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Abstract

Human language is composed of sequences of reusable elements. The origins of the

sequential structure of language is a hotly debated topic in evolutionary linguistics. In this

paper, we show that sets of sequences with language-like statistical properties can emerge

from a process of cultural evolution under pressure from chunk-based memory constraints.

We employ a novel experimental task that is non-linguistic and non-communicative in

nature, in which participants are trained on and later asked to recall a set of sequences one-

by-one. Recalled sequences from one participant become training data for the next partici-

pant. In this way, we simulate cultural evolution in the laboratory. Our results show a cumula-

tive increase in structure, and by comparing this structure to data from existing linguistic

corpora, we demonstrate a close parallel between the sets of sequences that emerge in our

experiment and those seen in natural language.

Introduction

A key ability of speakers and listeners is their capacity to “make infinite employment of finite

means” ([1]: p. 91). To accomplish such open-ended productivity, humans exploit the “reusable

parts” that make up language. It is therefore not surprising that the notion of structural reuse, in

some form or other, plays a central role in many accounts of language, from linguistic gram-

mars (e.g. [2]) and Bayesian approaches (e.g., [3]) to computational linguistics (e.g., [4]) and

psycholinguistic modeling (e.g., [5]). Yet, it remains to be explained how languages come to be

composed of reusable parts in the first place. Many factors are likely to have influenced the evo-

lutionary emergence of reusable parts in language, including semantic information (e.g., [6])

and communicative pressures (e.g., [7]). In this paper, however, we focus on the need to arrange

these parts with respect to one another [8], and the possible contribution of basic constraints on

sequence memory as a driver of linguistic reuse. Specifically, we hypothesize that important

aspects of the sequential structure of language, and its characteristic reusable parts, may derive

from adaptations to the cognitive limitations of human learners and users.
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Sequence Memory and Language

Whether spoken or signed, language is serially produced and perceived at an incredibly fast

pace.

Spoken syllables are produced at a rate of about 5–6 per second [9], while signed syllables

have a duration of about a quarter of a second [10]. However, our memory for acoustic and

visual information is very short-lived, disappearing in less than 100 milliseconds [11,12]. To

make matters worse, even our memory for sequences of unelated spoken or signed linguistic

items is limited to only four-to-seven items [13–15]. Thus, during normal linguistic interac-

tion, we are faced with an immense challenge by the combined effects of rapid input, short-

lived sensory memory, and severely limited sequence memory. As a consequence of this Now-
or-Never bottleneck [16], new material will constantly overwrite and interfere with previous

material unless it is processed immediately.

The basic memory process of chunking [14] provides a possible way to overcome the con-

straints imposed by the Now-or-Never bottleneck. Through linguistic exposure, language

users learn to do Chunk-and-Pass processing [16]: compress and recode language input as rap-

idly as possible into increasingly more abstract levels of linguistic representation, from sound-

based units to words (or word combinations) to discourse-level representations. This passing

up of chunks allows for increasingly longer retention of linguistic information at higher levels

of linguistic abstraction, in line with recent neuroimaging data (e.g., [17,18]). Thus, the reuse

of chunks across the different levels of linguistic representations provide a possible way in

which language might achieve its open-ended productivity. Consistent with this perspective,

there has been a growing body of work demonstrating a key role for multiword chunks as

building blocks for both the acquisition (e.g., [19–21]) and processing (e.g., [22–24]) of lan-

guage. Here, we employ iterated learning to further investigate whether chunking, as a basic

mechanism of memory, might contribute to the emergence of language-like distributional

structure. In doing so, we suggest that language evolves culturally in such a way that its struc-

ture provides a solution to the Now-or-Never bottleneck.

Cultural Evolution in the Lab

Recent years have seen the emergence of various experimental techniques for lab-based explo-

rations of questions related to the cultural evolution of language. Many of these studies have

sought an understanding of the origins of language as a product of cognitive and cultural pro-

cesses (see [25] for a review). These studies attempt to link observed features of language, such

as compositionality [26] or duality of patterning [27], to such processes by demonstrating how

they can emerge as a consequence of language learning and interactive use by participants over

time in controlled laboratory settings. Other factors like population structure (e.g., [28]) and

the structure of the meanings in the world (e.g. [29]) have also been shown to have a major

effect on the kinds of structure that emerge.

Most of these studies leave open the question of whether any aspects of linguistic structure

can emerge independently of the structure in the meanings being conveyed. Furthermore,

these factors have tended to be studied using tasks that are, in their instructions, either overtly

linguistic (participants are told they are using a language, and given data upon which to make

linguistic observations) or communicative (participants are encouraged to create a system to

exchange information). This gives rise to a potential issue affecting all of these studies, namely,

the degree to which they can be explained as a result of the adult human participants already

possessing a language. A common argument that leads some researchers to question the viabil-

ity of carrying out experiments investigating the origins of language (e.g., [30]) is that the key
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result of structural emergence is already built into the research paradigm by virtue of there

being pre-existing biases from social or linguistic cues.

