

Edinburgh Research Explorer

ASPQ: An ASP-Based 2QBF Solver
Citation for published version:
Amendola, G, Dodaro, C & Ricca, F 2016, ASPQ: An ASP-Based 2QBF Solver. in Proceedings of the 4th
International Workshop on Quantified Boolean Formulas (QBF 2016) co-located with 19th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2016), Bordeaux, France, July 4,
2016.. CEUR Workshop Proceedings (CEUR-WS.org), pp. 49-54, 4th International Workshop on Quantified
Boolean Formulas (QBF 2016) co-located with 19th International Conference on Theory and Applications of
Satisfiability Testing, Bordeaux, France, 4/07/16.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the 4th International Workshop on Quantified Boolean Formulas (QBF 2016) co-located with
19th International Conference on Theory and Applications of Satisfiability Testing (SAT 2016), Bordeaux,
France, July 4, 2016.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/80692259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/aspq-an-aspbased-2qbf-solver(beb9e6ec-2147-4f0a-a05e-b43c905bfd36).html

ASPQ: An ASP-Based 2QBF Solver

Giovanni Amendola, Carmine Dodaro, Francesco Ricca

Department of Mathematics and Computer Science
University of Calabria, Italy

{amendola,dodaro,ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP) is an established logic-based pro-
gramming paradigm which has been successfully applied for solving complex
problems. Since ASP can model problems up to the second level of the poly-
nomial hierarchy, it can be used to model and solve the 2QBF problem. In this
paper we show how to obtain a fairly effective 2QBF solver by just resorting to
state-of-the-art ASP solvers.

1 Introduction

Answer Set Programming (ASP) [8] is a declarative programming paradigm that has
been developed in the field of logic programming and nonmonotonic reasoning. The
idea of ASP is to represent a given computational problem by means of a logic program
whose stable models [12] (or answer sets) correspond to the desired solutions, and then
to use an ASP solver to actually compute the stable models.

ASP has been used in numerous scientific applications in the areas of artificial in-
telligence [5], bioinformatics [14], databases [7, 15], and game theory [4]. Moreover,
ASP is attracting increasing interest also beyond the scientific community, and counts
already some successful application in industrial products [13]. ASP has become a pop-
ular choice for solving complex problems since it combines an expressive language with
efficient implementations. Indeed, the results of the latest ASP Competition series [9]
witness the continuous improvements achieved in the field of ASP solving.

The core language of ASP, which features disjunction in rule heads and nonmono-
tonic negation in rule bodies, can be used to solve all problems at the second level of the
polynomial hierarchy. This result was obtained by Eiter and Gottlob [10] that provided
a reduction from 2QBF to the problem of verifying the existence of an answer set of
a disjunctive ASP program. Given the large progress measured in the last few years in
ASP solving, it is natural to ask whether this solving technology can applied profitably
also for solving 2QBFs.

In this paper we provide a first answer to this question, by showing that a fairly
effective 2QBF solver can be obtained by using state-of-the-art ASP solving technology.
To this end, we implemented a tool whose input is a formula in QDIMACS format and
produces as output the corresponding ASP program applying the encoding proposed
by Eiter and Gottlob. The ASP program obtained is subsequently evaluated combining
two state-of-the-art ASP solvers (that employ different techniques for handling hard
problems). The resulting proof-of-concept 2QBF solver, called ASPQ, entered as non-
competitive participant the QBF competition in 2016. ASPQ obtained a fairly acceptable

result in the 2QBF track, obtaining (virtually) the fifth place, thus performing better than
various native QBF solvers. These results witness that the capabilities of state-of-the-art
ASP solvers can be exploited for solving 2QBF.

2 Answer Set Programming

In this section we overview the language of ASP. Following the traditional grounding
view [12], we concentrate on programs over a propositional signature Λ . A disjunctive
rule r is of the form

a1∨·· ·∨al ← b1, ...,bm, not bm+1, ..., not bn, (1)

where all ai and b j are atoms (from Λ) and l ≥ 0, n ≥ m ≥ 0 and l + n > 0; not rep-
resents negation-as-failure. The set H(r) = {a1, ...,al} is the head of r, while B+(r) =
{b1, ...,bm} and B−(r) = {bm+1, . . . ,bn} are the positive body and the negative body of
r, respectively; the body of r is B(r)=B+(r)∪B−(r). We denote by At(r)=H(r)∪B(r)
the set of all atoms occurring in r. A rule r is a fact, if B(r) = /0 (we then omit ←); a
constraint, if H(r) = /0; normal, if |H(r)| ≤ 1; and positive, if B−(r) = /0. A (disjunctive
logic) program P is a finite set of disjunctive rules. P is called normal [resp. positive] if
each r ∈ P is normal [resp. positive]. We let At(P) =

⋃
r∈P At(r).

