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Post-traumatic amnesia is very common immediately after traumatic brain injury. It is characterized by a confused, agitated state

and a pronounced inability to encode new memories and sustain attention. Clinically, post-traumatic amnesia is an important

predictor of functional outcome. However, despite its prevalence and functional importance, the pathophysiology of post-traumatic

amnesia is not understood. Memory processing relies on limbic structures such as the hippocampus, parahippocampus and parts of

the cingulate cortex. These structures are connected within an intrinsic connectivity network, the default mode network.

Interactions within the default mode network can be assessed using resting state functional magnetic resonance imaging, which

can be acquired in confused patients unable to perform tasks in the scanner. Here we used this approach to test the hypothesis that

the mnemonic symptoms of post-traumatic amnesia are caused by functional disconnection within the default mode network. We

assessed whether the hippocampus and parahippocampus showed evidence of transient disconnection from cortical brain regions

involved in memory processing. Nineteen patients with traumatic brain injury were classified into post-traumatic amnesia and

traumatic brain injury control groups, based on their performance on a paired associates learning task. Cognitive function was also

assessed with a detailed neuropsychological test battery. Functional interactions between brain regions were investigated using

resting-state functional magnetic resonance imaging. Together with impairments in associative memory, patients in post-traumatic

amnesia demonstrated impairments in information processing speed and spatial working memory. Patients in post-traumatic

amnesia showed abnormal functional connectivity between the parahippocampal gyrus and posterior cingulate cortex. The strength

of this functional connection correlated with both associative memory and information processing speed and normalized when

these functions improved. We have previously shown abnormally high posterior cingulate cortex connectivity in the chronic phase

after traumatic brain injury, and this abnormality was also observed in patients with post-traumatic amnesia. Patients with post-

traumatic amnesia showed evidence of widespread traumatic axonal injury measured using diffusion magnetic resonance imaging.

This change was more marked within the cingulum bundle, the tract connecting the parahippocampal gyrus to the posterior

cingulate cortex. These findings provide novel insights into the pathophysiology of post-traumatic amnesia and evidence that

memory impairment acutely after traumatic brain injury results from altered parahippocampal functional connectivity, perhaps

secondary to the effects of axonal injury on white matter tracts connecting limbic structures involved in memory processing.
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Introduction
Post-traumatic amnesia (PTA) frequently follows traumatic

brain injury (TBI) and is characterized by transient antero-

grade amnesia, confusion, disorientation and agitation

(Marshman et al., 2013). Together with attentional deficits,

the inability to encode new memories is at the core of the

syndrome, which has a highly variable duration lasting be-

tween seconds and months (Ahmed et al., 2000). The

length of PTA is an important index of injury severity

and predicts functional outcome (Walker et al., 2010;

Konigs et al., 2012; Eastvold et al., 2013). However, des-

pite its prevalence and clinical importance, there is still no

clear understanding of its pathophysiological basis.

Previous studies have shown that PTA is sometimes asso-

ciated with focal lesions and decreased cerebral perfusion,

mainly in the frontal and temporal lobes (Lorberboym

et al., 2002; Gowda et al., 2006; Metting et al., 2010).

Some studies have reported that the extent of perfusion

changes predicts the severity of PTA (Lorberboym et al.,

2002; Metting et al., 2010). However, PTA can be seen in

patients without focal lesions and can also occur in cases of

mild TBI in the absence of any overt structural abnormal-

ities (Metting et al., 2010). Indeed, the vast majority of

patients with short duration PTA have no evidence of

focal injuries. The lack of a clear relationship with obvious

structural injury and its transient nature suggests that PTA

results from a temporary disruption in the interactions of

brain regions involved in memory processing.

The hippocampus and parahippocampus are critical for

memory (Scoville and Milner, 1957; Schachter and

Wagner, 1999; Cabeza and Nyberg, 2000). These medial

temporal lobe (MTL) structures interact with widespread

cortical regions to support encoding, consolidation and re-

trieval processes during memory (Girardeau and Zugaro,

2011; Logothetis et al., 2012; Poch and Campo, 2012).

Electrophysiological studies have shown that hippocampal

theta oscillatory activity is present during encoding condi-

tions. In subsequent ‘off-line’ memory consolidation the

hippocampus exhibits a pattern of activity characterized

by sharp wave-ripple (SPWR) complexes, proposed to

allow information transfer between hippocampal and neo-

cortical areas. Its suppression disrupts memory

consolidation (Girardeau and Zugaro, 2011). Recently, a

combined electrophysiological-functional MRI study of

memory consolidation in non-human primates demon-

strated that hippocampal ripples during ‘rest’ or sleep are

associated with activation of widespread cortical areas.

Hippocampal activity was particularly correlated with

that of the posterior cingulate cortex (PCC) and retrosple-

nial cortex (Logothetis et al., 2012).

In humans, interactions between the MTL and other cor-

tical areas can be studied by investigating activity within

intrinsic connectivity networks, defined using functional

MRI. A number of limbic structures involved in memory

processing are linked within one particular network, the

default mode network (DMN) (Raichle et al., 2001;

Vincent et al., 2006; Smith et al., 2009). The DMN consists

of cortical brain regions including the posterior cingulate

and retrosplenial cortices, precuneus, lateral inferior par-

ietal lobes, inferior temporal gyri and ventromedial pre-

frontal cortex (vmPFC). The hippocampus and

parahippocampus belong to an MTL subsystem of the

DMN that dynamically interfaces with the rest of the net-

work (Andrews-Hanna et al., 2014). The parahippocampus

appears to play a central role in mediating the functional

connection between this MTL subsystem and the rest of the

DMN, particularly in the absence of external stimulation

(Huijbers et al., 2011; Ward et al., 2014). The DMN is

active at rest and during episodic memory retrieval tasks,

and shows decreased activity during tasks that require ex-

ternal allocation of attention (Raichle et al., 2001; Greicius

et al., 2003). As a key node of the DMN, PCC activation in

particular has been implicated in successful episodic re-

trieval (Daselaar et al., 2009; Kim et al., 2010).