Researchers have attempted to address this criticism in various ways. One suggestion is that

these experiments could be run on pre-linguistic children and non-humans [31]. Although

there are strong methodological challenges associated with these approaches, work has begun

in this area, most notably with iterated learning studies on zebra finches [32] and baboons

[33]. Another approach is to move the task away from standard communication channels in

order to reduce any interference from underlying language competences (e.g. [34]). Though

this is a good idea in principle, a problem is that the underlying tasks are still communicative

in nature, and are therefore likely to recruit from known systems of communication regardless

of a change in modality or medium. The current study was therefore designed specifically to

be non-communicative in nature and not to rely on existing language skills.

The Current Study

Our study was explicitly designed as a memory experiment involving the exposure to nonsense

sequences of letters, in the absence of any communicative task demands or need for language

skills (except to understand the instructions). We wanted to explore whether the basic memory

process of chunking would lead to reuse of parts as a result of cultural transmission without a

communicative or a linguistic task being required. Will structure emerge when the only pres-

sure is coming from domain-independent sequence learning constraints? In our setup, there

are no meanings or referents to convey, no interactive elements between learners, nor is com-

munication implicit in the instructions. Indeed, the instructions explicitly framed the study as

a memory task where the only goal was to recall a set of sequences seen during a training

phase. The recalled sequences are then used as training items for the next participant, and the

process is repeated for 10 “generations”, creating a linear diffusion chain of learners.

Our primary hypotheses are that (a) sequences will become more learnable over time, (b)

their distributional structure will increase, and importantly, (c) they will take on structural

properties that have language-like features, such as the reuse of parts. The upshot, which we

revisit in the Discussion, is that the basic chunk-based constraints on sequence memory,

amplified culturally in the laboratory, induces the emergence of language-like structure—with-

out any linguistic or communicative constraints. Language may, too, be shaped by these con-

straints. Linguistic structures must be kept distinct to convey distinct meaning, yet must

accommodate a limited memory system. The conclusion is that these basic cognitive processes

may be partly responsible for the structure of human language [16,35].

Method

Participants

This experiment was approved by the Linguistics and English Language Ethics Committee at

the University of Edinburgh, and written consent was obtained from all participants before

taking part. For all iterated learning experiments a decision has to be made in advance as to

how many groups (or “chains”) to run, and how many participants (or “generations”) each

chain will contain. We followed established practice by running for ten generations (c.f.

[26,36]), and opted for eight chains in total. Eighty adult University of Edinburgh students

(age:M= 21.72; SD = 4.08) each received £2 for their participation, and were randomly allo-

cated to one of the eight chains. As described below, a chain involved 10 participants, run

separately and sequentially in the task, where one participant’s behavior served as input (or sti-

muli) for the subsequent participant.

Memory Constraints Give Rise to Language-Like Structure
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Materials

Participants were told that they would be administered a memory task, involving a series of to-

be-recalled consonant letter strings. To provide the training items for the first participants in

each of the eight chains, eight initial string sets were generated. A string set contained fifteen

strings in total, with five strings of length three, four and five respectively. The construction of

these initial string sets was tightly constrained to ensure there were no sequential patterns to

bias learners toward a particular structure from the outset. Each string set contained exactly

six consonants, each appearing ten times, yielding sixty letters in total distributed across the fif-

teen strings. The identity of the letters differed between sets, having been randomly drawn

from the full set of 20 (capitalized) consonant characters available on an English keyboard.

Crucially, throughout the string set, bigram and trigram frequencies were kept as near uniform

as possible. In practice, this meant that no more than three repetitions of a single bigram, and

two repetitions of a single trigram, were permitted. This results in string sets which are both

randomly constructed, yet also unstructured. We designed 8 initial string sets for each chain of

10 participants (see Table 1).

Procedure

The 80 participants in this task were organized into 8 chains. In a chain, the first participant

received one of the initial string sets in Table 1. The memory test result for this participant

served as the stimuli for the second participant; this second participant’s final test result served

as stimuli for the third; and so on, up to the tenth participant. Eight of these iterated learning

chains were run to investigate the effect of sequence learning constraints on the learnability

and structure of the sets of strings as they changed over time.

Unlike typical iterated learning experiments (e.g., [26,37]), the strings to be acquired by

learners had no associated semantics, and were not used in a linguistic or communicative con-

text. Instead, participants were informed that they were taking part in a memory experiment.

At no point were the strings referred to as a ‘language’, nor were learners aware that their out-

put was to be passed on to a subsequent participant.

A chain consisted of ten “generations” of learners. At each generation, a participant first

underwent an implicit learning regime (“echo training”) to acquire a finite set of strings, before

Table 1. The initial string sets for the first participant in each of 8 chains.

