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Abstract

Gaussian graphical models represent the underlying graph structure of conditional dependence be-

tween random variables which can be determined using their partial correlation or precision matrix.

In a high-dimensional setting, the precision matrix is estimated using penalized likelihood by adding

a penalization term which controls the amount of sparsity in the precision matrix and totally char-

acterizes the complexity and structure of the graph. The most commonly used penalization term

is the L1 norm of the precision matrix scaled by the regularization parameter which determines

the trade-off between sparsity of the graph and fit to the data. In this paper we propose several

procedures to select the regularization parameter in the estimation of graphical models that focus

on recovering reliably the appropriate network structure of the graph. We conduct an extensive

simulation study to show that the proposed methods produce useful results for different network

topologies. The approaches are also applied in a high-dimensional case study of gene expression

data with the aim to discover the genes relevant to colon cancer. Using this data, we find graph

structures which are verified to display significant biological gene associations. Note: supplemen-

tary material is available online.

Keywords: sparse precision matrix, high dimension, clustering, gene expression, graphical lasso,

hyperparameter estimation
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1 Introduction

In recent years, the study of undirected graphical models (Lauritzen, 1996) has been the focus

of attention of many authors. The increasing volume of high-dimensional data in different

disciplines makes them a useful tool in order to determine conditional dependence between

random variables. For instance, graphical models have been applied to gene expression

data sets to find biological associations across genes in Dobra et al. (2004) and Schäfer

and Strimmer (2005), as well as in other biological networks (Newman, 2003) and in social

networks (Goldenberg, 2007). In Gaussian graphical models, which are often used for finding

associations between genes using high throughput genomic data, the dependence between

the genes is fully characterized by the non-zero elements of the precision matrix Ω (see

Section 2.1).

However, in a high dimensional framework where the number of variables p is larger

than the number of observations n, there is not enough information in the data available to

estimate Ω, and hence the underlying conditional dependence (CD) graph. To address this

problem, alternative estimators have been proposed in the last two decades using additional

information about Ω such that the estimated covariance matrix and its inverse are of full

rank. Typically, three classes of estimators of Ω have been used: thresholding (Bickel and

Levina, 2008), shrinkage (Ledoit and Wolf, 2004; Daniels and Kass, 2001) and penalized

log likelihood (Tibshirani, 1996). In this paper we consider the latter kind of estimators,

the graphical Lasso penalization method (defined in Section 2.1) which adds the penalty

λ||Ω||1 with a tuning parameter λ in the maximum likelihood. The penalized maximum

likelihood optimization problem is solved using recursive algorithms, for instance we find

that three of the most efficient and commonly employed ways to solve it are GLasso by

Friedman et al. (2007), Neighborhood selection by Meinshausen and Bühlmann (2006) and

Tuning-Insensitive Graph Estimation and Regression by Liu and Wang (2012). The choice

of the tuning parameter λ represents the trade-off between close fit to the data and sparsity

of Ω, and its selection for estimation of the corresponding CD graph structure is the topic

of this paper.

Methods such as Cross Validation (CV), Akaike Information Criterion (AIC) or Bayesian

Information Criterion (BIC) have been widely used to select tuning parameters when p is
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small. However, they fail once dealing with high-dimensional problems by over-fitting the

graph structure of Ω (Liu et al., 2010; Wasserman and Roeder, 2009).

Liu et al. (2010) proposed the selection of λ by controlling the desirable approximated

variability in the estimated graphs using a subsampling approach (StARS). This method

contrasts with the usual variable selection statistics since it only considers the estimated

CD graph structure. Even though the method is promising and gives an alternative to AIC

and BIC, it has a major drawback: another tuning parameter is needed in order to set the

maximum variability across samples which can be unknown a priori in many applications.

Our simulations show that the default values can lead to overestimation of the network size

in certain graph topologies. Meinshausen and Bühlman (2010) presented a stability selection

approach which controls the graph edges false discovery rate. The authors estimate Ω by an

average subsampling graphical Lasso method such that the effect of the choice of λ is very low.

However, the trade-off between false positive and true positive edges of the selected network

by their subsampling approach is worse than the one given by a network with the same

number of edges using all the data due to considering smaller effective sample sizes than the

original n for estimation. To the best of our knowledge, there is no other relevant approach

in the literature that only employs the graph structure to select the tuning parameter λ in

graphical models.

We have applied the following methods for selecting λ popular in statistical literature

to estimate CD graph structures in microarray data: AIC, BIC and StARS. However, the

graphs we have obtained were rather dense and very difficult to interpret to a biologist,

namely to extract groups of genes acting together and possibly interacting. In the biological

literature, the most commonly used approaches to construct gene networks are based on

clustering. This is informed by the expected presence of distinct strongly interconnected

clusters in biological networks (Eisen and Spellman, 1998; Yi et al., 2007). This gave us the

motivation to find λ such that the corresponding graph has a clustering structure which can

be interpreted by a biologist without restricting it to a block diagonal structure and hence

missing potentially important interactions.

Our aim is to select the hyperparameter λ such that (a) it produces reliable estimates of

the edges of the graph (b) the corresponding CD graph structure is interpretable in terms

of network characteristics and (c) works well for networks that arise in biological systems.
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In this paper, we propose several such approaches to selecting λ, in the framework of a

general two-step procedure. The main novelty with respect to classical approaches such as

AIC or BIC is that we use only the graph structure of the GLasso estimator to tune the

regularization parameter λ. The first proposed approach, Path connectivity (PC), uses the

average geodesic distance of estimated networks to find the graph that corresponds to the

biggest change of the number of connections and is associated with splitting of clusters. The

second method, Augmented mean square error (A-MSE), similarly to the StARS approach,

controls the variability of the estimated networks in terms of graph dissimilarity coefficients

using subsampling. The main difference from StARS is the additional bias term to avoid

having a tuning parameter. We consider the bias with respect to an initial estimated graph

structure which contains a desirable global network characteristic. For instance, we use the

AGNES hierarchical clustering coefficient (Kaufman and Rousseeuw, 2009), which is the

third proposed method to choose λ, to select the graph that presents the highest clustering

structure. Although clustering methods exist in the literature, the novelty here is that we

use them to select the penalty parameter λ in Graphical Lasso estimation.