The strength of interactions (functional connectivity)

within the DMN is important for successful memory for-

mation. For example, interactions between two nodes of

the DMN, the PCC and vmPFC, influence associative and

working memory function (Hampson et al., 2006;

Andrews-Hanna et al., 2007). Connectivity between the

PCC/precuneus and MTL during resting state conditions

is also predictive of associative memory performance in

healthy controls, and disruptions to these connections are

found in a variety of disorders where memory is impaired,

including Alzheimer’s disease and amnestic mild cognitive
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impairment (Wang et al., 2006, 2010; Zhou et al., 2008;

Dunn et al., 2014).

In the context of TBI, functional network abnormalities

are linked to underlying diffuse axonal injury, which ap-

pears to disrupt communication within and between brain

networks (Sharp et al., 2011; Bonnelle et al., 2012; Jilka

et al., 2014). Hence, a functional disconnection between

the MTL subsystem and the rest of the DMN could

result from structural damage within white matter tracts

that connect them. One candidate white matter tract is

the cingulum bundle. This projects from the PCC to both

the vmPFC and parts of the MTL, in particular the para-

hippocampal gyrus (Schmahmann et al., 2007; Jones et al.,

2013). In addition, the PCC also has connections that ter-

minate in the precuneus, parietal lobes, retrosplenial cortex,

and entorhinal cortex, which itself has direct connections to

the hippocampus (Parvizi et al., 2006). Persistent memory

impairments after TBI are associated with damage to the

connections of the hippocampus. In particular, the struc-

tural integrity of the fornix is correlated with the extent of

associative memory impairment (Kinnunen et al., 2011).

Taken together these studies motivate an investigation of

whether PTA-associated amnestic symptoms result from a

functional and/or structural disconnection between MTL

brain regions and the PCC as a key node of the DMN.

For the first time, we use advanced brain imaging tech-

niques, including functional MRI and diffusion tensor ima-

ging (DTI), to study the pathophysiological basis of PTA.

Previous studies have questioned whether PTA is a predom-

inantly mnemonic or attentional disorder (Stuss et al.,

1999; Tittle and Burgess, 2011). This study focuses primar-

ily on identifying the neural correlates of PTA-associated

mnemonic deficits. We test a number of specific hypotheses:

(i) PTA is associated with a functional disruption within the

DMN. Based on our previous work we expected to see an

increase in functional connectivity within posterior nodes of

the DMN following TBI (Sharp et al., 2011); (ii) PTA is

associated with a disruption of functional connectivity be-

tween the PCC and MTL structures (the hippocampus and

the parahippocampus), which normalizes following the

resolution of PTA; and (iii) PTA is associated with diffuse

axonal injury to the cingulum bundle.

Materials and methods

Participant demographics and
clinical details

Patient group

Nineteen patients with a recent history of TBI were recruited
from the Major Trauma Ward, St Mary’s Hospital, London,
UK (Supplementary Table 1). Patients were included in the
study if they were between the ages of 16 and 80, had no
significant premorbid psychiatric or neurological history, alco-
hol or substance misuse, significant previous TBI, and were

clinically stable. Exclusion criteria included significant lan-
guage or visuospatial impairments, contraindication to MRI,
inability to tolerate the scanner environment and neurosurgery.
According to the Mayo Classification (Malec et al., 2007), all
patients recruited were classified as moderate-severe. Patients
were scanned in the afternoon after completion of the neuro-
psychological testing. Written informed consent was obtained
from all patients judged to have capacity by a trained clinician.
Patients in PTA who were judged not to have capacity were
deemed unable to give informed consent for participation in
the study. This issue was addressed by obtaining written assent
from these patients at the acute stage as well as informed
written assent on behalf of the patient from a caregiver.
Retrospective consent was obtained for all these patients
when they emerged from PTA. Written informed consent
was obtained from all patients judged to have capacity accord-
ing to the Declaration of Helsinki. No patients withdrew their
consent once they had emerged from PTA. The study was
approved by the West London Research Ethics Committee
(09/H0707/82).

Patients were divided into two groups according to perform-
ance on the Paired Associate Learning (PAL) task from the
Cambridge Neuropsychological Test Automated Battery
(CANTAB) computerized tool (Fig. 1A). The PTA group
were defined as having PAL scores 42 standard deviations
(SD) from the normal mean. Patients with PTA scores 52
SD from the normal mean were defined as TBI controls. As
a clinical measure, scores on the Westmead Post-Traumatic
Amnesia Scale (WPTAS) were also obtained (Shores et al.,
1986) (Supplementary Table 1). The WPTAS is a 12-item
scale, with seven items that assess orientation and five items
that assess memory. The PAL was preferred as the key PTA
classification tool due to the concerns over the validity of the
WPTAS in a research context (Marshman et al., 2013). The
PAL is: (i) sensitive to memory impairments associated with
hippocampal damage (Swainson et al., 2001); and (ii) provides
a more detailed and graded assessment of associative memory
and learning in comparison to the WPTAS. The PAL thus
offers a standardized and validated research tool to assess
memory in the context of a hypothesized dysfunction of the
MTL subsystem. Correspondence between WPTAS and PAL
measures was assessed with a Spearman’s correlation (referred
to in the results as ‘rho’) (Supplementary material).

