Amount of 

Hyperparameter Tuning 

Needed 

Less Less A lot 

Detect Feature Importance Somewhat Yes No 

Availability of libraries for 

big data scenarios 

Yes Yes No 
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Chapter 3 Solution Design 

The project aims to achieve following:  

 

 To predict the journey time for short future, e.g. 15/30/60 minutes ahead.  

 To produce a working prototype for the above prediction. 

As discussed in the previous section, a complete data centric approach was adopted to solve 

the journey time prediction problem. Statistical learning theory [76] appeared promising for 

the solution.  

 

As we defined our problem in section 2.3, applying supervised learning we need to find a 

hypothesis which would approximate, f. For the problem of prediction 15 minute ahead,  

x = 𝑗𝑡𝑡 , 𝑣𝑖,𝑡 , 𝑣𝑖,𝑡−1 , 𝑣𝑖,𝑡−2 , … 𝑣𝑖,𝑡−14 

y = 𝑗𝑡𝑡+15  
 

Similarly, we can define x, y pair for both predictions, 30 and 60 minute ahead.  

 

When the output y is one of a finite set of values or categorical values the learning problem 

is called classification. When y is a number or continuous value, the learning problem is called 

regression. Technically, solving a regression problem is finding a conditional expectation or 

average value of y, because the probability that we have found exactly the right real-valued 

number for y is 0. 

 

Clearly, the problem at the hand is a regression problem which needs to be solved with proper 

learning algorithms. There are different families of algorithms for solving a regression problem 

like; Neural Networks, Decision Tree and Ensembles, SVM and others. Different algorithms 

were tried and finally Decision Tree algorithm was chosen to design the final solution.  

 

Decision Tree  
Decision tree induction is one of the simplest and yet most successful forms of machine 

learning. Tree-based methods partition the feature space into a set of rectangles, and then 

fit a simple model (like a constant) in each one. For a regression problem, the model fits a 

value for the region which is average of all the labels or response variables.  

 

The overall process of growing a decision tree [79] can be explained as following.  Our data 

consists of p attributes as x and a response as y, for each of N observations: that is, (xi, yi) for 

i = 1, 2, . . . ,N, with xi = (xi1, xi2, . . . , xip). The algorithm needs to automatically decide on the splitting 

variables and split points, and also what topology (shape) the tree should have. Suppose first 

that it partitions into M regions R1, R2, . . . , RM, and it models the response as a constant cm in 

each region: 

ℎ(𝑥)  = ∑ 𝑐𝑚𝐼{(𝑥, 𝑦) ∈ 𝑅𝑚}

𝑀

𝑚=1

 

 

If criterion minimization of the sum of squares or variance is adopted: 𝛴( 𝑦𝑖 − ℎ(𝑥𝑖))
2
, then it 

is easy to see that the best 𝑐𝑚  is just the average of yi in the region, RM: 
𝑐𝑚  =  avg( 𝑦𝑖|𝑥𝑖  ∈ 𝑅𝑚) 

 

The algorithm adopts a greedy divide-and-conquer strategy. It always tests the most 

important attribute first. This test divides the problem up into smaller sub problems that can 

then be solved recursively.  
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Starting with all of the data, consider a splitting variable j and split point s, and define the 

pair of half-planes: 

 

𝑅1(𝑗, 𝑠) =  {𝑥|𝑥𝑗  ≤  s}    and     𝑅2(𝑗, 𝑠) =  {𝑥|𝑥𝑗 >  s} 
 

Then it seeks the splitting variable j and split point, s that solves 

 

𝑚𝑖𝑛
𝑗,𝑠

 [     𝑚𝑖𝑛
𝑐1

∑  (  𝑦𝑖 − 𝑐1)2  

𝑥𝑖∈𝑅1(𝑗,𝑠)

+   𝑚𝑖𝑛
𝑐2

∑  (  𝑦𝑖 − 𝑐2)2  

𝑥𝑖∈𝑅2(𝑗,𝑠)

   ]     

 

For any choice of j and s, the inner minimization is solved by: 

 
𝑐1  =  avg( 𝑦𝑖|𝑥𝑖  ∈ 𝑅1(j, s))    and    𝑐2  =  avg( 𝑦𝑖|𝑥𝑖  ∈ 𝑅2(j, s)) 

 

For each splitting variable, the determination of the split point, s can be done very quickly 

and hence by scanning through all of the inputs, determination of the best pair (j, s) is feasible. 