We compare performance of the proposed approaches as well as of the StARS algorithm

and of the standard AIC and BIC on both simulated and real data. The data is a microarray

gene expression data set generated by the TCGA Research Network: http://cancergenome.

nih.gov/. It contains 154 samples for patients with colon tumor and about 18k genes.

We are particularly interested in finding significant complex gene interactions reliably and

relating the observed associations to pathway databases which describe known biochemistry

connections between genes. Simulations and real data analysis are performed using the free

statistical software R (R Core Team, 2015).

The rest of the paper is organized as follows. In Section 2 we introduce the tuning

parameter selection methodology and in Section 3 we give their main algorithmic and com-

putational information. In Section 4 we compare the performance of the methods using

simulated data and then apply them to a gene expression dataset in Section 5.
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2 Regularization parameter selection

2.1 Gaussian graphical model

We assume that the data are i.i.d. observations from a Gaussian model: Xi ∼ Np(0,Ω
−1),

i = 1, . . . , n independently, assuming, without a loss of generality, that the mean is zero.

Conditional dependence is totally characterized by the inverse covariance matrix Ω, also

called the precision matrix. Two Gaussian random variables Xi and Xj are said to be

conditionally independent given all the remaining variables if the coefficient Ωi,j is zero.

This is often expressed with a graph structure G in which each node represents a random

variable and there is an edge connecting two different nodes if the correspondent element in

the inverse covariance matrix is non-zero.

The corresponding log likelihood function for Ω is `(Ω) = log det Ω − tr(SΩ) where

S = n−1
∑n

i=1 X
2
i . If S−1 exists (p < n is a necessary condition), the MLE of Ω is given by

S−1. However, in a high dimensional framework where the number of variables p is larger

than the number of observations n, the matrix S is singular and so cannot be inverted.

We make an additional assumption that the CD (conditional dependence) graph is sparse,

and hence that the precision matrix Ω is sparse. Ideally, we would like to use a penalized

likelihood estimator, with the penalty proportional to the number of non-zero elements in

Ω. However, such optimization problem is non-convex and thus is very computationally

intensive. In practice, a likelihood estimator with a convex penalty term proportional to the

`1 norm of Ω, a Graphical Lasso, is commonly used instead:

Ω̂λ
PML = arg max

Ω�0
[log det Ω− tr(SΩ)− λ||Ω||1], (1)

where ||Ω||1 =
∑p

i,j=1 |Ωij| is the element-wise `1 norm of the matrix Ω and PML stands

for penalized maximum likelihood. For small λ, the corresponding penalized estimator of Ω

tends to be dense and in the extreme (λ = 0) we are back to the initial Maximum Likelihood

problem which may not have unique solution when p/n is large (Pourahmadi, 2011). As

we increase λ, the matrix becomes more and more sparse until we get a diagonal matrix.

Therefore, the choice of λ has a crucial effect on the estimated CD graph structure.

5
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2.2 General two step procedure to select the tuning parameter

The `1 penalized maximum likelihood estimator defined in (1) requires selection of a regular-

ization parameter λ. If the `1 penalization genuinely represented our true prior knowledge

about Ω then one of the standard methods such as the maximum marginal likelihood or cross

validation for the elements of Ω could be used. However, the `1 penalty here is used due to its

computational convenience, replacing the `0 penalty, so these methods are not appropriate.

It is well known for the problem of estimating sparse vectors in high dimensions with the

Lasso penalty, that the variable selection part, with an appropriate λ, is consistent, however,

the estimation of the non-zero values usually has some bias (Wasserman and Roeder, 2009;

Gu et al., 2013). This can be due to the convex relaxation of the desired `0 penalty to the

computationally efficient `1 penalty. Thus, in this paper we propose to employ methods that

use only the variable selection part from the GLasso, Ĝλ, for tuning the hyperparameter λ.

We propose the following two step procedure for estimating λ:

1. Set Ω̂λ
PML as in equation (1) for all λ ∈ Λ, Λ ⊂ [0, λmax], λmax > 0.

2. Choose λ̂ = arg minλR(λ, Ĝλ)

using risk functions R that are based only on CD graphs Ĝλ. This procedure combines

computational efficiency of the Lasso algorithm with the choice of λ that optimizes relevant

characteristics of the CD graph such as connectivity, clustering structure, etc.

2.3 Graph notation and distances

Before introducing the risk functions, we give some basic definitions and properties of net-

works (Costa and Rodrigues, 2007; Estrada, 2011) which will be used to select the regular-

ization parameter.

A graph G(V,E) is a set of nodes V , with connections between them, called edges E. The

graph structure is often represented by a p× p matrix, called adjacency matrix and denoted

by AG. In the estimation of graphical models, the off-diagonal elements of AG are determined

by the precision matrix (0 if Ωij = 0 and 1 otherwise) and the diagonal elements are set to

zero. Note that graphical models are undirected which means that the correspondent AG is

always symmetric.

6
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The distance between a pair of nodes Vi and Vj ∈ G(V,E) (also known as the geodesic

distance) defines the shortest number of edges connecting node Vi to the node Vj, and it is

denoted by gij. If there is no path linking the two nodes, then gij =∞. The correlation co-

efficient σij between two nodes Vi, Vj ∈ G(V,E) and the corresponding dissimilarity measure

dij are given by

σij = ηij/
√
κiκj, with dij = 1− σij, D = [dij] (2)

where ηij is the number of neighbors shared by the nodes Vi and Vj and κi is the degree of

the node Vi defined as the number of nodes that are directly connected to Vi.

2.4 Proposed risk functions

We propose several risk functions to select λ that monitor network characteristics of the

conditional dependence graphs that can be applicable to genomic data. It has been observed

(Yi et al., 2007) that molecules in a cell work together in groups, with some – usually less

strong – interaction between the groups. This motivates our choice of risk functions to

encourage a clustering structure in the estimated graphs.

