

Edinburgh Research Explorer

Auditing for privacy in threshold PKE e-voting

Citation for published version:
Kiayias, A, Zacharias, T & Zhang, B 2017, 'Auditing for privacy in threshold PKE e-voting' Information and
Computer Security, vol. 25, no. 1, pp. 100-116. DOI: 10.1108/ICS-07-2016-0056

Digital Object Identifier (DOI):
10.1108/ICS-07-2016-0056

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Information and Computer Security

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/80692136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1108/ICS-07-2016-0056
https://www.research.ed.ac.uk/portal/en/publications/auditing-for-privacy-in-threshold-pke-evoting(c230a507-b929-49d2-9a44-6915b3fa2d75).html

Auditing for Privacy in threshold PKE e-Voting

Abstract

The importance of voter auditing in order to ensure election integrity has been exten-
sively studied in the e-voting literature. On the other hand, the necessity of auditing to
protect voter privacy in an e-voting system has been mostly overlooked. This work investi-
gates election privacy issues that appear in the state-of-the-art implementations of e-voting
systems that apply threshold public key encryption (TPKE) in the client like Helios and use
a bulletin board (BB). More specifically, it is shown that without PKI support or -more
generally- authenticated BB “append” operations, such systems are vulnerable to attacks
where the malicious election server can act as a man-in-the-middle between the election
trustees and the voters, hence it can learn how the voters have voted. As countermeasure
for this type of man-in-the-middle attacks, this work suggests compulsory trustee auditing
which should be executed either (i) immediately after the election setup phase, if the BB is
consistent, or (ii) right after the voting phase, if the BB is corrupted.

Finally, this work studies the impact of verifying the cryptographic (zero-knowledge)
proofs posted in the BB from a privacy aspect; namely, it is shown that proof auditing implies
significantly stronger provable privacy guarantee for a TPKE e-voting system against covert
adversaries (i.e., adversaries that may deviate arbitrarily from the protocol specification,
but do not wish to be detected), given that the proof is carried out via standard reduction
to the security of the underlying TPKE scheme.

1 Introduction

E-voting systems have emerged as a powerful technology to improve the election process by
reducing election cost, making election preparation and tally computation faster and increase
voter participation for various underrepresented social groups including voters that face consid-
erable physical barriers and overseas voters. In addition, several e-voting systems (Cramer et al.
1997, Chaum 2001, Adida 2008, Chaum et al. 2005, 2008, Kutylowski & Zagórski 2010, Zagórski
et al. 2013, Benaloh et al. 2013, Kiayias et al. 2015a,b) are end-to-end verifiable, i.e., voters and
auditors can directly verify the entire election process and be assured that no entities, even the
election authorities, have manipulated the election result.

A major class of e-voting systems (Cohen & Fischer 1985, Cramer et al. 1997, Estonia n.d.,
Juels et al. 2005, Clarkson et al. 2008, Kiayias et al. 2006, Adida 2008, Tsoukalas et al. 2013,
Gjøsteen 2013, Benaloh et al. 2013, Kiayias et al. 2015a) necessitate client-side cryptography
(CSC); we call those CSC e-voting systems. In a CSC e-voting system, the voter makes use
of a voter supporting device (VSD), which functionality is to generate an encrypted vote and
submit it to the system on behalf of the voter. In addition, the VSD provides the voter with
some additional information so that the voter can audit the execution of the election procedure
either on her own or with the help of an auditing supporting device (ASD). Many CSC e-
voting systems have been used in real-world binding procedures such as in the elections of
scientific organizations (Adida 2008), academic institutions (Tsoukalas et al. 2013), or even
local government (Gjøsteen 2013) and national elections (Estonia n.d.). Consequently, analyzing

1

and challenging the security of CSC e-voting systems has been a prominent theme in e-voting
literature (Kremer et al. 2010, Gjøsteen 2010, Bernhard et al. 2011, 2012, Küsters et al. 2012,
Springall et al. 2014, Smyth et al. 2015).

In their seminal work (Benaloh & Yung 1986), argue for distributing the administration of
an election into multiple authorities in order to enhance its privacy. This paper sheds light
on the design and implementation details that are necessary for the security of multi-authority
CSC e-voting systems. In particular, this paper studies the election privacy of an important
category of multi-authority CSC e-voting systems that include (Cramer et al. 1997, Kiayias
et al. 2006, Adida 2008, Clarkson et al. 2008, Tsoukalas et al. 2013, Benaloh et al. 2013, Kiayias
et al. 2015a) which construction utilizes a threshold public key encryption (TPKE) scheme -e.g.
the threshold El Gamal cryptosystem (Pedersen 1991)- as follows: there is a set of trustees so
that each trustee generates a pair of partial decryption and public keys and provide their keys
into an election authority (EA), along with zero-knowledge (ZK) proofs (Goldwasser et al. 1985)
of correct key pair generation. The EA is responsible for posting the partial public keys and the
corresponding ZK proofs on a publicly accessible bulletin board (BB). Then, the voters, using
their VSD can encrypt their votes using the election public key that derives from the partial
public keys and submit them to the EA. After the voting period ends, the EA processes the
encrypted votes, either using the additive homomorphic1 property of the TPKE scheme or via
mixnets (Chaum 1981) to provide anonymity. Then, it sends the product of this process to
every trustee which responds with their share of partial decryption of the tally and ZK proofs
of correct decryption. Finally, the EA posts the information it receives from the trustees on the
BB, so that the voters or any auditor can verify the election result.

The most widely used representative of TPKE-based e-voting systems is Helios (Adida
2008). This paper brings to surface a flaw in the current implementation of Helios that sounds
the alarm for the preservation of voter privacy. Specifically, we observe that as yet, it is not
required from the trustees to verify the integrity of the election public key posted in the BB
before election starts. Due to this lack of precaution, there is nothing that prevents a malicious
EA from launching a man-in-the-middle (MitM) attack by replacing the trustees’ public keys
with ones of its choice without becoming detected. Obviously, if this attack happens, then
all the cast votes of the honest voters are directly exposed to the EA since they have been
encrypted under the adversarial public key. In addition, the EA can engage with the trustees
in a seemingly valid tally phase, by providing the trustees with a set of votes encrypted under
their election public key.

In detail, this paper’s contributions comprise:

1. Presenting the design and implementation defects that make any TPKE-based e-voting
system susceptible to MitM attacks where an adversary that controls the EA can break
voter privacy simply by posting public keys of its choice on the BB.