Chain String set

1 CMC, SFL, PCS, LFF, FSM, MSMF, CLMP, PPSL, FLCM, SCPC, CSPLL, LFPSS, PFMLM,

MLCFP, SPMCF

2 VSB, SGT, GTV, BVT, TBZ, VBSS, GZTB, STGS, TZBT, ZVTG, BZTSV, VBGSZ, GVVZG,

SSGBB, ZGZVZ

3 SLW, LXS, CWC, WSX, XKK, LSWK, CCCX, KXKL, SXLC, WKXL, KSKCW, SWCLX, WLSCS,

LWXSC, XWLKW

4 JNB, FJQ, QFP, PPN, NJF, JPFQ, QBNF, FQBP, BFFB, NJBN, JPQNP, BQPBB, PFJNQ,

NQNBJ, FPJQJ

5 XLJ, NXQ, LQP, PNN, JPL, QJNX, PQLQ, XPJL, LNQN, NJXJ, JNPXP, LXJQJ, PLXNQ, QQLPN,

XLJPX

6 PCH, NVP, VNC, HPV, TCN, NPTN, TVTP, HCNT, CTHV, PHHC, NHTCT, TVHPH, HVPCV,

CPNNC, VCVNP

7 RLB, VBF, LFR, GGV, BRG, RBGL, LFBV, VLGG, GFLL, FGLB, GBVRF, BLVFF, LVRRB,

RVFBR, FVGRV

8 SRS, ZPR, MRL, RZM, LMZ, RRZR, LPMP, PLRM, ZSMM, SLSP, PZPSS, MLZRL, RPMPZ,

SZLLZ, LSMSP

doi:10.1371/journal.pone.0168532.t001
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being prompted to reproduce the items they had seen in a final test. The output of this final

test was then used as training input to the next learner taking part in the experiment, thus add-

ing a generation to the chain. In total, echo training and testing lasted no more than 15

minutes.

During echo training, participants were exposed to six blocks of the fifteen strings, pre-

sented in random order. Each string appeared onscreen for exactly 1000ms. After a 3000ms

delay, participants were prompted to type in the string using the keyboard. If participants

attempted to echo the string before the end of the delay, the keyboard would fail to register the

input and a warning beep would sound. No feedback was provided on the correctness of the

entered string.

After training, participants were given a surprise test. They were told how many strings

they had seen during training, and were then asked to recall each one as best they could. Partic-

ipants entered the strings one-by-one and were given no feedback on the accuracy of a recalled

string. The screen was cleared between each recall attempt. The only information provided

was a counter indicating the number of strings that they still needed to produce. The sole

requirement for this final test was that each produced string be unique. If a string was typed in

more than once, an error message appeared and participants were instructed to try again. The

15 unique strings retrieved at the end of recall were transmitted to the next participant for

learning in all cases except for the first learner, who received an initial string set that was ran-

domly constructed (Table 1).

To avoid potential biases that might affect the learning process, we implemented a re-map-

ping procedure to remove any surface structure effects. For example, acronyms might be intro-

duced into the strings by participants, or the physical distribution of letters on the keyboard

could lead to the emergence of certain typing patterns. To counteract these biases, the string

sets were re-mapped to new consonant characters at the end of each individual test session

(e.g., each instance of Xmight be replaced by N, and so on). The output was then visually

inspected by a native English speaker before being transmitted to the next generation. If an

acronym was found, the re-mapping process was repeated until an acronym-free assignment

of characters had been found. This process results in the removal of confounding surface regu-

larities, whilst preserving the underlying structure of the string sets.

Results

To test our hypotheses, we conducted several different analyses, looking at increases in learn-

ability, the emergence of distributional structure, and comparing structural reuse patterns

with those found in child-directed speech as well as in other human-generated sequences. In

each case, we leveraged a different kind of structural analysis which had explicit predictions

rendered in advance of the test.

Learnability Increases

In order to determine whether string sets are being acquired more faithfully over time, we com-

puted the overall accuracy of the items recalled across generations in terms of the normalized

edit distance [38] between strings in generation n and n + 1. Following a standard approach

used in artificial grammar learning to compare the similarity of test items to training items [39],

we determined for each recalled test string (at generation n + 1) which of the training items

(from generation n) that it was closest to. For example, if a recalled item QZM has QZV as its

closest training item then it would be assigned an error score of 1. This score reflects the mini-

mum number of edits (i.e., insertions, deletions or substitutions) required to change a test item

into the closest training item. The global error score for a given generation was computed as the

Memory Constraints Give Rise to Language-Like Structure

PLOS ONE | DOI:10.1371/journal.pone.0168532 January 24, 2017 5 / 18



mean edit distance across all the recalled items. The lower the mean error score is, the more

similar the items in generation n + 1 are to those in generation n. More accurate recall thus

results in lower error scores.