After finding the best split, the data can be partitioned into the two resulting regions and it 

can be repeated with the splitting process on each of the two regions. Then this process is 

repeated on all of the resulting regions. At the end it results with the required decision tree.  

 

A very large tree might overfit the data, while a small tree might not capture the important 

structure. Tree size, depth or level of a tree is a tuning parameter governing the model’s 

complexity, and the optimal tree size should be adaptively chosen from the data. One simple 

approach might be to split tree nodes only if the decrease in sum-of-squares due to the split 

exceeds some threshold. 

 

3.1.1 Pros and Cons of Decision Tree 
The pros and cons of decision tree based model are as below [78]: 

Pros 

 Trees are very easy to explain to people. In fact, they are even easier to explain 

than linear regression! 

 Some people believe that decision trees more closely mirror human decision-making 

than do the regression and classification approaches seen in the previous chapter. 

 Trees can be displayed graphically, and are easily interpreted even by a non-expert 

(especially if they are small). 

 Trees can easily handle qualitative predictors without the need to create dummy 

variables. 

 Feature normalisation not required. 

Cons 

 Low bias, high variance 

 Not Stable: Additionally, trees can be very non-robust. In other words, a small 

change in the data can cause a large change in the final estimated tree. 

Methodology  
The project follows the steps suggested by the CRIPS DM data mining guide [81] and is planned 

to proceed in a more iterative way with following phases:   

 

Data Collection  

The historic data was collected from the identified source and cleaned. All the data after 

cleaning stored in a cloud storage for further processing. For the real time data, it was 

simulated using a part of historic data.  

 

Data Exploration and Visualisation  
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After data is collected effort will be made to understand it fully. Necessary data visualisation 

was also made to make the data present in more convincing way.  

 

Investigation of Prediction Technics 

In this phase extensive research was done and different machine learning models were 

evaluated and right algorithm was identified to build the model.  

 

Data Preparation  

The data needs to be presented in certain format(s) as required by identified algorithm. Also 

it may need certain transformation e.g. dealing with null values. The following section 3.3 

briefs about the data transformation made for the project. 

 

Prototype (Model) Building   

Different models were built and evaluated for the best one. The prototypes of the models 

were developed using identified platform and programming language.  

 

The stages described above were not executed in isolation to the others. There are 

dependencies in one stage to one or more of the others. These were executed in an iterative 

way, each iteration being a small sprint.  

 

The whole process may well be represented in the following diagram: 

 

 
Figure 7 : Different stages of the projects 

  
 

 

Data Preparation 
The problem analysis in section 2 and solution identified with applying machine learning 

algorithms need a data set with a flat structure containing the features and label or the target 

variables. In the analysis before the features are represented by x and label as y. However, 
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the raw data collected and cleaned are in the temporal structure, so the data needs to be 

converted. The following figure (Figure 8) depicts the data transformation with an example 

where he data is being transformed with an intention of prediction before 5 minutes. So the 

entire data for 5 minutes have been converted to one row and journey time 5 minutes ahead 

is identified as the target variable.   

 
Figure 8 : Data Transformation - Conversion to flat feature vector and label 

 

One-year worth of data was collected (from the C2 system) and prepared. The period taken 

was August 2014 to August 2015.  The cleaned data was further checked for null values and 

all the records containing null values are deleted. The data set covered data for around 100 

sites.  

 

The final dataset was divided into two with 70:30 ratios. The first one was used for training 

the model and rest for testing evaluation.  

 

Logical Architecture  
The following figure (Figure 9) depicts the logical architecture for the project.  

 

 
Figure 9 : Logical Architecture 



21 

  

 

 

 

The workflow has been designed to take the raw data and produce the model which can be 

used to make prediction and visualisation in real time.  While the model building happens in 

the batch mode (offline of making prediction), the prediction can be made in real time 

provided real time data available.  

 

Proposed Solution Architecture  
An overall technical architecture has been proposed for real-time analytics for urban road 

transport. This architecture is designed to scale out and support any workload for any 

analytics (real-time or batch) needs related to urban transport or for any organisation for that 

matter. A system has been designed as a proof of concept implementing the said architecture 

and tested with a single workload covering a complete use case of predicting traffic delays for 

a route in the Grater Manchester area in real-time, the solution for which has been described 

in detail in the following subsection(s).    

