
University of Huddersfield Repository

Mund, Sumit K.

Realtime analytics for urban road transport

Original Citation

Mund, Sumit K. (2016) Realtime analytics for urban road transport. Masters thesis, University of
Huddersfield.

This version is available at http://eprints.hud.ac.uk/31469/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or notforprofit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

REAL-TIME ANALYTICS FOR URBAN ROAD
TRANSPORT

SUMIT KUMAR MUND

A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements

for the degree of Master of Science by Research

The University of Huddersfield

October 2016

1

Copyright statement

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Huddersfield the right to use such copyright for any administrative,

promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. Details of these regulations may be

obtained from the Librarian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trademarks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Property

Rights”) and any reproductions of copyright works, for example graphs and

tables (“Reproductions”), which may be described in this thesis, may not be

owned by the author and may be owned by third parties. Such Intellectual

Property Rights and Reproductions cannot and must not be made available for

use without the prior written permission of the owner(s) of the relevant

Intellectual Property Rights and/or Reproductions

2

Abstract

Urban road traffic congestion has been a constant problem both in UK and worldwide. Urban

road transport authorities collect data from different sources. These data can be effectively

utilised with an objective to minimize congestion and its impact. One of the ways for the same

can be to find possible congestion in different routes beforehand and then plan accordingly

either to reduce the effect or to avoid it entirely.

So this project aims to make effective use of existing data to predict journey time for near

future e.g. 15/30/60 minutes ahead for different routes within the urban road traffic network.

It also produced a working prototype for the journey time prediction with necessary data

visualisations.

A complete data centric approach has been adopted to solve the problem of prediction by

building a predictive model using machine learning algorithms with traffic volumes at different

points as predictor and journey time for near future as the target. Given the nature and

volume of the data, a big data platform (Apache Spark) was chosen as the analytics platform

and the work also proposes a high level technical architecture for the end to end solution.

The results for journey time prediction for near future are quite encouraging with a

consistency for different routes under the area of consideration.

3

Table of Contents

Chapter 1 Introduction ... 7

Problem Overview ... 7

Motivation .. 8

Solution Overview ... 8

Dissertation Plan... 10

Chapter 2 Background and Literature Review .. 11

Journey Time Analysis ... 11

Assumptions and Hypothesis .. 14

Problem Definition .. 14

Related Work ... 15

Overview of Statistical Learning .. 15

Chapter 3 Solution Design .. 17

Decision Tree ... 17

3.1.1 Pros and Cons of Decision Tree ... 18

Methodology .. 18

Data Preparation .. 19

Logical Architecture... 20

Proposed Solution Architecture ... 21

3.1.2 Data Sources as Publishers ... 21

3.1.3 Distributed Messaging System .. 21

3.1.4 Analytics Engine .. 21

3.1.5 Storage System .. 21

3.1.6 The Visualisation and Other Systems ... 22

Overview of Apache Spark ... 22

3.1.7 Components of Spark .. 23

Chapter 4 Algorithm for Scale - Decision Trees in MLlib .. 26

Overall Algorithm – Decision Tree in MLlib ... 26

4.1.1 Best Split ... 26

4.1.2 Parameters Tuning for Decision Trees Algorithm in MLlib 27

Chapter 5 Evaluation.. 28

Evaluation Metrics ... 28

Prediction Results ... 29

Results from Similar Work ... 30

Interpreting Decision Tree Model .. 30

Chapter 6 Conclusion ... 32

Limitations ... 32

4

Future Work ... 32

5

List of Figures

Figure 1 : Traffic volumes at different sites ... 9
Figure 2 : Supervised Machine Learning ... 9
Figure 3 : Route Map for route id: 9800ZFG0V7IO ... 12
Figure 4 : Journey Time - Pareto Chart ... 12
Figure 5 : Journey Time Box & Whisker plot .. 13
Figure 6 : Average journey time, maximum journey time and minimum journey time plotted

for 15minute interval ... 13
Figure 7 : Different stages of the projects ... 19
Figure 8 : Data Transformation - Conversion to flat feature vector and label 20
Figure 9 : Logical Architecture ... 20
Figure 10 : Solution Architecture ... 22
Figure 11: Components of Spark ... 23
Figure 12 : Two Routes on the map ... 28
Figure 13 :Prediction 15 minute ahead for the route, 9800XUOOTFQD 29
Figure 14 : Trained Decision Tree Model Visualisation... 31

6

List of Tables

Table 1 : Evaluation Result for one of the routes ... 10
Table 2 : Comparison of different Supervised Learning Algorithms 16
Table 3 : Hyperparameters ... 27
Table 4 : Prediction Results .. 29
Table 5 : Traffic Flow predictions at 16 stations. Error expressed using MAPE 30

7

Chapter 1 Introduction

Urban road traffic congestion in UK has been a constant problem for a number of decades,

and with the recent rise of population and rapid growth in economy, the problem is becoming

worse. According to a report [37] by INRIX, a leading provider of real-time traffic information

and connected driving services, in the year 2014, the UK became the fifth most congested

country in the Europe where a commuter wastes around 30 hours on the road annually.

London was Europe’s most congested city in the year, with drivers spending 96 hours in traffic

followed by Grater Manchester with drivers wasting 52 hours.

Such a bad condition of road traffic is costing the economy a lot. In another report [38] by the

same agency, it estimates the gridlock will be costing the UK economy around $480 billion

cumulatively between years 2013 to 2030. At the individual level, traffic congestion costed

drivers on average $1,740 in 2014 alone and if unchecked, this number is expected to grow

more than 60% to $2,902 annually by 2030. There is also a cost from damage to the

environment due to the increase in road traffic.

In relation to managing the traffic, the Highways Authority [42] has the responsibilities for

motorways and trunk roads and the local authorities [43] has management roles for safe and

efficient conduct of urban traffic.

Problem Overview
Urban road transport authorities collect data from different kinds of sensors like SCOOT [29]

devices, Bluetooth devices etc. Currently most of the collected data are used only to generate

static reports. At the same time the authorities are actively looking forward to solve the

following problems:
 What is the traffic condition across the network at any given point in time?

 Can traffic incidents and abnormalities be predicted before they happen?

 Can the existing data sources be utilised to make effective traffic plans?

At the moment, a common way to monitor or to have a macroscopic view of a city’s traffic is

by observing images captured through CCTVs in real-time. This is a manual process and not

adequate to provide the information required by traffic controllers to take necessary decisions.

There are different kinds of unexpected incidents that might occur on an urban traffic network

e.g. an accident, congestion or traffic delay. If such an unwanted incident occurs, then the

authority takes necessary action to mitigate the problem. At the moment, it is mostly reactive

in nature – an action is taken only after an incident occurs. But, it will be quite efficient if an

authority can predict incidents before they occur then the incident can be managed very

efficiently and on certain occasions it can also be avoided. So, authorities can act proactively

to manage an incident.

Traffic authorities implement traffic plans to manage the network efficiently and conveniently

for the commuters. One example of such plan is that they control different traffic signal times

so that there is efficient, effective and safe flow of traffic on the roads. Currently, they run

static plans which are predefined. Given that they have now lots of data collected from

different sources, transport authorities are interested in making use of the data to come up

with more efficient plans. Also, there is an increasing interest in making use of data to build

dynamic plan based on changing conditions of a traffic network.

Transport for Greater Manchester or TfGM [39] is the authority responsible for all the urban

traffic management for Greater Manchester area. TfGM was kind enough to allow access to

one of its information system called C2 [44] and permitted us to use the data in the C2 system

for the purpose of this project.

8

TfGM has installed Bluetooth sensors across the roads transport network. When a vehicle

passes through a sensor, it makes a note of the unique identity of Bluetooth device enabled

inside the vehicle along with the timestamp. Through these sensors, the traffic volume data

at any sensor point or site (as per the convention of C2 system) is available up to every

minute. The C2 software system takes this data and computes journey time between any two

sites as the start and end of a route. The system also provides a web interface for historical

reporting and allows data to be downloaded in excel or csv formats.

Among the different problem areas identified before, the following one has been identified for

further investigation:

 Can traffic incidents and abnormalities be predicted before they happen?

There are many abnormalities that can take place, like congestions, accidents, excess

emission of pollutants like Nitrogen Oxide etc. For this project, the datasets (including historic

ones) were available from the C2 system which TfGM allowed us access to use the datasets

for the research.

Motivation
Both traffic volume data and estimated journey time data for routes can used with a data

centric approach to solve one of the concerns of the traffic authority: to predict if something

is about to go wrong on the network. The traffic congestion or delay in a journey is one of the

most important and most frequent undesired happenings on UK road networks including that

of Grater Manchester.