2. Proposing effective countermeasures to deal with this type of attacks against TPKE-based
e-voting systems without PKI support (Kiayias et al. 2006, Adida 2008, Tsoukalas et al.
2013). Namely, each trustee should audit the e-voting process by verifying the correct
record of its partial public key on the BB. It is argued that given a consistent BB, the
proposed enhancement eliminates the possibility of such MitM attacks. Moreover, in case
of an adversarially controlled BB, our countermeasure makes the system private against
an election authority that acts as a covert adversary (Aumann & Lindell 2010), i.e. an

1The additive homomorphic property of an encryption scheme suggests that multiplying the encryptions of
two messages m1 and m2 under some public key, results in an encryption of m1 +m2 under the same public key.

2

adversary that may deviate arbitrarily from the protocol specification, but does not wish
to be detected cheating.

3. Analyzing the impact of verifying the ZK proofs posted in the BB from a privacy aspect,
as further evidence on the importance of auditing to preserve election privacy. It is
shown that ZK verification implies significantly stronger provable privacy guarantee for a
TPKE e-voting system against covert adversaries, given that the proof is carried out via
standard reduction to the security of the underlying TPKE scheme. Namely, for typical
setup parameters (number of candidates, number of voters, TPKE scheme group size) lack
of auditing results in major loosening of the privacy error upper bound, whereas enforcing
auditing normally implies an acceptable level of privacy.

Comparison with preliminary version.

The preliminary version of this work (Kiayias et al. 2015c) was presented in the 6th e-
Democracy International Conference. Compared to (Kiayias et al. 2015c), this work focuses
exclusively on the study of auditing with respect to election privacy by including the analysis of
the importance of ZK verification from the privacy aspect (cf. Section 5) in place of the generic
guidelines for the secure implementation of TPKE e-voting systems discussed in (Kiayias et al.
2015c, Section 5). The new additional Section 5 of this work extends the core contribution of
the conference version, that is, the importance of auditing for preserving election privacy.

Furthermore, this work captures a major revision of the editorial part of (Kiayias et al.
2015c). Among a list of edits, the MitM attack is now illustrated with the help of a sequence of
detailed figures (cf. Figures 1, 2, 3, 4, and 5), whereas a separate subsection (cf. Subsection 4.3)
is devoted to provide an explicit view of the effectiveness of the attack against several well-known
TPKE-based e-voting systems.

Related work.

Security analysis of CSC e-voting systems:

(Kremer et al. 2010) proved the verifiability of Helios 2.0 in a symbolic framework. Similarly,
(Smyth et al. 2015), introduce a computational framework for defining verifiability as a set of
properties and perform an analysis of Helios and the JCJ (Juels et al. 2005) e-voting system in
this framework. The ballot privacy of Helios is studied in (Bernhard et al. 2011) and (Bernhard
et al. 2012). The security of the Estonian and the Norwegian e-voting system has been analyzed
in (Springall et al. 2014) and (Gjøsteen 2010) respectively. (Jefferson et al. 2004), discuss the
impact of man-in-the-middle attacks on e-voting security, expecially by spoofing the voting
server.

Attacks on the security of Helios:

Helios is among the most widely used e-voting systems. As a result, several works studied
and challenged the security of Helios. (Estehghari & Desmedt 2010) described an attack based
on vulnerabilities of the voter’s browser that compromised the integrity of Helios 2.0. A fix
to prevent launching this attack was considered in Helios’s upgrade to version 3.0. (Heiderich
et al. 2011), presented an XSS attack against Helios and exposed serious security threats (these
vulnerabilities were fixed by the developers of Helios). (Cortier & Smyth 2011) discovered an
important attack on Helios 2.0 and 3.0, where the adversary can break the ballot secrecy of an
honest voter by replaying his encrypted vote for a corrupted user that he controls. The attack
can be generalized by exploiting the malleability of the Helios ciphertexts. They proposed a
solution to this attack and proved the privacy that their solution achieves using applied pi
calculus.

3

(Küsters et al. 2012) introduced a new type of attacks that they name clash attacks, which
compromise the integrity of Helios, for variants where the ballots are not linked with the iden-
tities of the voters. Bernhard, Pereira and Warinschi (Bernhard et al. 2012) showed that
Fiat-Shamir (FS) transformation (Fiat & Shamir 1986) applied in Helios must be properly
implemented to prevent the system from integrity attacks.

2 Preliminaries

2.1 Notation

Throughout this paper, we use λ as the security parameter. A shorthand x
$← X denotes that

x is drawn uniformly at random from a set X . For algorithms and distributions, the notation
x ← Alg(I) means that the element x is sampled according to the output distribution of Alg
on input I. If Alg is a probabilistic algorithm, then we write x ∈ Alg(I) to denote that x is a
possible output of Alg on input I. By 〈x〉, we denote the encoding of x as an element of some
message space M. The length of string x is denoted as |x|. By negl(·), we denote that some
function is negligible, i.e. it is asymptotically smaller than the inverse of any polynomial.

We say that two random variable ensembles {Xn}n∈N and {Yn}n∈N are (computationally)
indistinguishable if for every (PPT) algorithm D it holds that∣∣∣ Pr

[
s← Xn : D(s) = 1

]
− Pr

[
s← Yn : D(s) = 1

] ∣∣∣ = negl(n) .

2.2 TPKE Schemes

Let Ser1, . . .Serk be a set of k decryption servers. A (t, k)-TPKE scheme TPKE is a quintuple of
algorithms (TPKE.Gen, TPKE.Combine,TPKE.Enc,TPKE.Dec,TPKE.Recon) defined as follows:

� The partial key generation algorithm TPKE.Gen that on input 1λ outputs the partial
public key and secret key pair (pki, ski) for Seri.

� The public key construction algorithm TPKE.Combine that on input pk1, . . . , pkk computes
the public key pk.

� The encryption algorithm TPKE.Enc that on input pk and a message M in some message
space M outputs a ciphertext C.

� The partial decryption algorithm TPKE.Dec that on input ski and a ciphertext C either
outputs a message share Mi or aborts.

� The plaintext reconstruction algorithm TPKE.Recon that on input a set of t out-of k
message shares Mi1 , . . . ,Mit outputs the message M or aborts.

The most common instantiation of a TPKE, utilized in (Cramer et al. 1997, Kiayias et al.
2006, Adida 2008, Clarkson et al. 2008, Tsoukalas et al. 2013, Benaloh et al. 2013, Kiayias et al.
2015a) is the (t, k)-threshold El Gamal cryptosystem (Pedersen 1991) that is IND-CPA secure
under the Decisional Diffie-Hellman (DDH) assumption.

2.3 Zero-Knowledge Proofs of Knowledge

Let L be an NP language. A zero-knowledge proof of knowlegde (ZK-PoK) (Goldwasser et al.
1985) Γ = (P,V) for some language L ∈ NP with witness relation RL is an interactive pair
of an (potentially unbounded) prover P and a probabilistic polynomial time (PPT) verifier V
that satisfies the following properties (informally stated):

4

1. (Perfect) Completeness: for every statement x ∈ L and w ∈ RL(x), V always accepts the
proof of P(w).