 

3.1.2 Data Sources as Publishers 
Data can be sourced from many different kinds of sources like SCOOT devices, different kinds 

of sensors or any other Internet of Things (IoT) sources. These sources would be publishing 

each data point as a message to messaging system either by themselves or through an 

external publisher program.   

 

3.1.3 Distributed Messaging System 
A distributed messaging system is a publish-subscribe service which can scale for millions of 

messages or events per second and more. The scalability comes through distributed 

computing where the service is configured to run in a cluster of more than one computer. 

These are built with fault tolerance. Once messages published to this system, there can be 

some processing inside and it can pass the raw or processed data to a permanent storage. 

Any subscriber, ideally a stream processor can subscribe for messages and do the necessary 

processing as processing capabilities in a messaging system are limited. A distributed 

messaging system is vital for real-time analytics involving big data.  

 

This system can be set up either on premise or in the cloud. Open source product, Apache 

Kafka [86] provides distributed messaging and is built for high-throughput and high scalability. 

Event Hub [87] and Kinesis [88] are the products with similar offerings available as a service on 

Microsoft cloud and Amazon cloud respectively. Any of these services can be used to fulfil the 

requirements based on which environment the entire system is deployed.  

 

3.1.4 Analytics Engine 
Apache Spark [85], has been chosen as the analytics platform. It provides a robust framework 

for large scale distributed computing and comes with different subsystem on top of it with 

capabilities of machine learning, both stream and batch processing, graph processing etc. It 

is an ideal platform meeting all kinds of needs to perform massive scale and advanced 

Analytics under one umbrella. It is open source but also available under different commercial 

distribution by different vendors. Spark is also available as a service by major cloud service 

providers like Microsoft, Amazon and IBM.    

 

The following section provides a brief overview of Apache Spark and its different components 

and explains it as an analytics engine in detail.  

  

3.1.5 Storage System  
For storage, a traditional RDBMS system or a NoSQL system can be used based on the kinds 

of further requirement. A distributed and resilient file system can also meet the requirement.  
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3.1.6 The Visualisation and Other Systems 
A system for data visualisations and for other purposes can be fed by APIs exposed in the 

different layers in the architecture as per the need. 

 

While the complete technical architecture is proposed for the real time analytics, for the 

purpose of the current project the scope has been reduced to analytics engine and data 

visualisation. The prototype has been built on top of Apache Spark as the analytics engine 

and visualisations were made with Google map API [90] and D3 based java script library [89] 

for web browser rendering. For the real time messaging it was simulated through reading and 

writing to operating system file system. The prototype was developed and deployed in 

Microsoft Azure cloud.    

 

The following diagram shows the technical architecture for the entire solution.  

 

 
Figure 10 : Solution Architecture 

 

Overview of Apache Spark  
Apache Spark [85] is a fast and general engine for large-scale data processing which can be 

characterised by following attributes:  

 

Speed 

Spark extends the popular MapReduce [91] model to efficiently support more types of 

computations, including interactive queries and stream processing. Speed is important in 

processing large datasets, as it means the difference between exploring data interactively and 

waiting minutes or hours. One of the main features Spark offers for speed is the ability to run 

computations in memory, but the system is also more efficient than MapReduce for complex 

applications running on disk. 
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Spark has an advanced DAG execution engine [48] that supports cyclic data flow and in-

memory computing resulting speed 100x faster than Hadoop MapReduce in memory, or 10x 

faster on disk. 

 

Ease of Use 

Spark is written using functional programming language Scala [64], which is also a JVM based 

language.  Spark is designed to be highly accessible, offering simple APIs in Python, Java, 

Scala, and SQL, and rich built-in libraries. It allows to use it interactively from the Scala, 

Python and R shells. 

 

Generality 

Spark is designed to cover a wide range of workloads that previously required separate 

distributed systems, including batch applications, iterative algorithms, interactive queries, 

and streaming. By supporting these workloads in the same engine, Spark makes it easy and 

inexpensive to combine different processing types, which is often necessary in production 

data analysis pipelines. In addition, it reduces the management burden of maintaining 

separate tools by combining SQL, streaming, and complex analytics like machine learning, 

graph processing and optimisation tasks. 