Fig 1 (top-left) shows a graph of how global error changes over time, averaged across the

eight chains. A paired samples t-test comparing global error scores from the initial generations

with those of the final generations, revealed that there is a significant decrease across genera-

tions: string sets were generally recalled more accurately at the end (M = 0.18, SD = 0.08) of

chains compared to the beginning (M = 0.39, SD = 0.04); t(7) = 5.82, p< .001. The boost in

overall accuracy translates into a significant increase in the number of correctly recalled items,

from a mean of 3.5 (SD = .76) at generation 1 to 7.9 (SD = 2.42) at generation 10; t(7) = 4.73,

p = .002 (Fig 1, top-right). Importantly, the improved learnability did not come at the cost of a

Fig 1. Increase in learnability and distributional structure across generations of learners. Global error

decreased across time (top-left). Participants become better at reproducing the string sets (top-right). String sets do

not diminish in length across time (bottom-left). Structure increases over generations, as indicated by the mean of

Associative Chunk Strength (ACS) of string sets (bottom-right). In all cases, the graphs plot means across all eight

chains, with error bars reflecting standard error of the mean.

doi:10.1371/journal.pone.0168532.g001
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collapse of the string sets into very short sequences (Fig 1, bottom-left). There was no differ-

ence in the mean length of the strings when comparing initial (M = 3.93, SD = .16) and final

generations (M = 4.21, SD = .32); t(7) = -2.27, p = .06. Indeed, there is a slight trend for strings

to become longer. We also tested trends across generations using linear mixed effects models

with maximized random-effects structures [40]. All trends are robust (p< .001) with the

exception of string size, which shows a statistically marginal tendency to increase across gener-

ations (p = .08). The contrast among measures shown in Fig 1 is striking. If anything, strings

are increasing in length, yet participants are recalling them more effectively. Our next analyses

answer the question how such an encoding could become more efficient despite the increasing

length.

Distributional Structure Increases

Our learnability analyses indicated that the string sets became easier to learn across genera-

tions. To determine whether this increase in learnability was driven by the emergence of distri-

butional structure, as we had hypothesized, we adopted a metric frequently used in artificial

grammar learning studies: Associative Chunk Strength (ACS) [41]. ACS provides a simple mea-

sure of how distributionally similar a test item is in terms of its component chunks to a set of

training items. For a given test sequence consisting of x bigrams (pairs of consecutive ele-

ments) and x—1 trigrams (triples of consecutive elements), ACS is calculated as the relative

frequency with which those chunks occur in the training items. For example, ACS for the

recalled item ZVX is calculated as the sum of the frequencies of the fragments ZV, VX and

ZVX divided by 3. In our particular case, the training items are simply the strings in generation

n—1, as we are comparing the amount of change in the distribution of chunks between succes-

sive generations. We calculate the amount of reuse in chunks over the entire string set, averag-

ing the ACS across each test item (i.e., each string in generation n) in the set. This provides us

with a global ACS measure that gives us an indication of how much repetition there is of sub-

elements in our string sets, and consequently, how structured each system is.

Fig 1 (bottom-right) indicates that the amount of reuse of chunks (structure) increases con-

siderably over time. We also find a significant difference between the first and last generations,

in that generation 10 (M = 0.66, SD = .28) shows more chunk reuse than generation 1 (M =

0.17, SD = .02), t(7) = 5.0, p< .005. A similar linear mixed effects model described in the last

section confirms a trend to increase over generations (p< .0001). In other words, relative

to the previous generation’s chunks, the next generation tends to reuse these chunks success-

fully, and more so as generations proceed. The participants are developing re-usable units

incrementally.

The Emergence of Language-Like Structure

The analyses performed so far support our hypotheses that distributional structure which facil-

itates learning emerges as a result of cultural transmission over time, but we still need to deter-

mine whether that structure is at all language-like. To do this we performed a network analysis

on the experimental data and compared it to the same analysis on a corpus of natural language.

The CHILDES corpus contains a collection of transcripts of both child language and child-

directed speech [42]. We compare the networks derived from the experimental results to one

based on the English child-directed speech portion of CHILDES to determine if there are

some common structural properties that underlie both (please see https://github.com/racdale/

cornish-strings to view data files, models, and methodological information used to perform

this analysis in more detail).
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There has been a recent rise in interest in looking at natural languages using methods from

network theory (for a review, see [43]). A general motivation for using these techniques is that

they permit quantification at a system level, by revealing the interrelationship among compo-

nents of a language. For example, [44] explored processing implications of a lexicon character-

ized as a network of words connected by shared phonological properties, and [45] explored

properties of sentences expressed as a network of words connected by sequencing. In general,

network methods permit both visualization and quantification of the structural properties of

language at various levels. We conducted the same analyses of the experimental data and the

CHILDES corpus: If structure reuse increases, then network properties should evolve across

generations. As we detail below, if we consider two strings to be “connected” on a graph based

on whether they share a subsequence (such as a bigram), we ought to find that gradual reuse

across chains leads to more densely connected networks of strings. To compare this to a base-

line, we can shuffle these strings internally, thus removing the sequential structure. We pre-

dicted that the experimental data networks should come to resemble the CHILDES network.