2. Proof of knowledge: for every (potentially malicious) prover P∗ and y ∈ {0, 1}∗ such that
P∗(y) convinces V of the validity of some statement x with probability non-negligible in
x, there exists a PPT knowledge extractor K that on input x and given access to the code
of P∗(y), outputs a witness w for x with probability non-negligible in x.

3. (Computational) Zero-Knowledge: for every (PPT) verifier V∗, there exists a PPT sim-
ulator algorithm Sim such that for every statement x ∈ L and w ∈ RL(x), Sim outputs
transcripts that are (computationally) indistinguishable from transcripts generated by the
interaction between P(w) and V∗.

3 A typical TPKE-based e-voting system

Let VS be a TPKE e-voting system. We consider four parameters: a security parameter λ that
determines the security level of the underlying cryptographic primitives, the number of voters
n, the number of candidates m and the number of trustees k, which comprise the election
committee that guarantees the privacy of the election. We use the notation V = {V1, ..., Vn} for
the set of voters, P = {P1, ..., Pm} for the set of candidates and T = {T1, . . . , Tk} for the set of
trustees. For simplicity, we consider the case of 1-out-of-m elections, where the set of allowed
selections is the collection of singletons, {{P1}, . . . , {Pm}}, from the set of candidates P.

3.1 Entities in a TPKE e-voting system

In an abstract form, the entities involved in VS are:

� The Election Authority (EA) that sets up the election and communicates initialization
data to all other components. Additionally, the EA is responsible for posting the election
results and possibly some election audit information on the BB.

� The Bulletin Board (BB), where the election result and all necessary audit information
is posted. The BB allows only an “append” operation and recognizes at minimum one
entity (the EA).

� The Voters who are equipped with a voter supporting device (VSD) (that can be a tablet,
PC or other network enabled equipment) as well as an auditing supporting device (ASD)
that can be the same as the VSD or a different network enabled device.

� The Trustees that constitute a subsystem responsible for the election tally. Each trustee
is equipped with its own pair of trustee supporting device (TSD) and ASD.

3.2 Description

Let TPKE = (TPKE.Gen,TPKE.Combine,TPKE.Enc,TPKE.Dec,TPKE.Recon) be an IND-CPA
TPKE scheme as described in Section 2.2. For every security parameter λ, partial key pair
(pki, ski) ← TPKE.Gen(1λ), i = 1, . . . , k and public key pk ← TPKE.Combine(pk1, . . . , pkk) we
define the following NP languages:

Lλ =
{

pki | there is an sk∗i : (pki, sk∗i) ∈ TPKE.Gen(1λ)
}
,

Lλ,pk =
{
C | there is a P ∈ P : C ∈ TPKE.Enc(pk, 〈P 〉)

}
and

Lλ,pk,ski =
{

(C,Mi) |Mi ← TPKE.Dec(ski, C)
}
.

5

Informally, Lλ is the language of valid partial public keys, Lλ,pk is the language of the well-
formed encrypted votes under pk and Lλ,pk,ski is the language of valid pairs of encryptions under
pk and partial decryptions for trustee Ti.

Following the syntax introduced in (Kiayias et al. 2015b), VS is a quintuple of algorithms
and protocols 〈Setup,Cast,Tally, Result,Verify〉 as follows:

The protocol Setup(1λ,P,V, T):

Each trustee Ti uses its TSD to run TPKE.Gen(1λ) and receive the partial key pair (pki, ski).
It sends pki to the EA along with a ZK-PoK of pki ∈ Lλ by proving knowledge of ski. If there is
a proof that EA does not verify, then EA aborts the protocol. Upon receiving all pk1, . . . , pkk,
EA computes the election public key pk ← TPKE.Combine(pk1, . . . , pkk). Then, it posts the
public parameters, Pub, which include the election information Info, pk, the partial public keys
pk1, . . . , pkk as well as the ZK-PoK of sk1, . . . , skk in the BB. Namely, the election transcript τ
of the BB is initialized as Pub. Finally, EA generates the voter credentials cr1, . . . , crn, where
cr` contains a voter identifier ID`, and issues them to the voters V1, . . . , Vn respectively.

The protocol Cast:

At the voting phase, each voter V` chooses a candidate selection {Pj`} and sends (ID`, {Pj`})
to her VSD. The VSD reads pk from the BB and creates a ciphertext C` ← TPKE.Enc(pk, 〈Pj`〉),
where 〈Pj`〉 is the encoding of candidate Pj` . In addition, it attaches a ZK-PoK of ballot
correctness π` showing that C` ∈ Lλ,pk. The encrypted ballot generated is B` = (C`, π`). Upon
the generation of B`, the VSD provides V` with a ballot tracker (e.g. a hash of B`), Tr`, so that
V` can locate B` in the BB after election ends. Next, V` must choose either one of the following
options by flipping a coin with some bias p ∈ [0, 1]2.

A. Cast her vote. In this case, V` provides VSD with her credential cr`. Subsequently, VSD
submits B` to the EA using cr`.

B. Audit the ballot B` via its ASD, by requiring the VSD to provide all the randomness
used to generate B`. In this case, the ballot B` is spoiled and when the audit is finished,
V` requests a new ballot B′` (possibly under a different candidate selection {P ′j`}). After
V` has received the new ballot tracker Tr′`, she will be prompted to audit-or-cast B′`.

When EA receives a submitted ballot vote B` = (C`, π`), it checks that it is well-formed by
verifying the ZK-PoK π`. If the check fails, then EA aborts the protocol. After voting ends, EA
updates its state with the pairs {(ID`,B`)}V`∈Vsucc of cast votes and the associated identifiers,
where Vsucc is the set of voters that voted successfully.

The protocol Tally:

The EA processes {(ID`,B`)}V`∈Vsucc
3 to provide anonymity, either using the additive ho-

momorphic property of the threshold ElGamal scheme or via mixnets (Chaum 1981). Then,
the EA sends the processed votes to all trustees. Every trustee Ti, i = 1, . . . , k, uses their TSD
to perform the following computation: it uses ski and all ciphertexts {C`}V`∈Vsucc to compute
Ti’s partial decryption of the tally denoted by Ri. Then, it sends Ri to the EA along with a
ZK-PoK correct partial decryption. If there is a proof that EA does not verify, then it aborts

2If such a feature is not available in some specific instantiation, as in. (Cramer et al. 1997, Kiayias et al.
2006), then we trivially set p = 0.