 

Runs on Different Platform 

It can run on both Windows and Linux based operating systems either on standalone mode 

or on top of a cluster like Hadoop, Mesos etc. Its ecosystem allows it to access diverse data 

sources including HDFS, Cassandra, HBase, S3 and it is increasing.  

 

3.1.7 Components of Spark 
The Spark project contains multiple closely integrated components [93]. At its core, Spark 

provides an engine for computation that is responsible for scheduling, distributing, and 

monitoring applications consisting of many computational tasks across many worker 

machines, or a computing cluster. Because the core engine of Spark is both fast and general-

purpose, it powers multiple higher-level components specialized for various workloads, such 

as SQL or machine learning. These components are designed to interoperate closely, letting 

you combine them like libraries in a software project. 

 

Different components in Spark stack can be represented as in the following diagram:  

 

 
Figure 11: Components of Spark 

 

Apart from the out of the box components, there is also a community driven library or 

repository of Spark packages [92] where anyone can publish one’s open source code as an 

application on top of Spark stack for others to consume.    

 

Spark Core 

Spark Core contains the basic functionality of Spark, including components for task 

scheduling, memory management, fault recovery, interacting with storage systems, and 

more. Spark Core is also home to the API that defines resilient distributed datasets (RDDs), 

which are Spark’s main programming abstraction. RDDs represent a collection of items 

Spark Core

Standalone Scheduler

Spark SQL and 
DataFrame

Spark 
Streaming 

Mllib

Other 
Clusters

GraphX
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distributed across many compute nodes that can be manipulated in parallel. Spark Core 

provides many APIs for building and manipulating these collections. 

 

Spark SQL and DataFrame 

Spark SQL is a Spark module for structured data processing. It provides a programming 

abstraction called DataFrames and can also act as distributed SQL query engine. A DataFrame 

is a distributed collection of data organized into named columns. It is conceptually equivalent 

to a table in a relational database or a data frame in R/Python, but with richer optimizations 

under the hood. DataFrames can be constructed from a wide array of sources such as: 

structured data files, tables in Hive, external databases, or existing RDDs. 

 

MLlib - Machine Learning library for Apache Spark  

MLlib is Spark’s machine learning (ML) library. Its goal is to make practical machine learning 

scalable and easy. It consists of common learning algorithms and utilities, including 

classification, regression, clustering, collaborative filtering, dimensionality reduction, as well 

as lower-level optimization primitives and higher-level pipeline APIs. 

 

Spark Streaming 

Spark Streaming is a Spark component that enables processing of streaming data. Examples 

of data streams include logfiles generated by production web servers, or queues of messages 

containing status updates posted by users of a web service. Spark Streaming provides an API 

for manipulating data streams that closely matches the Spark Core’s RDD API, making it easy 

for programmers to learn the project and move between applications that manipulate data 

stored in memory, on disk, or arriving in real time. Underneath its API, Spark Streaming was 

designed to provide the same degree of fault tolerance, throughput, and scalability as Spark 

Core. 

 

GraphX 

GraphX is a library for manipulating graphs (e.g., a social network’s connections graph) and 

performing graph-parallel computations. Like Spark Streaming and Spark SQL, GraphX 

extends the Spark RDD API, allowing us to create a directed graph with arbitrary properties 

attached to each vertex and edge. GraphX also provides various operators for manipulating 

graphs (e.g., subgraph and mapVertices) and a library of common graph algorithms (e.g., 

PageRank and triangle counting). 

 

Cluster Managers 

Under the hood, Spark is designed to efficiently scale up from one to many thousands of 

compute nodes. To achieve this while maximizing flexibility, Spark can run over a variety of 

cluster managers, including Hadoop YARN, Apache Mesos, and a simple cluster manager 

included in Spark itself called the Standalone Scheduler. When installed on an empty set of 

machines, the Standalone Scheduler provides an easy way to get started. At the same time 

when configured on a Hadoop YARN or Mesos cluster, its support for these cluster managers 

allows the spark applications to also run on them.  