Patients completed neuropsychological testing and scanning
once at baseline, all within 15 days of the TBI. Not all patients
were able to tolerate the MRI scan on this occasion due to
pain or discomfort associated with their head or body injuries.
All neuropsychological tasks were completed by the control
participants; however, not all tasks were completed by every
patient at the acute stage due to fatigue. The intention was for
all subjects to return for follow-up assessment. Where possible
this was completed once within the first year following injury
at a point when memory function had subjectively improved.
There was variability in time between baseline and follow-up
scans mainly because of variation in clinical recovery, includ-
ing the resolution of cognitive impairment. To determine
whether this variability affected the results, Spearman’s correl-
ations were performed between the time between scans (in
months) and the neuropsychological and imaging measures
(Supplementary material). A breakdown of the numbers in
each analysis (detailed below) is shown in Supplementary
Table 2.
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Control group

Seventeen healthy controls (seven females, mean age 31.3,

range 19–49 years) were recruited. All healthy controls com-
pleted the neuropsychological testing. Two control participants

did not complete the scanning due to MRI contraindications.

Participants had no history of psychiatric or neurological

illness, previous TBI or alcohol or substance misuse. All par-
ticipants gave written informed consent. Controls were tested
at only one time-point.

Neuropsychological assessment

The PAL task was used to provide a sensitive measure of as-
sociative learning and memory (Fig. 1; see Supplementary ma-
terial for a detailed description of the PAL task). A
standardized neuropsychological battery was used to assess
cognitive function more generally. Six tasks from the
CANTAB computerized tool were completed. In addition to
the PAL, tasks completed consisted of the Choice Reaction
Time (CRT) task to assess information-processing speed and
sustained attention, the Spatial Working Memory (SWM) task,
the Spatial Recognition Memory (SRM) task, the Pattern
Recognition Memory task (PRM) task and the Verbal
Recognition Memory (VRM) task. A description of the specific
outcome measures used for the different tasks can be found in
Figs 2 and 3 and Supplementary Table 3. One-way ANOVAs
were run to identify group effects at baseline. Post hoc inde-
pendent sample t-tests (Welch’s two-sample t-test) were per-
formed to determine which pairwise comparisons were
driving any significant main effects identified. Linear mixed-
effects models were used to assess longitudinal changes be-
tween baseline and follow-up. Group and time point were
defined as fixed effects, whereas subject was defined as a
random effect to model variability in subject intercepts.
Post hoc paired sample t-tests were used to investigate any
significant main effects or interactions. Follow-up analyses
were not performed on the VRM and PRM tasks for PTA
patients due to insufficient data points. All statistical analysis
was performed using R (v0.98.1091).

Structural and functional MRI
acquisition

MRI data were obtained using a 3.0 T GE Medical Systems
scanner with an 8-channel head coil. Standard clinical MRI
was collected. Functional resting state data were collected
along with structural MRI data, including a T1-weighted
high-resolution scan and DTI (see Supplementary material
for details on the acquisition parameters).

Statistical analysis of imaging

Lesion locations were reported by a senior neuroradiologist
(Supplementary Fig. 1). Lesion masks were also created to
determine lesion size and create overlap images
(Supplementary Fig. 2 and Supplementary material).

Functional MRI: resting state
functional connectivity

Data were analysed using the FMRIB Software Library (FSL
Version 5.0, Oxford, UK; (Smith et al., 2004)) (see
Supplementary material for details on preprocessing).

A dual-regression approach was used to assess functional
connectivity differences between control and patient groups
(Leech et al., 2011) (Fig. 1C). This approach provides a
voxel-wise measure of functional connectivity that represents

 A A  PATIENT CLASSIFICATION

                 ENCODE

    B B DIFFUSION IMAGING 

   

  C  C FUNCTIONAL CONNECTIVITY ANALYSIS

  PAIRED ASSOCIATES LEARNING TASK

                       

  HEALTHY CONTROLS

                       
  PTA

                       

   TBI CONTROLS

                       

PCC
SEED REGION OF INTEREST 

DEFINITION

INDIVIDUAL 

SUBJECT 

FUNCTIONAL 

CONNECTIVITY 

MAPS

FUNCTIONAL CONNECTIVITY CALCULATED USING SPECIFIC ROIS

DMN                       

MTL Subsystem

 RETRIEVE

MEAN FA SKELETON

DIFFUSION 

CHANGES

 CALCULATED 

USING SPECIFIC 

ROIS

Parahippocampal 

Subdivision

Subgenual/

Retrosplenial 

Subdivision

Figure 1 Overview of the neuropsychological and imaging

methods used to assess (A) memory performance,

(B) white matter structural integrity, and (C) functional

connectivity in both TBI patients and controls. (A) Patients

were classified into the PTA or traumatic brain injury control

(TBIC) groups depending on their performance on the PAL task.

(B) White matter integrity was investigated using DTI. A whole-

brain white matter (skeletonized) mean fractional anisotropy (FA)

image is shown. Group differences in diffusion metrics such as

fractional anisotropy were assessed using regions of interest,

including the subgenual/retrosplenial (red) and parahippocampal

(green) subdivisions of the cingulum bundle. (C) Functional con-

nectivity was assessed using a dual-regression approach. Two main

functional connectivity analyses were performed. One assessed

functional connectivity changes between the PCC (yellow) and

DMN (blue), the second assessed functional connectivity changes

between the PCC and MTL structures, including the hippocampus

(red) and parahippocampus (green). ROIS = regions of interest.