Traffic congestion [40] can be defined in terms of the difference between users’ expectations

of the road network and how it actually performs e.g. suppose it usually takes 5 minutes to

commute by car on a particular route and if it takes 7 minutes to commute on that instance

then the additional 2 minutes will be contributed to congestion or traffic delay.

So if the journey time for a route can be predicted, then it would be easy to predict the traffic

congestion based on the time of the day. This project undertakes this objective to predict the

journey time for the short future – 15/30/60 minutes ahead given the historic data and the

live data for traffic volume at the time of consideration.

The output of this work can be very useful for the transport authorities. They might be able

to take some action if they get to know beforehand that it is going to be congested on a

certain route. Also it would help them find out how the entire network is going to do in near

future in terms of journey time and congestion. If this project is implemented in production

to predict the journey time in real time, the result can be utilised by some other information

system in run time.

Real time prediction of journey time is an area of interest in academia. For researchers related

to transport, statistics and artificial intelligence, this work may provide basis for further

exploration and extension.

Solution Overview
The project, Real-time Analytics for Urban Road Transport aims to achieve following:

 Making effective use of existing data to predict journey time for a route beforehand

e.g. before 15 minutes.

 To produce a working prototype for the above prediction and visualisation.

A complete data centric approach has been adopted to solve the problem of predicting the

journey time. A network has many routes, but for the scope of this project, a few routes,

9

including simple and complex ones have been selected for experimenting with the prediction.

It was investigated to come up with a model for prediction of journey time which would make

use of collected historic data for traffic volumes at different sites.

The following figure (Figure 1) shows the traffic volumes at different sites (point of sensors)

at a particular time. The height of the bars depends of the volumes of the traffic, more the

height if higher the traffic volume.

Figure 1 : Traffic volumes at different sites

As part of the project, different approaches were investigated and finally got settled on

machine learning based model. In supervised machine learning, the model learns from the

examples or the historic data by finding right pattern. It finds the pattern after being trained

with the examples. Then the trained model can be used to make prediction given a new

dataset. The following diagram (Figure 2) explains supervised machine learning visually.

Figure 2 : Supervised Machine Learning

There are different algorithms for supervised machine learning. Decision tree algorithm [57]

was selected to build the model. As huge data (traffic volumes for around 100 sites for nearly

a year) was processed for training the model. This needed a big data platform as the huge

dataset is not possible to be processed in a single machine setting. The Spark [85]

implementation was used as the analytics platform for all the data processing.

10

The entire dataset considered was divided into two sets with 7:3 ratios. The former dataset

was used to build or train the model and the rest was used for testing the model and

evaluating the result. The final figures were obtained by running the experiments 3 times in

a row and by taking the average of the results. The two metrics evaluated are MAE and MAPE.

Mean Absolute Error (MAE) [65] is the average of the absolute difference between actual

journey time and predicted journey time in seconds. Mean Absolute Percentage Error (MAPE)

[66] is the average of the absolute difference between actual journey time and predicted

journey time divided by the actual journey time. While MAE depends on the unit of journey

time like minutes or seconds, MAPE does not.

Table 1 : Evaluation Result for one of the routes

Prediction Ahead
MAE

(seconds)
MAPE

15 min 15 9%

30 min 16 10%

60 min 22 14%

Dissertation Plan
The rest of the dissertation is organized as follows:

Chapter 2 covers the detailed problem analysis and the literature review.

Chapter 3 discusses the solution design in detail and the approach adopted.

Chapter 4 provides a brief of algorithm for scale and how it is designed and implemented.

Chapter 5 discusses the prediction results and explains the evaluation metrics.

The last chapter brings the conclusion and also discusses the next steps.

11

Chapter 2 Background and Literature Review

Delay in a journey may result from many reasons [70] apart from the increase in traffic flow

like events, incidents, weather conditions etc. Few examples are as below:

 An event like a football match organised in the city can cause unexpected flow of traffic

which can result in traffic jam and delay.

 An incident like an accident [100] may cause road blockage and result in delay.

 Bad weather like snow fall or good weather like a sunny summer day may impact the

traffic flow and can result in traffic delay.

So one ways to predict traffic delay may be to map all such events, incidents and conditions

along with traffic flow and come up a solution to predict a delay in journey time as a function

of all the enumerations. There are following problems in this approach:

 It is difficult to enumerate all such events, incidents and conditions in real time. These

are also interdependent and varies in nature. For example, bad weather may cause an

incident which leads to traffic delay.

 If there is a new kind of event or condition or incident which was unknown during the

solution design, then it may lead to fail the solution.

 For this project, data was available from one source, C2 system of TfGM. C2 [44] has

very limited data about events, incidents and conditions.

So the above approach was not considered and an alternative approach was investigated.

C2 system primarily provides following two kinds of data:

1. Traffic Volume: There are Bluetooth based sensors installed throughout the city which

capture traffic volumes – count of vehicles passing through a sensor. The traffic

volume is captured every minute. The visualisation in Figure 1 displays traffic volumes

captured at a particular instance.

2. Journey time: C2 allows identifying different routes and can mark a route with two

sensor points as source and destination. With some algorithms it provides estimated

journey time from the source to destination. So it doesn’t provide journey time for all

the possible routes but the ones already identified in the system or defined by the

user. And hence historical data for different journey time is only available for those

identified routes. A route can be one of two types:

 Normal Route: A normal route is one which has only two sites – one as its

starting point and other as destination point.

 Compound Route: A compound route is one where there are more than two

sites on the way.

Journey Time Analysis
Following is the journey time analysis for one of the compound routes with the route id,

9800ZFG0V7IO in C2 system. This route is of length 3 miles stretching from A6042 Trinity

Way / Regent Rd, Salford to A665 Great Ancoats St / Pin Mill Brow, via IRR, Manchester. It is

a compound route as shown in the following figure (Figure 3).

12

Figure 3 : Route Map for route id: 9800ZFG0V7IO

The journey time (in minutes) for the route has been explored through different plots in the

following figures. The histogram and pareto chart in Figure 4 shows that the journey time

often lies in between 6 to 12 minutes. Nearly 30% of the time it also lies in between 12 to 18

minutes. As it shows in the Box & Whisker plot (Figure 5) as well, any journey time above 18

minutes can be considered outliers.

The following are some of the descriptive statistics of the journey time for the route:

 Mean : 12

 Median : 11

 Mode : 9

 Min : 6

 Max : 37

Figure 4 : Journey Time - Pareto Chart

13

Figure 5 : Journey Time Box & Whisker plot

However, it is typical for any route that the journey time differs at different times of the day.

So one average journey may not well describe the journey time for entire day. And also, the

perception of congestion [40] depends on the time of the day. So what might be considered

congested at 2 PM, might be normal at 8 AM. The following figure (Figure 6) plots average

journey time, maximum journey time and minimum journey time against different time of the

day with an interval of every 15minute. This shows and confirms that at any point of the day,

the average journey time limits to 16 minutes. This plot also shows that at different point of

time the maximum journey time are different and much above than the average and so also

minimum journey time. So just considering historical averages over different point of time

may not help in predicting delay in journey time.

Figure 6 : Average journey time, maximum journey time and minimum journey time plotted

for 15minute interval

Journey time related to a route is seasonal in nature. So these seasonal factors like time of

the day, day of the week etc. might prove to be strong data points for finding journey time.

However, there is a drawback in this approach. Once these seasonal factors are considered,

this would have strong influence on the model to find the journey time. But here we are

finding journey time with an intention of predicting delay or congestion. So these seasonal

factors being strong influencer will generalise the model and would miss the delay in journey

time which are corner cases, most of the time. Here is a scenario to illustration the idea:

Consider there is a route usually quiet at around 8 pm on a Wednesday. But on a certain

Wednesday there is a football match going on a nearby stadium and hence more traffic flow

on the route and hence causing congestion or delay. If a model has been built to predict

congestion with the seasonal factors like day of the week (Wednesday), time of the day (8

pm) and these would take the average case and bring shadow on the real influencer to the

traffic delay (e.g. here, the sudden increase of traffic flow) and may miss to predict the

14

congestion or delay. So it may not make sense to include these seasonal factors while building

a model to predict congestion.

Assumptions and Hypothesis
A hypothesis has been made that there exists a pattern in the traffic volumes from different

sensors which correlates to near future journey time involving a route within an area covered

through the sensors.

So it was decided to take a pure data-centric approach and predict the journey time of a given

route from the historic data - journey time for the given route and the traffic volumes captured

from all the sensors. This approach has the following advantages:

1. It does not need any other data points like events or incidents to predict journey time

or traffic delay. So the model can work independent of any external factors.