3For instance (Cramer et al. 1997, Kiayias et al. 2006, v4 n.d., Benaloh et al. 2013) apply the homomorphic
operation on the encrypted votes while (Clarkson et al. 2008, Tsoukalas et al. 2013) use mixnets in order to
provide anonymity.

6

the protocol. After all trustees finish their computation, EA updates the BB’s transcript τ with
{(ID`,B`)}V`∈Vsucc along with all the partial decryptions and the respective ZK-PoK sent by the
trustees.

The algorithm Result:

The election result R is the output of TPKE.Recon(Ri1 , . . . , Rit), where Ri1 , . . . , Rit is any
subset of t out-of-the k partial decryptions R1, . . . , Rk.

The algorithm Verify(τ,Tr`):

The verification algorithm is accepting if and only if the following conditions hold:

1. The structure of the information posted on the BB and all election information is correct
(using Info).

2. There exists a ballot in the BB that matches the ballot tracker Tr`.

3. The ZK-PoK proofs for the correctness of all ballots on the BB verify.

4. The ZK-PoK proofs for the correctness of all trustees’ partial decryptions verify.

4 A MitM attack against voter privacy

Note that according to our description of a general TPKE-based e-voting system in Section 3,
there is no way for the BB to authenticate the trustees’ data (this typically requires a user-
side PKI which is hard to deploy in practice) and the trustees are not required to audit the
information posted in the BB e.g., as in Helios (Adida 2008).

Due this oversight, subtle privacy problems emerge in the case of a malicious EA. In order
to achieve voter privacy, it is necessary to ensure that at least one of the trustees participates
in the election audit. For instance, this is consistent with claims made in the Helios web server
material where it is argued that voter privacy is guaranteed unless all the trustees are corrupted,
see (Helios n.d.). Nevertheless, the trustee auditing step is optional and there are no proper
instructions regarding the necessity of the trustee verification process. Moreover, the current
Helios implementation (v4 n.d.) makes it very difficult for someone without technical knowledge
and understanding of the code to do so.

In Section 4.1, we introduce a generic MitM attack against the voter privacy of a TPKE-
based e-voting system when the trustee auditing step is not performed. Next, in Section 4.2,
we demonstrate our attack against Helios as a specific instance of the attack methodology. We
summarize the effectiveness of our attack in Section 4.3. In Section 4.4, we propose simple
countermeasures that deal with this type of attacks.

4.1 The system vulnerability and our MitM attack

Recall that a typical TPKE-based e-voting system mainly consists of EA, BB, and VSD, and
it forms a star network as depicted in Figure 1. Namely, the BB, all the trustees and all the
VSDs are connected through the central node, the EA. Such a network topology is sensible
and is followed by systems used in practice (including Helios) since it avoids additional pair-
wise communication between the entities participating in the election; this has a number of
advantages. First of all, it significantly reduces the development and deployment complexity,
as the entire e-voting system can be realized by a single server. Secondly, it is consistent with a
reasonable level of usability, as the administrators only need to keep the election server online

7

Election
Authority

BB

T1

T2

...

Tk

V1

V2

...

Vn

Figure 1: The star network topology in the architecture of a typical TPKE e-voting system.
The dotted lines denote read-only access to the BB.

and all the other election parties are able to participate in the election asynchronously without
any coordination.

MitM

BB

T1

T2

...

Tk

V1

V2

...

Vn

Figure 2: A malicious EA acting as MitM against the privacy of a TPKE e-voting system.
The trustees T1, T2, . . . , Tk communicate only with the malicious EA, isolated in a fake “gray”
environment.

Unfortunately, the implementation efficiency enjoyed by the aforementioned star network
topology does not come without a price; the specific architecture makes the system vulnerable

8

to a class of MitM attacks when the central node (i.e. the election server) is compromised, as
depicted in Figure 2. Furthermore, the lack of PKI support makes it impossible for a third-
party auditor to identify the actual sources of messages that appear in the BB. This problem
is recognized in terms of election integrity, and the concept of individual verifiability is widely
adopted to mitigate this problem by preventing the malicious election server from tampering
the submitted ballots. Nevertheless, little attention is given to the contributions of the election
trustees even though it is equally important to ensure the integrity of trustees’ messages (i.e.
the election parameters) in the BB.

Description of the MitM attack :

Our attack assumes that only the EA is controlled by the adversary, whereas the rest of the
TPKE-based e-voting system entities and all the supporting devices remain honest. The attack
consists of three steps 1,2 and 3 that are illustrated via the corresponding Figures 3, 4, and 5.

STEP 1: During the election setup phase, the malicious EA follows the Setup protocol
description and interacts with the real trustees T1, . . . , Tk to jointly generate the real elec-
tion public parameters Pub and the real voters’ credentials cr1, . . . , crn. Meanwhile, the ma-
licious EA (conceptually) creates another set of fake trustees, T ∗1 , . . . , T

∗
k and generates fake

pairs of keys (sk∗1, pk∗1), . . . , (sk∗k, pk∗k) fake election public parameters Pub∗ and the fake voters’
credentials cr∗1, . . . , cr∗n by running the Setup protocol with the fake trustees “in its mind”,
obtaining sk∗1, . . . , sk∗k. The malicious EA then publishes Pub∗ (that include pk∗1, . . . , pk∗k and
pk∗ ← TPKE.Combine(pk1, . . . , pk∗k)) on the BB and thus all the voters will use the fake election
parameters during the Cast protocol.

MitM

sk∗1, . . . , sk∗k

BB

T1sk1

T2sk2

...

Tkskk Pub∗

pk1

pk2

pkk

V1

V2

...

Vn

cr∗1

cr∗2

cr∗n

Figure 3: Replacement of the trustees’ election parameters and setting up of a “fake” election
(STEP 1).

STEP 2: The voters V1 . . . , Vn read the BB and obtain the fake public key pk∗. They
encrypt their candidate selections Pj1 , . . . , Pjn under pk∗ and submit their ballots B∗1, . . . ,B

∗
n

9

to the malicious EA which, clearly, is able to learn every voter’s selection by decrypting the
ballots using all fake partial decryption keys sk∗1, . . . , sk∗k.

MitM

Pj1 , Pj2 , . . . , Pjn

B∗1,B
∗
2, . . . ,B

∗
n

sk∗1, . . . , sk∗k

BB

Pub∗

T1sk1

T2sk2

...

Tkskk

V1

Pj1

V2

Pj2

...

Vn

Pjn

B∗1

B∗2

B∗n

Figure 4: Voting under fake election public key and breaching the voters’ privacy (STEP 2).

MitM

Pj1 , Pj2 , . . . , Pjn

B1,B2, . . . ,Bn

pk

BB

τ ∗

T1sk1

T2sk2

...