3140 | BRAIN 2016: 139; 3137–3150 S. De Simoni et al.

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww241/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww241/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww241/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww241/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww241/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww241/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww241/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww241/-/DC1


the temporal correlation between each voxel and the activity of
a region or network of interest (Sharp et al., 2011). This
method includes three steps: (i) definition of a seed region of
interest or network of interest; (ii) use of this region or net-
work to extract individual subject time series; and (iii) re-re-
gression of the extracted time series onto the individual
subject’s data to generate a subject-specific spatial map of
functional connectivity (Sharp et al., 2011; Ham et al.,
2014). The resulting spatial maps were used to compare func-
tional connectivity between patient and control groups.
Between-group differences were assessed using non-parametric
permutation testing and correction for multiple comparisons
was applied using the threshold-free cluster enhancement

(TFCE) method and a family-wise error (FWE) rate of
P5 0.05 (Smith et al., 2004). Due to the focused nature of
our hypotheses the group analyses were constrained to voxels
within specific regions and networks of interest.

To assess alterations in connectivity within the DMN,
including the MTL subsystem, three dual-regression analyses
were performed. For these analyses the ventral PCC was
chosen as the seed region of interest, defined using an 8 mm
diameter spherical mask centred on MNI coordinates (2, �58,
28) taken from a previous connectivity study demonstrating
the importance of this specific area in the functionality of the
DMN (Leech et al., 2011). The ventral PCC has been shown
to have direct anatomical connections to the MTL (Leech
et al., 2011). Hence we felt that this location within the
DMN was likely to be sensitive to changes in connectivity
with the MTL.

The first dual-regression assessed functional connectivity be-
tween the ventral PCC and the whole DMN; group-level
voxel-wise connectivity analysis was constrained to within a
predefined DMN mask, generated using an independent com-
ponent analysis of 36 healthy control subjects’ resting state
data (Smith et al., 2009). This was used to ensure that no
group bias was present and included the precuneus, posterior
cingulate, temporal lobes and medial prefrontal areas.
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Figure 2 Neuropsychological results for PTA patients

compared to TBI and healthy control groups at baseline.

All tests are derived from the Cambridge Neuropsychological Test

Automated Battery (CANTAB) computerized tool. **Significance at

P5 0.01; *significance at P5 0.05. Error bars represent the stand-

ard error of the mean (SEM). HC = healthy controls; TBIC = TBI
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To specifically assess connectivity between posterior and anter-
ior nodes of the DMN, connectivity between the PCC and
vmPFC, was investigated with the use of a targeted region of
interest analysis. The vmPFC region of interest was defined
using an 8 mm spherical mask centred on the peak coordinate
(2, 54, �4) within the Smith et al. (2009) DMN. For this
region of interest and each subject/visit, region of interest
mean functional connectivity values were extracted. A one-
way ANOVA was run on the extracted data to identify
group effects at baseline. Post hoc independent sample t-tests
(Welch’s two-sample t-test) were performed to determine
which pairwise comparisons were driving any significant
main effects identified.

The second dual-regression was performed to characterize
functional connectivity alterations specifically between the ven-
tral PCC and the MTL subsystem of the DMN. PCC connect-
ivity to two regions within the MTL, the hippocampus and
parahippocampus, was assessed by constraining group-level
voxel-wise statistical analyses to these two regions. These ana-
tomically-defined regions of interest were derived using the
FSL Harvard-Oxford atlas using probabilistic regions thresh-
olded at 20%. These more focused analyses were supple-
mented by a third set of dual-regressions. These included
analyses performed with the use of: (i) a visual network
thought to be unaffected by PTA; and (ii) brain networks
involved in higher order cognition—bilateral fronto-parietal
networks and the executive control network defined from
Smith et al. (2009) (Supplementary material and
Supplementary Fig. 3).

Dual-regression analyses were performed at baseline and
follow-up. In addition, areas identified as showing group-
level altered functional connectivity at baseline, including the
precuneus, parahippocampus and vmPFC, were used to deter-
mine whether connectivity normalized at follow-up. Linear
mixed-effects models were used to assess these longitudinal
effects. Group (PTA and TBI controls) and time point were
defined as fixed effects, whereas subject was defined as a
random effect to model variability in subject intercepts.
Post hoc paired sample t-tests were used to investigate any
significant main effects or interactions. The significant func-
tional connectivity changes at baseline were correlated with
neuropsychological data to investigate whether individual dif-
ferences in connectivity were associated with the extent of cog-
nitive impairment using Spearman’s correlation as the data
were non-parametrically distributed.