2. The journey time for a given route is being predicted using all the sensor data available

or the traffic volumes from the all sensors without selecting a few traffic volumes for

a given route. No prior knowledge is being applied about a route with respect to the

possible influencing traffic volumes at few sites. So the model can be applied to any

identified route within the sensor areas given availability of historic data.

3. If certain traffic volumes are influencing the journey time of a routes more than the

rest, then the model won’t assume anything to begin with but can find out those

influencing points as output.

Problem Definition
The problem of predicting the journey time for a given route can be defined in the following

form. The predicted journey time in near future can be described as a function of current

journey time and near past traffic volumes of all the sites.

𝑗𝑡𝑡+15 = 𝑓(𝑗𝑡𝑡 , 𝑣𝑖,𝑡 , 𝑣𝑖,𝑡−1 , 𝑣𝑖,𝑡−2 , … 𝑣𝑖,𝑡−14)
Where,

𝑗𝑡𝑡+15 → Journey time at time, (t +15)

𝑗𝑡𝑡 → Journey time at time, t

𝑣𝑖,𝑡 → Traffic volume at ith site at time, t

𝑣𝑖,𝑡−1 → Traffic volume at ith site at time, t-1

…

𝑣𝑖,𝑡−14 → Traffic volume at ith site at time, (t-14)

The above descries a model for predicting journey time before 15 minutes. So the interval

here is 15 minutes. The assumption is to look back into the near past for traffic volume data

for all the sites for equivalent time interval as here we are looking back 15 minutes’ worth

traffic volumes data for different sites.

So the model to predict 30 minutes ahead may be as below:

𝑗𝑡𝑡+𝟑𝟎 = 𝑓(𝑗𝑡𝑡 , 𝑣𝑖,𝑡 , 𝑣𝑖,𝑡−1 , 𝑣𝑖,𝑡−2 , … 𝑣𝑖,𝑡−𝟐𝟗)

However, the duration to look back may differ to get the best result, but currently it has been

the default choice. The solution will decide the right interval to look back. Traffic volume for

all the sites have been considered so that the model can be generalised for all the routes in

the traffic network. It is expected that the model would pick the right data points to make the

prediction.

The proposed model as a solution need to solve the function defined as above.

15

Related Work
A recent study in Huddersfield [1] suggests that all or a section of the data coming from traffic

management centres can be input into to a data mining tool leading to discover associative

relations between attributes of the data. A prediction model can be formed for different

incidents, for example accidents occurring at points in the network, or of patches of

congestion.

The TIME project (Transport Information Monitoring Environment) [6] has focussed on urban

traffic, using the city of Cambridge as an example. It has shown that traffic data can be used

for a number of purposes. Firstly, archived data can be analysed statistically to understand

the behaviour of traffic under a range of “normal” conditions at different times, for example

in and out of school term. Secondly, periods of extreme congestion resulting from known

incidents can be analysed to show the behaviour of traffic over time. Thirdly, with such

analysis providing background information, real-time data can be interpreted in context to

provide more reliable and accurate information to citizens.

Numerous other research papers are available on short-term traffic flow forecasting. In a

classic paper [2], they suggest four models for the freeway traffic flow forecasting problem,

which is defined as estimating traffic flow 15 minute into the future. The models were the

historical average, time-series, neural network, and nonparametric regression. The

nonparametric regression model significantly outperformed the other models. This finding

also gets strengthened in a recent study [7] which proposes a k nearest neighbour

nonparametric regression (KNN-NPR) forecasting methodology tested against vast quantities

of real traffic volume data collected from urban signalized arterials. The results show that the

KNN-NPR model is clearly superior to two parametric models, Kalman filtering and seasonal

autoregressive integrated moving average (ARIMA), in terms of both prediction accuracy and

the construction of the directionality of temporal state evolution without a time-delayed

response. It also concludes that KNN-NPR, even though it is very simplified, is able to

efficaciously capture the complex behaviour of urban signalized traffic flow.

Another article [3] presents the theoretical basis for modelling univariate traffic condition data

streams as seasonal autoregressive integrated moving average processes. In a recent paper
[4] it shows how to forecast urban road short-term traffic flow based on the delay and nonlinear

grey model. Another study [5] reports on the application and performance of an alternative

neural computing algorithm which involves ‘sequential or dynamic learning’ of the traffic flow

process.

Overview of Statistical Learning
The main goal of statistical learning theory [76] is to provide a framework for studying the

problem of inference that is of gaining knowledge, making predictions, making decisions or

constructing models from a set of data.

It is the process of inductive inference that can be explained in briefly in the steps below:

1. Observe the phenomenon

2. Construct a model of that phenomenon

3. Make predictions using this model

It aims to automate this process and the goal of Learning Theory is to formalize it. In short,

Statistical learning theory deals with the problem of finding a predictive function based on

data. Most of the statistical learnings can be categorised either as supervised or unsupervised

learning.

The supervised learning can be defined as below [77]:

Given a training set of N example input–output pairs

(x1, y1), (x2, y2), …, (xN, yN)

16

where each yi was generated by an unknown function yi = f (xi).
The supervised learning discovers a function, h that approximates the true function, f
or h ≈ f.

Here x and y can be any value; they need not be numbers. The function h is a hypothesis.

Learning is a search through the space of possible hypotheses for one that will perform well,

even on new examples beyond the training set. To measure the accuracy of a hypothesis a

test set of examples are applied that are distinct from the training set. A hypothesis

generalizes well if it correctly predicts the value of y for novel examples.

There are different algorithms [80] that can be used to achieve the supervised learning like

Neural Networks, decision trees, random forests etc. The following table compares different

algorithms.
Table 2 : Comparison of different Supervised Learning Algorithms

Comparisons Decision

Trees

Random Forests &

Ensembles

Neural Networks

Easy to interpret Yes A little No

Ease of Training Yes Somewhat No

Training Speed Fast Slow Slow

Prediction Speed Fast Moderate Fast

Amount of

Hyperparameter Tuning

Needed

Less Less A lot

Detect Feature Importance Somewhat Yes No

Availability of libraries for

big data scenarios

Yes Yes No

17

Chapter 3 Solution Design

The project aims to achieve following:

 To predict the journey time for short future, e.g. 15/30/60 minutes ahead.

 To produce a working prototype for the above prediction.

As discussed in the previous section, a complete data centric approach was adopted to solve

the journey time prediction problem. Statistical learning theory [76] appeared promising for

the solution.

As we defined our problem in section 2.3, applying supervised learning we need to find a

hypothesis which would approximate, f. For the problem of prediction 15 minute ahead,

x = 𝑗𝑡𝑡 , 𝑣𝑖,𝑡 , 𝑣𝑖,𝑡−1 , 𝑣𝑖,𝑡−2 , … 𝑣𝑖,𝑡−14

y = 𝑗𝑡𝑡+15

Similarly, we can define x, y pair for both predictions, 30 and 60 minute ahead.

When the output y is one of a finite set of values or categorical values the learning problem

is called classification. When y is a number or continuous value, the learning problem is called

regression. Technically, solving a regression problem is finding a conditional expectation or

average value of y, because the probability that we have found exactly the right real-valued

number for y is 0.

Clearly, the problem at the hand is a regression problem which needs to be solved with proper

learning algorithms. There are different families of algorithms for solving a regression problem

like; Neural Networks, Decision Tree and Ensembles, SVM and others. Different algorithms

were tried and finally Decision Tree algorithm was chosen to design the final solution.

Decision Tree
Decision tree induction is one of the simplest and yet most successful forms of machine

learning. Tree-based methods partition the feature space into a set of rectangles, and then

fit a simple model (like a constant) in each one. For a regression problem, the model fits a

value for the region which is average of all the labels or response variables.

The overall process of growing a decision tree [79] can be explained as following. Our data

consists of p attributes as x and a response as y, for each of N observations: that is, (xi, yi) for

i = 1, 2, . . . ,N, with xi = (xi1, xi2, . . . , xip). The algorithm needs to automatically decide on the splitting

variables and split points, and also what topology (shape) the tree should have. Suppose first

that it partitions into M regions R1, R2, . . . , RM, and it models the response as a constant cm in

each region:

ℎ(𝑥) = ∑ 𝑐𝑚𝐼{(𝑥, 𝑦) ∈ 𝑅𝑚}

𝑀

𝑚=1

If criterion minimization of the sum of squares or variance is adopted: 𝛴(𝑦𝑖 − ℎ(𝑥𝑖))
2
, then it

is easy to see that the best 𝑐𝑚 is just the average of yi in the region, RM:
𝑐𝑚 = avg(𝑦𝑖|𝑥𝑖 ∈ 𝑅𝑚)

The algorithm adopts a greedy divide-and-conquer strategy. It always tests the most

important attribute first. This test divides the problem up into smaller sub problems that can

then be solved recursively.

