

Edinburgh Research Explorer

Self-managed collections: Off-heap memory management for
scalable query-dominated collections

Citation for published version:
Nagel, F, Bierman, GM, Dragojevic, A & Viglas, S 2017, Self-managed collections: Off-heap memory
management for scalable query-dominated collections. in Proc. 20th International Conference on Extending
Database Technology (EDBT). OpenProceedings, pp. 61-71, 20th International Conference on Extending
Database Technology, Venice, Italy, 21/03/17. DOI: 10.5441/002/edbt.2017.07

Digital Object Identifier (DOI):
10.5441/002/edbt.2017.07

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proc. 20th International Conference on Extending Database Technology (EDBT)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/80692155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.5441/002/edbt.2017.07
https://www.research.ed.ac.uk/portal/en/publications/selfmanaged-collections-offheap-memory-management-for-scalable-querydominated-collections(93145ab0-a335-4d79-b91a-8a1e79e90471).html

Self-managed collections: Off-heap memory management
for scalable query-dominated collections

Fabian Nagel
University of Edinburgh, UK

F.O.Nagel@sms.ed.ac.uk

Gavin Bierman
Oracle Labs, Cambridge, UK

Gavin.Bierman@oracle.com

Aleksandar Dragojevic
Microsoft Research,

Cambridge, UK

alekd@microsoft.com

Stratis D. Viglas
University of Edinburgh, UK

sviglas@inf.ed.ac.uk

ABSTRACT

Explosive growth in DRAM capacities and the emergence
of language-integrated query enable a new class of man-
aged applications that perform complex query processing
on huge volumes of data stored as collections of objects in
the memory space of the application. While more flexible
in terms of schema design and application development, this
approach typically experiences sub-par query execution per-
formance when compared to specialized systems like DBMS.
To address this issue, we propose self-managed collections,
which utilize off-heap memory management and dynamic
query compilation to improve the performance of querying
managed data through language-integrated query. We eval-
uate self-managed collections using both microbenchmarks
and enumeration-heavy queries from the TPC-H business
intelligence benchmark. Our results show that self-managed
collections outperform ordinary managed collections in both
query processing and memory management by up to an
order of magnitude and even outperform an optimized in-
memory columnar database system for the vast majority of
queries.

1. INTRODUCTION
This work follows two recent trends in data management

and query processing: language-integrated query and ever-
increasing memory capacities.

Language-integrated query is the smooth integration of
programming and database languages. The impedance mis-
match between these two classes of languages is well-known,
but recent developments, notably Microsoft’s linq and, to a
lesser extent, parallel streams and lambdas in Java, enrich
the host programming language with relational-like query
operators that can be composed to construct complex queries.
Of particular interest to this work is that these queries can
be targeted at both in-memory and external database data

c© 2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

sources.
Over the last two decades, dram prices have been drop-

ping at an annual rate of 33%. As of September 2016, servers
with a dram capacity of more than 1TB are available for un-
der US$50k. These servers allow the entire working set of
many applications to fit into main memory, which greatly
facilitates query processing as data no longer has to be con-
tinuously fetched from disk (e.g., via a disk-based external
data management system); instead, it can be loaded into
main memory and processed there, thus improving query
processing performance.
Granted, the use-case of a persistent (database) and a

volatile (application) representation of data, coupled with a
thin layer to translate between the two is how programmers
have been implementing applications for decades and will
certainly not go away for all existing legacy applications that
are in production. Combining, however, the trends of large
memories and language-integrated query is forward-looking
and promises a novel class of new applications that store
huge volumes of data in the memory space of the applica-
tion and use language-integrated query to process the data,
without having to deal with the duality of data representa-
tions. This promises to facilitate application design and de-
velopment because there is no longer a need to setup an ex-
ternal system and to deal with the interoperability between
the object-oriented application and the relational database
system. Consider, for example, a business intelligence ap-
plication that, on startup, loads a company’s most recent
business data into collections of managed objects and then
analyses the data using language-integrated query. Such ap-
plications process queries that usually scan most of the ap-
plication data and condense it into a few summarizing val-
ues that are then returned to the user; typically presented
as interactive gui elements such as graphs, diagrams or ta-
bles. These queries are inherently very expensive as they
perform complex aggregation, join and sort operations, and
thus dominate most other application costs. Therefore, fast
query processing for language-integrated query is impera-
tive.
Unfortunately, previous work [12, 13] has already shown

that the underlying query evaluation model used in many
language-integrated query implementations, e.g., C♯’s linq-
to-objects, suffers from various significant inefficiencies that
hamper performance. The most significant of these is the
cost of calling virtual functions to propagate intermediate

Series ISSN: 2367-2005 61 10.5441/002/edbt.2017.07

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.07

result objects between query operators and to evaluate pred-
icate and selector functions in each operator. Query compi-
lation has been shown to address these issues by dynamically
generating highly optimized query code that is compiled and
executed to evaluate the query. Previous work [13] also ob-
served that the cost of performing garbage collections and
the memory layout of the collection data which is imposed
by garbage collection further restricts query performance.
This issue needs to be addressed to make this new class of
applications feasible for application developers.

Our solution to address these inefficiencies is to use self-

managed collections (smcs), a new collection type that man-
ages the memory space of its objects in private memory that
is excluded from garbage collection. smcs exhibit different
collection semantics than regular managed collections. This
semantics is derived from the table type in databases and
allows smcs to automatically manage the memory layout
of contained objects using the underlying type-safe man-
ual memory management system. smcs are optimized to
provide fast query processing performance for enumeration-
heavy queries. As the collection manages the memory layout
of all contained objects and is aware of the order in which
they are accessed by queries, it can place them accordingly
to better exploit spatial locality. Doing so improves the per-
formance of enumeration-heavy queries as cpu and compiler
prefetching is better utilized. This is not possible when us-
ing automatic garbage collection as the garbage collector is
not aware of collections and their content. Objects may be
scattered all over the managed heap and the order they are
accessed may not reflect the order in which they are stored
in memory. smcs are designed with query compilation in
mind and allow the generated code low-level access to con-
tained objects, thus enabling the generation of more efficient
query code. On top of this, smcs reduce the total garbage
collection overhead by excluding all contained objects from
garbage collection. With applications storing huge volumes
of data in smcs, this further improves application perfor-
mance and scalability.

The remainder of this paper is organized as follows. In §2,
we provide an overview of smcs and their semantics before
presenting a type-safe manual memory management system
in §3. In §4, we introduce smcs and show how they utilize
our manual memory manager to improve query processing
performance compared to regular collections that contain
managed objects. Finally, we evaluate smcs in §7 using
microbenchmarks as well as some queries from the tpc-h

benchmark. We conclude this work in §9.