Tkskk

B
1 , . . . ,B

n

B1, . . . ,Bn

B1, .
. . ,B

n

V1

V2

...

Vn

Figure 5: Completion of a consistent “real” tally phase under the trustees’ election public key
(STEP 3).

10

STEP 3: The malicious EA can simulate the voting and tally phase of a presumably “real”
election run under the real trustees’ keys engaging with them in the Tally protocol. The purpose
of this step is to make the real trustees believe the election tally result is produced by them,
whereas EA can simply perform the actual election tally itself and publish the corresponding
election result in the BB. It is easy to see that all information in the BB is consistent in the
sense that the produced fake election transcript τ∗ is publicly verifiable.

4.2 Instantiation of our MitM attack against Helios

For concreteness, we demonstrate our MitM attack against Helios. There are many variants
of Helios in the literature (supporting use of aliases, tally via homomorphic addition or mix-
net tally, etc.). However, our attack can apply to all the variants with respect to their latest
implementations. Our attack does not tamper the JavaScript code, therefore it is impossible to
detect our attack by checking the integrity of the source code as observed at the client side.

Recall that the latest version of Helios v4 uses k out-of k threshold (lifted) ElGamal encryp-
tion. During the election setup phase, each trustee Ti, i = 1, . . . , k locally generates a pair of
ElGamal partial keys (pki, ski) and sends pki to the EA. At this step, a fingerprint (SHA256
hash digest) of the partial public key pki is computed and provided to the trustee. It is sug-
gested that the trustees keep the fingerprints of their partial public key and confirm that they
are properly stored on the election server. However, there is no further instruction to indicate
to the trustees where and how to verify the consistency of this information. Notice that there
is no interface for the trustees to verify whether their partial public keys are correctly used to
produce the (combined) election public key during the Setup protocol. Besides, each trustee
does not know the other trustees’ actual partial public keys. In fact, only the election public key
is used to generate the election fingerprint (i.e. a SHA256 hash digest of the JSON format of
the election definition) after an election is fixed (or “frozen” in Helios terminology). Moreover,
the voters are only given the election public key at the voting booth page in the Cast protocol,
so it is impossible to check the validity of the partial public keys even if the trustee is also an
eligible voter. During the tally phase, the trustees are given their partial public key fingerprints
to prevent them from using incorrect partial secret keys. The information displayed on the tally
page can never be used for auditing purposes, because every trustee should first identify himself
by submitting a unique token to the EA before receiving the content. Hence, the malicious
EA can specifically tailor a (inconsistent) view of the tally page for each trustee. Finally, the
partial public key information is not even displayed on the bulletin board, which only contains
the submitted voters’ ciphertexts.

In our MitM attack, the malicious EA receives pki from the trustee Ti, i = 1, . . . , k during the
election setup phase. Then, it generates another set of fake partial ElGamal key pairs (pk∗i , sk∗i)
and computes the fake election public key pk∗ =

∏k
i=1 pk∗i . When the election is frozen, the

malicious EA switches the real election public key with pk∗, so pk∗ is used to generate the
election fingerprint. In the voting booth, the voters are given pk∗ to encrypt their choices, and
thus it is consistent with the election fingerprint. In the tally phase, the malicious EA sends
the real trustee Ti his partial public key pki; therefore, the hash of pki matches the fingerprint
stored by Ti and the trustee should perform tallying as usual. Once Ti submits the decryption
values, the malicious EA mimics the same process with T ∗i (in its “head”) and posts the fake
decryption factors instead. Clearly, all the information on the BB is publicly verifiable.

Remark. If a trustee carefully checks the public verification page, it is possible to find out that
its partial public key is missing. However, the user is never instructed to perform such a step;
besides this, the highlighted “Verified” indication hints to the user that everything is okay. We

11

stress that the voters’ privacy is violated already even in the case where the trustees check the
public verification page after voting phase ends (as the voters will have already encrypted the
votes under the adversarial public key).

4.3 Effectiveness of our MitM attack

Our MitM attack can be launched against any TPKE-based e-voting system which, like Helios,
(i) does not urge that the trustees directly verify that their partial public keys were correctly
published and (ii) does not allow for any third party to verify the source of the partial public
keys, as in (Kiayias et al. 2006, Tsoukalas et al. 2013). Note that having the EA sign BB data
like in (Benaloh et al. 2013) does not prevent the attack; the adversarial public key is posted on
the BB by the EA itself, hence BB consistency is not violated from the EA’s point of view. On
the contrary, our MitM attack can be prevented when the trustees collaboratively verify their
partial public keys either via a verifiable secret sharing scheme (Cramer et al. 1997) or with PKI
support (Clarkson et al. 2008). Finally, we note that the architecure in (Kiayias et al. 2015a)
deviates from the typical star topology in Figure 1, thus, although (Kiayias et al. 2015a) can
be classified as a TPKE-based e-voting system, it remains out of the scope of this work.

The effectiveness of the attack against various TPKE-based e-voting systems is summarised
in Table 1.

System Resistance Vulnerability

(Cramer et al. 1997) X
(Kiayias et al. 2006) X

(Clarkson et al. 2008) X
(Adida 2008) X

(Tsoukalas et al. 2013) X
(Benaloh et al. 2013) X

Table 1: Effectiveness of the MitM attack against various TPKE-based e-voting systems.

4.4 Countermeasures

In this section, we propose two countermeasures for the MitM attack described in Section 4.1
and for TPKE-based e-voting systems without PKI support (Kiayias et al. 2006, Adida 2008,
Tsoukalas et al. 2013). Each countermeasure suits a specific threat model for the BB.

Given a consistent BB :

As commonly used in the e-voting literature (Cramer et al. 1997, Kiayias et al. 2006, Adida
2008, Clarkson et al. 2008, Tsoukalas et al. 2013, Benaloh et al. 2013) and shown in Figure 1,
the BB is considered to be passive and robust in the sense that posting on the BB is done in
an append-only way. In this model, the trustee auditing step should be performed immediately
after the election setup phase and before the voting phase starts. Since the adversary cannot
modify the election public key in the BB, it cannot decrypt the encrypted votes without knowing
all the partial secret keys. Hence, the voters’ privacy is preserved, if at least one of the trustees
remains honest.

Under BB corruption:

In an alternative threat model, we consider a covert adversary (Aumann & Lindell 2010)
(i.e. an adversary that may deviate arbitrarily from the protocol specification, but does not

12

wish to be detected cheating) that may also fully corrupt the BB but cannot link the identity
of the auditing party (including both voters and trustees) with the ASD that is used. In this
model,

(i.) the trustee auditing step should be performed after the end of the voting phase and

(ii.) the interaction between the BB and a trustee’s ASD should be indistinguishable from an
interaction between the BB and any voter’s ASD.