Any set I ⊆Λ is an interpretation; it is a model of a program P (denoted I |= P) if,
and only if, for each rule r ∈ P, I ∩H(r) 6= /0 if B+(r) ⊆ I and B−(r)∩ I = /0 (denoted
I |= r). A model M of P is minimal, if, and only if, no model M′ ⊂M of P exists. We
denote by MM(P) the set of all minimal models of P and by AS(P) the set of all answer
sets (or stable models) of P, i.e., the set of all interpretations I such that I ∈MM(PI),
where PI is the Gelfond-Lifschitz reduct [12] of P with respect to I, i.e., the set of rules
a1∨ ...∨al← b1, ...,bm, obtained from rules r∈P of form (1), such that B−(r)∩I = /0. A
program P such that AS(P) 6= /0 is called coherent, otherwise it is called incoherent [3].

Example 1. Consider the program P = {b∨c← not a; d← c,not b}. It has the mini-
mal models MM(P) = {{a},{b}, {c,d}}. Instead, the set of all answer sets is AS(P) =
{{b},{c,d}}. Hence, P is coherent. Note that I = {a} is not an answer set of P, since I
is not a minimal model of PI = {d← c}.

3 Encoding 2QBF in ASP

In this section, we introduce the translation from 2QBFs to logic programs proposed by
Eiter and Gottlob [10] to prove the Σ P

2 -hardness of checking whether a disjunctive logic
program has some answer set.

To describe the translation, let Φ = ∃X∀Y F be a quantified boolean formula, where
we may assume that X = {x1, . . . ,xe}, Y = {y1, . . . ,ya} and F = D1∨ . . .∨Dm, such that
Di = Li,1∧ . . .∧Li,k, where 1≤ k≤ a+e and Li, j are literals over X ∪Y . For every atom
z ∈ X ∪Y , we introduce a fresh atom z′. Moreover, let σ be a function mapping literals
from atoms z ∈ X ∪Y to atoms as follows:

σ(L) =
{

z′ if L = ¬z,
L otherwise

Algorithm 1: ASPQ-main
Input : A 2-QBF formula Φ

Output: SAT or UNSAT

1 begin
2 Tbloqqer := 120s; Tclasp := 60s // QBFEval settings;
3 Φ := BLOQQER (Tbloqqer, Φ);
4 if Φ => then return SAT; // solved by bloqqer

5 if Φ =⊥ then return UNSAT; // solved by bloqqer

6 Π := QDimacs2ASP(Φ); // encode the logic program

7 res := CLASP (Tclasp, Π); // run clasp for Tclasp seconds

8 if res = UNKNOWN then res := WASP (Π); // run wasp if unsolved

9 if res = COHERENT then return UNSAT;
10 else return SAT;

Finally, we introduce one more fresh atom, say w, and define a disjunctive logic program
PΦ to consist of the following rules:

z∨ z′ for each z ∈ X ∪Y
y← w and y′← w for each y ∈ Y
w← σ(Li,1), . . . ,σ(Li,k) for each Di, i = 1, . . . ,m
w← not w

Eiter and Gottlob [10] proved that Φ is true if, and only if, PΦ has an answer set.

Example 2. Consider the 2QBF Φ = ∃x∀y∀z((x∧y)∨ (x∧¬y∧¬z)∨ (¬y∧ z)). There-
fore, the corresponding logic program is PΦ = {x∨x′; y∨y′; z∨z′; y←w; y′←w; z←
w; z′← w; w← x,y; w← x,y′,z′; w← y′,z; w← not w}, which has as unique answer
set {x,y,y′,z,z′,w}, corresponding to set x to true in Φ , so that Φ is true.

Example 3. Consider the 2QBF Φ = ∃x∃y∀z((x∧¬z)∨ (¬x∧ y∧¬z)). Therefore, the
corresponding logic program is PΦ = {x ∨ x′; y ∨ y′; z ∨ z′; z ← w; z′ ← w; w ←
x,z′; w← x′,y,z′;w← not w}, which is incoherent. Indeed, there are only two choices
to infer w, {x,z′} and {x′,y,z′}. Therefore, an interpretation candidate must contain
one of the two sets. In both cases, it cannot be an answer set. Indeed, we can have
I1 = {x,y,z,z′,w}, I2 = {x,y′,z,z′,w}, and I3 = {x′,y,z,z′,w}; but {x,y,z} ∈MM(PI1),
{x,y′,z} ∈MM(PI2), and {x′,y,z} ∈MM(PI3). In conclusion, Φ is false.

4 The ASPQ 2QBF Solver

Main Algorithm. The main algorithm implemented in ASPQ is reported as Algorithm 1.
The input formula Φ is first simplified by the preprocessor BLOQQER [6], which re-
places Φ by a (usually) smaller equisatisfiable formula. The simplification process can
take significant time in case of huge formulas. Hence, the tool is allowed to run for at
most Tbloqqer seconds. Φ is not modified if BLOQQER exceeds the allotted time. Note
that BLOQQER might be able to simplify the formula up to solving it. In that case, it

Total SAT UNSAT
Solver # Time # Time # Time
areqs 235 2963.33 179 2136.52 56 826.81
rareqs+bloqqer 232 5287.58 156 2084.94 76 3202.64
depqbf-v2 223 5135.23 142 1553.21 81 3582.02
xb-qsts 206 5581.42 154 3354.41 52 2227.01
ASPQ 188 741.09 141 275.41 47 465.68
↓+15 · · · · · · · · · · · · · · ·

Table 1. QBFEval 2016 Official Results of the 2QBF Track.