2. OVERVIEW
smcs are a specialized collection type designed to provide

improved query processing performance compared to regular
managed collections for application data accessed predom-
inantly by language-integrated queries. This performance
improvement may come at the expense of the performance
of other access patterns (e.g., random access). smcs are only
meant to to be used with data that is dominantly accessed
in queries.

smcs have a new semantics: they own their contained ob-
jects and hence the collection itself determines the lifetime
of the objects. In other words, objects are created when they
are inserted into the collection and their lifetime ends with
their removal from the collection. This accurately models
many use cases, as objects often are not relevant to the ap-

plication once they are removed from their host collection.
Consider, for example, a collection that stores products sold
by a company. Removing a product from the collection usu-
ally means that the product is no longer relevant to any
other part of the application. Managed applications, on the
other hand, keep objects alive so long as they are still ref-
erenced. This means that a rogue reference to an object
that will never be touched again prevents the runtime from
reclaiming the object’s memory. Object containment is in-
spired by database tables, where removing a record from a
table entirely removes the record from the database.
The following code excerpt illustrates how the Add and

Remove methods of smcs are used:

Collection<Person> persons = new Collection<Person>();
Person adam = persons.Add("Adam", 27);
/* ... */
persons.Remove(adam);

The collection’s Addmethod allocates memory for the object,
calls the object’s constructor, adds the object to the collec-
tion and returns a reference to the object. As the lifetime
of each object in the collection is defined by its containment
in the collection, mapping the collection’s Add and Remove

methods to the alloc and free methods of the underlying
memory manager is straightforward. When the adam object
is removed from the collection, it is gone; but it may still be
referenced by other objects. Our semantics requires that all
references to a self-managed object implicitly become null

after removing the object from its host collection; derefer-
encing them will throw a NullReferenceException.1

smcs are intended for high-performance query processing
of objects stored in main memory. To achieve this, they
leverage query compilation [12, 13] and support bag seman-
tics which allows the generated queries to enumerate a col-
lection’s objects in memory order. In order to exclude smcs
from garbage collection we have to disallow collection ob-
jects to reference managed objects. We enforce this by intro-
ducing the tabular class modifier to indicate classes backed
by smcs and statically ensure that tabular classes only ref-
erence other tabular classes. Strings referenced by tabu-
lar classes are considered part of the object; their lifetime
matches that of the object, thereby allowing the collection
to reclaim the memory for the string when reclaiming the
object’s memory. We further restrict smcs not to be defined
on base classes or interfaces, to ensure that all objects in a
collection have the same size and memory layout.
In contrast to regular managed collection types like List<T>

our collection types require a deeper integration with the
managed runtime. As collections allocate and free memory
for the objects they host, we introduce an off-heap mem-
ory system to the runtime that provides type, memory and
thread safety. The alloc and free methods of the mem-
ory system are part of the runtime api and are called by
the collection implementation as needed. The type safety
guarantees for tabular types are not the same as for au-
tomatically managed ones. We guarantee that a reference
always refers to an instance of the same type and that this
instance is either the one that was assigned to the reference
or, if the instance has been removed from the collection,
null. This differs from automatically managed types that

1This suggests that an ownership type system could be use-
ful to statically guarantee such exceptions are not raised;
but we leave this to future work.

62

guarantee that a reference points to the object it was as-
signed to for as long as the reference exists and refers to
that object. To ensure type-safe reference accesses, we store
additional information with each reference and perform ex-
tra checks when accessing an object. For managed types,
references are translated into pointer-to-memory addresses
by the just-in-time (jit) compiler. As the logic for tabular
types is more complex, we modify the jit compiler to make
it aware of tabular type references and the code that must
be produced when dereferencing them.

We use query compilation to transform linq queries on
smcs into query functions that process the query. To im-
prove query performance, the generated code directly op-
erates on the collection’s memory blocks (using unsafe, c-
style pointers). All objects in the collections are stored in
memory blocks that are private to the collections. Note that
these blocks are not accessible outside the collection and the
code generator. We assume that the structure of most linq
queries is statically defined in the application’s source code
with only query parameters (e.g., a constant in a selection
predicate) dynamically assigned. We modify the C♯ com-
piler to automatically expand all linq queries on smcs to
calls to automatically generated imperative functions that
contain the same parameters as arguments. Queries that
are dynamically constructed at run-time, can be dealt with
using a linq query provider as in [13]. The generated imper-
ative query code processes the query as in [13], but on top
of smcs that enable direct pointer access to the underlying
data.

3. TYPE-SAFE MANUAL MEMORY MAN-

AGEMENT
Our manual memory management system is purpose-built

for smcs. It leverages various techniques to allow smcs
to manually manage contained objects and to provide fast
query processing.

3.1 Type stability and incarnations
The memory manager allocates objects from unmanaged

memory blocks, where each block only serves objects of a cer-
tain type. By only storing objects of a certain type in each
block and disallowing variable-sized objects to be stored in-
place we ensure that all object headers in a block remain at
constant positions within that block, even after freeing ob-
jects and reusing their memory for new ones. We align the
base address of all blocks to the block size to allow extract-
ing the address of the block’s header from the object pointer.
This allows us to store type-specific information like vtable
pointers only once per block rather than with every object.
We refer to the memory space in a block that is occupied
by an object as the object’s memory slot. Object headers
contain a 32-bit incarnation number. We use incarnations to
ensure that objects are not accessed after having been freed.
For each slot, the incarnation number is initialized to zero
and incremented whenever an object is freed. References to
objects store the incarnation of the object together with its
pointer. Before accessing the object’s data, the system ver-
ifies that the incarnation number of the reference matches
that in the object’s header and only then allows access to the
object [1]. If the application tries to access an object that
has been freed (i.e., non matching incarnation numbers),
then the system raises a null reference exception. The jit

Block Header
Header

Inc. Number Pointer

Pointer Inc. Number
Reference

Indirection Table Block

Back-pointerStateObject Data
Freeze and Lock Bits

Data Block

Figure 1: Accessing object data through indirection

compiler injects these checks when dereferencing a manually
managed object. We do not expect incarnation numbers to
overflow in the lifetime of a typical application, but if over-
flows should occur, we stop reusing these memory slots until
a background thread has scanned all manually managed ob-
jects and has set all invalid references to null. Single-type
memory blocks combined with incarnation numbers ensure
type-safe manual memory management as defined in §2.

3.2 Memory layout
We illustrate the memory layout of our approach in Fig-

ure 1. We do not store a pointer to an object’s memory
slot in its reference, but instead use a level of indirection.
We will require this for the compaction schemes of §5. The
pointer stored in object references points to an entry in the
global indirection table which, in turn, contains a pointer to
the object’s memory slot. We store the incarnation number
associated with an object in its indirection table entry rather
than its memory slot. This allows us to reuse empty indi-
rection table entries and memory blocks for different types
without breaking our type guarantees.
As shown in Figure 1, each data block is divided into four

consecutive memory segments: block header, object store,
slot directory, and back-pointers. The object store contains
all object data. Each object’s data is accessible through a
pointer from the corresponding indirection table entry or
through the identifier of the object’s slot in the block. The
slot directory stores the state of each slot and further state-
related information (for a total of 32 bits). Each slot can be
in one of three states: free i.e., the slot has never been used
before, valid, i.e., it contains object data, or limbo i.e., the
object has been removed, but its slot has not been reclaimed
yet. Back-pointers are required for query processing and for
compaction; they store a pointer to the object’s indirection
table entry. The slot directory entry and the back-pointer
are accessible using the object’s slot identifier.