18

Starting with all of the data, consider a splitting variable j and split point s, and define the

pair of half-planes:

𝑅1(𝑗, 𝑠) = {𝑥|𝑥𝑗 ≤ s} and 𝑅2(𝑗, 𝑠) = {𝑥|𝑥𝑗 > s}

Then it seeks the splitting variable j and split point, s that solves

𝑚𝑖𝑛
𝑗,𝑠

 [𝑚𝑖𝑛
𝑐1

∑ (𝑦𝑖 − 𝑐1)2

𝑥𝑖∈𝑅1(𝑗,𝑠)

+ 𝑚𝑖𝑛
𝑐2

∑ (𝑦𝑖 − 𝑐2)2

𝑥𝑖∈𝑅2(𝑗,𝑠)

]

For any choice of j and s, the inner minimization is solved by:

𝑐1 = avg(𝑦𝑖|𝑥𝑖 ∈ 𝑅1(j, s)) and 𝑐2 = avg(𝑦𝑖|𝑥𝑖 ∈ 𝑅2(j, s))

For each splitting variable, the determination of the split point, s can be done very quickly

and hence by scanning through all of the inputs, determination of the best pair (j, s) is feasible.

After finding the best split, the data can be partitioned into the two resulting regions and it

can be repeated with the splitting process on each of the two regions. Then this process is

repeated on all of the resulting regions. At the end it results with the required decision tree.

A very large tree might overfit the data, while a small tree might not capture the important

structure. Tree size, depth or level of a tree is a tuning parameter governing the model’s

complexity, and the optimal tree size should be adaptively chosen from the data. One simple

approach might be to split tree nodes only if the decrease in sum-of-squares due to the split

exceeds some threshold.

3.1.1 Pros and Cons of Decision Tree
The pros and cons of decision tree based model are as below [78]:

Pros

 Trees are very easy to explain to people. In fact, they are even easier to explain

than linear regression!

 Some people believe that decision trees more closely mirror human decision-making

than do the regression and classification approaches seen in the previous chapter.

 Trees can be displayed graphically, and are easily interpreted even by a non-expert

(especially if they are small).

 Trees can easily handle qualitative predictors without the need to create dummy

variables.

 Feature normalisation not required.

Cons

 Low bias, high variance

 Not Stable: Additionally, trees can be very non-robust. In other words, a small

change in the data can cause a large change in the final estimated tree.

Methodology
The project follows the steps suggested by the CRIPS DM data mining guide [81] and is planned

to proceed in a more iterative way with following phases:

Data Collection

The historic data was collected from the identified source and cleaned. All the data after

cleaning stored in a cloud storage for further processing. For the real time data, it was

simulated using a part of historic data.

Data Exploration and Visualisation

19

After data is collected effort will be made to understand it fully. Necessary data visualisation

was also made to make the data present in more convincing way.

Investigation of Prediction Technics

In this phase extensive research was done and different machine learning models were

evaluated and right algorithm was identified to build the model.

Data Preparation

The data needs to be presented in certain format(s) as required by identified algorithm. Also

it may need certain transformation e.g. dealing with null values. The following section 3.3

briefs about the data transformation made for the project.

Prototype (Model) Building

Different models were built and evaluated for the best one. The prototypes of the models

were developed using identified platform and programming language.

The stages described above were not executed in isolation to the others. There are

dependencies in one stage to one or more of the others. These were executed in an iterative

way, each iteration being a small sprint.

The whole process may well be represented in the following diagram:

Figure 7 : Different stages of the projects

Data Preparation
The problem analysis in section 2 and solution identified with applying machine learning

algorithms need a data set with a flat structure containing the features and label or the target

variables. In the analysis before the features are represented by x and label as y. However,

20

the raw data collected and cleaned are in the temporal structure, so the data needs to be

converted. The following figure (Figure 8) depicts the data transformation with an example

where he data is being transformed with an intention of prediction before 5 minutes. So the

entire data for 5 minutes have been converted to one row and journey time 5 minutes ahead

is identified as the target variable.

Figure 8 : Data Transformation - Conversion to flat feature vector and label

One-year worth of data was collected (from the C2 system) and prepared. The period taken

was August 2014 to August 2015. The cleaned data was further checked for null values and

all the records containing null values are deleted. The data set covered data for around 100

sites.

The final dataset was divided into two with 70:30 ratios. The first one was used for training

the model and rest for testing evaluation.

Logical Architecture
The following figure (Figure 9) depicts the logical architecture for the project.

Figure 9 : Logical Architecture

21

The workflow has been designed to take the raw data and produce the model which can be

used to make prediction and visualisation in real time. While the model building happens in

the batch mode (offline of making prediction), the prediction can be made in real time

provided real time data available.

Proposed Solution Architecture
An overall technical architecture has been proposed for real-time analytics for urban road

transport. This architecture is designed to scale out and support any workload for any

analytics (real-time or batch) needs related to urban transport or for any organisation for that

matter. A system has been designed as a proof of concept implementing the said architecture

and tested with a single workload covering a complete use case of predicting traffic delays for

a route in the Grater Manchester area in real-time, the solution for which has been described

in detail in the following subsection(s).

3.1.2 Data Sources as Publishers
Data can be sourced from many different kinds of sources like SCOOT devices, different kinds

of sensors or any other Internet of Things (IoT) sources. These sources would be publishing

each data point as a message to messaging system either by themselves or through an

external publisher program.

3.1.3 Distributed Messaging System
A distributed messaging system is a publish-subscribe service which can scale for millions of

messages or events per second and more. The scalability comes through distributed

computing where the service is configured to run in a cluster of more than one computer.

These are built with fault tolerance. Once messages published to this system, there can be

some processing inside and it can pass the raw or processed data to a permanent storage.

Any subscriber, ideally a stream processor can subscribe for messages and do the necessary

processing as processing capabilities in a messaging system are limited. A distributed

messaging system is vital for real-time analytics involving big data.

This system can be set up either on premise or in the cloud. Open source product, Apache

Kafka [86] provides distributed messaging and is built for high-throughput and high scalability.

Event Hub [87] and Kinesis [88] are the products with similar offerings available as a service on

Microsoft cloud and Amazon cloud respectively. Any of these services can be used to fulfil the

requirements based on which environment the entire system is deployed.

3.1.4 Analytics Engine
Apache Spark [85], has been chosen as the analytics platform. It provides a robust framework

for large scale distributed computing and comes with different subsystem on top of it with

capabilities of machine learning, both stream and batch processing, graph processing etc. It

is an ideal platform meeting all kinds of needs to perform massive scale and advanced

Analytics under one umbrella. It is open source but also available under different commercial

distribution by different vendors. Spark is also available as a service by major cloud service

providers like Microsoft, Amazon and IBM.

The following section provides a brief overview of Apache Spark and its different components

and explains it as an analytics engine in detail.

3.1.5 Storage System
For storage, a traditional RDBMS system or a NoSQL system can be used based on the kinds

of further requirement. A distributed and resilient file system can also meet the requirement.

22

3.1.6 The Visualisation and Other Systems
A system for data visualisations and for other purposes can be fed by APIs exposed in the

different layers in the architecture as per the need.

While the complete technical architecture is proposed for the real time analytics, for the

purpose of the current project the scope has been reduced to analytics engine and data

visualisation. The prototype has been built on top of Apache Spark as the analytics engine

and visualisations were made with Google map API [90] and D3 based java script library [89]

for web browser rendering. For the real time messaging it was simulated through reading and

writing to operating system file system. The prototype was developed and deployed in

Microsoft Azure cloud.

The following diagram shows the technical architecture for the entire solution.

Figure 10 : Solution Architecture

Overview of Apache Spark
Apache Spark [85] is a fast and general engine for large-scale data processing which can be

characterised by following attributes:

Speed

Spark extends the popular MapReduce [91] model to efficiently support more types of

computations, including interactive queries and stream processing. Speed is important in

processing large datasets, as it means the difference between exploring data interactively and

waiting minutes or hours. One of the main features Spark offers for speed is the ability to run

computations in memory, but the system is also more efficient than MapReduce for complex

applications running on disk.

23

Spark has an advanced DAG execution engine [48] that supports cyclic data flow and in-

memory computing resulting speed 100x faster than Hadoop MapReduce in memory, or 10x

faster on disk.

Ease of Use

Spark is written using functional programming language Scala [64], which is also a JVM based

language. Spark is designed to be highly accessible, offering simple APIs in Python, Java,

Scala, and SQL, and rich built-in libraries. It allows to use it interactively from the Scala,

Python and R shells.