Structural MRI connectivity: diffusion
tensor imaging

Standard FSL approaches to DTI analysis were used to obtain
voxel-wise individual subject fractional anisotropy, mean dif-
fusivity, axial diffusivity and radial diffusivity maps
(Supplementary material). A region of interest approach was
used to assess between-group differences in white matter integ-
rity. Two regions of interest were defined within the cingulum
bundle in both the right and left hemisphere (four in total).
The first region of interest combines the subgenual and retro-
splenial subdivisions of the cingulum bundle that link two pri-
mary nodes of the DMN, the PCC and vmPFC. The second
region of interest includes the restricted parahippocampal sub-
division of the cingulum bundle that connects the PCC to the

parahippocampal cortices (Jones et al., 2013) (Fig. 1B). This
structural analysis allowed us to focus on white matter con-
nections within the core DMN (subgenual/retrosplenial subdiv-
ision) and between the core DMN and MTL subsystem
(parahippocampal subdivision), complementing the functional
connectivity analysis. Based on previous results demonstrating
the relationship between structural integrity of the fornix and
associative learning and memory (Kinnunen et al., 2011), this
tract was also used as an additional region of interest. All
regions of interest were within the John Hopkins University
White-Matter Tractography and Juelich Histological atlases
available within FSL. For each region of interest and each
subject/visit, region of interest mean summary values (frac-
tional anisotropy, mean diffusivity, axial diffusivity and
radial diffusivity) were extracted. One-way ANOVAs were
run on the extracted data to identify group effects at baseline.
Post hoc independent sample t-tests (Welch’s two-sample
t-test) were performed to determine which pairwise compari-
sons were driving any significant main effects identified.
Changes in white matter integrity between baseline and
follow-up were assessed with the use of paired-sample t-tests.
Whole-brain analyses were also performed for exploratory
purposes. Statistical assessments were performed using non-
parametric permutation testing with the TFCE method and a
threshold of P5 0.05 to correct for multiple comparisons.
These analyses were completed both at baseline and follow-
up time points.

Results

Neuropsychological performance

Patient classification

Patients were divided into two groups based on their per-

formance on the PAL task (Fig. 2). Eleven patients were

classified as having PTA [two females, mean age 40 years

(range 28–61), mean time since injury 5.73 days (2–14

days)]. A TBI control group of eight TBI patients per-

formed in the normal range on the PAL [one female,

mean age 37.1 years (range 27–60), mean time since

injury 5.38 days (1–13 days)]. The control and patient

groups did not differ significantly in age [F(2,33) = 2.19,

P = 0.129], time since injury or injury severity.

Neuropsychological performance at baseline

As expected from the way the two patient groups were

defined, the PTA group showed evidence of highly signifi-

cant memory impairment as measured by the PAL task. A

significant effect of group resulted from increased error

rates in the PTA group relative to the TBI control

[t(10.34) = 4.61, P5 0.001] and healthy control groups

[t(10.14) = �4.65, P5 0.001]. There was no difference be-

tween the TBI control and healthy control groups

[t(13.06) = �0.13, P = 0.447] (see Supplementary Table 3

for statistics).

The PTA group also showed significant impairments in

other aspects of cognitive function (Fig. 2, Supplementary

Table 3 and Supplementary material). Relative to both
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control groups, PTA patients were significantly impaired on

the choice reaction time, spatial working memory, and

delayed verbal recognition memory tasks. Pattern recogni-

tion memory accuracy was impaired only compared to

healthy controls, whereas reaction time measures associated

with this task were significantly slower compared to both

control groups. No significant impairments in spatial rec-

ognition memory accuracy were present, while reaction

times associated with this task were marginally affected.

Immediate verbal recognition demonstrated a trend to-

wards impairment. Free verbal recall was unaffected (see

Fig. 2, Supplementary Table 3 and Supplementary material

for statistics).

Longitudinal changes in neuropsychological

performance

As expected, there was a general improvement in cognitive

function in the PTA group over time Fig. 3 and

Supplementary Table 3). The number of patients who re-

turned for follow-up assessment was �50%, a rate in keep-

ing with this type of clinical study whereby patients are

recruited in an acute setting. Associative memory function

generally improved at follow-up. A significant effect of

group was seen, with effects of time point and group by

time point interaction of borderline significance. These

changes were the result of improvement in the PTA

group [t(4) = 1.97, P = 0.06] with no change in TBI control

group performance [t(3) = �0.51, P = 0.68]. A similar pat-

tern of significant effects was seen in pattern recognition

memory reaction times, although post hoc tests were not

significant (Supplementary Table 3). Information processing

speed, indexed by the CRT task, demonstrated a significant

effect of time point (Supplementary Table 3). Reaction

times were slower at baseline across both groups. The

PTA group improved significantly over time [t(4) = 2.19,

P = 0.047], which was not seen in the TBI control group

[t(2) = 0.62, P = 0.30; Fig. 3]. There were no other signifi-

cant longitudinal changes.

TBI is associated with altered
connectivity within default mode
network

Functional connectivity within the DMN was abnormal

following TBI (Fig. 4), extending previous work demon-

strating a similar result (Fig .4E). We examined functional

connectivity of the central node in the DMN, the PCC, to

the rest of the DMN. Healthy controls demonstrated a typ-

ical pattern of PCC functional connectivity, including

DMN areas such as the precuneus and vmPFC (Fig. 4A).

This specific pattern of connectivity was not apparent in

either of the patient groups (Fig. 4B and C). At a voxel-

wise level, directly comparing the PTA and healthy control

groups showed significantly increased functional connectiv-

ity from the PCC to the precuneus and lateral parietal parts

of the DMN in PTA patients (Fig. 4D). In contrast, PCC

functional connectivity to the vmPFC showed a trend to

being abnormally low compared to controls, although

this result did not survive correction for multiple compari-

sons (Fig. 4D and G). A planned region of interest analysis

of PCC functional connectivity to the vmPFC confirmed a

significant group effect [F(2,27) = 4.27, P = 0.024], driven

by significantly lower functional connectivity in both the

PTA [t(10.64) = 2.34, P = 0.039] and TBI control

[t(16.44) = 2.15, P = 0.046] groups compared to healthy

controls, representing a non-specific change across the

TBI patients. No significant differences in functional con-

nectivity were found between the PTA and TBI control

groups. Mixed-effects models including baseline and

follow-up time points showed no statistically significant

change in DMN connectivity over time (Figs 4D and 6).