3.3 Memory contexts
We have so far grouped objects of the same type in blocks

private to that type. In many use cases, certain object types
exhibit spatial locality: objects of the same collection are
more likely to be accessed in close proximity. Memory con-

texts allow the programmer to instruct the allocation func-
tion to allocate objects in the blocks of a certain context
(e.g., a collection). The memory blocks of a context only
contain objects of a single type and only the ones that have
been allocated in that specific memory context.

3.4 Concurrency
Incarnation numbers protect references from accessing ob-

jects that have been freed. However, they do not protect
objects from being freed and reused while being accessed.
Consider Figure 2: Thread 2 frees and reuses the memory

63

Thread 1 Thread 2

if (CHECK_INC(adam))

persons.Remove(adam);

Person tom = persons.Add(“Tom”, 25);

PRINT(adam.name);

Figure 2: Concurrency conflict

Global

Thread 1

Thread 2

epoch 0 epoch 1 epoch 2

epoch 0

epoch 0

epoch 1 epoch 2

epoch 1 epoch 2

time

Figure 3: Epoch-based memory reclamation

slot referenced by the adam reference just after Thread 1 suc-
cessfully checked the incarnation numbers for the same ob-
ject. As Thread 1’s incarnation number check was successful,
the thread accesses the object, which is now no longer Adam,
but Tom. This behavior violates the type-safety requirement
of always returning the object assigned to a reference, or
null if the referenced object has been freed. We refine the
requirement for the concurrent case by specifying the check
of the incarnation numbers to be the point in time where
the requirement must hold. Thus, all accesses to objects
are valid as long as the incarnation numbers matched at the
time they were checked. To enforce the type-safety require-
ment, the memory manager ensures that if an object is freed,
its memory slot cannot be reused for a new object until all
concurrent threads have finished accessing that object.

We use a variation of epoch-based reclamation [7] to en-
sure thread safety. In epoch-based reclamation, threads ac-
cess shared objects in grace periods (critical sections). The
memory space of shared objects can only be reclaimed once
all threads that may have accessed the object in a grace
period have completed this grace period. Thus, grace peri-
ods are the time interval during which a thread can access
objects without re-checking their incarnation numbers to en-
sure type safety. Epochs are time intervals during which all
threads pass at least one grace period. The system main-
tains a global epoch; each thread maintains its thread-local
epoch. In Figure 3, we show how we track epochs. Upon
entering a critical section (grace period), each thread sets
its thread-local epoch to the current global epoch. To leave
a critical section, a thread can increment the global epoch if
all other threads that currently are in critical sections have
reached the current global epoch. Hence, threads can either
be in the global epoch e or in e− 1. Memory freed in some
global epoch e can safely be reclaimed in epoch e+2 because
by that time, no concurrent thread can still be in epoch e.

To implement epoch-based reclamation, the jit compiler
automatically injects code to start and end critical sections
when dereferencing manually managed objects. Critical sec-
tions are not limited to a single reference access; several
accesses can be combined into a single critical section to
amortize the overhead of starting and ending critical sec-
tions. The following illustrates the code to start and end a
critical section:

void enter_critical_section() {
global->sectionCtx[threadId].epoch = global->epoch;
global->sectionCtx[threadId].inCritical = 1;

memory_fence(); }

void exit_critical_section() {
memory_fence();
global->sectionCtx[threadId].inCritical = 0; }

Upon entering a critical section, each thread sets its local
epoch to the current global epoch and sets a flag to indicate
that the thread is currently in a critical section; on exit the
thread clears this flag. We have to enforce compiler and cpu

instruction ordering around these instructions to ensure that
the session context is set before we access the object and not
unset until we have finished, hence, the memory fences. In
contrast to [7], we do not increment global epochs modulo

three, but as a continuous counter. We also do not increment
the global epoch and reclaim memory when exiting critical
sections, but in the memory manager’s allocation function.
This allows us to lazily reclaim memory on demand when
allocating new objects.

3.5 Memory operations
When freeing an object, we increment its incarnation num-

ber to prevent subsequent accesses to it. We refer to memory
slots that are freed, but not yet available for reuse as limbo

slots. We set the memory slot’s state to limbo and set its
removal timestamp to the current global epoch in the slot
directory. This bookkeeping ensures that the slot cannot
be reclaimed until at least two epochs have passed. Mem-
ory blocks become candidates for reclamation when they
surpass a threshold fraction of limbo slots, the reclamation
threshold. If this is the case, we add the block to a queue
of same-type memory blocks that may be reclaimed, along
with the earliest timestamp when the block can be reclaimed
(global epoch plus two).
All allocations are performed from thread-local blocks so

that only one thread allocates slots in a block at a time
(though there can be concurrent removals from the same
block). Thread-local blocks are taken from the reclamation
queue of the appropriate type if there are blocks ready for
reclamation; if the queue is empty they are allocated from
the unmanaged heap. To find a memory slot for a new
object the allocation function scans all entries in the slot
directory from the slot of the last allocation until either a
free slot or a reclaimable limbo slot is found. The maximum
number of slots scanned before finding a limbo slot that can
be reclaimed depends on the reclamation threshold. For
instance, if blocks can host one hundred objects and are
added to the queue once they contain more than 5% limbo
slots, then each allocation scans at most twenty slots to find
a reclaimable limbo slot. The actual number is likely to be
smaller as removals might have happened in the meantime.
The allocation function attempts to increment the global
epoch counter once there are blocks in the reclamation queue
that cannot be reclaimed yet because two epochs have not
passed.

4. SELF-MANAGED COLLECTIONS
smcs use the type-safe memory management described in

§3 and support the semantics of §2. The objects contained
in an smc are managed by the collection itself and not by
the garbage collector. This, along with bag semantics, en-
ables smcs to place objects in memory based on the order
the objects are touched when enumerating the collection’s
content in a query. This improves the locality of memory ac-

64

cesses when enumerating the smc, leading to improved per-
formance compared to iterating over the collection’s content
through references that may point anywhere in the managed
heap (as is the case for all conventional .net collections). A
convenient side-effect of disallowing smcs to contain stan-
dard objects is that it significantly reduces the size of the
managed heap and the volume of memory that has to be
scanned during garbage collection and, in consequence, the
duration of garbage collection, which improves the overall
performance of the application.

smcs use the type-safe memory manager of §3 to manage
contained objects. The semantics of smcs mean that the
Add and Remove methods can directly be mapped to the
memory manager’s alloc and free methods. In addition to
allocating memory for the object, the Add method calls the
object’s constructor and returns a reference to the object.