Generality

Spark is designed to cover a wide range of workloads that previously required separate

distributed systems, including batch applications, iterative algorithms, interactive queries,

and streaming. By supporting these workloads in the same engine, Spark makes it easy and

inexpensive to combine different processing types, which is often necessary in production

data analysis pipelines. In addition, it reduces the management burden of maintaining

separate tools by combining SQL, streaming, and complex analytics like machine learning,

graph processing and optimisation tasks.

Runs on Different Platform

It can run on both Windows and Linux based operating systems either on standalone mode

or on top of a cluster like Hadoop, Mesos etc. Its ecosystem allows it to access diverse data

sources including HDFS, Cassandra, HBase, S3 and it is increasing.

3.1.7 Components of Spark
The Spark project contains multiple closely integrated components [93]. At its core, Spark

provides an engine for computation that is responsible for scheduling, distributing, and

monitoring applications consisting of many computational tasks across many worker

machines, or a computing cluster. Because the core engine of Spark is both fast and general-

purpose, it powers multiple higher-level components specialized for various workloads, such

as SQL or machine learning. These components are designed to interoperate closely, letting

you combine them like libraries in a software project.

Different components in Spark stack can be represented as in the following diagram:

Figure 11: Components of Spark

Apart from the out of the box components, there is also a community driven library or

repository of Spark packages [92] where anyone can publish one’s open source code as an

application on top of Spark stack for others to consume.

Spark Core

Spark Core contains the basic functionality of Spark, including components for task

scheduling, memory management, fault recovery, interacting with storage systems, and

more. Spark Core is also home to the API that defines resilient distributed datasets (RDDs),

which are Spark’s main programming abstraction. RDDs represent a collection of items

Spark Core

Standalone Scheduler

Spark SQL and
DataFrame

Spark
Streaming

Mllib

Other
Clusters

GraphX

24

distributed across many compute nodes that can be manipulated in parallel. Spark Core

provides many APIs for building and manipulating these collections.

Spark SQL and DataFrame

Spark SQL is a Spark module for structured data processing. It provides a programming

abstraction called DataFrames and can also act as distributed SQL query engine. A DataFrame

is a distributed collection of data organized into named columns. It is conceptually equivalent

to a table in a relational database or a data frame in R/Python, but with richer optimizations

under the hood. DataFrames can be constructed from a wide array of sources such as:

structured data files, tables in Hive, external databases, or existing RDDs.

MLlib - Machine Learning library for Apache Spark

MLlib is Spark’s machine learning (ML) library. Its goal is to make practical machine learning

scalable and easy. It consists of common learning algorithms and utilities, including

classification, regression, clustering, collaborative filtering, dimensionality reduction, as well

as lower-level optimization primitives and higher-level pipeline APIs.

Spark Streaming

Spark Streaming is a Spark component that enables processing of streaming data. Examples

of data streams include logfiles generated by production web servers, or queues of messages

containing status updates posted by users of a web service. Spark Streaming provides an API

for manipulating data streams that closely matches the Spark Core’s RDD API, making it easy

for programmers to learn the project and move between applications that manipulate data

stored in memory, on disk, or arriving in real time. Underneath its API, Spark Streaming was

designed to provide the same degree of fault tolerance, throughput, and scalability as Spark

Core.

GraphX

GraphX is a library for manipulating graphs (e.g., a social network’s connections graph) and

performing graph-parallel computations. Like Spark Streaming and Spark SQL, GraphX

extends the Spark RDD API, allowing us to create a directed graph with arbitrary properties

attached to each vertex and edge. GraphX also provides various operators for manipulating

graphs (e.g., subgraph and mapVertices) and a library of common graph algorithms (e.g.,

PageRank and triangle counting).

Cluster Managers

Under the hood, Spark is designed to efficiently scale up from one to many thousands of

compute nodes. To achieve this while maximizing flexibility, Spark can run over a variety of

cluster managers, including Hadoop YARN, Apache Mesos, and a simple cluster manager

included in Spark itself called the Standalone Scheduler. When installed on an empty set of

machines, the Standalone Scheduler provides an easy way to get started. At the same time

when configured on a Hadoop YARN or Mesos cluster, its support for these cluster managers

allows the spark applications to also run on them.

3.1.7.1 Advantages of Unified Stack Approach
There are several benefits because of the tight integration. First, all libraries and higher level

components in the stack benefit from improvements at the lower layers. For example, when

Spark’s core engine adds an optimization, SQL and machine learning libraries automatically

speed up as well. Second, the costs associated with running the stack are minimized, because

instead of running 5–10 independent software systems, an organization needs to run only

one. These costs include deployment, maintenance, testing, support, and others. This also

means that each time a new component is added to the Spark stack, every organization that

uses Spark will immediately be able to try this new component. This changes the cost of trying

out a new type of data analysis from downloading, deploying, and learning a new software

project to upgrading Spark.

25

Finally, one of the largest advantages of tight integration is the ability to build applications

that seamlessly combine different processing models. For example, in Spark one can write

one application that uses machine learning to classify data in real time as it is ingested from

streaming sources. Simultaneously, it can be queried the resulting data, also in real time, via

SQL (e.g., to join the data with unstructured log files).

26

Chapter 4 Algorithm for Scale - Decision Trees in

MLlib

The size of the dataset considered for this project is in the range of multiple gigabytes. The

machine learning algorithms require iterative data processing so the effective size of the data

being processed increase many fold. Hence to apply machine learning algorithms for data in

gigabytes size is not possible in a single machine environment. It needs distributed computing

for which Apache Spark provides an ideal application development framework along with

libraries for different kinds of workloads as discussed in previous section.

MLlib library in Spark implements many machine learning algorithms along with decision trees

and ensembles. The algorithms have been optimised to scale and make the best of Spark

platform.

Overall Algorithm – Decision Tree in MLlib

The overall algorithm for Decision Tree implemented in MLlib can be explained as below [94]

[95]:

 The algorithm partitions data by instances (rows). On each iteration,

it splits a set of nodes. In order to choose the best split for a

given node, sufficient statistics are collected from the distributed

data. For each node, the statistics are collected to some worker node,

and that worker selects the best split.

 This setup requires discretization of continuous features. This

binning is done during initialization, after which each continuous

feature becomes an ordered discretized feature with at most maxBins

possible values.

 The main loop in the algorithm operates on a queue of nodes. These

nodes lie at the periphery of the tree being trained. If multiple

trees are being trained at once, then this queue contains nodes from

all of them. Each iteration works until the node queue is empty:

- On the master node:

 Some number of nodes are pulled off of the queue (based on

the amount of memory required for their sufficient

statistics).

- On worker nodes:

 The worker makes one pass over its subset of instances.

 For each (node, feature, split) tuple, the worker collects

statistics about splitting.

 For each node, the statistics for that node are aggregated

to a particular worker. The designated worker chooses the

best (feature, split) pair, or chooses to stop splitting if

the stopping criteria are met.

- On the master node:

 The master collects all decisions about splitting nodes and

updates the model.

 The updated model is passed to the workers on the next

iteration.

4.1.1 Best Split
Following are the high level explanation for the optimisation for finding best split for a decision

tree [34] [35] [36].

Level-wise training: Splits for all nodes at the same level of the tree are selected

simultaneously. This level-wise optimization reduces the number of passes over the dataset

27

exponentially - one pass for each level, rather than one pass for each node in the tree. It

leads to significant savings in I/O, computation and communication.

Approximate quantiles: Single machine implementations typically use sorted unique feature

values for continuous features as split candidates for the best split calculation. However,

finding sorted unique values is an expensive operation over a distributed dataset. The MLlib

decision tree uses quantiles for each feature as split candidates. It’s a standard trade-off for

improving decision tree performance without significant loss of accuracy.

Bin-wise computation: The best split computation discretizes features into bins, and those

bins are used for computing sufficient statistics for splitting. The binned representations of

each instance are precompute, which saves computation on each iteration.

Aggregation over partitions: The assumption is made that the number of splits are known in

advance. Thus, the aggregates (at the appropriate indices) are stored in a single array for all

bins and rely upon the RDD aggregate method to drastically reduce the communication

overhead.

4.1.2 Parameters Tuning for Decision Trees Algorithm in MLlib
The hyperparameters which may be tuned for better performance are explained below [58]:

Table 3 : Hyperparameters

Parameter Description

maxBins

Number of bins used when discretizing continuous

features.

 Increasing maxBins allows the algorithm to

consider more split candidates and make

fine-grained split decisions. However, it also

increases computation and communication.

 Note that the maxBins parameter must be at

least the maximum number of categories M

for any categorical feature.