2.4.1 Path connectivity risk function

To motivate the first proposed risk function, we observe the following obvious property of

the graph Ĝλ that corresponds to the penalized estimator Ω̂λ defined by (1): for small λ,

the likelihood term dominates and the estimator Ĝλ is usually a dense graph with Ω̂λ closely

fitting the data, and for large λ, the penalty term dominates and the corresponding estimate

is a very sparse graph with Ω̂λ not fitting the data well. Thus, for growing values of λ, there

is a decrease in graph complexity, and the aim of the method we propose here is to capture

the value of λ that corresponds to the largest change in the complexity of the graph.

For simplicity, we consider a grid of values of λ, Λ = (λk)
M
k=1 such that λk − λk−1 = h,

k = 2, . . . ,M , and the underlying estimated graphs Ĝλ for all λ ∈ Λ. We propose Path

connectivity (PC) which is a novel approach to find λ that finds the biggest change in graph

complexity between the graphs Ĝλ corresponding to two consecutive values of λ ∈ Λ. In this

7
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case the measure of graph complexity is calculated by the geodesic distance mean statistic

H(λ) =
2

p (p− 1)

∑
i<j

ĝij(λ)I(ĝij(λ) <∞), (3)

where ĝij(λ) are the dissimilarity coefficients for the graph Ĝλ. To find the largest change

in H(λ), we consider the first order differences of H(λ) by Dh(λ) = ∆hH(λ), where ∆h

refers to the difference operator with bandwidth h. The regularization parameter selection

by PC is given by the λ that produces the most rapid relative descent in the number of

graph connections:

λpc = arg max
λk∈Λ

RPC(λk) = arg max
λk∈Λ

∣∣Dh(λk)/D̄h(λk)
∣∣ , (4)

where λk is the k-th ordered element in Λ and D̄h(λk) is the running average defined as the

average of elements Dh(λ) with λ ∈ {λ1, . . . , λk}. The difference of the geodesic distance

mean is divided by D̄h(λk) in (4) to favor big jumps for larger λk (and sparser Ĝλ) in

comparison to the jumps for smaller λk which correspond to more dense graphs.

In Figure 1 we illustrate the motivation of using the PC selection of λ in simulated data

(see Section 4 for details). The true CD graph structure defined by three non-overlapping

clusters is plotted in Figure 1(a). We show the geodesic distance mean as function of λ for

graph estimations in Figure 1(d). This presents a few big jumps which are related to the

separation of clusters. The last one gives the selected graph by PC and is due to the partition

of two clusters (see Figure 1(b) for the selected λpc = λk and Figure 1(c) for the previous

graph structure defined by λk−1). This is a generally observed behaviour in both simulated

and real gene expression datasets. In Figure 1(e) we show the density estimates of λpc using

100 i.i.d. datasets with n = 200, p = 350 and two theoretical graph structures: hubs-based

clustered graph as shown in Figure 1(a) and non-clustered/random graph structure as shown

in Figure 1(f). We can see the clear peak around λ = 0.25 for the clustered data against a

flatter empirical distribution for the non-clustered data.
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(a) True clustered
network

TP = 155 FP = 47

(b) Estimated graph
with λ = λpc

TP = 145 FP = 59

(c) Estimated graph
with λ = λpc − 1.

0.20 0.25 0.30 0.35 0.40 0.45

0
50
0

10
00

20
00

λ

H
(λ
)
10
0

(d) Geodesic distance
mean

0.20 0.25 0.30 0.35 0.40

0
5

10
15

20

λpc

D
en
si
ty

clustered
non-clustered

(e) Densities of λpc (f) True non-clustered
network

Figure 1. Path connectivity regularization parameter selection (PC) using the clustered graph structure

in (a) to generate the data. Figure (b) shows the selected network by PC and (c) its previous estimated

network. In both networks, true positive edges are in green whereas false positives are in red. The

graphical structure in (b) differs from the one in (c) since the two clusters in the bottom are no longer

connected by a (false positive) edge. Figure (d) shows the geodesic distance mean statistic over several

values for λ in which the triangle point is λpc. Figure (e) illustrates the empirical distribution of λpc over

100 i.i.d. instances of data with true graph structure in (a), with black solid line, and true graph structure

in (f), with grey dashed line. The first concentrates the values to a peak at 0.25 whereas the second is more

disperse leading to values of λpc ranging from 0.27 to 0.35.

2.4.2 A-MSE risk function

The idea explored in this section is to use a risk function based on network characteristics

such as dissimilarities of the graph defined by (2). Ideally, we would like to find λoracle that

minimizes

RMSE(λ) = E(
∑
i>j

|dij − d̂ij(λ)|q), (5)
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for some q ≥ 1 where dij are the dissimilarities of the true graph defined by (2) and d̂ij(λ) are

the dissimilarities of the CD graph estimated by (1) for a given tuning parameter λ. RMSE(λ)

depends on the unknown true graph structure of Ω; in practice, an unbiased estimator

of RMSE(λ) is used, commonly obtained by subsampling (bootstrap, cross validation) by

comparing estimated values to observations. However, the problem in this setting is that

direct observations of dij are not available.

To overcome this problem we propose to use an initial graph estimate G̃ and its dissim-

ilarities coefficients [d̃ij] in place of observed data. Thus, we propose to use the following

choice of λ:

λamse = arg min
λ∈Λ

R̂AMSE(λ) = arg min
λ∈Λ

∑
i>j

Ê|d̃ij − d̂ij(λ)|q, (6)

where Ê indicates the estimation of the expected value using subsampling, and it is obtained

as presented in Section 3.2. We find that λamse can approximate well λoracle in our simulated

data (see Section 5 in Supplementary material).

For q = 2, this risk function can be written as a sum of the variance term and the sum

of the squared differences between the initial and the current estimator (the “bias” term);

see equation (8) in Section 3.2. Note that the first summand in (8), the variance of the

estimated distances, gives a stability measure similar to the one proposed in StARS (the

latter uses the adjacency matrix instead of the dissimilarities). However, we add a bias

term for the distance estimator which allows us to avoid the selection of the power tuning

parameter β that controls the desired variability in the StARS approach (Liu et al., 2010).