 

3.1.7.1 Advantages of Unified Stack Approach 
There are several benefits because of the tight integration. First, all libraries and higher level 

components in the stack benefit from improvements at the lower layers. For example, when 

Spark’s core engine adds an optimization, SQL and machine learning libraries automatically 

speed up as well. Second, the costs associated with running the stack are minimized, because 

instead of running 5–10 independent software systems, an organization needs to run only 

one. These costs include deployment, maintenance, testing, support, and others. This also 

means that each time a new component is added to the Spark stack, every organization that 

uses Spark will immediately be able to try this new component. This changes the cost of trying 

out a new type of data analysis from downloading, deploying, and learning a new software 

project to upgrading Spark. 
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Finally, one of the largest advantages of tight integration is the ability to build applications 

that seamlessly combine different processing models. For example, in Spark one can write 

one application that uses machine learning to classify data in real time as it is ingested from 

streaming sources. Simultaneously, it can be queried the resulting data, also in real time, via 

SQL (e.g., to join the data with unstructured log files).  
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Chapter 4 Algorithm for Scale - Decision Trees in 

MLlib 

The size of the dataset considered for this project is in the range of multiple gigabytes. The 

machine learning algorithms require iterative data processing so the effective size of the data 

being processed increase many fold. Hence to apply machine learning algorithms for data in 

gigabytes size is not possible in a single machine environment. It needs distributed computing 

for which Apache Spark provides an ideal application development framework along with 

libraries for different kinds of workloads as discussed in previous section.  

 

MLlib library in Spark implements many machine learning algorithms along with decision trees 

and ensembles. The algorithms have been optimised to scale and make the best of Spark 

platform.  

Overall Algorithm – Decision Tree in MLlib 

The overall algorithm for Decision Tree implemented in MLlib can be explained as below [94] 

[95]:   

 The algorithm partitions data by instances (rows). On each iteration, 

it splits a set of nodes.  In order to choose the best split for a 

given node, sufficient statistics are collected from the distributed 

data. For each node, the statistics are collected to some worker node, 

and that worker selects the best split. 

 This setup requires discretization of continuous features.  This 

binning is done during initialization, after which each continuous 

feature becomes an ordered discretized feature with at most maxBins 

possible values. 

 The main loop in the algorithm operates on a queue of nodes.  These 

nodes lie at the periphery of the tree being trained.  If multiple 

trees are being trained at once, then this queue contains nodes from 

all of them.  Each iteration works until the node queue is empty: 

- On the master node: 

 Some number of nodes are pulled off of the queue (based on 

the amount of memory required for their sufficient 

statistics). 

- On worker nodes: 

 The worker makes one pass over its subset of instances. 

 For each (node, feature, split) tuple, the worker collects 

statistics about splitting.   

 For each node, the statistics for that node are aggregated 

to a particular worker.  The designated worker chooses the 

best (feature, split) pair, or chooses to stop splitting if 

the stopping criteria are met. 

- On the master node: 

 The master collects all decisions about splitting nodes and 

updates the model. 

 The updated model is passed to the workers on the next 

iteration. 

4.1.1 Best Split  
Following are the high level explanation for the optimisation for finding best split for a decision 

tree [34] [35] [36]. 

 

Level-wise training: Splits for all nodes at the same level of the tree are selected 

simultaneously. This level-wise optimization reduces the number of passes over the dataset 



27 

  

 

exponentially - one pass for each level, rather than one pass for each node in the tree. It 

leads to significant savings in I/O, computation and communication. 

 

Approximate quantiles: Single machine implementations typically use sorted unique feature 

values for continuous features as split candidates for the best split calculation. However, 

finding sorted unique values is an expensive operation over a distributed dataset. The MLlib 

decision tree uses quantiles for each feature as split candidates. It’s a standard trade-off for 

improving decision tree performance without significant loss of accuracy. 

 

Bin-wise computation: The best split computation discretizes features into bins, and those 

bins are used for computing sufficient statistics for splitting. The binned representations of 

each instance are precompute, which saves computation on each iteration. 

 

Aggregation over partitions: The assumption is made that the number of splits are known in 

advance. Thus, the aggregates (at the appropriate indices) are stored in a single array for all 

bins and rely upon the RDD aggregate method to drastically reduce the communication 

overhead. 

 

4.1.2 Parameters Tuning for Decision Trees Algorithm in MLlib 
The hyperparameters which may be tuned for better performance are explained below [58]: 

 
Table 3 : Hyperparameters 

Parameter Description 

maxBins 

Number of bins used when discretizing continuous 

features. 

 Increasing maxBins allows the algorithm to 

consider more split candidates and make 

fine-grained split decisions. However, it also 

increases computation and communication. 