PTA is associated with reduced con-
nectivity between the default mode
network and parahippocampus,
which normalizes with recovery

We next specifically investigated the functional connectivity

between the PCC and MTL structures (Fig. 5). At a voxel-

wise level, functional connectivity between the PCC and

parahippocampus was significantly reduced in the PTA

group compared to the healthy control group (Fig. 5A

and B). The region of reduced connectivity was located

on the border of the anterior and posterior subdivisions

of the left parahippocampus (Fig. 5A). TBI controls

showed no difference in functional connectivity compared

to healthy controls and there were no group differences in

hippocampal functional connectivity at the voxel-wise level.

At follow-up, the PTA group showed a trend towards

normalization of parahippocampus functional connectivity

(Figs 5A and 6). A mixed-effects model showed an overall

increase in functional connectivity with time

[F(1,11) = 5.699, P = 0.036]. This was largely the result of

a normalization of functional connectivity in the PTA

group, which was of borderline significance [t(3) = �1.97,

P = 0.072]. In contrast, functional connectivity remained

stable in TBI controls [t(2) = �0.76, P = 0.53]. The time

point by group interaction was not significant

[F(1,10) = 2.988, P = 0.115] and there was no main effect

of group [F(1,11) = 2.254, P = 0.161].

Parahippocampal functional
connectivity correlates with
memory function

Decreased connectivity between the PCC and parahippo-

campus was associated with increasing impairments in

associative memory. Individual differences in parahippo-

campal connectivity were significantly correlated with per-

formance on the PAL task across all subjects (rho = �0.46,

P = 0.0098; Fig. 5C), as well as when patients were
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assessed alone (rho = �0.57, P = 0.028; Fig. 5C). To assess

whether this relationship was specific to PAL performance,

correlations were performed with the additional

neuropsychological tasks. Decreases in parahippocampal

connectivity were also significantly correlated with longer

reaction times on pattern recognition memory performance

both across all subjects (rho = �0.417, P = 0.03) and in

patients alone (rho = �0.72, P = 0.008). This measure also

correlated with spatial working memory performance

(rho = �0.52, P = 0.005) and immediate verbal recognition

memory (rho = 0.48, P = 0.045), although not significantly

when the patient group was studied alone (rho = �0.48,

P = 0.112; rho = 0.55, P = 0.157).

Additional brain network analyses

No functional connectivity changes within the PTA group

were observed within the visual network. In contrast, the

fronto-parietal and executive control networks did show

significant changes in connectivity in the PTA group at base-

line (Supplementary material and Supplementary Fig. 3).

The right fronto-parietal network showed increases in con-

nectivity to a wide range of regions with peak changes in

the middle frontal and post-central gyri, whereas the left

fronto-parietal network showed peak increases in connect-

ivity with the precuneus (Supplementary Fig. 3A and B).

The PTA group also showed increases in connectivity

within the executive control network, with peak increases

in cingulo-opercular and inferior frontal regions

(Supplementary Fig. 3C). Decreases in connectivity from

the executive control network to the hippocampus and

cerebellum were also seen within the PTA group

(Supplementary Fig. 3C). Only changes in the executive

control network showed normalization of functional con-

nectivity at follow-up (Supplementary Fig. 3D). PCC con-

nectivity to these networks was altered, although this was

seen mainly across both patient groups (see Supplementary

material for detailed results).

Motion

Motion across all participants was minimal (50.5 mm in

relative root mean squared frame-wise displacement;

RMSFD). PTA patients and TBI controls demonstrated

an average relative RMSFD of 0.16 mm and 0.12 mm, re-

spectively, compared to 0.06 mm in healthy controls (see

Supplementary material for further discussion of this

issue).

PTA is associated with reduced white
matter integrity in the parahippo-
campal subdivision of the cingulum
bundle

As expected, DTI provided evidence of white matter dis-

ruption in PTA patients. A whole-brain analysis showed

widespread reductions fractional anisotropy, characteristic

of diffuse axonal injury (Fig. 7A); in comparison to healthy

controls, the PTA group showed areas of significant reduc-

tions in fractional anisotropy including the genu and sple-

nium of the corpus callosum, anterior and posterior limbs
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of the internal capsule, external capsule, anterior and su-

perior corona radiata, posterior thalamic radiation and un-

cinate fasciculus (Fig. 7A). At the whole brain level, there

were no significant differences between healthy and TBI

controls nor between PTA patients and TBI controls. No

significant whole-brain differences were found for mean

diffusivity, radial diffusivity or axial diffusivity.

We specifically examined diffusion metrics within two

subdivisions of the cingulum bundle. At baseline, the PTA

group showed reduced fractional anisotropy within the

right parahippocampal subdivision of the cingulum

bundle. A significant group effect [F(2,25) = 3.70,

P = 0.039] was present, driven by reduced fractional anisot-

ropy in the PTA group in comparison to both healthy

[t(9.16) = 2.81, P = 0.01] and a borderline difference to

the TBI control groups [t(9.86) = �1.66, P = 0.065]

(Fig. 7B). A similar pattern of results was seen with

radial diffusivity. A significant group effect

[F(2,25) = 4.77, P = 0.018] was driven by significantly

increased radial diffusivity in the PTA group in comparison

to healthy controls [t(8.38) = �2.94, P = 0.009] and a trend

difference with TBI controls [t(9.98) = 1.40, P = 0.096].