 Default value: 32

maxDepth

Maximum depth of a tree. Deeper trees are more

expressive (potentially allowing higher accuracy), but

they are also costlier to train and are more likely to

overfit.

impurity

Impurity measure used to choose between candidate

splits. It is a string value and for regression only

supported value is “variance” as of now.

For predicting journey time for different routes, all the decision tree models were trained with

following hyper parameters.

 maxBins = 32

 maxDepth = 5

 Impurity = variance

28

Chapter 5 Evaluation

The aim of the evaluation is to evaluate the effectiveness of the machine learning algorithm

based predictive model using real traffic data which includes (as described in section 2.3)

traffic volume data as predictor and the future journey time as the target.

The entire dataset considered was divided into two sets with 7:3 ratios. The former dataset

was used to build or train the model and the rest was used for testing the model and

evaluating the result. The final figures were obtained by running the experiments 3 times in

a row and by taking the average of the results.

Final experiments were performed on the data related to two routes with IDs in C2 system:

9800XUOOTFQD and 9800ZFG0V7IO. The former is a simple route of length 0.7 mile and the

other is complex or compound one of length 3 miles. The routes are shown in the Figure 12

below on the map. As there are both simple and compound routes in the network, these two

routes are representatives of all the routes in the network.

Route: 9800XUOOTFQD, 0.7

miles

Route: 9800ZFG0V7IO, 3 miles

Figure 12 : Two Routes on the map

A separate prediction model was built per route per prediction type. The three predictions for

which models were built are, prediction before 15 minute, 30 minute and 60 minute ahead.

So there were 3 models per route and hence 6 models in total.

Evaluation Metrics

Following evaluation metrics were calculated based on the prediction results for a model.

Mean Absolute Error (MAE) [65] is the average of the absolute difference between actual

journey time and predicted journey time in seconds.

𝑀𝐴𝐸 =
1

𝑛
∑|A𝑖 − 𝑃𝑖|

𝑛

𝑖=1

Mean Absolute Percentage Error (MAPE) [66] is the average of the absolute difference

between actual journey time and predicted journey time divided by the actual journey time.

29

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|A𝑖 − 𝑃𝑖|

𝐴𝑖

𝑛

𝑖=1

 𝑋 100

While MAE depends on the unit of journey time like minutes or seconds, MAPE does not.

MAPE, as the name suggests, expresses the error as a percentage.

Prediction Results

Following table (in Table 3) shows all the evaluation metrics for the two identified routes.

Table 4 : Prediction Results

Route

Prediction Ahead

15 min Ahead 30 min Ahead 60 min Ahead

MAE MAPE MAE MAPE MAE MAPE

9800XUOOTFQD 15

seconds

9 % 16

seconds

10 % 22

seconds

14 %

9800ZFG0V7IO 1

minute

7 % 1.1

minute

8 % 1.45

minute

11 %

The figures in the table were obtained by running an experiment 3 times in a row and by

taking the average of the results. For the route 9800XUOOTFQD, journey time was analysed

in seconds so we have MAE in seconds. But, for the route 9800ZFG0V7IO, journey time was

analysed in minutes so we have MAE in minutes.

The results based on the models for the two routes looks quite encouraging. Even for

predicting journey time ahead of 1 hour, we have MAPE, 14 % and 11 % for the short and

long routes respectively. This shows that by defining a threshold journey time for a route at

certain point of day, we can predict traffic congestion.

Figure 13 :Prediction 15 minute ahead for the route, 9800XUOOTFQD

30

The Figure 13 shows the prediction by the model for the entire day, a complete new set of

data points to demonstrate that it can predict in real time provided the required data is

available. On the x-axis it shows the time from 7.30 am to 9 pm, on the y-axis it shows

journey time in seconds. The two series on the plot, actual journey time in blue and predicted

journey time (15 minutes beforehand) in red shows that the prediction is matching quite

closely and in terms of predicting congestions (assuming any journey taking more than 200

seconds), it has predicted almost every time.

Results from Similar Work

While one-on-one comparison is not possible as there are not many studies which predict

journey time using real traffic volume data, there are some similar works which can be

presented. In one of the recent experiments, the researchers [101] conducted an extensive

experimental comparison on publicly available datasets using different methods and published

the results. However, the congestion was an area of interest behind the study, it predicts the

traffic flow for near future for different stations where a station is an aggregation of detectors

from different lanes in the same location and compares different models using the single

metric, MAPE. The following table contains the result [101].

Table 5 : Traffic Flow predictions at 16 stations. Error expressed using MAPE

Interpreting Decision Tree Model

As part of the project, custom implementation was made so that a decision tree model can

be visualized automatically. A final tree, for a trained decision tree model may look like the

one shown in the following figure (Figure 14). For an illustration of tree visualisation, it

displays the tree for the model to predict 15 minute ahead for the route, 9800XUOOTFQD.

The root node is in left most side and leaf nodes on right most.

Every node, apart from the leaf nodes has a condition which results in true or false. The tree

can be traversed based the result of the conditions in the nodes – true condition leads to right

(green line in the diagram) and false to left (red line in the diagram). The leaf node represents

the predictions. The tree is automatically learned by the model after the training with historic

data as input.

31

Figure 14 : Trained Decision Tree Model Visualisation

32

Chapter 6 Conclusion

For this project, historic data was used to build models which can predict the journey time for

near future viz. 15/30/60 minutes ahead. Once a model is built or trained, it can make

prediction in real time given the data is available in real time. Machine learning algorithms

were used to build models with a pure data centric approach. Certain data visualisations were

also made as part of the project.

The evaluation in the previous section demonstrates the effectiveness of machine learning

based modelling for predicting journey time. In particular, where the journey time is predicted

to be high, this indicates that congestion is likely.

Limitations

The scope in the project was limited to decision trees and related algorithms and others were

not investigated thoroughly. There is a good chance that other algorithms might give even

better results. Another point is that, for building the model the training with examples were

made in batch mode and done offline. There is a risk that if the model is not updated regularly

or periodically, the model might get obsolete once the traffic pattern changes and prediction

might go wrong.

To train and predict effectively, the current prediction model needs a fine tuned lag time and

necessary data preparation accordingly. This might prove to be difficult at times.

If the solution is considered to be used a practical purpose, there is another significant

limitation. As per the current approach a model needs to be built per route per kind of

prediction and there should be historic journey time data available for that route. In an urban

transport network, there are different routes. Building a new model for each route might be

an expensive affair. Also, a route can be identified in a network, with different combination of

source and destinations. So with the current approach, it is not helpful to make prediction for

a newly identified route unless we build a fresh model.

Future Work

As identified before as a limitation, further work should be done to build a single model which

would be capable of predicting journey time for any route in the network. Also, there is greater

scope for trying out different state of the art machine learning algorithms.

Recent studies [96] [97] [98] deep learning based model can be very useful. Specially the

deep neural networks with LSTM cells [98] may provide solution to all the identified limitations

above:

 It can automatically determine the optimal time lags and ideal to deal with time series

data.

 A single model can be trained to predict journey time for all the identified routes.

 It can be trained in both online or offline manner.

Certainly, LSTM based deep learning methods for journey time prediction should be studied

and utilised further.

With the current approach, the journey time for a particular route in the transport network

can be predicted for the near future successfully. This approach can possibly be extended to

make different kinds of prediction given the relevant data available. Air pollution is another

acute problem in urban areas. It would be interesting to make prediction for emission of

identified pollutants. Similarly, road accidents and other incidents can also be predicted for

33

near future. It provides greater opportunities even more predictive analytics after combining

the urban road transport data with other datasets like weather data, local events data etc.

Further study should also be made to make use the result of this study to improve the urban

traffic system. This can be done by making use of real time prediction of journey time and

building systems to control traffic flows across the network so that the entire transport

network can be optimised. Similar data centric approach could be taken by introducing

reinforcement learning [99] to optimize urban traffic system.

34

Bibliography

1. McCluskey, L., Vallati, M. (2015) Extracting Information from Urban Traffic Data to

Improve Road Traffic Management.

2. Smith, B. and Demetsky, M. (1997). "Traffic Flow Forecasting: Comparison of Modeling

Approaches." J. Transp. Eng., 10.1061/(ASCE)0733-947X (1997)123:4(261), 261-

266.

3. Williams, B. M., & Hoel, L. A. (2003). Modeling and forecasting vehicular traffic flow

as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of

transportation engineering, 129(6), 664-672.

4. Huan, G. U. O., Xinping, X. I. A. O., & Jeffrey, F. (2013). Urban road short-term traffic

flow forecasting based on the delay and nonlinear grey model. Journal of

Transportation Systems Engineering and Information Technology, 13(6), 60-66.