 Note that the maxBins parameter must be at 

least the maximum number of categories M 

for any categorical feature. 

 Default value: 32 

maxDepth 

Maximum depth of a tree. Deeper trees are more 

expressive (potentially allowing higher accuracy), but 

they are also costlier to train and are more likely to 

overfit. 

impurity 

Impurity measure used to choose between candidate 

splits. It is a string value and for regression only 

supported value is “variance” as of now.  

   

For predicting journey time for different routes, all the decision tree models were trained with 

following hyper parameters.  

 maxBins = 32 

 maxDepth = 5 

 Impurity = variance 
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Chapter 5 Evaluation 

The aim of the evaluation is to evaluate the effectiveness of the machine learning algorithm 

based predictive model using real traffic data which includes (as described in section 2.3) 

traffic volume data as predictor and the future journey time as the target. 

 

The entire dataset considered was divided into two sets with 7:3 ratios. The former dataset 

was used to build or train the model and the rest was used for testing the model and 

evaluating the result. The final figures were obtained by running the experiments 3 times in 

a row and by taking the average of the results. 

 

Final experiments were performed on the data related to two routes with IDs in C2 system: 

9800XUOOTFQD and 9800ZFG0V7IO. The former is a simple route of length 0.7 mile and the 

other is complex or compound one of length 3 miles. The routes are shown in the Figure 12 

below on the map. As there are both simple and compound routes in the network, these two 

routes are representatives of all the routes in the network. 

 

 

Route: 9800XUOOTFQD, 0.7 

miles 

Route: 9800ZFG0V7IO, 3 miles 

  

Figure 12 : Two Routes on the map 

 

A separate prediction model was built per route per prediction type. The three predictions for 

which models were built are, prediction before 15 minute, 30 minute and 60 minute ahead. 

So there were 3 models per route and hence 6 models in total.    

 

Evaluation Metrics 

Following evaluation metrics were calculated based on the prediction results for a model.   

Mean Absolute Error (MAE) [65] is the average of the absolute difference between actual 

journey time and predicted journey time in seconds.  

 

𝑀𝐴𝐸 =      
1

𝑛
∑|A𝑖 − 𝑃𝑖|

𝑛

𝑖=1

 

 

Mean Absolute Percentage Error (MAPE) [66] is the average of the absolute difference 

between actual journey time and predicted journey time divided by the actual journey time.  
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𝑀𝐴𝑃𝐸 =       
1

𝑛
∑

|A𝑖 − 𝑃𝑖|

𝐴𝑖

𝑛

𝑖=1

 𝑋 100 

 

While MAE depends on the unit of journey time like minutes or seconds, MAPE does not.  

MAPE, as the name suggests, expresses the error as a percentage.   

 

Prediction Results 

Following table (in Table 3) shows all the evaluation metrics for the two identified routes.  

 

Table 4 : Prediction Results 

Route 

Prediction Ahead 

15 min Ahead 30 min Ahead 60 min Ahead 

MAE MAPE MAE MAPE MAE MAPE 

9800XUOOTFQD 15 

seconds 

9 % 16 

seconds 

10 % 22 

seconds 

14 % 

9800ZFG0V7IO 1  

minute 

7 % 1.1 

minute 

8 % 1.45 

minute 

11 % 

 

 

The figures in the table were obtained by running an experiment 3 times in a row and by 

taking the average of the results. For the route 9800XUOOTFQD, journey time was analysed 

in seconds so we have MAE in seconds. But, for the route 9800ZFG0V7IO, journey time was 

analysed in minutes so we have MAE in minutes.  

 

The results based on the models for the two routes looks quite encouraging. Even for 

predicting journey time ahead of 1 hour, we have MAPE, 14 % and 11 % for the short and 

long routes respectively. This shows that by defining a threshold journey time for a route at 

certain point of day, we can predict traffic congestion.    

 

 
 

 
Figure 13 :Prediction 15 minute ahead for the route, 9800XUOOTFQD 
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The Figure 13 shows the prediction by the model for the entire day, a complete new set of 

data points to demonstrate that it can predict in real time provided the required data is 

available. On the x-axis it shows the time from 7.30 am to 9 pm, on the y-axis it shows 

journey time in seconds. The two series on the plot, actual journey time in blue and predicted 

journey time (15 minutes beforehand) in red shows that the prediction is matching quite 

closely and in terms of predicting congestions (assuming any journey taking more than 200 

seconds), it has predicted almost every time.    