No significant changes were seen in axial diffusivity. Both

PTA patients and TBI controls showed increases in mean

diffusivity. ANOVA showed a significant effect of group

[F(2,25) = 5.23, P = 0.013], driven by significant increases

in mean diffusivity in PTA patients [t(9.24) = �2.63,

P = 0.013] and TBI controls [t(16.92) = �3.08, P = 0.003]

compared to healthy controls. In contrast, the left parahip-

pocampal and bilateral subgenual/retrosplenial subdivisions

of the cingulum bundle, did not show any significant evi-

dence of damage at a group level (Fig. 7C).

In addition, we examined the main outflow tract of the

hippocampus, the fornix, which showed no significant evi-

dence of damage across all diffusion metrics at a group level.

At baseline, the extent of white matter damage in patients

within the right parahippocampal subdivision was correlated

with memory performance measured by the PAL, as indexed

by fractional anisotropy (rho = �0.68, P = 0.015) (Fig. 7D).

Longitudinal analysis of the diffusion data did not yield any

significant results, at the whole-brain or region of interest-

based level, although this could be the result of the small

sample size available for these analyses (five patients;

Supplementary Table 2).
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Discussion
PTA is common after TBI. Despite this, the biological basis

of this phenomenon is uncertain, limiting our understand-

ing of the early effects of TBI. Our results show for the first

time that PTA is associated with disruption to the structure

and function of brain networks critical for memory forma-

tion. The PCC is the main hub of a network central to

memory processing, the DMN. This network comprises a

number of subsystems, including the medial temporal sub-

system, which incorporates hippocampal and parahippo-

campal structures (Andrews-Hanna et al., 2014). We

show: (i) impairments in associative memory in patients

with PTA were accompanied by deficits in information pro-

cessing speed and spatial working memory; (ii) both struc-

tural and functional connectivity from the PCC to the

parahippocampus is disrupted when patients are in PTA;

(iii) the extent of the disruption in functional and structural

connectivity is correlated with episodic memory impairment

and a measure of information processing speed; (iv) the

resolution of these impairments clinically is associated

with a normalization of this physiological change; and (v)

connectivity changes in fronto-parietal and executive con-

trol networks are also present during PTA, reflecting a

widespread disruption in intrinsic connectivity network

involved in supporting cognitive function. The work pro-

vides preliminary evidence that disruption to the functional

interactions between nodes of the DMN is central to the

profound disturbance in memory function seen in PTA.

The alterations in functional connectivity we have

observed are likely to reflect disruption to oscillatory syn-

chrony across brain networks (Nyhus and Curran, 2010).

This is relevant to memory function as fluctuations in net-

work synchrony are proposed to support complex cognitive

processes including memory encoding, consolidation and

retrieval (Duzel et al., 2010; Nyhus and Curran, 2010).

Work in non-human primates strikingly demonstrates that

the consolidation of new memories is associated with coor-

dinated activity between MTL structures and the neocortex,

with the largest changes in cortical activity linked to fast

hippocampal oscillations (ripples) seen in the PCC and ad-

jacent retrosplenial cortex (Logothetis et al., 2012).

Disruption to these interactions, and accompanying

memory consolidation, occurs if these ripples are sup-

pressed (Girardeau and Zugaro, 2011). In humans, theta

oscillations between the posterior parietal cortex and the

parahippocampus synchronize during associative encoding,

suggesting that functional disconnection to the parahippo-

campus could lead to impairments with associative

memory, a pattern of results seen in this study (Crespo-

Garcia et al., 2010).

We showed a transient impairment in interactions be-

tween the parahippocampus and the PCC during PTA.

This may reflect a role for the parahippocampus in mediat-

ing interactions between the hippocampus and neocortical

regions, particularly the PCC. The parahippocampus shows

strong functional connectivity with the PCC in the absence

of explicit task demands (Ward et al., 2014) and abnorm-

alities in functional connectivity between the MTL struc-

tures and the PCC have been shown to be associated

with memory impairment in amnesic patients following

damage to bilateral MTL (Hayes et al., 2012). A strength

of our study is that we were able to investigate a subset of

patients after they exited from PTA. This allowed us to test

whether the network abnormalities observed in the acute

setting normalized with recovery. The parahippocampal
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functional connectivity to the PCC normalized once pa-

tients were able to encode new memories, providing evi-

dence that the abnormality we observed may be the

physiological basis for the transient amnestic impairment

seen in PTA.

Abnormal functional connectivity between the PCC and

parahippocampus was associated with both memory and

information processing impairments, suggesting that these

changes are important for cognitive functions other than

memory. These results extend our previous work showing

that functional abnormalities within the DMN are com-

monly seen in the chronic phase and relate to attentional

impairments, which may explain the processing speed

changes seen (Sharp et al., 2011). We also observed func-

tional connectivity abnormality within higher-order fronto-

parietal and executive control networks demonstrating a

widespread disruption of brain network function. This

was correlated with a measure of processing speed asso-

ciated with pattern recognition memory. This suggests

that changes to the interactions of the DMN with the

MTL subsystem may be relevant to particular aspects of

memory function, such as the formation of associations,

whereas disruption to other networks may influence dis-

tinct processes that influence other aspects of cognition.