5. Chen, H., & Grant-Muller, S. (2001). Use of sequential learning for short-term traffic

flow forecasting. Transportation Research Part C: Emerging Technologies, 9(5), 319-

336.

6. Bacon, J., Bejan, A. I., Beresford, A. R., Evans, D., Gibbens, R. J., & Moody, K. (2011).

Using real-time road traffic data to evaluate congestion (pp. 93-117). Springer Berlin

Heidelberg.

7. Yoon, B., & Chang, H. (2014). Potentialities of data-driven nonparametric regression

in urban signalized traffic flow forecasting. Journal of Transportation Engineering,

140(7), 04014027.

8. Wu, S., Yang, Z., Zhu, X., & Yu, B. (2014). Improved k-nn for short-term traffic

forecasting using temporal and spatial information. Journal of Transportation

Engineering, 140(7), 04014026.

9. Vlahogianni, E., & Karlaftis, M. (2013). Testing and comparing neural network and

statistical approaches for predicting transportation time series. Transportation

Research Record: Journal of the Transportation Research Board, (2399), 9-22.

10. Zhou, H., & Hirasawa, K. (2014). Traffic conduction analysis model with time series

rule mining. Expert Systems with Applications, 41(14), 6524-6535.

11. Oh, S., Byon, Y. J., Jang, K., & Yeo, H. (2015). Short-term travel-time prediction on

highway: a review of the data-driven approach. Transport Reviews, 35(1), 4-32.

12. Limbach, W. E., & Call, C. A. (1996). http://www. tandfonline.

com/doi/abs/10.1080/15324989809381521#. U6sHZBbIv9I. Journal of Range

Management, 49(4).

13. NZ Transport Agency. (2014). Travel time predictability. Retrieved from

http://www.nzta.govt.nz/assets/resources/research/reports/554/docs/554.pdf.

14. Mai, T., Ghosh, B., & Wilson, S. (2014, August). Short-term traffic-flow forecasting

with auto-regressive moving average models. In Proceedings of the Institution of Civil

Engineers-Transport (Vol. 167, No. 4, pp. 232-239). Thomas Telford Ltd.

15. Zhang, Y., Zhang, Y., & Haghani, A. (2014). A hybrid short-term traffic flow forecasting

method based on spectral analysis and statistical volatility model. Transportation

Research Part C: Emerging Technologies, 43, 65-78.

16. Williams, B. M., & Hoel, L. A. (2003). Modeling and forecasting vehicular traffic flow

as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of

transportation engineering, 129(6), 664-672.

17. Davis, G. A., & Nihan, N. L. (1991). Nonparametric regression and short-term freeway

traffic forecasting. Journal of Transportation Engineering, 117(2), 178-188.

18. Huang, M., & Lu, B. (2010, March). Short-term traffic flow parameters prediction based

on multi-scale analysis and artificial neural network. In Informatics in Control,

Automation and Robotics (CAR), 2010 2nd International Asia Conference on (Vol. 1,

pp. 214-217). IEEE.

19. Fusco, G. A. E. T. A. N. O., & Colombaroni, C. H. I. A. R. A. (2013, July). An integrated

method for short-term prediction of road traffic conditions for Intelligent

Transportation Systems Applications. In 7th WSEAS European Computing Conference,

Dubrovnik (pp. 25-27).

35

20. Chen, H., & Grant-Muller, S. (2001). Use of sequential learning for short-term traffic

flow forecasting. Transportation Research Part C: Emerging Technologies, 9(5), 319-

336.

21. Haworth, J., & Cheng, T. (2012). Non-parametric regression for space–time

forecasting under missing data. Computers, Environment and Urban Systems, 36(6),

538-550.

22. Prasad, K. S. N., & Ramakrishna, S. (2014). An efficient traffic forecasting system

based on spatial data and decision trees. Int. Arab J. Inf. Technol., 11(2), 186-194.

23. Duarte, A., Garcia, C., Giannarakis, G., Limão, S., Polydoropoulou, A., & Litinas, N.

(2010). New approaches in transportation planning: happiness and transport

economics. NETNOMICS: Economic Research and Electronic Networking, 11(1), 5-32.

24. Cenamor, I., Chrpa, L., Jimoh, F., McCluskey, T. L., & Vallati, M. (2014). Planning &

scheduling applications in urban traffic management. In Proceedings of the Annual

Workshop of UK Planning & Scheduling Special Interest Group.

25. Shah, M. M. S., Chrpa, L., Kitchin, D. E., McCluskey, T. L., & Vallati, M. (2013, August).

Exploring Knowledge Engineering Strategies in Designing and Modelling a Road Traffic

Accident Management Domain. In IJCAI.

26. North East Combined Authority. (2014). Open Data Service. Retrieved from

https://www.netraveldata.co.uk/?page_id=30.

27. North East Combined Authority. (2014). Tyne and Wear Open Data Services Platform

[API Specification]. Retrieved from https://www.netraveldata.co.uk/wp-

content/uploads/2014/04/333551-OpenDataService-APISpecification.pdf.

28. North East Combined Authority. (2014). Map. Retrieved from

http://www.transportnortheast.com/public/map/map.htm.

29. SCOOT. Retrieved from http://www.scoot-utc.com/

30. UMTC. (2009). UTMC Framework Technical Specification. Retrieved from

http://www.utmc.eu/SiteAssets/Pages/PageNotFoundError/UTMC-

TS003.003%20Framework%20Spec%20Dec09.pdf.

31. Atkins. Integrated urban traffic management and control strategies. Retrieved from

http://www.atkinsglobal.com/~/media/Files/A/Atkins-

Global/Attachments/sectors/roads/library-docs/technical-journal-3/integrated-urban-

traffic-management-and-control-stratigies.pdf.

32. Piatetsky-Shapiro, G. (1996). Advances in knowledge discovery and data mining (Vol.

21). U. M. Fayyad, P. Smyth, & R. Uthurusamy (Eds.). Menlo Park: AAAI press.

33. Marbán, Ó., Mariscal, G., & Segovia, J. (2009). A data mining & knowledge discovery

process model. Data Mining and Knowledge Discovery in Real Life Applications, 2009,

8.

34. TheApacheSpark. (2014, Jul 17). Scalable Distributed Decision Trees in Spark MLLib -

M. Amde, H. Das, E. Sparks & A. Talwalkar [Video file]. Retrieved from

https://www.youtube.com/watch?v=3rRrcPXHu98

35. Zheng, J., & Dagnino, A. (2014, October). An initial study of predictive machine

learning analytics on large volumes of historical data for power system applications.

In Big Data (Big Data), 2014 IEEE International Conference on (pp. 952-959). IEEE.

36. Gualtieri, M., Rowan Curran, A., TaKeaways, K., & To, M. T. B. P. P. (2013). The

Forrester Wave™: Big Data Predictive Analytics Solutions, Q1 2013. Forrester

research.

37. Inrix. (2015). Growing economy drives traffic congestion up in over three quarters of

UK cities. Retrieved from http://inrix.com/press/scorecard-report-united-kingdom/.

38. Inrix. (2014). Economic & Environmental Impact of Traffic Congestion in Europe & the

US. Retrieved from http://inrix.com/economic-environment-cost-congestion/.

39. Transport for Grater Manchester. (2016). Retrieved from

http://www.tfgm.com/Corporate/Pages/TfGM.aspx.

40. Department for Transport. (2016). Statistics at DFT. Retrieved from

https://www.gov.uk/government/organisations/department-for-

transport/about/statistics.

41. Department for Transport. (2014). Road Lengths in Great Britain: 2013 [Statistical

Release]. Retrieved from

36

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/316

680/road-lengths-in-great-britain-2013.pdf.

42. Department for Transport. (2016). Traffic by local authority (TRA89) [Statistical data

set]. Retrieved from https://www.gov.uk/government/statistical-data-sets/tra89-

traffic-by-local-authority.

43. Highways England. Retrieved from

https://www.gov.uk/government/organisations/highways-england.

44. Drakewell C2. (2014, May). Cloud Journey Time Module User Guide.

45. Ranjan, R. (2014). Streaming big data processing in datacenter clouds. IEEE Cloud

Computing, 1(1), 78-83.

46. Lorica, Ben, and O'Reilly Radar. (2015). Apache spark: Powering applications on-

premise and in the cloud. ACI Information Group.

47. Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark:

cluster computing with working sets. HotCloud, 10, 10-10.

48. Zaharia, M. (2016). An architecture for fast and general data processing on large

clusters. Morgan & Claypool.

49. UC Berkeley AMPLab. (2012, Sep 2). Parallel Programming with Spark (Part 1 & 2) -

Matei Zaharia [Video file]. Retrieved from

https://www.youtube.com/watch?v=7k4yDKBYOcw

50. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., ... & Stoica, I.