Observe that the election public key that has been used for vote encryption is determined w.r.t.
a specific voter’s ballot tracker. This is because the said public key can be deducted from
the statement of any ZK-PoK of ballot correctness. In order to pass the trustee auditing, the
adversary has to post the real public key on the BB whereas in order to pass the voter auditing,
it has to post the fake public key. Since the adversary cannot tell whether an auditing party
is a trustee or a voter, it will either (i) be discouraged from launching the MitM attack or (ii)
eventually be detected.

5 Auditing for Optimal Provable Security

In this section, we study an additional case where election auditing is a crucial parameter for the
preservation of voter privacy. In particular, we point out how the lack of ZK proof verification
affects the level of privacy that can be provably guaranteed in a typical TPKE e-voting system
against a covert adversary. In our argumentation, we avoid technical details that could harm
the readability of the paper, without making discounts on the accuracy of our findings.

Formal modeling of election secrecy (privacy, receipt-freeness, coercion resistance) has been
a prominent goal in the literature, equipping e-voting research with a variety of symbolic and
cryptographic definitions (cf. (Kiayias et al. 2015c) for a relevant list of related work). In all
these definitions, indistinguishability among votes that sum to the same result is the minimum
requirement. Without loss of generality, this privacy property can be narrowed down to the
following case:

If all but two voters are corrupted, then the adversary
should not be able to distinguish whether the two honest voters voted for

(‘YES’,‘NO’) or (‘NO’,‘YES’).

In a typical TPKE e-voting system VS as described in Section 3, the said privacy property, that
we denote by P for brevity, can be proven via a standard cryptographic reduction to the security
of the underlying TPKE scheme, normally a threshold ElGamal cryptosystem. Specifically, we
can show that if there is an adversary A that breaks P, then we can construct an adversary B
that breaks the IND-CPA security of the TPKE scheme.

Intuitively, IND-CPA security suggests that if the adversary obtains the TPKE partial public
keys pk1, . . . , pkk and performs encryptions of its own selection, then it can not distinguish an
encryption of ‘YES’ from an encryption ‘NO’, if the encrypted message is chosen at random. For
syntax consistency, the options ‘YES’ and ‘NO’ are encoded as the messages 1 and 0 respectively.
The quantity ∣∣Pr[B(pk1, . . . , pkk) outputs 1]− Pr[B(pk1, . . . , pkk) outputs 0]

∣∣
13

is called the distinguishinh advantage of the IND-CPA adversary and if the TPKE scheme is
secure, then it is a negligible value. The adversary must allow at least one decryption server to
be honest, otherwise it could decrypt all ciphertexts and security would be trivially broken.

At a high level, the IND-CPA adversary B receives pk1, . . . , pkk and executes the following
steps:

1. It receives a challenge ciphertext C∗ that is an encryption of either 1 (‘YES’) or 0 (‘NO’).

2. It invokes A and simulates an election execution of VS where A and B play the roles of
the corrupted and honest parties respectively. Every corrupted trustee by A corresponds
to a decryption server that B can corrupt.

3. During the simulated execution, A is required to output a verdict about P, i.e. whether
two specific voters voted for (‘YES’,‘NO’) or (‘NO’,‘YES’).

4. If the simulation finishes successfully, then B outputs 1 if A returns (‘YES’,‘NO’), or 0 if A
returns (‘NO’,‘YES’). If the simulation is terminated incomplete or A returns no output,
then B outputs a random response.

By the above construction, the following claim can be shown:

If A breaks P with probability α and the election simulation is completed successfully,
then the distinguishing advantage of B is at least α/2.

As a result, it remains to compute the probability of the event that B runs a successful simula-
tion. For this event to happen, the following two conditions are crucial.

(A). The TPKE scheme must satisfy some algebraic property (homomorphic addition), enabling
B to manipulate the tally accordingly.

(B). B must be able to use the partial tally derived by the adversarial votes controlled by A.

Without proceeding to details, we note that this property is satisfied by the threshold ElGamal
cryptosystem, thus we may assume condition (A) holds. In order for condition (B) to hold, B
must either (i) extract the adversarial tally if the underlying cryptography supports it, or (ii)
guess the adversarial tally, out-of all possible outcomes.

In most standard implementations such as Helios, extraction is not supported4. Therefore,
provable security relies on the guessing probability. In this case, and based on the previous
claim, election privacy can be informally stated as follows:

If A breaks P with probability α and the probability that B guesses the tally is p,
then the distinguishing advantage of B is at least pα/2.

4The ZK proofs are non-interactive and/or the Fiat-Shamir transformations are of the weak type.

14

The importance of auditing the ZK proofs for provable election privacy. By the
above privacy statement, the larger the “reduction factor” p is, the stronger privacy we can
guarantee for VS. Since B can not do more than a random guess, if the number of all possible
outcomes is X, then this probability p is 1/X. We now make a crucial observation; if no party
verifies the ZK proofs, then the strategy of A may include a meaningless adversarial tally that
lies arbitrarily in the underlying group of the TPKE scheme. If the number of candidates is m
and the size the of the group is q, then there are qm possible outcomes. The latter holds even
if A is a covert adversary, since there is no entity that will detect its fraud.

On the other hand, if ZK proofs are verified by some auditor (voter, trustee, or an external
party) and A is covert, then it is forced to submit a meaningful set of votes that results in a valid
tally, otherwise it will be detected with high probability by the soundness of the ZK proofs.
A valid tally can be expressed as one of the non-negative integer solutions of the equation
x1 + . . . + xm = n, where n is the number of voters. Thus, the possible valid outcomes now

upper bounded by

(
n+m− 1

n

)
≤ nm−1.

Consequently, lack of auditing leads to reduction factor of 1/qm, where as ZK verification
implies a factor ≥ 1/nm−1. To get an estimation of this gap, note that even the value 2160 is
considered relatively small for q (elliptic curve groups), whereas n is maximized at ∼ 230 (billions
of voters). If, for instance, we set m = 2, then even assuming 384-bit IND-CPA security for the
TPKE scheme, it must hold that

pα/2 ≤ 2−384 ⇔ α ≤ 2−383/p .

If p = 1/qm ≤ 2−160·2, then α ≤ 2−63, which could be barely acceptable election privacy
guarantee. However, if p ≥ 1/nm−1 ≥ 2−30, then α ≤ 2−353 which implies a strong 353-bit
security level.