It is perhaps surprising that we found no evidence for a

significant alteration in hippocampal functional connectiv-

ity in PTA patients, considering the role of hippocampal

connectivity in memory formation (Ranganath et al.,

2005). However, this could be explained by the way

MTL structures are connected to the PCC. The parahippo-

campal subdivision of the cingulum bundle connects the

medial temporal lobe to the PCC and terminates predom-

inantly within the parahippocampus rather than the hippo-

campi (Squire et al., 2004; Parvizi et al., 2006;

Schmahmann et al., 2007). This structural distinction is

reflected in distinct patterns of functional connectivity,

whereby interactions between the hippocampus and PCC

are mediated through the parahippocampus (Ward et al.,
2014). Hence, our differential results between the PCC and

the hippocampi may simply reflect the underlying connec-

tions of these structures.

We found evidence of widespread white matter damage

in the PTA group, indexed by both fractional anisotropy

and radial diffusivity changes. Specific damage to the
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parahippocampal subdivision of the cingulum bundle that

connects the MTL to the PCC was also found. Hence, the

alteration in functional connectivity we observed might

relate to diffuse structural changes or a more specific

injury to connections within limbic structures. The import-

ance of the parahippocampal subdivision to memory func-

tion is supported by the observation that abnormalities

within this tract are also seen in disorders such as

Alzheimer’s disease (Zhang et al., 2007; Fakhran, et al.,

2013), where both functional disconnection between the

DMN and MTL and memory impairments are evident

(Wang et al., 2006; Dunn et al., 2014). However, group

differences in fractional anisotropy were observed in the

right cingulum bundle, whereas the functional connectivity

abnormality was observed in the left parahippocampus.

Hence, the relationship between structural damage and

changes in functional connectivity is likely to be complex

and will require more investigation in a larger cohort of

patients.

We also showed that functional connectivity to other

parts of the DMN was disrupted following TBI. Within

posterior parts of the DMN (PCC, precuneus and lateral

parietal regions), we observed an increase in functional

connectivity. We have previously observed a similar in-

crease in PCC connectivity in TBI patients with persistent

problems following TBI (Sharp et al., 2011). In contrast,

we observed a decrease in functional connectivity to the

ventromedial PFC, again a result that has been seen in

other contexts, such as ageing-associated cognitive decline

(Andrews-Hanna et al., 2007). Furthermore, coupling

strength between posterior and anterior regions of the

DMN has previously been shown to facilitate memory per-

formance (Hampson et al., 2006). These findings suggest

that distinct breakdown in functional connectivity within

subregions of the DMN may be associated with memory

impairment, with increased parietal connectivity and

decreased fronto-parietal connectivity associated with

reduced memory performance.

An important consideration in functional connectivity

studies is that of subject movement during data acquisition.

Very small amounts of motion were seen in our patients, so

we do not think that this is a significant factor in explain-

ing our results. We did observe a small difference in move-

ment between healthy controls and patients. However, we

took a number of steps to ensure that physiological motion

was taken into account during data analysis, including re-

gressing out the effects of motion and performing a subsid-

iary analysis where one patient with larger degrees of

movement was removed. One other potential limitation is

the effect of medication on the results. PTA patients are

often under the influence of opioids or anticonvulsants,

medications that may impair cognitive function

(Marshman et al., 2013). In addition, different medications

can affect the MRI signal, through alterations in vascular

reactivity or neuronal activity (Wise and Tracey, 2006). It

is unlikely, however, that the medications are driving the

changes in functional connectivity. The TBI control and

PTA patient groups did not differ in terms of medications

taken, suggesting that differences in neuropsychological

deficits and connectivity found are not driven by pharma-

cological or purely vascular effects. One potential confound

is age-related changes in brain structure and function. For

example, brain maturation changes might be present in

younger participants, whereas older participants may have

latent microvascular or cognitive changes that affect brain

connectivity (Barnea-Goraly et al., 2005; van Duinkerken

et al., 2009). However, age ranges across all experimental

groups were well matched and our participants were not

older than 61, an age prior to which significant cognitive

decline or vascular disease is unlikely (Schaie and Willis,

2010). Furthermore, there was no evidence of vascular dis-

ease on clinical imaging. Such factors mitigate the potential

impact of age-related changes on the results of this study. A

further limitation of this study is its sample size, which

might potentially limit the extent to which our findings

can be extrapolated across TBI patients. Whilst there is

significant heterogeneity in the neuropathologies seen after

head injury, it is striking how consistently PTA is seen

across patients following a significant head injury. This

suggests the presence of a consistent cognitive syndrome,

which is likely to have a common underlying physiological

basis. Therefore, our results are likely to have broad ap-

plicability across TBI patients.

In summary, our results provide novel insights into the

pathophysiology of PTA, although it will be important to

replicate these findings in a larger cohort of patients.

Future work will be needed to clarify the specificity of

some of the findings to PTA and to ascertain whether pa-

tients with memory impairment following TBI should more

accurately be viewed on a continuum, rather than attempting

to separate patients into those with and without PTA. Along

with clinical assessment of PTA, we provide a full neuropsy-

chological profile, demonstrating that impairments in associa-

tive memory were accompanied primarily by information

processing and spatial working memory deficits. We demon-

strate a transient functional disconnection between the para-

hippocampus and limbic structures within the DMN during

PTA. This disconnection correlated with the degree of

memory and attentional dysfunction and normalized when

patients exited PTA. Disruption to fronto-parietal and execu-

tive control cognitive networks was also found, reflecting the

more widespread nature of the cognitive deficits in PTA. Our

PTA patients showed evidence of widespread abnormalities

in white matter structure, including within the cingulum

bundle that connects nodes within the DMN. Hence,

axonal dysfunction following TBI may underlie the functional

connectivity abnormalities we have observed.
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