 

Results from Similar Work  

 

While one-on-one comparison is not possible as there are not many studies which predict 

journey time using real traffic volume data, there are some similar works which can be 

presented.  In one of the recent experiments, the researchers [101] conducted an extensive 

experimental comparison on publicly available datasets using different methods and published 

the results. However, the congestion was an area of interest behind the study, it predicts the 

traffic flow for near future for different stations where a station is an aggregation of detectors 

from different lanes in the same location and compares different models using the single 

metric, MAPE. The following table contains the result [101].  

  
Table 5 : Traffic Flow predictions at 16 stations. Error expressed using MAPE  

 
 

Interpreting Decision Tree Model 

As part of the project, custom implementation was made so that a decision tree model can 

be visualized automatically. A final tree, for a trained decision tree model may look like the 

one shown in the following figure (Figure 14). For an illustration of tree visualisation, it 

displays the tree for the model to predict 15 minute ahead for the route, 9800XUOOTFQD. 

The root node is in left most side and leaf nodes on right most.   

 

Every node, apart from the leaf nodes has a condition which results in true or false. The tree 

can be traversed based the result of the conditions in the nodes – true condition leads to right 

(green line in the diagram) and false to left (red line in the diagram). The leaf node represents 

the predictions. The tree is automatically learned by the model after the training with historic 

data as input.    
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Figure 14 : Trained Decision Tree Model Visualisation  
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Chapter 6 Conclusion 

For this project, historic data was used to build models which can predict the journey time for 

near future viz. 15/30/60 minutes ahead. Once a model is built or trained, it can make 

prediction in real time given the data is available in real time. Machine learning algorithms 

were used to build models with a pure data centric approach. Certain data visualisations were 

also made as part of the project.  

 

The evaluation in the previous section demonstrates the effectiveness of machine learning 

based modelling for predicting journey time. In particular, where the journey time is predicted 

to be high, this indicates that congestion is likely. 

 

Limitations 

The scope in the project was limited to decision trees and related algorithms and others were 

not investigated thoroughly. There is a good chance that other algorithms might give even 

better results. Another point is that, for building the model the training with examples were 

made in batch mode and done offline. There is a risk that if the model is not updated regularly 

or periodically, the model might get obsolete once the traffic pattern changes and prediction 

might go wrong.  

 

To train and predict effectively, the current prediction model needs a fine tuned lag time and 

necessary data preparation accordingly. This might prove to be difficult at times.   

 

If the solution is considered to be used a practical purpose, there is another significant 

limitation. As per the current approach a model needs to be built per route per kind of 

prediction and there should be historic journey time data available for that route. In an urban 

transport network, there are different routes. Building a new model for each route might be 

an expensive affair. Also, a route can be identified in a network, with different combination of 

source and destinations. So with the current approach, it is not helpful to make prediction for 

a newly identified route unless we build a fresh model.         

Future Work 

As identified before as a limitation, further work should be done to build a single model which 

would be capable of predicting journey time for any route in the network. Also, there is greater 

scope for trying out different state of the art machine learning algorithms.  

 

Recent studies [96] [97] [98] deep learning based model can be very useful. Specially the 

deep neural networks with LSTM cells [98] may provide solution to all the identified limitations 

above: 

 It can automatically determine the optimal time lags and ideal to deal with time series 

data. 

 A single model can be trained to predict journey time for all the identified routes. 

 It can be trained in both online or offline manner.   

 

Certainly, LSTM based deep learning methods for journey time prediction should be studied 

and utilised further.  

 

With the current approach, the journey time for a particular route in the transport network 

can be predicted for the near future successfully. This approach can possibly be extended to 

make different kinds of prediction given the relevant data available. Air pollution is another 

acute problem in urban areas.  It would be interesting to make prediction for emission of 

identified pollutants. Similarly, road accidents and other incidents can also be predicted for 
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near future. It provides greater opportunities even more predictive analytics after combining 

the urban road transport data with other datasets like weather data, local events data etc.  

Further study should also be made to make use the result of this study to improve the urban 

traffic system. This can be done by making use of real time prediction of journey time and 

building systems to control traffic flows across the network so that the entire transport 

network can be optimised. Similar data centric approach could be taken by introducing 

reinforcement learning [99] to optimize urban traffic system. 
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