Experimental networks. Because each generation consists of only 15 strings, we assessed

emerging shared structure in networks by assessing the extent of interconnection among string

sets across generations of learners. We used a very simple definition of connectivity among

strings of a generation: Two strings are connected to each other if they share at least one letter-

bigram chunk. An example network is shown in Fig 2. If participants are gradually structuring

the strings so that they are more memorable (yet distinct), from generation to generation,

strings may come to exploit sequential patterns. This hypothesis is indeed suggested by the ACS

analysis above, but in the case of the emerging networks across a chain, the hypothesis would be

confirmed by the strings becoming more and more interconnected by shared chunks.

CHILDES natural language networks. For the purpose of our natural language analyses,

we extracted the English child-directed speech from the CHILDES corpus. Adults normally

use a considerably larger number of words when speaking to children than the few letter types

used in our experiment. To reduce the number of element types to be more in line with the

experiment, we therefore replaced individual words in the child-directed utterances with

their respective parts-of-speech (POS) tags, drawn from a set of fifteen: noun, verb, adjective,

adverb, determiner, preposition, negation, conjunction, pronoun, relativizer, quantifier, ono-

matopoeia, interjection, infinitival, neologism. The resulting strings represent the manner in

which parts of speech are encoding messages sequentially. In other words, just as our experi-

mental string sets are composed of a small number of letter types, natural language sentences

can be described in terms of a small number of parts of speech.

We built the natural-language network in a similar way to what we described above: Any

POS string (e.g., noun-verb-preposition-noun) is connected to another if they share a bigram

Fig 2. Generations 0 (left) and 10 (right) of chain 8. These network diagrams link strings that share at least

one bigram sequence. Although the string sets start out containing relatively few edges (links), by the end of

the chain the strings have become quite densely connected to one another.

doi:10.1371/journal.pone.0168532.g002
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(e.g., noun-verb). We chose the 10,000 most frequent sequences (77% of the total CHILDES

strings), and extracted those with length similar to our experimental strings: 3 to 6 (N = 6,266).

In terms of the overall corpus of all POS strings (N = 237,575, with 1,243,472 token frequency),

these 6,266 strings represent approximately 41.5% of all utterances by frequency (515,874

token frequency). We constructed a single network based on this large set of strings.

Statistical baseline networks. For both experimental and natural-language networks, we

also constructed a statistical baseline by taking the same string sets but shuffling the elements

within each string before building the network. This removes the sequential structure of a

given string and should disrupt the interconnectedness of the resulting network. We did this

once for each network, serving as one shuffled comparison.

Comparison of shared structure. A simple consequence of creating networks by linking

strings that share bigrams is that, as strings get longer, they are more likely to have connections

to other strings. This would be the case in both the experimental networks, and natural-lan-

guage networks. In fact, we predicted that this connectivity, as a function of size, should be

similar if our experimental data involve chunk reuse in a manner similar to language. In other

words, proportional increase in string size should, if structural reuse is taking place, show simi-

lar increases in connectivity (compared to baseline).

For each set of networks, both experimental and natural-language (and their baselines), we

extracted (1) string length, and (2) the proportion of other strings in the set to which a given

string is connected. The relationship between these variables is shown in Fig 3, with blue lines

indicating experimental/CHILDES data and the red lines the corresponding shuffled baselines.

For the natural-language (CHILDES) network, the original data (unshuffled) have overall

greater connectivity than the shuffled data by (on average) 10%, t = 47.6, p< .0001, and the

interaction in Fig 3 (bottom right) is significant, t = 20.7, p< .0001. Importantly, these effects

are still present when just focusing on strings of length 3 and 4 alone: It is not driven exclu-

sively by the longer string sequences (p’s< .0001). This reveals that the observed CHILDES

sequences are sharing bigram chunks, giving way to patterns of reuse relative to a shuffled

baseline.

We did this same analysis across our generations of the experiment, shown in Fig 3. In the

first panel, Generation 0, the shuffled strings (red) are in fact significantly greater in their over-

all connectivity, t = 6.3, p< .0001. This gradually changes, and by the final three generations

(8, 9, 10) the original data are more greatly connected as a function of string length, t’s> 2.5,

p’s< .005. Strikingly, the connectivity of the late-generation experimental networks is greater

than the shuffled ones, on average, by a similar percentage to the natural-language network

(7–11%). By the final generation (10), the interaction term reaches statistical significance.