6 Conclusion

We provided a formal description of a typical TPKE e-voting system with a star network topol-
ogy, where the EA plays the role of the central node for all other involved entities. We showed
that this architecture is susceptible to MitM attacks against privacy by having a malicious EA
replacing the trustees’ public keys, when BB data are non-authenticated. We instantiated the
attack against Helios and discussed the possibility that these attacks jeopardize the security of
other well-known TPKE-based e-voting systems. We suggested that imposing trustee auditing
as part of the election guidelines could remove vulnerability under such attacks when (i) the
BB is consistent or (ii) the BB is inconsistent, but the adversary will refrain from attacking,
if it is aware that it will be detected. Finally, we presented an additional case where auditing
has a beneficial effect on election privacy, by pointing out the significant gap in the level of
provable privacy in TPKE e-voting systems against covert adversaries, from the state of (a) no
party to (b) at least one party performing verification of the ZK proofs posted in the BB. We
suggest that BB auditing by at least one entity should be enforced, so that election privacy can
be supported persuasively, given current proof techniques.

We believe that this paper promotes subsequent research for the study of auditing with
respect to election privacy. In addition, it gives emphasis to the necessity for meticulous guide-
lines regarding the imperatives of any entity involved in an e-voting execution (see (Kiayias
et al. 2015c) for a list of such guidelines). As future work, auditing for privacy could be treated
formally as part of a security study that focuses on human behavior in e-voting.

15

Acknowledgements. This research was partly supported by ERC project #259152 (CO-
DAMODA), Horizon 2020 project #653497 (PANORAMIX), and project FINER, Greek Sec-
retariat of Research and Technology, funded under action ARISTEIA 1.

References

2013 Electronic Voting Technology Workshop / Workshop on Trustworthy Elections,
EVT/WOTE ’13, Washington, D.C., USA, August 12-13, 2013 (2013), USENIX Associa-
tion.

Adida, B. (2008), Helios: Web-based open-audit voting, in P. C. van Oorschot, ed., ‘Proceedings
of the 17th USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA, USA’,
USENIX Association, pp. 335–348.

Aumann, Y. & Lindell, Y. (2010), ‘Security against covert adversaries: Efficient protocols for
realistic adversaries’, J. Cryptology 23(2), 281–343.

Benaloh, J., Byrne, M. D., Eakin, B., Kortum, P. T., McBurnett, N., Pereira, O., Stark, P. B.,
Wallach, D. S., Fisher, G., Montoya, J., Parker, M. & Winn, M. (2013), Star-vote: A secure,
transparent, auditable, and reliable voting system, in 2013 Electronic Voting Technology
Workshop / Workshop on Trustworthy Elections, EVT/WOTE ’13, Washington, D.C., USA,
August 12-13, 2013 2013 Electronic Voting Technology Workshop / Workshop on Trustworthy
Elections, EVT/WOTE ’13, Washington, D.C., USA, August 12-13, 2013 (2013).

Benaloh, J. C. & Yung, M. (1986), Distributing the power of a government to enhance the
privacy of voters (extended abstract), in J. Y. Halpern, ed., ‘Proceedings of the Fifth Annual
ACM Symposium on Principles of Distributed Computing, Calgary, Alberta, Canada, August
11-13, 1986’, ACM, pp. 52–62.

Bernhard, D., Cortier, V., Pereira, O., Smyth, B. & Warinschi, B. (2011), Adapting Helios for
provable ballot privacy, in V. Atluri & C. Dı́az, eds, ‘Computer Security - ESORICS 2011 -
16th European Symposium on Research in Computer Security, Leuven, Belgium, September
12-14, 2011. Proceedings’, Vol. 6879 of Lecture Notes in Computer Science, Springer, pp. 335–
354.

Bernhard, D., Pereira, O. & Warinschi, B. (2012), How not to prove yourself: Pitfalls of the Fiat-
Shamir heuristic and applications to Helios, in X. Wang & K. Sako, eds, ‘Advances in Cryp-
tology - ASIACRYPT 2012 - 18th International Conference on the Theory and Application
of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings’,
Vol. 7658 of Lecture Notes in Computer Science, Springer, pp. 626–643.

Chaum, D. (1981), ‘Untraceable electronic mail, return addresses, and digital pseudonyms’,
Commun. ACM 24(2), 84–88.

Chaum, D. (2001), Surevote: Technical overview, in ‘Proceedings of the Workshop on Trust-
worthy Elections’, WOTE.

Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S., Sherman, A. T. & Vora, P. L.
(2008), ‘Scantegrity: End-to-end voter-verifiable optical-scan voting’, IEEE Security & Pri-
vacy 6(3), 40–46.

16

Chaum, D., Ryan, P. Y. A. & Schneider, S. A. (2005), A practical voter-verifiable election
scheme, in S. D. C. di Vimercati, P. F. Syverson & D. Gollmann, eds, ‘Computer Security
- ESORICS 2005, 10th European Symposium on Research in Computer Security, Milan,
Italy, September 12-14, 2005, Proceedings’, Vol. 3679 of Lecture Notes in Computer Science,
Springer, pp. 118–139.

Clarkson, M. R., Chong, S. & Myers, A. C. (2008), Civitas: Toward a secure voting system,
in ‘2008 IEEE Symposium on Security and Privacy (S&P 2008), 18-21 May 2008, Oakland,
California, USA’, IEEE Computer Society, pp. 354–368.

Cohen, J. D. & Fischer, M. J. (1985), A robust and verifiable cryptographically secure elec-
tion scheme (extended abstract), in ‘26th Annual Symposium on Foundations of Computer
Science, Portland, Oregon, USA, 21-23 October 1985’, IEEE Computer Society, pp. 372–382.

Cortier, V. & Smyth, B. (2011), Attacking and fixing Helios: An analysis of ballot secrecy,
in ‘Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF 2011,
Cernay-la-Ville, France, 27-29 June, 2011’, IEEE Computer Society, pp. 297–311.

Cramer, R., Gennaro, R. & Schoenmakers, B. (1997), A secure and optimally efficient multi-
authority election scheme, in W. Fumy, ed., ‘Advances in Cryptology - EUROCRYPT ’97,
International Conference on the Theory and Application of Cryptographic Techniques, Kon-
stanz, Germany, May 11-15, 1997, Proceeding’, Vol. 1233 of Lecture Notes in Computer
Science, Springer, pp. 103–118.

Estehghari, S. & Desmedt, Y. (2010), Exploiting the client vulnerabilities in internet e-voting
systems: Hacking Helios 2.0 as an example, in D. W. Jones, J. Quisquater & E. Rescorla,
eds, ‘2010 Electronic Voting Technology Workshop / Workshop on Trustworthy Elections,
EVT/WOTE ’10, Washington, D.C., USA, August 9-10, 2010’, USENIX Association.

Estonia (n.d.).
URL: https://www.valimised.ee/eng/

Fiat, A. & Shamir, A. (1986), How to prove yourself: Practical solutions to identification and
signature problems, in A. M. Odlyzko, ed., ‘Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings’, Vol. 263 of Lecture Notes in Computer Science,
Springer, pp. 186–194.