The proposed RAMSE(λ) risk can be applied to other network characteristics. By the

definition of graph dissimilarities, dij = 1 if nodes i and j are neither directly nor indirectly

(share neighbor) connected. Defining hij = 0 if σij = 1− dij = 0 and hij = 1 if σij > 0, for

sparse networks, there are many hij = 0 and only few hij = 1. Applying the RAMSE(λ) to

[hij] instead of [dij], we obtain

Rh
AMSE(λ) = E

∑
i<j

(hij − ĥij(λ))2 = Ch + E
∑

(ij)∈θ(λ)

(1− 2hij) = Ch + E[TP (λ)− FP (λ)]

10
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where θ(λ) = {(i, j); i < j& ĥij(λ) = 0}, FP(λ) =
∑

i<j I[hij = 0, ĥij(λ) = 1], TP(λ) =∑
i<j I[hij = 1, ĥij(λ) = 1] and Ch is independent of λ. Minimizing Rh

AMSE(λ) is the same

as maximizing the TP and FP differences (also known as Youden indices).

In practice, biologists often use clustering algorithms to discover groups of genes. Hence,

we propose to use the output of a hierarchical clustering algorithm as an initial estimate of

the graph to characterize global structure for the dissimilarities [dij]. We have investigated

several clustering algorithms on real and simulated data, and we have not found much

difference in the resulting graph estimate. Below we present the algorithm based on AGNES

clustering method.

2.4.3 AGNES risk function

Clustering of features using a dissimilarity measure has been intensively studied in the liter-

ature. Here we focus on the algorithm AGNES (AGglomerative NESting) which is presented

in Kaufman and Rousseeuw (2009, chap. 5) and is implemented in the R package cluster

(Rousseeuw et al., 2013). AGNES finds clusters iteratively joining groups of nodes with the

smallest average dissimilarity coefficient. This average is found by considering the dissimi-

larity coefficients between all possible pairs of nodes from two different clusters. Moreover,

AGNES proposes an agglomerative coefficient (AC) that measures the average distance be-

tween a node in the graph and its closest cluster of nodes. We propose to choose λ that

maximizes the AC coefficient

λac = arg max
λ∈Λ

R̂AGNES(λ) = arg max
λ∈Λ

AC(λ). (7)

The details of the AGNES algorithm and the definition of the coefficient AC can be found

in Section 3.3.

The matrix of dissimilarities D obtained by (2) gives a good representation of the com-

plexity of a given graph, so, in addition to being applied as an initial estimate for the A-MSE

method described above, AGNES can also be used as a method of choosing λ.
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2.5 Comparison of the methods

In Table 1 we give some of the main properties of the 6 risk functions we want to compare

which are the three proposed methods, as well as StARS, AIC and BIC. Likelihood-based

risk functions to select λ such as AIC and BIC are useful to compromise between goodness

of fit to the data and model over-fitting. The additional AIC penalty (given by p (p− 1)) is

smaller than BIC (given by p (p − 1) log(n)/2) even for very small n. Hence, the selection

of λ by AIC results in a denser CD graph structure of Ω than by BIC. StARS gives a good

alternative to select λ when estimating graph structures. It transforms the selection of λ

problem to the choice of the maximum expected variability that we allow in the graph. Even

though such a choice is more intuitive than the direct selection of λ, we find it difficult to

use without any prior information; our simulations show that using the default value of the

tuning parameter results in high number of false positive edges (see Section 4.4).

We provide two computationally fast approaches, AGNES and PC, and the slightly more

computationally challenging A-MSE method due to subsampling. The AGNES selection

tends to find the most clustered graph possible such that different groups of nodes can be

interpreted and analyzed. This is found to be a good choice of λ to recover global graph

structure characteristics when the true precision is block diagonal (See Section 4 in the sup-

plementary material). The A-MSE selection uses the AGNES estimator as the initial graph

structure with the aim to improve estimations of local network characteristics. The value of

λ selected by A-MSE is at least as large as the one given by the initial estimator (AGNES),

and it is used to stabilize the trade-off between false positive and true positive edges in the

original estimator (AGNES) when n is small (for details see Section 4.4). Moreover, as the

sample size increases, the value of λ chosen by the A-MSE method tends to the original

estimator of λ (AGNES). We use Path connectivity as the initial good choice of λ to find the

most sparse graph that is easy to interpret. Starting from the sparsest graph and proceeding

to denser graph structures, the PC method monitors the first big change in connectivity of

the estimated networks, which is frequently associated with cluster agglomerations.
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Table 1. Main characteristics of six risk functions that can be separated between statistics that use the

likelihood expression (BIC, AIC) and statistics that only use the graphical structure of the estimated

precision matrices (PC, A-MSE, AGNES, StARS).

method penalized uses network subsampling fully fast very sparse
likelihood characteristics. automatic graph estimates

PC

A-MSE

AGNES

StARS

BIC

AIC

3 Algorithms

3.1 Path connectivity regularization parameter selection

The procedure to select λ by Path connectivity is detailed in Algorithm 1. It is generally

fast and straightforward, i.e. does not require any additional tuning.

Algorithm 1 Path connectivity algorithm

1: procedure RPC(λ)
2: Set Λ = (λk)

M
k=1 with λk − λk−1 = h, k = 2, . . . ,M .

3: for k in 1 until M do:
4: Estimate the graph Ĝλk using (1) and calculate its geodesic distance matrix

[ĝij] as in (2).
5: Calculate geodesic distance mean H(λk) = m−1

∑
i<j ĝij(λk)I(ĝij(λk) <∞)

with m = p(p− 1)/2.

6: Calculate Dh(λk) = H(λk) − H(λk−1) and the running average D̄h(λk) = 1/(M − k −
1)
∑M

j=kDh(λj) for (λk)
M
k=2.