Though a weaker result, it suggests that connectivity scales with length differently relative to

the shuffled baseline, even in these experimental data, t = 2.8, p< .01. This would be predicted

by reuse of chunks: As strings increase in length, there should be an increased chance of shar-

ing structure with other strings. The interaction term reveals that this scaling occurs in the

experimental data.

We can now compare the human part-of-speech data to the experimental data directly,

because they can be compared on the same scale (proportion of connectivity). In the final

three generations (8,9,10), the CHILDES data does statistically differ from the experimental

data in extent of connectivity. In particular, the experimental data are more connected, by

about 9% (p< .0001). This is likely because the POS CHILDES data involve more categories

(parts of speech), and thus more bigram types, and lower probability of drawing edges between

sequences. Importantly, the interaction term in this analysis is not significant (p = .72), so we

cannot infer a slope difference between CHILDES and the experimental data in later genera-

tions. However, the CHILDES data do differ from the first three experimental generations
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considered together (1,2,3). The CHILDES data show considerably more connectivity, and the

interaction term is significant (p< .0001), suggesting that natural-language connectivity scales

more robustly with length than the first few generations of the experiment, but more similarly

to the final three generations.

Comparisons to other types of sequence structure. The global nature of the comparisons

between the experimental and CHILDES networks raises a concern that the scaling of chunk

reuse with length might be a general property of human-produced sequences. That is, the

observed similarities might be a trivial consequence of strings being generated from a limited

set of elements rather than structural reuse due to chunk-based memory processes common

to both language and sequence learning, as we have suggested. To address this concern, we

repeated our network analyses with three additional types of human-generated sequences:

word frequencies, passwords, and random numbers (see further details in S1 Text).

Fig 3. From top-left to bottom-right demonstration the emergence of interconnected structure of strings by

bigrams. By comparison to natural language part-of-speech (POS) ordering from CHILDES (bottom-right panel),

the relationship between string size and shared bigrams resemble each other closely. Blue circles are items from

the original data; red dots reflect string-internal shuffled items. Lines are linear fits with corresponding color

designations.

doi:10.1371/journal.pone.0168532.g003
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Word frequency is an important factor in language processing. Using a subset of 5,000

words from Google Ngram (from [46]), we treated the frequency of words as digit-sequences.

For example, the word “memory” had a frequency of 215,686 in 2008, which was used as a

string of length 6 (i.e., “215686”), and connected to frequency counts of other words, given its

five component digit bigrams (i.e., 21, 15, 56, 68, 86). In the same year, the word “string” had a

frequency of 83,915 (bigrams: 83, 39, 91, 15), which shares the digit bigram 15 with “215686”

and the two number sequences were therefore connected in the network. The digit sequences

used to create the resulting network were not directly generated by humans but, rather, are an

indirect reflection of the overall frequency of sequential usage patterns across many people.

We would therefore not expect these sequences to show the kind of reuse we observed for the

final-generation experimental networks and the CHILDES networks. This is a relatively weak

baseline, because it would be surprising and unintuitive for such strings to exhibit distribu-

tions akin to structural reuse. Nevertheless, this initial baseline would demonstrate that not all

natural distributions of strings show connectivity-by-length scaling.

As shown by the left-most panel in Fig 4, there is no evidence of robust scaling of chunk

reuse in the frequency network as evidence by the lack of connectivity difference between the

observed and shuffled conditions. Using the same regression approach as for the experimental

and CHILDES data, we find that its interaction term is not significant (p = .14; see Supporting

Information for more detail).

It is possible, though, that any sequence directly generated by humans will show the kind of

scaling of reuse reflected by Fig 3. To investigate this possibility, we randomly selected 5,000

passwords, and extracted the numeric sequences contained within them, resulting in approxi-

mately 1,000 digit sequences. Such passwords are individually generated, typically to be memo-

rable for the specific person using it. We created a network using password digit sequences,

connecting two passwords if they contained similar digit bigrams (similar to the frequency

networks). For example, “1492” and “123456” are common passwords with no overlap in digit

bigrams. The resulting password network was then analyzed for chunk reuse as before. As can

be seen from the center panel in Fig 4, there is a very slight advantage of the observed password

sequences over the shuffled controls (p = .02). However, this advantage does not increase with

length, as previously observed for the experimental and CHILDES networks (p = .34).

Remembering self-generated password typically involves recalling a single string. However,

perhaps the patterns of chunk reuse seen in Fig 3 might be a simple consequence having to

produce multiple strings, independent of whether they contain any notable structure? To test

Fig 4. Network connectivity analyses of three different types of sequences: word usage frequencies

treated as sequences (left panel), digit sequences gleaned from passwords (center panel), and

human-generated sequences of random digits (right panel). Blue circles are items from the original data;

red dots reflect sequence-internal shuffled items. Lines are linear fits with corresponding color designations.