Each smc has a private memory context to allocate all
objects added to the collection. This ensures that all ob-
jects in an smc end up in the same set of private mem-
ory blocks. The smc can access all of these blocks through
the memory context. Recall from §2 that we automatically
transform linq queries over smcs into calls to specialized
query functions that use query compilation to improve the
performance of query processing. By giving the smc access
to these memory blocks, we also allow the query compiler to
access them to enumerate over the smc’s objects. The fol-
lowing illustrates a simple compiled query that enumerates
over all objects in the smc by iterating over all valid slots in
all blocks in the smc’s memory context, checking a predicate
on the age field, and returning references to all qualifying
objects:

enter_critical_section();
foreach (Block* blk in collection.GetMemoryContext())
foreach (Slot i in blk)
if (blk->slots[i] == VALID)
if (blk->data[i].age > 17)
yield new ObjRef { ptr = blk->backptr[i],

inc = blk->backptr[i]->inc };
exit_critical_section();

The query uses the memory block’s slot directory blk->slots
to check if the corresponding memory slot contains a valid
object (in contrast to a free or limbo slot). As each entry
in the slot directory is only four bytes wide and stored in a
consecutive memory area, it is fairly cheap to iterate over
the slot directory to check for valid slots. The query touches
the object’s data only if the slot is valid. If the slot also sat-
isfies the selection predicate, the query returns a reference
(ObjRef) to the object. To do so, it uses the back-pointer
field blk->backptr to obtain a pointer to the corresponding
indirection table entry. The reference contains this pointer
and the current incarnation number of the object to ensure
that the memory slot can safely be reclaimed once the ob-
ject is removed from the smc. To generate code for more
complex queries we follow a similar strategy as in previous
work [10, 12, 13, 14].

To ensure that the accessed objects are not removed and
their memory slot is not reclaimed while directly accessing
objects in a query, we have to be in a critical section. This
applies to objects in the primary smc that we enumerate
as well as to objects in other smcs that we access through
references from the primary smc. Instead of entering and
exiting a critical section around each object access, we pro-
cess huge chunks of data in the same critical section. This

amortizes the cost of critical sections (in particular, memory
fences) and, hence, is a cornerstone of providing good query
performance. The query remains in the same critical section
either for its entire duration, or for the duration of process-
ing a single memory block. The query compiler chooses the
desired granularity for each query based on the requirements
of the query. Staying in the same critical section for the du-
ration of the query allows to generate code that stores direct
pointers to the memory locations of smc objects in interme-
diate results and data structures (otherwise the query may
only use object references). However, it also increases the
time until the memory manager can increment the global
epoch to reclaim limbo slots. As linq queries are lazily
evaluated, we enforce that critical sections are exited before
a result object is returned and, hence, control is returned to
the application. Since queries often contain several blocking
operations (e.g., aggregation or sorting), most query pro-
cessing is performed in a single critical section. Objects
that are concurrently removed from an smc while a query
enumerates the smc’s content are included in the query’s
result if: (a) the query reads the object’s slot directory
entry before the slot is set to limbo, or (b) the query follows
a reference to the object before its incarnation number is
incremented. Objects added to an smc behave accordingly.
smcs use a lower isolation level than database systems, in
line with other managed collections.

4.1 Columnar storage
While smcs manage the memory space of contained ob-

jects themselves, they keep the memory layout of the ob-
ject’s data unchanged. Previous work in database systems,
e.g., [2], has shown that some workloads, however, greatly
benefit from a columnar layout, instead of the row-wise lay-
out of smcs. Since smcs store all object data in blocks that
only contain objects from the same collection and, hence,
the same type, they can be easily extended to leverage a
columnar layout. The only requirements are that: (a) the
jit compiler injects the code required to access columnarly
stored data when following references to such objects, and
(b) the query compiler is aware of the data layout and also
generates code that accesses the data in a columnar fashion.
For columnar layouts, we store the object’s block and slot
identifiers in the object’s indirection table entry instead of a
pointer to the object’s memory location. To access the data
of an object, we look up its memory block using an array of
memory blocks indexed by their block identifier, and then
use the slot identifier to find the position of the value in its
column.

5. COMPACTION
Common uses of smcs do not cause them to shrink signif-

icantly; they stay at a stable size or grow steadily. However,
when facing heavy shrinkage of an smc, we perform com-
paction to reduce the smc’s memory footprint and improve
query performance. When relocating objects as part of a
compaction, we have to ensure that concurrent accesses to
them do not exhibit inconsistencies. Inconsistencies may
arise from accesses through references or from queries di-
rectly operating on the smc’s memory blocks.

5.1 Reference access
The indirection table allows us to move data objects within

and across memory blocks without having to update all ref-

65

Freezing Epoch:

Block HeaderHeader

Inc. Number

Indirection Table Block

valid

Data Block

LF
free
valid
valid
valid

Relocation Epoch, Moving Phase:

Block HeaderHeader

Inc. Number

Indirection Table Block

valid

Data Block

LF

free

valid
valid

valid

From Slot
Block HeaderHeader

Inc. Number

Indirection Table Block

valid

Data Block

LF
free
valid
valid
valid

To Pointer
Status

Next

From Slot
Block HeaderHeader

Inc. Number

Indirection Table Block

valid

Data Block

LF
free
valid
valid
valid

To Pointer
Status

Next

Figure 4: Relocating an object

erences held by the application. Atomically updating the
pointer in the indirection table suffices to ensure that all
threads can correctly reach the object. However, threads
that already are in critical sections and point to the old lo-
cation might cause inconsistencies by performing updates on
outdated memory locations. To compact data blocks with-
out stopping the application we extend the epoch scheme
for object relocation. We reserve the two most significant
bits of the incarnation number in the indirection table for
a frozen flag [3] and a lock flag. After a thread success-
fully increments the global epoch, it checks if a compaction
is necessary. The global epoch cannot be increased in the
meantime because the thread is still in a critical section us-
ing the previous epoch. If compaction is necessary we set the
global nextRelocationEpoch to e + 2 (e is the thread-local
epoch and e+1 is the global epoch we just incremented) and
then awake the compaction thread. Once a relocation epoch
is set, no other but the compaction thread can increment the
global epoch until the compaction is finished (epoch e+ 3).
To guarantee this, we run the compaction thread in a critical
section that uses the thread-local epoch e, which prevents
all other threads from incrementing the global epoch.