7: Return Dh(λk)/D̄h(λk), k = 2, . . . ,M .
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3.2 A-MSE regularization parameter selection

For q = 2, the risk function RAMSE(λ) presented in (6) can be decomposed by the sum of

the variance and the squared bias, with the corresponding approximation given by

R̂AMSE(λ) =
∑
i>j

[Ê(Ê[d̂ij(λ)]− d̂ij(λ))2 + (Ê[d̂ij(λ)]− d̂ij(λac))2]. (8)

Here Ê(Ê[d̂ij(λ)] − d̂ij(λ))2 and Ê[d̂ij(λ)] − d̂ij(λac) are estimators of the variance of d̂ij(λ)

and the bias of d̂ij(λ) with respect to d̂ij(λac) using subsampling. The subsampling procedure

to select λamse is presented in Algorithm 2. Following Meinshausen and Bühlman (2010) we

choose the effective sample size B = 0.5n since the procedure gets the closest to bootstrap.

Nevertheless, other effective sizes could be used. For instance, Liu et al. (2010) use B =

10
√
n.

Algorithm 2 Subsampling approach to approximate (8)

1: procedure RAMSE(λ)
2: Set Λ = (λk)

M
k=1 and number of subsampling replicates T.

3: for t in 1 until T do:
4: Subsample B ⊂ {1 : n} and set XB = (Xj, j ∈ B).

5: Estimate the graphs Ĝt(λk) for all λk ∈ Λ using XB.

6: Find dissimilarities of Ĝt(λk) by d̂tij(λk) = 1− ηtij(λk)/
√
κti(λk)κ

t
j(λk).

7: Estimate the average d̄ij(λk) over all T iterations.

8: Return T−1
∑T

t=1(d̄ij(λk)− d̂tij(λk))2 for all λk ∈ Λ.

3.3 AGNES regularization parameter selection

Below is the AGNES iterative clustering algorithm, including the agglomeration coefficient

that is used to select λ. The input to the algorithm is a dissimilarity matrix D = [dij] =

D̂(λ) based on the graph Ĝλ corresponding to the estimator Ω̂λ defined by (1). AGNES

performs hierarchical clustering by iteratively joining groups of nodes with the smallest

average dissimilarity coefficient, starting with individual nodes as single clusters and finishing

with a single cluster of all p variables. Let (C
(t)
1 , . . . , C

(t)
p ) be a partition of (1 : p) at iteration

14
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t, and let δ
(t)
k,` denote a dissimilarity between clusters C

(t)
k and C

(t)
m . We also record the

dissimilarity for each node when it merges with another cluster or node for the first time,

denoting it by δ?j , j = 1, . . . , p, and the distance δ?max between the two clusters merged at

the last step into the single cluster. The procedure is detailed in Algorithm 3.

Algorithm 3 AGNES clustering algorithm

1: procedure RAGNES(λ)

2: Initialization: take each node as an individual cluster, i.e. set C
(0)
k = {k}, k = 1, . . . , p,

and δ
(0)
k,` = dk,` - dissimilarity between nodes k and `.

3: At iteration t ≥ 0:
4: Find pair of clusters (h, k) (h < k) with the smallest dissimilarity, i.e.

(h, k) = arg min
i<j

δ
(t)
i,j ,

merge them, i.e. set C
(t+1)
k = {C(t)

k , C
(t)
h } and remove cluster h: C

(t+1)
h = ∅.

Remaining clusters are unchanged: set C
(t+1)
j = C

(t)
j for j 6= k, h.

5: The dissimilarities change to

δ
(t+1)
j,h = δ

(t+1)
h,j =∞, δ

(t+1)
k,j = δ

(t+1)
j,k =

1

2

[
δ

(t)
k,j + δ

(t)
j,h

]
, ∀j 6= k, h.

If |C(t)
k | = 1, set δ?k = δ

(t)
k,h; if |C(t)

h | = 1, set δ?h = δ
(t)
k,h.

6: If the number of non-empty sets (clusters) in the newly formed partition (C
(t+1)
j )

is more than 1, then set t = t+ 1 and go to step 3; otherwise set δ?max = δ
(t)
k,h .

7: Return

AC(λ) =
1

p

p∑
j=1

(
1−

δ?j
δ?max

)
. (9)

The coefficient AC(λ) measures the average distance between a node in the graph and its

closest cluster of nodes. When the dissimilarities within the clusters are small in comparison

to the maximum dissimilarity, then 1− δ?j /δ?max is large for all j and AC(λ) is consequently

high.

The time and total memory used in the AGNES algorithm increases exponentially as p

grows. In order to make computations feasible in very high dimensions, we use an approx-
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imation of the measure by a variable subset selection approach (Kohavi and John, 1997).

We consider the average AC coefficient with respect to λ over several sets of variables. We

validate the subsets V ⊂ {1 : p} of size |V | using the coefficients of variation of the empirical

degree distribution (κ) defined by CVV = sdV (κ)/EV (κ) with EV (κ) = 1/|V |
∑

j∈V κj and

sdV (κ) = 1/(|V | − 1)
∑

j∈V (κj − EV (κ))2 (see Algorithm 4). We aim to find subset of vari-

ables whose number of edges is approximately proportional to those in the original matrix.

In Section 4 of the supplementary material we illustrate how the variable subset approach

reduces the computational time in high-dimensional simulated datasets.

Algorithm 4 Subset selection for AGNES computations

1: procedure S(λ)
2: Input: variables Vt = {1 : p} and their degrees κ = {κ1, . . . , κp}.
3: Compute CVVt .
4: Select randomly m < p variables from the original data to form set V0 ⊂ Vt.
5: Add all the nodes V1 in the adjacency matrix Âλ which have a path to at least one node

in V0. Use Vs = {V0, V1}.
6: Compute CVVs . If |CVVs/CVVt − 1| > τ go to step 4, otherwise return Vs.

4 Simulated data analysis

In this section we consider simulated data to test the performance of the regularization

parameter selection methods using graph structures similar to what can be expected in

biological networks. We analyze both the capacity to obtain the true connections and the

accuracy in recovering network characteristics of the true graph.