Only the sequential generation of random digits reveals the same pattern as observed in Fig 3 for late-

generation and CHILDES networks.

doi:10.1371/journal.pone.0168532.g004
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this, we obtained data from a random number generation task [47]. In this study, participants

randomly generated numbers between 1 to 10 across 100 consecutive trials. To obtain strings

for our analysis, we combined data from 5 of these participants. This produced one long string

of digits 1–10. We then resampled segments from this long string of digits by extracting win-

dows of length 3 to 6, to match our original experiment. This produced a set of strings, approx-

imately 100 such sequences of length 3 to 6, that can then be subjected to our network analysis.

Fig 4, right panel, shows that sequential generation of random numbers does not give rise to

the kind of scaling pattern we found for the experimental and CHILDES networks. Although

there is an increase in connectivity with length, the key interaction between the shuffled and

random number networks is not observed (p = .5).

We ran this analysis on many iterations of the random number sequence, and the same result

obtains. We would not argue, of course, that this means that the random number generation of

the participants is truly random; other studies have shown that non-random patterns can infil-

trate these number generation tasks, depending on how the task is set up, and how performance

is measured (see [48–50]). However, our network analysis may be suitable to determine reuse of

structure, in a language-like manner, rather than simply non-random structure, in a more

generic information-theoretic sense. These concepts are distinct, and though it is outside the

scope of the present analysis, it may be interesting to explore them in follow-up analysis.

Together, these three network analyses suggest that the similarities in the scaling of chunk

reuse between the late-generation experimental networks and the CHILDES network is not a gen-

eral property of sequences arising from human behavior. All three sequence networks—based on

frequency, passwords, and random numbers—do not show the same reuse scaling as seen in Fig

3, even though they arise directly or indirectly from human sequential behavior. It appears that

only chunk-based memory processes related to the learning and processing of multiple sequences

involving some sort of structural relationship to one another result in the kind of structural reuse

that we have proposed may common to both language and sequence learning.

Example String Sets

We can see the process of chunk-based reuse occurring more clearly by examining the string

sets qualitatively. Fig 5 shows an example of an initial random string set (left), and what that

same string set evolved into after ten generations (right). We organized strings by combining

the string-edit distance measure described above with the bigram connectivity rule used in the

previous section. This allows us to organize string sets automatically, using a force-directed

Kamada-Kawai algorithm [51] on our network, and qualitatively interpret what patterns

appear present. Nodes that appear close together in Fig 5 reflect strings that they are part of a

motif or “clique” using similar encoding strategies. The width of the line connecting these

strings is proportional to the inverse string edit distance.

This automated technique allows visualization by grouping strings sharing similar features;

it is important to remember that many other interpretations are possible and this is not neces-

sarily how participants themselves would categorize items. With this caveat in mind, we can

see that by the end of the experiment it is possible to discern certain patterns of organization.

Some strings are “singletons,” and are unique with respect to their whole group. However,

such singletons are relatively rare. Instead, we see much clustering and shared structure. For

example, in Fig 5 (right), we see that a cluster of strings has the same initial bigram. The initial

bigram KX- is used on the left side of the main cluster, and near the bottom-right side we see

strings using KS-. The pattern of usage appears to involve some initial forms of transformation.

Some of the strings on the right can be converted to those on the left by inverting the order of

“X” and “S.”
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Discussion

In the experimental task, participants were not cued to think of the string sets as having

communicative or linguistic relevance. Inspired by a long tradition in memory research,

from Ebbinghaus onward, we utilized the well-known letter-string recall task. Participants

were trained for several blocks on 15 strings, and then asked to reproduce them; the recalled

strings served as input to the next participants across 8 chains of 10 subjects. We find that

this classic memory recall context nonetheless induces the kind of “structural reuse” seen in

natural language. Across generations, strings come to rely increasingly on a decreasing

number of chunks, which significantly improves memory performance. They come to form

a kind of structured system, involving the reuse of chunks in systematic ways that exceeds

what one would expect from random strings. In addition, it seems that the emerging struc-

ture among the string sets has some properties in common with natural language. Analysis

of a large-scale CHILDES data set shows that the shared structure among strings scales simi-

larly with string length when we compare child-directed speech to the experimental string

sets. Further comparisons with other types of human-generated sequences further under-

score that it is chunk-based memory constraints associated with the repeated generation of

sequences that result in such structural reuse. This gives support to the proposal that iter-

ated learning leads to structure in language that helps alleviate the challenge posed by the

Now-or-Never bottleneck.