Gjøsteen, K. (2010), ‘Analysis of an internet voting protocol’, IACR Cryptology ePrint Archive
2010, 380.

Gjøsteen, K. (2013), ‘The Norwegian internet voting protocol’, IACR Cryptology ePrint Archive
2013, 473.

Goldwasser, S., Micali, S. & Rackoff, C. (1985), The knowledge complexity of interactive proof-
systems (extended abstract), in R. Sedgewick, ed., ‘Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA’, ACM,
pp. 291–304.

Heiderich, M., Frosch, T., Niemietz, M. & Schwenk, J. (2011), The bug that made me presi-
dent: a browser- and web-security case study on Helios voting, in A. Kiayias & H. Lipmaa,
eds, ‘E-Voting and Identity - Third International Conference, VoteID 2011, Tallinn, Estonia,
September 28-30, 2011, Revised Selected Papers’, Vol. 7187 of Lecture Notes in Computer
Science, Springer, pp. 89–103.

17

Helios (n.d.), ‘Helios privacy claims’. Last accessed: 2014-07-31.
URL: https://vote.heliosvoting.org/privacy

Jefferson, D. R., Rubin, A. D., Simons, B. & Wagner, D. (2004), ‘Analyzing internet voting
security’, Commun. ACM 47(10), 59–64.

Juels, A., Catalano, D. & Jakobsson, M. (2005), Coercion-resistant electronic elections, in
V. Atluri, S. D. C. di Vimercati & R. Dingledine, eds, ‘Proceedings of the 2005 ACM Work-
shop on Privacy in the Electronic Society, WPES 2005, Alexandria, VA, USA, November 7,
2005’, ACM, pp. 61–70.

Kiayias, A., Korman, M. & Walluck, D. (2006), An internet voting system supporting user
privacy, in ‘22nd Annual Computer Security Applications Conference (ACSAC 2006), 11-15
December 2006, Miami Beach, Florida, USA’, IEEE Computer Society, pp. 165–174.

Kiayias, A., Zacharias, T. & Zhang, B. (2015a), DEMOS-2: scalable E2E verifiable elections
without random oracles, in I. Ray, N. Li & C. Kruegel, eds, ‘Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October
12-6, 2015’, ACM, pp. 352–363.
URL: http://dl.acm.org/citation.cfm?id=2810103

Kiayias, A., Zacharias, T. & Zhang, B. (2015b), End-to-end verifiable elections in the standard
model, in E. Oswald & M. Fischlin, eds, ‘Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II’, Vol. 9057 of Lecture
Notes in Computer Science, Springer, pp. 468–498.

Kiayias, A., Zacharias, T. & Zhang, B. (2015c), On the necessity of auditing for election privacy
in e-voting systems, in S. K. Katsikas & A. B. Sideridis, eds, ‘E-Democracy - Citizen Rights
in the World of the New Computing Paradigms - 6th International Conference, E-Democracy
2015, Athens, Greece, December 10-11, 2015, Proceedings’, Vol. 570 of Communications in
Computer and Information Science, Springer, pp. 3–17.
URL: http://dx.doi.org/10.1007/978-3-319-27164-4

Kremer, S., Ryan, M. & Smyth, B. (2010), Election verifiability in electronic voting protocols, in
D. Gritzalis, B. Preneel & M. Theoharidou, eds, ‘Computer Security - ESORICS 2010, 15th
European Symposium on Research in Computer Security, Athens, Greece, September 20-22,
2010. Proceedings’, Vol. 6345 of Lecture Notes in Computer Science, Springer, pp. 389–404.

Küsters, R., Truderung, T. & Vogt, A. (2012), Clash attacks on the verifiability of e-voting sys-
tems, in ‘IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco,
California, USA’, IEEE Computer Society, pp. 395–409.

Kutylowski, M. & Zagórski, F. (2010), Scratch, Click & Vote: E2E voting over the internet,
in D. Chaum, M. Jakobsson, R. L. Rivest, P. Y. A. Ryan, J. Benaloh, M. Kutylowski &
B. Adida, eds, ‘Towards Trustworthy Elections, New Directions in Electronic Voting’, Vol.
6000 of Lecture Notes in Computer Science, Springer, pp. 343–356.

Pedersen, T. P. (1991), A threshold cryptosystem without a trusted party (extended abstract),
in D. W. Davies, ed., ‘Advances in Cryptology - EUROCRYPT ’91, Workshop on the Theory
and Application of of Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceed-
ings’, Vol. 547 of Lecture Notes in Computer Science, Springer, pp. 522–526.

18

Smyth, B., Frink, S. & Clarkson, M. R. (2015), ‘Computational election verifiability: Definitions
and an analysis of Helios and JCJ’, IACR Cryptology ePrint Archive 2015, 233.

Springall, D., Finkenauer, T., Durumeric, Z., Kitcat, J., Hursti, H., MacAlpine, M. & Hal-
derman, J. A. (2014), Security analysis of the Estonian internet voting system, in G. Ahn,
M. Yung & N. Li, eds, ‘Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014’, ACM, pp. 703–715.

Tsoukalas, G., Papadimitriou, K., Louridas, P. & Tsanakas, P. (2013), From Helios to Zeus,
in 2013 Electronic Voting Technology Workshop / Workshop on Trustworthy Elections,
EVT/WOTE ’13, Washington, D.C., USA, August 12-13, 2013 2013 Electronic Voting
Technology Workshop / Workshop on Trustworthy Elections, EVT/WOTE ’13, Washing-
ton, D.C., USA, August 12-13, 2013 (2013).

v4, H. (n.d.), ‘Helios github repository’. Last accessed: 2014-07-31.
URL: https://github.com/benadida/helios-server

Zagórski, F., Carback, R., Chaum, D., Clark, J., Essex, A. & Vora, P. L. (2013), Remotegrity:
Design and use of an end-to-end verifiable remote voting system, in M. J. J. Jr., M. E. Locasto,
P. Mohassel & R. Safavi-Naini, eds, ‘Applied Cryptography and Network Security - 11th
International Conference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings’,
Vol. 7954 of Lecture Notes in Computer Science, Springer, pp. 441–457.

19

	Introduction
	Preliminaries
	Notation
	TPKE Schemes
	Zero-Knowledge Proofs of Knowledge

	A typical TPKE-based e-voting system
	Entities in a TPKE e-voting system
	Description

	A MitM attack against voter privacy
	The system vulnerability and our MitM attack
	Instantiation of our MitM attack against Helios
	Effectiveness of our MitM attack
	Countermeasures

	Auditing for Optimal Provable Security
	Conclusion