4.1 Graph topologies in biological data

In real applications, the graph which defines causal connections between variables (e.g. genes,

proteins, etc) is unknown but there is typically some knowledge about what kind of network

structure can be expected (Newman, 2003). For instance, biological graph structures usually

present associations in the shape of clusters, meaning that the nodes form groups that are

more similar to the nodes within the group than to the nodes of other groups (Eisen and
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Spellman, 1998). In addition, network patterns can be defined by the distribution of the

variable pk, which denotes the fraction of nodes in the network that has degree k. Here we

consider two different graph topologies: hubs-based and power-law.

Hubs-based networks are graphs where only few nodes have a much higher degree (or

connectivity) than the rest. This is a typical case in biological networks where nodes that

behave as hubs may have different biological functions than the other nodes (Lu et al., 2007).

Power-law networks assume that the variable pk follows a power-law distribution

pk = k−α/ς(α),

where k ≥ 1, α is a positive constant and the normalizing function ς(α) is the Riemann zeta

function. Following Peng et al. (2009), α = 2.3 provides a distribution that is close to what

is expected in biological networks.

4.2 Simulated data

We generate data from multivariate normal distributions with zero mean vector and several

almost-block diagonal precision matrices, where each block (or cluster) has a hubs-based

or power-law underlying graph structure (defined in Section 4.1) and there are some extra

random connections between blocks. Let A bet the adjacency matrix with the non-zeros of

the partial correlation matrix, then the coefficients of this matrix are simulated by

Ω(0) = [ω
(0)
ij ], ω

(0)
ij =


Unif(0.5, 0.9) if Aij = 1 with prob= 0.5 ;

Unif(−0.5,−0.9) if Aij = 1 with prob= 0.5 ;

0 if Aij = 0.

(10)

We regularize Ω(0), which may not be positive definite, by Ω(1) = Ω(0) + δI, with δ such

that the condition number of Ω(1) is less than the number of nodes, so obtaining a positive

definite matrix (Cai et al., 2011). Note that such precision matrices are non-singular, sparse

and with the non-zero elements bounded away from 0.

We consider precision matrices with p = 50, 170, 290 and 500 and sample sizes n = 50,

100, 200, 500. Different number of hubs, degree of hubs, and sparsity levels are considered in
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60 simulated datasets for each combination of p and n. Full specification of simulated data

is given in the supplementary material.

We use the R package huge (Zhao et al., 2012) to estimate CD graph structures by

GLasso and Neighborhood selection (MB). The GLasso gives the estimated partial correla-

tion matrix but MB only provides the estimated adjacency matrix. In order to compare the

proposed methods to both AIC and BIC, here we only present the results for the GLasso

procedure. Nevertheless, the performance of the methods using MB estimates is shown in

the supplementary material. We take a sequence of 70 equidistant points for λ going from

0.20 to 0.66 for small n and a sequence going from 0.03 to 0.40 for large n (the graphs

almost have no change for λ’s smaller than the lower limit with all nodes connected as well

as higher than the upper limit with no edges across nodes). Then we select λ by six dif-

ferent approaches: 1) PC; 2) A-MSE; 3) AGNES; 4) StARS; 5) BIC and 6) AIC. StARS

(with β = 0.05) produces the lowest λ for almost all the simulated datasets followed closely

by AIC. The BIC results are strongly dependent on the sample size; the methods selects

large tuning parameters for small n and low tuning parameters for large n in comparison to

A-MSE. The AGNES selections are always larger than A-MSE but they get close when n

increases. The PC λ selections do not vary much for different n and p scenarios and produce

similar magnitudes to λ’s selected by A-MSE.

We assess the performance of the λ selection approaches for GLasso estimates using two

different measures: squared errors in both the partial correlation matrix and the dissimilarity

matrix defined in (2) and graph recovery with a false positive and true positive analysis. The

simulated data analysis is completed in the supplementary material where we compare for

both GLasso and MB the selected graph structures and the true networks given global

network characteristics as clustering, connectivity and graph topology.

4.3 Mean square errors

To measure performance of the methods we use the ranks of the average mean square errors

(MSE) of the partial correlation matrix Ω (Table 2) as well as of the dissimilarity matrix

D (Table 3). This second rate gives a good reference to determine if the estimated graph

captures the true local structure. The lowest rank (rank = 1) is assigned to the lowest MSE
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and the largest rank (rank = 6) is for the largest MSE out of the six approaches. In the

tables, we show the errors for the GLasso method.

Even though StARS and AIC estimate Ω well, they produce larger errors than AGNES,

A-MSE, PC and BIC when minimizing the MSE of the dissimilarity matrix. Particularly,

A-MSE tends to be the best selection for this loss function for large n. We find that BIC

does well for small n, contrarily of what is obtained in Liu et al. (2010), but tends to be

unreliable for larger sample sizes. AGNES gives fairly good ranks when n is large, and PC

is almost always among the three best methods.

Table 2. Average ranks for the mean square error of the precision matrix using several sample sizes,

dimension and network topologies (hubs-based and power law). The methods StARS and AIC find the best

rates (lowest ranks) whereas PC and A-MSE tend to obtain the worst rates (highest ranks).

Hubs-based Power law
n 50 100 200 500 50 100 200 500

dimension p=50
AGNES 3.66 4.00 4.00 2.38 3.71 4.17 4.56 4.73
A-MSE 5.94 5.65 5.72 4.75 5.76 5.72 5.84 5.76
PC 4.97 5.35 5.28 3.45 5.07 5.07 4.60 4.51
StARS 1.04 1.70 1.50 3.42 1.28 1.67 1.79 2.00
BIC 3.42 2.60 3.00 3.55 3.47 2.71 2.42 2.00
AIC 1.96 1.70 1.50 3.45 1.72 1.67 1.79 2.00

dimension p=170
AGNES 2.96 3.79 4.00 4.00 2.82 3.88 4.08 4.35
A-MSE 6.00 5.86 5.75 5.82 5.98 5.91 5.67 5.68
PC 5.00 5.14 5.25 5.18 4.89 5.09 5.25 4.97
StARS 1.00 1.00 1.00 1.43 1.00 1.00 1.00 1.58
BIC 3.92 3.21 3.00 2.83 3.98 3.12 3.00 2.83
AIC 2.12 2.00 2.00 1.74 2.33 2.00 2.00 1.58