The compaction thread is active through two epochs: the
freezing epoch e + 1 and the relocation epoch e + 2. In
the freezing epoch it iterates over all blocks that need com-
paction (marked by previous allocations/removals). For each
block, it constructs a list of all slots that have to be moved
and the memory address the slots have to be moved to. This
list is accessible through the block’s header. The thread then
sets the frozen bit in the indirection table entry of each slot
that is scheduled to be copied.2 Once all blocks are prepared
for compaction, the thread waits until all other threads are
in the freezing epoch (e+1) and then increments the global

2By using a cas operation; this requires free to also use
cas to increment incarnation numbers

epoch to e+2 to start the relocation epoch. The relocation
epoch consists of two phases: the waiting phase, which lasts
until the compaction thread observes that all other threads
are in the relocation epoch, and the moving phase that starts
thereafter. While waiting, the compaction threat continu-
ously tries to increment the global epoch to proceed to the
moving phase. Once in the moving phase the compaction
thread makes this phase globally visible by setting a global
variable to indicate that frozen objects may now be moved.
It then iterates over all blocks scheduled for compaction. For
every slot to be moved, it atomically locks the incarnation
number by setting the lock bit and copies the object to the
new location, updates the pointer in the indirection table,
unsets the lock and freeze bits, and marks the relocation as
successful in the block’s relocation list. Once all scheduled
relocations are done, the compaction thread increments the
global epoch to e + 3 (all threads are guaranteed to be at
e + 2 by this point), exits its critical section to allow other
threads to increment the global epoch, and goes back to
sleep. Figure 4 illustrates the steps to move an object inside
a memory block.
If an object’s incarnation number is not frozen there is no

risk of it being moved in the current epoch, so all threads
can access it as before. Note that the incarnation number
comparison that we have to do anyway is enough to cover
the most common path. If we encounter a frozen incarna-
tion number (i.e., the first incarnation number comparison
fails, but a second that excludes frozen and lock bits suc-
ceeds), there are three cases: (a) We are in the freezing
epoch. There will not be any relocation in this epoch, so
we can return the data pointer. (b) We are in the waiting
phase of the relocation epoch and not all threads are in the
relocation epoch yet. A relocation might happen while we
access the object so we cannot proceed. However, we also
cannot relocate the object because not all threads are in the
relocation phase so they do not expect relocations yet. Our
only option is to bail out from relocating the object. To do
so, we find the object’s entry in the block’s relocation list,
atomically set the lock bit in the object’s incarnation num-
ber, set the status of the relocation to failed (in the object’s
relocation list entry), and unset the freeze and lock bits. If
the lock bit has already been set by another thread, we spin
until it is unset and then recheck the object’s status. Once
the freeze bit is removed, we can return the pointer and pro-
ceed. (c) We are in the moving phase of the relocation epoch
and all other threads are also in the relocation epoch. We
again cannot proceed because the object may be moved at
any time, but we can help the compaction thread move the
object to its new location and then proceed. To do so, we
find the object’s entry in the block’s relocation list, atom-
ically set the lock bit in the object’s incarnation number,
move the object to its new location, set the status of the
relocation to succeeded, and unset the freeze and lock bits.
As in the previous case, we spin if the bit is locked, then
recheck its status and finally return the pointer after the
frozen bit is unset. The following outlines the checks that
have to be performed before accessing a manually managed
objects through its reference:

66

void* dereference_object(ObjRef oref) {
if(oref.inc == oref.ptr->inc) {
return oref.ptr->memptr;

} else if (oref.inc == (oref.ptr->inc & FL_MASK)) {
// First case:
if (global->sectionCtx[threadID].epoch

!= global->nextRelocationEpoch) {
return oref.ptr->memptr;

// Second case:
} else if (!global->inMovingPhase) {
bail_out_relocation(oref);
return oref.ptr->memptr;

// Third case:
} else {
relocate_object(oref);
return oref.ptr->memptr; }

} else {
throw new NullPointerException(); } }

Note that outside freeze and relocation epochs, the first
condition is always satisfied if the referenced object has not
been freed. If the object access is known to be read-only,
we can always use the original location of the object in the
waiting phase of the relocation epoch as its memory location
cannot be reclaimed while we access it. In this case, the
reader does not have to fail the relocation of that object.

When the compaction thread starts iterating over the blocks
to be compacted (i.e., the moving phase of the relocation
epoch), all failed relocations are visible so the thread can
deal with them. If necessary, it extends compaction by one
additional epoch to try all unsuccessful relocations again by
adding another freezing phase at the end of the relocation
epoch and setting the following epoch to be a relocation
epoch before exiting the current relocation epoch.

5.2 Block access
Queries directly operating on the memory blocks of an

smc can also cause inconsistencies where the query misses
some objects because they are concurrently being relocated
or includes them twice. To prevent these inconsistencies, we
have to extend the compaction scheme described thus far.
We always empty the memory blocks that take part in the
compaction by moving their objects to new memory blocks
and removing the emptied blocks from the collection. Blocks
only participate in a compaction if their occupancy is below
a threshold (e.g., 30%). Blocks that participate in a com-
paction are assigned to compaction groups where the objects
of all blocks in a compaction group are moved to the same
new block. The number of blocks in a compaction group
depends on the aforementioned threshold; a 30% threshold
results in three blocks per group.

Queries process all blocks of a compaction group in the
same thread-local epoch and in consecutive order. This en-
sures consistent query behavior outside relocation epochs as
relocations may not start while processing the compaction
group. During relocation epochs, we have to ensure that
queries may either only access the pre-relocation state of a
compaction group or the post-relocation state. If process-
ing of a compaction group starts in the moving phase of
the relocation epoch, the query first helps performing the
relocation of the compaction group and then uses the com-
pacted memory block for query processing. If processing of
the group starts in the waiting phase, we cannot compact
the group’s content yet. In this case, we add the group
to a list of groups that still have to be processed and con-
tinue with the remaining memory blocks. Once all remaining

Pointer

Pointer
Customer Reference

Indirection
Block

(Customer
Collection)

Data Block
(Customer Collection)

Inc. ID

Data Block (Order Collection)

 Customer Price

Inc.

Inc. Back Ptr

Figure 5: Direct pointer between collection objects

blocks are exhausted, we check if the moving phase has al-
ready started and, if this is the case, process all remaining
compaction groups by first performing the relocation and
then processing the compacted block. If the moving phase
has not started yet, we process the compaction group in
its pre-relocation state by atomically incrementing a query
counter in the compaction group that prevents other threads
from compacting the group until the query decremented the
counter again. Relocations only occur in the moving phase
of the relocation epoch and, hence, once a relocation waits
for the query counter of a compaction group to become zero,
there are no more queries incrementing it. The compaction
thread bails out of compacting a certain group after wait-
ing for a predefined amount of time for the read lock to be
released. We do this to deal with queries that return con-
trol to the application (i.e., return a result element) while
holding the read lock.