(conventionally) returns a tautology for SAT formulas or a contradiction for UNSAT.
This case is exploited to terminate immediately the computation and return the result.
Otherwise, Φ is encoded as a propositional ASP program Π as detailed in Section 3.
The program Π is subsequently provided as input of the ASP solver CLASP [11], which
is executed for Tclasp seconds. If CLASP is not able to find an answer set within the
allotted time, then WASP [2] is executed without time limits. The reason for using two
solvers comes from the observation that CLASP and WASP employ different strategies
for solving disjunctive programs (see [1, 11] for details), which may solve different sets
of instances.

QBFEval setting. ASPQ entered the QBFEval 2016 in the 2QBF track as non competing
system (it was submitted two days after the official solver submission deadline). We
set Tbloqqer = 60s, so that preprocessing never occupies more than 10% of the allotted
time (the timeout was set by the organizers to 600s); and we set Tclasp = 60s. This
choice is motivated by the results of a preliminary experiment. In fact, we observe
that CLASP and WASP show a complementary behavior, i.e. the former shows good
performances on unsatisfiable instances whereas the latter shows good performances
on satisfiable instances. Moreover, in our experimental setting, CLASP finds a solution
after few minutes of the computation whereas WASP on average needs more than 5
minutes. Thus, we allotted 10% of the available time to CLASP and the remaining 80%
to WASP.

Notes on performance. Table 1 reports for ease of presentation the first five positions
of the QBF competition in 2016 (full results are available at http://www.qbflib.
org/index_eval.php), and ASPQ is outlined using a boldface font. We note that,
despite ASPQ is based on a simple architecture, and we used a straightforward static
parameter setting strategy, ASPQ could solve 188 instances of the 305 used in the com-
petition, (virtually) ranking on the fifth position over 21 participants (one of which was
disqualified as problematic solver). ASPQ is not far from xb-qst occupying the fourth
position, whereas areqs (the winner of the track) solves 20% more instances. We thus
note that the straight application of ASP solving techniques lead to a fairly efficient
2QBF solver, outperforming 15 solvers designed explicitly for solving QBF formulas,
which is a remarkable result. Moreover, 2QBF instances from the QBFEval can be used
as a reference benchmark for improving ASP solvers on hard problems for the second
level of the polynomial hierarchy.

5 Conclusion

The main goal of this paper was to provide an assessment of the applicability of ASP
solver technology for solving 2QBF formulas. The resulting solver, called ASPQ, en-
tered as non-competitive partecipant the QBF competition in 2016 obtaining a fairly
acceptable result in the 2QBF track, that is (virtually) the fifth place. The solver demon-
strates that it is reasonable to exploit the capabilities of state-of-the-art ASP solvers for
solving 2QBF instances. At the same time, it confirms that 2QBF instances can be
used to provide a hard benchmark to assess and improve the performance of ASP sys-
tems [16]. As far as future work is concerned, we are considering to tune our system by
improving the encoding in ASP and exploring the possibility of using techniques from
ASP portfolios for further improving the performance of our system.

References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP solver based
on constraint learning. In: LPNMR. LNCS, vol. 8148, pp. 54–66. Springer (2013)

2. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: LPNMR. LNCS, vol.
9345, pp. 40–54. Springer (2015)

3. Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium models for para-
coherent answer set programs. Artif. Intell. 234, 219–271 (2016)

4. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU games
via answer set programming. In: IJCAI. pp. 38–45 (2016)

5. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-Advisor: A Case Study
in Answer Set Planning. In: LPNMR. LNCS, vol. 2173, pp. 439–442. Springer (2001)

6. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: CADE. LNCS,
vol. 6803, pp. 101–115. Springer (2011)

7. Bravo, L., Bertossi, L.E.: Logic programs for consistently querying data integration systems.
In: IJCAI. pp. 10–15 (2003)

8. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

9. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the Fifth Answer Set
Programming Competition. Artif. Intell. 231, 151–181 (2016)

10. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Ann. Math. Artif. Intell. 15(3-4), 289–323 (1995)

11. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp Series 3.
In: LPNMR. LNCS, vol. 9345, pp. 368–383. Springer (2015)

12. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Comput. 9(3/4), 365–386 (1991)

13. Grasso, G., Leone, N., Manna, M., Ricca, F.: ASP at work: Spin-off and applications of
the DLV system. In: Logic Programming, Knowledge Representation, and Nonmonotonic
Reasoning. LNCS, vol. 6565. Springer (2011)

14. Koponen, L., Oikarinen, E., Janhunen, T., Säilä, L.: Optimizing phylogenetic supertrees us-
ing answer set programming. TPLP 15(4-5), 604–619 (2015)

15. Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large inconsis-
tent data via ASP. TPLP 15(4-5), 696–710 (2015)

16. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in DLV:
implementation, evaluation, and comparison to QBF solvers. J. Algorithms 63(1-3), 70–89
(2008)