dimension p=290
AGNES 2.67 3.62 4.00 4.00 2.33 3.79 4.00 4.12
A-MSE 5.83 5.98 5.60 5.75 6.00 5.74 5.84 5.85
PC 5.17 5.02 5.40 5.25 4.92 5.26 5.16 5.03
StARS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BIC 3.92 3.38 3.00 3.00 4.08 3.21 3.00 3.00
AIC 2.42 2.00 2.00 2.00 2.67 2.00 2.00 2.00

dimension p=500
AGNES 2.25 3.30 4.00 4.00 2.33 3.79 4.00 4.12
A-MSE 6.00 6.00 5.93 5.87 6.00 5.74 5.84 5.85
PC 4.96 5.00 5.07 5.13 4.92 5.26 5.16 5.03
StARS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BIC 4.04 3.70 3.00 3.00 4.08 3.21 3.00 3.00
AIC 2.75 2.00 2.00 2.00 2.67 2.00 2.00 2.00
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Table 3. Average ranks for the mean square error of the dissimilarity matrix using several sample sizes,

dimension and network topologies (hubs-based and power law). A-MSE tends to be the method with the

best rates (lowest ranks). BIC does well for small sample sizes but fails when the sample size increases.

Hubs-based Power law
n 50 100 200 500 50 100 200 500

dimension p=50
AGNES 3.31 3.00 3.00 2.88 2.89 2.65 2.36 2.33
A-MSE 1.24 1.35 1.32 1.23 1.64 1.29 1.18 1.32
PC 1.91 1.65 1.68 1.89 2.33 2.35 2.47 2.34
StARS 5.96 5.30 5.50 5.12 5.72 5.33 5.29 5.00
BIC 3.54 4.40 4.00 4.77 3.17 4.04 4.42 5.00
AIC 5.04 5.30 5.50 5.12 5.25 5.33 5.29 5.00

dimension p=170
AGNES 4.11 3.21 3.00 3.00 4.10 3.03 2.75 2.48
A-MSE 1.42 1.09 1.17 1.18 1.65 1.16 1.43 1.35
PC 1.72 1.91 1.83 1.82 2.02 1.92 1.82 2.17
StARS 6.00 6.00 6.00 5.74 6.00 6.00 6.00 5.50
BIC 2.97 3.79 4.00 4.00 2.64 3.88 4.00 4.00
AIC 4.79 5.00 5.00 5.26 4.58 5.00 5.00 5.50

dimension p=290
AGNES 4.32 3.36 3.00 3.00 4.73 3.21 3.00 2.62
A-MSE 1.35 1.17 1.40 1.25 1.28 1.39 1.38 1.57
PC 1.80 1.85 1.60 1.75 1.80 1.61 1.62 1.81
StARS 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
BIC 2.97 3.62 4.00 4.00 2.92 3.79 4.00 4.00
AIC 4.57 5.00 5.00 5.00 4.27 5.00 5.00 5.00

dimension p=500
AGNES 4.73 3.70 3.00 3.00 4.96 3.41 3.00 2.65
A-MSE 2.03 1.32 1.10 1.13 1.71 1.50 1.2 1.36
PC 1.29 1.68 1.90 1.87 1.54 1.50 1.80 1.99
StARS 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
BIC 2.71 3.30 4.00 4.00 2.80 3.59 4.00 4.00
AIC 4.23 5.00 5.00 5.00 3.99 5.00 5.00 5.00

4.4 Graph recovery

In order to quantify how well the algorithms recover the non-zero elements in Ω we compare

the true discovery rate (TDR), which can be defined by TDR = TP/(TP + FP ) with

TP =
∑
i<j

I(Ω̂ij 6= 0 and Ωij 6= 0), FP =
∑
i<j

I(Ω̂ij 6= 0 and Ωij = 0),

for each of the estimated networks. In Figure 2, we show the average TDR in the 60

simulation data instances for all considered combinations of n and p. The TDR increases

with n for AGNES, A-MSE and PC whereas for AIC and BIC it goes down. In this analysis

we can see the limitations of the BIC method whose main goal is not the graph recovery of
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Ω. BIC passes from selecting very sparse graphs with more TP than FP when n is small to

selecting much denser graphs with many more FP than TP when n is large.
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Figure 2. True discovery rate for all λ selection approaches (AGNES -black-, A-MSE -red-, PC -green-,
StARS -dark blue-, BIC -cyan- and AIC -purple-) and all combinations of p and n. The top figures
correspond to hub-based networks and the bottom figures are the power-law networks. The x-axis scale is
n : log(n). BIC rates decrease with the sample size whereas AGNES, A-MSE and PC rates slightly increase
with the sample size.

4.5 Summary

In our simulations A-MSE turned out to be the best approach to recover the CD graph

structure as can be seen in Table 3. BIC is also competitive when n is small, but it is

not reliable when analyzing larger sample sizes. PC is computationally the fastest method

and only does slightly worse than A-MSE in Table 3. Moreover, it generally obtains simple

graph structures which result in comprehensible connectivity interpretations. The AGNES

procedure is usually over-performed by the augmented version A-MSE for small n. For large

n, AGNES and A-MSE have similar λ selections with AGNES being significantly faster than

A-MSE. AIC and StARS (using its default values) produce dense graph estimations and

achieve the best results when minimizing the mean square error of Ω. Nevertheless, they fail

to obtain interpretable network structures due to poor graph recovery.
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5 Application to colon cancer gene expression data

We apply the methods to a case study of genomic data which contain the gene expression

profile of 154 colorectal tumor samples and 17,617 genes. The data are generated by the

TCGA Research Network: http://cancergenome.nih.gov/, and are currently available at

the portal https://gdc-portal.nci.nih.gov/, under the TCGA cancer program and the

Colon Adenocarcinoma disease type.