(2012, April). Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In Proceedings of the 9th USENIX conference on Networked

Systems Design and Implementation (pp. 2-2). USENIX Association.

51. Meng, X., Bradley, J., Yuvaz, B., Sparks, E., Venkataraman, S., Liu, D., ... & Xin, D.

(2016). Mllib: Machine learning in apache spark. JMLR, 17(34), 1-7.

52. Bradley, J. & Amde, M. (2014, September 29). Scalable Decision Trees in MLlib [Web

log post]. Retrieved from https://databricks.com/blog/2014/09/29/scalable-decision-

trees-in-mllib.html.

53. Bradley, J. & Amde, M. (2015, January 21). Random Forests and Boosting in MLlib

[Web log post]. Retrieved from https://databricks.com/blog/2015/01/21/random-

forests-and-boosting-in-mllib.html.

54. Shanahan, J. G., & Dai, L. (2015, August). Large scale distributed data science using

apache spark. In Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (pp. 2323-2324). ACM.

55. Richter, A. N., Khoshgoftaar, T. M., Landset, S., & Hasanin, T. (2015, August). A Multi-

Dimensional Comparison of Toolkits for Machine Learning with Big Data. In Information

Reuse and Integration (IRI), 2015 IEEE International Conference on (pp. 1-8). IEEE.

56. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., & Stoica, I. (2012). Discretized

streams: A fault-tolerant model for scalable stream processing (No. UCB/EECS-2012-

259). CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE.

57. Amde, M., Das, H., & Talwalkar, A. (2014). Scalable Distributed Decision Trees in

Spark MLLib. [pdf]. Retrieved from https://spark-summit.org/2014/wp-

content/uploads/2014/07/Scalable-Distributed-Decision-Trees-in-Spark-Made-Das-

Sparks-Talwalkar.pdf.

58. Apache. (2016). Decision Trees - spark.mllib. Retrieved from

http://spark.apache.org/docs/1.6.1/mllib-decision-tree.html.

59. Dai, W., & Ji, W. (2014). A mapreduce implementation of C4. 5 decision tree algorithm.

International Journal of Database Theory and Application, 7(1), 49-60.

60. Panda, B., Herbach, J. S., Basu, S., & Bayardo, R. J. (2009). Planet: massively parallel

learning of tree ensembles with mapreduce. Proceedings of the VLDB Endowment,

2(2), 1426-1437.

61. Morales, G. D. F., & Bifet, A. (2015). Samoa: Scalable advanced massive online

analysis. Journal of Machine Learning Research, 16, 149-153.

62. Baldominos, A., Albacete, E., Saez, Y., & Isasi, P. (2014, December). A scalable

machine learning online service for big data real-time analysis. In Computational

Intelligence in Big Data (CIBD), 2014 IEEE Symposium on (pp. 1-8). IEEE.

37

63. Murdopo, A. (2013). Distributed decision tree learning for mining big data streams.

Master of Science Thesis, European Master in Distributed Computing.

64. École Polytechnique Fédérale de Lausanne (EPFL). (2016). Scala Programming

Language. Retrieved from http://scala-lang.org/.

65. Wikipedia. (2016). Mean absolute error. Retrieved from

https://en.wikipedia.org/wiki/Mean_absolute_error.

66. Wikipedia. (2016). Mean absolute percentage error. Retrieved from

https://en.wikipedia.org/wiki/Mean_absolute_percentage_error.

67. Mori, U., Mendiburu, A., Álvarez, M., & Lozano, J. A. (2015). A review of travel time

estimation and forecasting for Advanced Traveller Information Systems.

Transportmetrica A: Transport Science, 11(2), 119-157.

68. Li, C. S., & Chen, M. C. (2014). A data mining based approach for travel time prediction

in freeway with non-recurrent congestion. Neurocomputing, 133, 74-83.

69. Nikovski, D., Nishiuma, N., Goto, Y., & Kumazawa, H. (2005, September). Univariate

short-term prediction of road travel times. In Proceedings. 2005 IEEE Intelligent

Transportation Systems, 2005. (pp. 1074-1079). IEEE.

70. Chow, A. H., Santacreu, A., Tsapakis, I., Tanasaranond, G., & Cheng, T. (2014).

Empirical assessment of urban traffic congestion. Journal of advanced transportation,

48(8), 1000-1016.

71. Hunter, T., Moldovan, T., Zaharia, M., Merzgui, S., Ma, J., Franklin, M. J., ... & Bayen,

A. M. (2011, October). Scaling the Mobile Millennium system in the cloud. In

Proceedings of the 2nd ACM Symposium on Cloud Computing (p. 28). ACM.

72. University of California (UC) at Berkeley. (2010). Mobile Millennium Project. Retrieved

from http://traffic.berkeley.edu/project.

73. OPTICITIES. (2016). Birmingham - Pilot City. Retrieved from

http://www.opticities.com/pilot-cities/birmingham/.

74. Wang, J., Mao, Y., Li, J., Xiong, Z., & Wang, W. X. (2015). Predictability of road traffic

and congestion in urban areas. PloS one, 10(4), e0121825.

75. Liang, Z., & Wakahara, Y. (2014). Real-time urban traffic amount prediction models

for dynamic route guidance systems. EURASIP Journal on Wireless Communications

and Networking, 2014(1), 1-13.

76. Bousquet, O., Boucheron, S., & Lugosi, G. (2004). Introduction to statistical learning

theory. In Advanced lectures on machine learning (pp. 169-207). Springer Berlin

Heidelberg.

77. Russell, S., & Norvig, P. (2005). AI a modern approach. Learning, 2(3), 4.

78. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical

learning (Vol. 6). New York: springer.

79. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer Science & Business Media.

80. Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised

learning algorithms. In Proceedings of the 23rd international conference on Machine

learning (pp. 161-168). ACM.

81. Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for

data mining. In Proceedings of the 4th international conference on the practical

applications of knowledge discovery and data mining (pp. 29-39).

82. Mund, Sumit. (2015). Microsoft Azure Machine Learning. 1st ed. GB: Packt Publishing.

83. Wu, X., & Kumar, V. (2009). The top ten algorithms in data mining. Boca Raton,

Fla;London;: CRC

84. Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine

learning, 63(1), 3-42.

85. Apache. (2016). Spark. Retrieved from http://spark.apache.org/.

86. Apache. (2016). Kafka. Retrieved from http://kafka.apache.org/.

87. Microsoft. (2016). Event Hubs. Retrieved from https://azure.microsoft.com/en-

gb/services/event-hubs/.

88. Amazon. (2016). Kinesis. Retrieved from https://aws.amazon.com/kinesis/.

89. D3js. (2016). D3 Java Script Library. Retrieved from http://spark-packages.org/.

38

90. Google. (2016). Google Maps API. Retrieved from

https://developers.google.com/maps/.

91. Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1), 107-113.

92. Databricks. (2016). Spark Packages. Retrieved from http://spark-packages.org/.

93. Karau, H., Konwinski, A., Wendell, P., & Zaharia, M. (2015). Learning spark: lightning-

fast big data analysis. " O'Reilly Media, Inc.".

94. GitHub. (2016). Decision Tree in Apache Spark MLlib Source Code. Retrieved from

https://github.com/apache/spark/tree/master/mllib/src/main/scala/org/apache/spar

k/mllib/tree.

95. GitHub. (2016). Random Forest in Apache Spark MLlib Source Code . Retrieved from

https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spar

k/ml/tree/impl/RandomForest.scala.

96. Shang, Q., Lin, C., Yang, Z., Bing, Q., & Zhou, X. (2016). A hybrid short-term traffic

flow prediction model based on singular spectrum analysis and kernel extreme learning

machine. PLoS one, 11(8), e0161259.

97. Polson, N., & Sokolov, V. (2016). Deep Learning Predictors for Traffic Flows. arXiv

preprint arXiv:1604.04527.

98. Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. (2015). Long short-term memory neural

network for traffic speed prediction using remote microwave sensor data.

Transportation Research Part C: Emerging Technologies, 54, 187-197.

99. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1,

No. 1). Cambridge: MIT press.

100. Shah, M. M. S., Chrpa, L., Kitchin, D. E., McCluskey, T. L., & Vallati, M. (2013,

August). Exploring Knowledge Engineering Strategies in Designing and Modelling a

Road Traffic Accident Management Domain. In IJCAI.

101. Lippi, M., Bertini, M., & Frasconi, P. (2013). Short-term traffic flow forecasting:

An experimental comparison of time-series analysis and supervised learning. IEEE

Transactions on Intelligent Transportation Systems, 14(2), 871-882.

doi:10.1109/TITS.2013.2247040