6. DIRECT POINTERS
When a query touches an object that contains many refer-

ences to nested objects, then smcs may loose ground to au-
tomatically managed collections: each dereference not only
has to check incarnation numbers, but, more importantly,
it has to pay for an additional (random) memory access to
the indirection table. We now provide an alternative imple-
mentation that solves this problem. We keep indirection for
all external references, but, for references between smcs, we
store the direct pointer to the corresponding memory loca-
tion. To be able to check incarnation numbers in both cases,
the incarnation number of a memory slot is moved back into
the memory slot (object header) instead of the indirection
table. In Figure 5 we show the new layout, which improves
query performance for queries that use references to access
objects from several smcs.
When relocating an object, however, the new memory lo-

cation of the object now has to be updated in the indirection
table as well as in all self-managed objects that reference it,
which is no longer an atomic operation. We address this
by adding a third flag to the incarnation number, the for-

warding flag. The forwarding flag turns the object’s old
memory slot into a tombstone. Queries reaching the tomb-
stone through direct pointers use the slot’s back-pointer to
access the object’s indirection table entry which contains a

67

pointer to its new memory slot. To improve the performance
of future accesses to this object, the query also updates the
direct pointer to the object’s new memory location. The
forwarding flag is set by the thread relocating the object
after completing the relocation in the same atomic opera-
tion that unsets the frozen and lock bits; hence, tombstones
cannot be reached through (indirect) references. As was the
case for the two other flags, checking the forwarding flag is
performed during incarnation number checking and, hence,
does not penalize the common case of an unset forwarding
flag.

Tombstoned memory slots are not reclaimed until there
are no more direct pointers to them. After compacting an
smc, the compaction thread scans all smcs that have direct
pointers to it and updates the pointers to relocated objects.
Note that the references between smcs are statically known
and the compiler can produce specialized functions that only
scan smcs that have direct pointers that may have to be up-
dated and only check the corresponding pointer fields. We
improve the performance of scanning an smc to update di-
rect pointers by only following pointers to memory slots that
are known to have been relocated. This saves many random
memory accesses. We achieve this by building a hash ta-
ble during compaction that contains the memory addresses
of all blocks that are compacted and, instead of following
a direct pointer to see if the forwarding flag is set, we first
compute the address of the corresponding block, probe it in
the hash table and only follow the direct pointer if the block
address was in the hash table.

7. EVALUATION
We implemented smcs as a library using unsafe C♯ code.

We did not change the jit-compiler to automatically in-
ject the code for correctly dereferencing references to self-
managed objects but added this code by hand to factor out
any overhead. We implemented the code generation tech-
niques of [13] and we did not use any query-specific optimiza-
tions. Our experimental setup was an Intel Core i7-2700K
(4x3.5GHz) system with 16GB of ram, running Windows
8.1 and .net 4.5.2. We compare smcs with the default man-
aged collection types in C♯. Unlike smcs, most collections
in C♯ are not thread-safe (e.g., List<T>, C♯’s version of a
dynamic array). Thread-safe collection types in C♯ are lim-
ited and only ConcurrentDictionary<TKey, TValue> and
ConcurrentBag<T> provide comparable functionality to smcs;
however, ConcurrentBag<T> does not allow the removal of
specific objects. .net supports two garbage collection modes:
workstation and server. Both modes support either interac-
tive (concurrent) or batch (non-concurrent) garbage collec-
tions. In our tests the server modes outperformed the work-
station ones, so we only report results for the server mode
and only report both concurrency settings if their results
differ.

Our benchmarks are primarily based on an object-oriented
adaptation of the tpc-h workload. We have chosen to focus
on a database benchmark as we believe it exemplifies the
class of large-scale analytics applications that will benefit
from smcs. A relational workload is the most typical exam-
ple of an application that has traditionally offloaded ‘heavy’
data-bound computation to an optimized runtime for that
data model (a relational DBMS). As such, it is a good indi-
cation of both the classes of queries that can be integrated
in the programming language, while, at the same time, it

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100

N
o

rm
a

liz
e

d
 m

e
a

s
u

re
m

e
n

ts

Occupacy threshold (in %)

allocation / removal performance
query performance

total memory size

Figure 6: Varying the relocation threshold

 0

 5

 10

 15

 20

 25

1 Thread 2 Threads 4 Threads

A
llo

c
a

ti
o

n
s
 p

e
r

s
e

c
o

n
d

 (
in

 m
ill

io
n

s
)

Pure allocation (interactive)
Pure allocation (batch)

C. Bag (interactive)
C. Bag (batch)

C. Dictionary (interactive)
C. Dictionary (batch)

SMC (any)

Figure 7: Batch allocation throughput

can provide an immediate performance comparison to the
dominant alternative. tpc-h tables map to collections and
each record to an object composed of C♯’s primitive types
and references to other records (all primary-foreign-key rela-
tions). Based on the latter, most joins are performed using
references. Unless stated otherwise, we use a scale factor
of three for all tpc-h benchmarks. Note that due to a 16-
byte-per-object overhead and larger primitive types (e.g.,
decimal is 16 bytes wide) in C♯, a scale factor of three re-
quires significantly more memory than in a database system.

Sensitivity to relocation threshold Recall from §3.4
that the data blocks of smcs may contain limbo slots that
cannot be reclaimed yet and that we use a tolerance thresh-
old of such slots in a block that needs to be surpassed be-
fore adding the block to a reclamation queue. Varying this
threshold affects the memory size, the cost of memory oper-
ations and the query performance of smcs. In Figure 6 we
show how these factors change when varying the threshold
(normalized to the maximum value). As the percentage of
unused limbo slots grows, so does the memory footprint of
the collection. The cost of performing memory operations
(i.e., insertions and removals) slowly decreases with an in-
creasing threshold as allocations have to scan less memory
slots to find a slot that can be reclaimed. Query perfor-
mance seems to be less dependent on the additional slot di-
rectory entries that have to be processed with an increasing
threshold, but more on the branch misprediction penalties
when verifying if the slot is occupied. At a 50% threshold,
the branch predictor has the most trouble predicting if the
slot is occupied. Based on the results of Figure 6, we will
use a 5% threshold for the following experiments. For a 5%
threshold, the memory requirements of smcs are comparable
to that of storing managed objects in List<T>.

Memory allocation throughput In Figure 7 we com-
pare the throughput (in objects per second) of allocating
lineitem objects (using the default constructor) in an smc

to the pure allocation throughput of managed objects in

68

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 Thread 2 Threads 4 Threads

S
tr

e
a

m
s
 p

e
r

m
in

u
te

List
C. Dictionary

SMC

Figure 8: Refresh stream throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5 10 15 20 25 30 35 40

L
o

n
g

e
s
t

th
re

a
d

 t
im

e
o

u
t

(i
n

 m
s
)

Collection size (in number of lineitem objects)

Managed (batch)
Self-managed (batch)
Managed (interactive)

Self-managed (interactive)

Figure 9: Timeouts caused by garbage collection

.net
3 and the throughput of allocating managed objects and

adding them to a concurrent collection. For managed allo-
cations we report the throughput for interactive and batch
garbage collection; the latter consistently provides better
performance. smcs significantly outperform both managed
collections and the pure allocation cost of managed objects.
All objects remain reachable so the runtime performs nu-
merous garbage collections, with many of them stopping all
application threads to copy objects from younger to older
generations. smcs allocate from (previously unused) thread-
local blocks, which reduces the synchronization overhead of
multiple allocation threads to about one atomic operation
per 10k lineitem allocations.