The comparison of our string sets to the data contained in the CHILDES corpus has at least

two limitations. The first has to do with the relative lengths of string and size of ‘language’ rep-

resented by our string sets. The second is a question of what our string sets might plausibly

represent in language, given the lengths we have gone to in ensuring that our data be as non-

linguistic as possible. We do not make any strong claims about the second issue. Though there

are units of linguistic structure that carry no semantic information at all (phones), our charac-

ter strings were not designed to resemble this aspect of language. However, it seems plausible

that the process of constraining structural reuse via cognitive processes such as chunking likely

holds across a range of levels in linguistic organization [16,36]. What we have demonstrated

here is that echoes of this process can hold even in a very simple experimental design, without

any overt linguistic framing or semantic constraints present.

Fig 5. Examples of string sets found in the experiment. The initial string set for chain 3 at generation zero

(left panel) is lacking in structure, with many singletons. Connections are present when there are shared

bigrams. The same string set from chain 3 transformed by the participant chain after ten generations (right

panel). Using an automated Kamada-Kawai force-directed method, strings can now be grouped together

based on structural similarities. The width of the edges on the network reflect string-edit distance—structural

similarity. In general, we find similarity among clusters to increase and take on some apparent systematic

structuring.

doi:10.1371/journal.pone.0168532.g005
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From the admittedly limited standpoint of parsimony, the results suggest that the con-

straints on cognitive processing alone could offer an elegant account of how sequence structure

emerges [52]. In particular, the constraints on encoding and recalling sequence elements from

memory may serve as a kind of “filter” that biases the transmission of structures from partici-

pant to participant [53]. This biasing leads to a set of strings that are assembled from reused

parts, and still permit distinctiveness across the whole set of strings. This distinctiveness is

forced in our experiment (participants had to produce 15 unique strings); in the communica-

tive context, a lack of distinctiveness would be subject to more natural contingencies, such as

in referential expressions, to avoid potential ambiguities.

These principles of memory encoding and recall may offer an explanation of the balance

between (a) emerging sub-structures that permit efficient use of memory while also (b) pre-

serving distinctiveness among the entities to be learned and reproduced. This reflects a kind of

intermediate strategy between maximal encoding efficiency (15 almost identical strings), and

maximal distinctiveness (each string highly different from the rest). Participant chains find a

balance between these forces. Importantly, though, we do not wish to argue that this way of

seeing linguistic structure as the result of a trade-off between competing forces of efficiency

and distinctiveness is entirely novel. The idea that language adapts to meet functional chal-

lenges has been developed in various ways in many areas (among many others: [54–58]). Our

results provide experimental evidence regarding the way in which simple memory constraints

may give rise to distributional sequence structure.

We do not deny the importance of semantics and social coordination in language use. In

natural contexts, communication serves as an additional and equally important constraint

operating alongside other perceptual and cognitive constraints. The need to have another per-

son produce and understand a set of sequential structures requires maintaining a certain

amount of distinctiveness in the system. So, the generational transmission of language filtered

through cognition likely operates alongside a process of social coordination that biases struc-

tural encoding and distinctiveness as well (e.g., [59]). We would not advocate that cognitive

constraints trump sociocultural coordination; to us they seem part and parcel of the same sys-

tem (see, e.g. [60], for discussion). Language may be conceived as a communication system

shaped by selective pressures from multiple cues and constraints. Languages take on various

forms, at various levels, that adapt to contexts in which a language is used [35].

These same caveats could be expressed for linguistic meaning, omitted deliberately from

our design. It is likely that this balance between efficiency and distinctiveness is constrained by

the meanings to be expressed. It has long been known that competition among similar forms

may lead to distinctive encodings, especially at the phonological level. For example, in condi-

tions of potential ambiguity at the lexical level, language users amplify subtle phonological dis-

tinctions in order to render more clear the distinction among lexical items [61]. Simulations of

this process show that this may lead to an iterative process of change as well, thus similarly

explaining phonological systems as having some emergent structure [62].

More generally, our results relate directly to another mechanism proposed in human mem-

ory research that has a long history. Chunking continues to be regarded as a fundamental pro-

cess for rendering large amounts of information more easily memorable by restructuring or

reusing components on which that information is based. For example, in Miller’s classic study

[14], he observed how “recoding” can permit a person to recall a sequence as long as 40 binary

digits. The strategy, of course, is to accommodate limits in memory by engaging in reuse of

parts, and then manipulating those parts permits a more efficient encoding of, on its surface,

very lengthy or detailed material. Chunking has a long history since this classic work, and con-

tinues to figure prominently in our understanding of human learning and memory [63],

including in the acquisition of language [16,64,65].
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Conclusion

We began our paper with a description of language as one which makes infinite use of finite

means, “reusing” structures in systematic ways that permit generalization and application in

many contexts. In our experiment, we demonstrate that some aspects of structural reuse may

emerge under cognitive constraints, driven only by the demands in a basic memory task,

devoid of communicative or semantic dimensions. Of course, our results cannot yet approxi-

mate the “infinite employment” described famously by Humboldt. But our findings do offer

an important clue to how “finite means” may come about, and the way they work to cogni-

tively support our productive linguistic abilities.
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