A reduction on the variable space is applied so that we only keep the most highly corre-

lated genes. We use a filter for the gene’s average square correlation with threshold equal to

0.04. Moreover, we add the non-filtered genes which have at least one correlation coefficient

with the filtered genes larger than 0.5. This means a reduction to the 55% of the genes

with a total of 9,723 genes left to analyze. We estimate CD graphs via the Neighborhood

selection algorithm of Meinshausen and Bühlmann (2006). We compute 90 different graphs

given an equidistant sequence of λ’s between 0.35 and 0.80. Values of λ lower than 0.35 pro-

duce almost-fully connected graphs and values above 0.80 produce zero edges in the graph.

We use the PC and A-MSE approaches to select one particular graph with λpc = 0.69 and

λamse = 0.55. The graphical representation of the two underlying networks is presented

in Figure 3. The graph by PC, with 4, 819 edges, shows a simpler structure compared to

A-MSE, with 19, 986 edges.

We separate the graphs in different clusters by applying a Partitioning Around Medoids

(Reynolds et al., 2006) on the shortest distance matrix. We choose the number of clusters

manually by considering the largest rate of change in the within-subject and between-subject

variation such that the PC graph structure contains 15 clusters and the A-MSE contains 18

clusters. To assess which biological processes may be linked to the clusters, we download

1,320 gene sets from the MSig database (Subramanian et al., 2005), which represent canonical

pathways compiled from two sources: KeGG (Kanehisa et al., 2016) and Reactome (Milacic

et al., 2012). For each pathway we test for a significant over-representation in a cluster by

using Fisher’s exact test applied to the 2×2-table defined by pathway and cluster membership

with a Bonferroni correction for multiple testing. Note that we use the reduced selection of

9,723 genes here as “background”, i.e. the analysis corrects for any over-representation of a

pathway in that selection.
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(a) PC selected graph. (b) A-MSE selected graph.

Figure 3. Selected graphs by PC and A-MSE to describe conditional gene associations on colon cancer
gene expression data. The A-MSE graph is denser than the PC graph but in both cases several clusters of
genes are visible.

For the PC and A-MSE selected graphs, respectively, 6 out of 15 clusters of genes, and

7 out of 18 clusters of genes, overlap significantly with at least one pathway gene set (at

0.01 significant level). Besides, a total of 160 and 122 pathway sets (out of 1.320) present

significant overlap with clusters of genes defined in the PC and A-MSE graphs. Among the

significant lists, PLK1, NFAT, DNA replication or adaptive immune system are pathways

associated with tumor cells.

6 Discussion

In this paper we study the problem of choosing the regularization parameter λ for Gaussian

graphical models in high dimensional data assuming we have high level knowledge about the

nature of the graph structures, namely strong clustering in the case of gene expression data

(e.g. Eisen and Spellman, 1998). The methods we introduce here take this assumption into

account by selecting λ so that risk functions measuring the degree of clustering (AGNES,

A-MSE) or connectivity (PC) are optimized. We aim to select the sparsest graph such that

the real cluster structure is maintained and at the same time it contains a good tradeoff

between true and false positive edges. The proposed approaches to select the regularization
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parameter provide competitive results at a relatively high computational speed. They present

more reliable results than the StARS approach which tends to overestimate the network size.

The StARS method accounts for the stability of the estimated graphs and has been proven

to work well in Liu et al. (2010). It depends, however, on another parameter which controls

the maximum amount of variability in the graph. There is no straightforward choice for this

parameter and our simulation study shows that using the default value of 0.05 StARS yields

uninformative networks with a majority of edges being false positives.

The Path connectivity approach introduced here provides a good compromise between

estimating the structure well and the number false positive edges. The main characteristic of

this approach is that it relies on the shortest distance between all pairs of nodes. Interestingly,

this quantity tends to show a clear changepoint when studied as a function of λ, at which

the structure of the graph changes radically. It typically produces very informative graphs

in all the tested simulated datasets and gives competitive results for the mean square error

between dissimilarity matrices as discussed in Section 4.3. In the gene expression data set

it also provides us with a clearly structured informative graph. PC gives an excellent first

choice of λ if we want to find an easily interpretable graph.

The A-MSE, with initial graph structure given by the AGNES selected graph, is the

best of all the approaches in terms of minimizing the MSE between the true distances and

the estimated ones in the simulated data. Also, λamse is always smaller than λac leading

to less complex graphs than the ones estimated by AGNES. This is a desirable property

as we assume only a small proportion of non-zero elements in Ω and thus with increasing

graph density the number of false positive edges grows much faster than the number of true

positives. However, if the aim is to have fewer false negatives, that is, that as many as

possible true edges are included at the expense of a higher number of false positives, then

algorithms like AGNES and StARS are more appropriate.

The analysis of the gene expression data underlines some interesting results. The obtained

graphs present a cluster-based structure as we can see in Figure 3. Our new approach of

choosing a regularization parameter, PC, leads to a sparse and clustered network that is easy

to interpret. Closer investigation of the results shows that the clusters overlap significantly

with a number of pre-defined gene sets and regulatory pathways which indicates that our

assumption of a sparse clustered structure leads us to biologically meaningful results.
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In conclusion, we find that approaches such as PC, A-MSE and AGNES, which use

network characteristics for parameter selection, can be beneficial in estimating CD graph

structures (sparse partial correlation matrices) for high-dimensional biological data. While

maintaining good statistical properties in terms of false discovery rates and mean square

error, the resulting graphs tend to be easier to interpret from a biological perspective and

thus are more useful in applications compared to parameter selection methods based on

penalized log likelihood such as AIC or BIC.
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7 Supplementary Materials

Supplementary material: extension of some of the simulated data analysis (pdf file).

R-package for selection of tuning parameter in graphical models: R-package “GM-

RPS” contains the functions to select the regularization parameter in graphical models

as well as the functions to generate simulated data. In file “codeSimulatedDataAna-

lyisMainPaper.r” the main simulated data analysis can be reproducible. Other code

available include “pcMotivatingExampleMainPaper.r” (for Figure 1), “AGNEStime-

SuppMatPaper.r” and “lambdaOracleSuppMatPaper.r” (for supplementary material).
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