Refresh streams To measure the throughput of memory
operations we introduce the tpc-h refresh streams. Each
thread continuously runs one of two kinds of streams with
the same frequency. The first stream type creates and adds
lineitem objects (0.1% of the initial population) to the
lineitem collection. The second stream type enumerates
all elements in the lineitem collection and removes 0.1%
of the initial population based on a predicate on the ob-
ject’s orderkey value. All 0.1% objects to delete are pro-
vided in a hash map and removed in a single enumeration
over the collection. This benchmark represents the com-
mon use case of refreshing the data stored in smcs. In
Figure 8 we report the stream throughput for smcs against
ConcurrentDictionary<TKey, TValue>; ConcurrentBag<T>
is not included because it does not support the removal of
specific elements. smcs perform better than both types of
managed collections in all cases.

Impact of garbage collection Out of the two garbage
collection settings reported in Figure 7, the (non-concurrent)
batch mode provides the higher throughput. In other garbage
collection intensive benchmarks, we found the batch mode
to enable a several times higher throughput. However, the

3Pre-allocated, thread-local arrays prevent objects from be-
ing garbage collected.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Enumeration Nested Enumeration

E
v
a

lu
a

ti
o

n
 T

im
e

 (
m

s
)

List (fresh)
List (worn)

C. Bag (fresh)
C. Bag (worn)

C. Dictionary (fresh)
C. Dictionary (worn)

SMC (fresh)
SMC (worn)

SMC (direct, fresh)
SMC (direct, worn)

Figure 10: Enumeration performance

higher throughput comes at a price: response time. Where
concurrent collectors (interactive) can perform big parts of
garbage collection on a background thread without paus-
ing all application threads, non-concurrent collectors have to
pause all threads for the duration of the collection. As the
size of the managed heap grows, so does the duration of full
garbage collections and, hence, the application’s maximum
response time. To illustrate this, we insert a number of ob-
jects into a collection, either managed or self-managed, and
then start two threads in parallel. The first thread continu-
ously allocates managed objects with varying lifetimes and
the second continuously sleeps for one millisecond and mea-
sures the time that passed in the meantime. If it observes
that significantly more time has passed than expected, it
records the value as it most likely was caused by garbage
collection triggered by the other thread. Figure 9 shows the
maximum timeout measured for a varying number of objects
stored in the collection. For non-concurrent garbage collec-
tion, the maximum timeout increases with a growing number
of objects stored in a managed collection, but remains fairly
stable when these objects are stored in an smc. Thus, the
duration of garbage collections increases with growing data
volumes stored in the managed heap. In the batch mode this
negatively impacts the responsiveness of the application; in
the interactive mode, it negatively impacts the overall ap-
plication performance as the background collection thread
steals processing resources from the application. In both
cases, smcs scale better with increasing data volumes.

Enumeration performance We first report on the pure
enumeration performance of smcs before considering more
complex queries. Our queries either: (a) enumerate the
lineitem collection and perform a simple function on each
object to ensure that all lineitem objects are accessed; or
(b) enumerate the lineitem collection, and for each object
follow the order reference to a customer object and perform
a simple function on the latter to ensure that customer ob-
jects are also accessed. Query performance deteriorates over
time as objects are added and removed from the collection.
In managed collections, objects may end up scattered all
over the managed heap, whereas in smcs the blocks con-
taining objects may have holes due to limbo slots. In Fig-
ure 10 we show the performance of both query types after
the collections are freshly loaded (fresh) and after the collec-
tions have undergone numerous object removals and inser-
tions (worn). smcs (indirect) outperform all automatically
managed collections. However, when performing nested ob-
ject accesses, the difference with List<T> diminishes be-
cause of the additional memory access required by indirec-
tion when following self-managed references. By utilizing
the direct pointers of §6, we can bypass this look-up and

69

 0

 50

 100

 150

 200

 250

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6

E
v
a

lu
a

ti
o

n
 t

im
e

 r
e

la
ti
v
e

 t
o

 L
is

t

List C. Dictionary SMC (C#) SMC (unsafe C#)

Figure 11: TPC-H Queries 1 to 6

improve performance. When comparing the fresh and worn
states, smcs only lose performance under nested accesses,
whereas managed collections exhibit degraded performance
in both cases. As ConcurrentDictionary<TKey, TValue>

is the best performing thread-safe managed collection, we
exclude ConcurrentBag<T> in what follows.

Query processing In Figure 11 we show the performance
of the object-oriented adaptation of the first six tpc-h queries.
For managed collections, we report the query performance of
compiled C♯ code (as in [13] but with reference-based joins).
Using linq to evaluate the queries instead of compiling them
to C♯ code results in a 40% to 400% higher evaluation time,
but as this was not the focus of the paper, we do not re-
port it in Figure 11. We report on two versions of compiled
code for smcs: (a) Compiled C♯ code that, other than the
enumeration code, is equivalent to the code used for man-
aged collections. This illustrates the fraction of the overall
improvement contributed by the better enumeration perfor-
mance of smcs. (b) Compiled unsafe C♯ code that contains
optimizations only possible on smcs. One such optimization
is to use direct pointers to primitive types in an object (e.g.,
decimal values) as arguments to functions that operate on
them (e.g., addition). For managed objects, these functions
have to be called by value as the garbage collector may move
the object inside the managed heap at any time without no-
tice and, hence, the pointer would become invalid. Another
optimization is to use memory regions [16] for all interme-
diate data during query processing, which improves perfor-
mance by excluding those intermediates from garbage col-
lection. Figure 11 reports the query processing performance
relative to the performance of List<T>. smcs perform signif-
icantly better than ConcurrentDictionary<TKey, TValue>,
the fastest competing thread-safe collection in .net; and
even between 47% and 80% better than List<T>. Query 1 is
a great example of what can be achieved with direct pointer
access to self-managed objects. The query is decimal com-
putation heavy and as C♯’s decimal type is 16-bytes wide,
calling the functions that perform decimal math using point-
ers and allowing for in-place modifications results in a huge
performance gain. The other queries are less decimal com-
putation intensive and, hence, show very little improvement
from using unsafe code. Generating native c code leads to
another 10% to 20% improvement over compiled unsafe C♯

code. But as the compiled c code is (mostly) equivalent to
the compiled unsafe C♯ code, any performance differences
can be attributed to more aggressive code-level optimiza-
tions by the c compiler.

Direct pointers and columnar storage In Figure 12
we show the impact of the direct pointer optimization in-
troduced in §6 and columnar storage as discussed in §4.1.

 0

 20

 40

 60

 80

 100

 120

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6

E
v
a

lu
a

ti
o

n
 t

im
e

re

la
ti
v
e

 t
o

 S
M

C
 (

u
n

s
a

fe
 C

#
)

SMC SMC (direct) SMC (columnar)

Figure 12: Direct pointer and columnar storage

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6
E

v
a

lu
a

ti
o

n
 t

im
e

 r
e

la
ti
v
e

 t
o

 S
Q

L
 S

e
rv

e
r

SQL Server SMC (direct) SMC (columnar)

Figure 13: Comparison to SQL Server on a TPC-H-

like workload

Direct pointer moderately improve query performance for
queries that contain joins, in particular for Query 5. Colum-
nar storage shows further improvements that are enabled by
the smcs decoupling the memory layout of their elements
from their definition through managing their own memory.

Comparison to RDBMS To put the smc results into per-
spective, we compare the query performance over objects in
smcs to that of a modern commercial database system. We
use sql server 2014 for this purpose as it is well integrated
into .net and incorporates a compressed in-memory colum-
nar store. We store all tables in the database’s column store
and, in addition, use clustered indexes on shipdate and
orderdate. We use the read uncommitted isolation level
and disable parallelized query execution to level the playing
field. The results are shown in Figure 13. For most of the
queries, smcs exhibit better query performance. For join-
heavy queries, they benefit from using references to perform
joins instead of explicit value-based join operations. In other
queries the database benefits from the indexes on shipdate

and orderdate.

8. RELATED WORK
Type-safe manual memory management is at the core of

smcs. Region-based memory management [16] groups ob-
jects in regions and deallocates entire regions. Deallocating
objects at region granularity is too high a storage overhead
as objects in the applications we target are long-lived with
only incremental insertions and deletions. Memory safety
at object granularity is enforced by introducing specialized
pointer types, e.g., smart pointers in c++11, which use ref-
erence counting to ensure that memory is only freed once
it is no longer referenced. Reference counting comes at a
high cost, especially when objects may be accessed concur-
rently [11]. Fat pointers are frequently used for type and/or
memory safety at run-time [1]. Tracking object incarna-
tions [6] is an application of this approach.

70

We use a variant of epoch-based memory reclamation used
in lock-free data structures [5, 7], to ensure thread-safety.
Hazard pointers and their variants [8, 11] ensure that threads
only reclaim memory that is not referenced by other such
pointers. This is similar to our epoch-based approach, but
it would reduce performance: each query would iterate over
objects through a hazard pointer, requiring a memory bar-
rier whenever it is assigned to the next object. Epochs amor-
tize the cost of memory barriers by using the entire query
as the granularity of the critical section. Braginsky and Pe-
trank [3] propose a lock-free sorted linked list optimized for
spatial locality. Each list element is a sub-list of several
data elements stored as a chunk of memory. Hazard point-
ers ensure safe memory reclamation, while a freeze bit in the
elements’ next pointer ensures lock-free splitting and merg-
ing of chunks. The implementation is limited to a specific
format for each list element (integer key and value).

To improve query performance, smcs rely on query compi-
lation [9, 10, 14, 15]. We use popular techniques, e.g., max-
imizing the processing performed in each loop and merging
query operations inside a loop to maximize data reuse [14].
Klonatos et al. [9] propose the use of a high-level program-
ming language for implementation and use query compila-
tion for query processing. In contrast to our approach, the
data store and query processor are not integrated with the
application and, hence, the database functionality is treated
as a black box (e.g., there are no references to data ob-
jects). Murray et al. [12] first proposed query compilation
for linq queries on in-memory objects. Their code gener-
ation approach did not go beyond querying C♯ objects in
managed collections using compiled C♯ code. Nagel et al.
[13] extended that idea by experimenting with different data
layouts and identified managed collections as a performance
bottleneck; generating native c code that operates on arrays
of in-place structs provided the best performance. Our work
builds on these findings.

DryadLINQ [17] and Trill [4] both build on linq to ease
programming and to provide better application integration.
DryadLINQ transforms linq programs into distributed com-
putations running on a cluster whereas Trill operates on data
batches pushed from external sources.

9. CONCLUSION
In this paper we introduced self-managed collections, a

new type of collection for managed applications that man-
age and process large volumes of in-memory data. smcs
have specialized semantics that allow the collection to man-
ually manage the memory space of its contained objects;
and the objects of the collection to be referenced from the
application and other smcs. smcs are optimized for query
processing using language-integrated queries compiled to im-
perative code. We introduced the type-safe manual memory
management system of smcs and then the collection type
itself. Our evaluation shows that smcs outperform man-
aged collections on query performance, batch allocations,
and online modifications using predicate-based removal. At
the same time, smcs can improve the response time of the
application overall by reducing the stress on the garbage col-
lector and allow it to better scale with growing data volumes.
Such scalability is transparent to the developer and elimi-
nates the current required practise of resorting to low-level
programming techniques.

10. REFERENCES
[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient

detection of all pointer and array access errors. In
PLDI, 1994.

[2] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In VLDB, 2005.

[3] A. Braginsky and E. Petrank. Locality-conscious
lock-free linked lists. In ICDCN. 2011.

[4] B. Chandramouli, J. Goldstein, M. Barnett,
R. DeLine, D. Fisher, J. C. Platt, J. F. Terwilliger,
and J. Wernsing. Trill: A high-performance
incremental query processor for diverse analytics. In
VLDB, 2014.

[5] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R.
Dagenais, and J. Walpole. User-level implementations
of read-copy update. IEEE TOPADS, 23(2):375–382,
2012.

[6] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. Farm: Fast remote memory. In NSDI, 2014.

[7] K. Fraser. Practical lock-freedom. PhD thesis,
University of Cambridge, 2004.

[8] M. Herlihy, V. Luchangco, P. Martin, and M. Moir.
Nonblocking memory management support for
dynamic-sized data structures. ACM TOCS,
23:146–196, 2005.

[9] I. Klonatos, C. Koch, T. Rompf, and H. Chafi.
Building efficient query engines in a high-level
language. In VLDB, 2014.

[10] K. Krikellas, S. Viglas, and M. Cintra. Generating
code for holistic query evaluation. In ICDE, 2010.

[11] M. M. Michael. Hazard pointers: Safe memory
reclamation for lock-free objects. TPDS, 2004.

[12] D. G. Murray, M. Isard, and Y. Yu. Steno: automatic
optimization of declarative queries. In PLDI, 2011.

[13] F. Nagel, G. Bierman, and S. D. Viglas. Code
generation for efficient query processing in managed
runtimes. In VLDB, 2014.

[14] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. PVLDB, 4(9), 2011.

[15] J. Rao, H. Pirahesh, C. Mohan, and G. Lohman.
Compiled query execution engine using JVM. In
ICDE, 2006.

[16] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and computation, 1997.

[17] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system
for general-purpose distributed data-parallel
computing using a high-level language. In OSDI, 2008.

71

	Self-managed collections: Off-heap memory management for scalable query-dominated collectionsFabian Nagel, Gavin Bierman, Aleksandar Dragojevic, Stratis Viglas

