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The large-scale features of the global ocean circulation and the sensitivity of these features with respect
to forcing changes are critically dependent upon the influence of the mesoscale eddy field. One such fea-
ture, observed in numerical simulations whereby the mesoscale eddy field is at least partially resolved, is
the phenomenon of eddy saturation, where the time-mean circumpolar transport of the Antarctic Circum-
polar Current displays relative insensitivity to wind forcing changes. Coarse-resolution models employing
the Gent-McWilliams parameterisation with a constant Gent-McWilliams eddy transfer coefficient seem
unable to reproduce this phenomenon. In this article, an idealised model for a wind-forced, zonally sym-
metric flow in a channel is used to investigate the sensitivity of the circumpolar transport to changes in
wind forcing under different eddy closures. It is shown that, when coupled to a simple parameterised
eddy energy budget, the Gent-McWilliams eddy transfer coefficient of the form described in Marshall
et al. (2012) [A framework for parameterizing eddy potential vorticity fluxes, J. Phys. Oceanogr., vol. 42,
539-557], which includes a linear eddy energy dependence, produces eddy saturation as an emergent

property.

© 2017 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Studies of the response of the large-scale ocean circulation
to changing forcing scenarios in numerical ocean models require
long time integrations that are prohibitively expensive even at
mesoscale eddy permitting resolutions. Since this is expected to
remain the case for the foreseeable future, an ongoing challenge in
numerical ocean modelling is the representation of the unresolved
mesoscale eddy field in coarse resolution models. A particularly
successful scheme that is employed is the Gent-McWilliams (GM)
parameterisation (Gent and McWilliams, 1990; Gent et al., 1995),
which parameterises mesoscale eddies via the introduction of a
non-divergent eddy transport velocity. The eddy transport veloc-
ity can be interpreted as arising from the difference between the
Eulerian average of the velocity at fixed height and the thickness-
weighted average of the velocity at fixed density (McDougall and
McIntosh, 2001), and modifies the advective transport of tracer
quantities. By definition, the non-divergent eddy transport velocity
conserves all moments of the advected quantities, and is thereby
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adiabatic. The property of adiabatic stirring is particularly attrac-
tive, being shown to remove spurious heating and cooling in the
deep ocean, such as that associated with the Deacon cell in the
Southern Ocean (Danabasoglu et al., 1994).

To this point, studying the modelled oceanic response to chang-
ing atmospheric forcing in conjunction with the GM parameteri-
sation is of particular importance for emergent climatologies un-
der different forcing scenarios. Two important large-scale Southern
Ocean phenomena are of particular interest in this regard. The first
is “eddy saturation”, originally discussed in Straub (1993) from an
argument based on critical stability, and here to be understood as
the relative insensitivity of the time-mean circumpolar transport
with respect to wind forcing changes. The other is “eddy com-
pensation”, here to be understood as the reduced sensitivity of
the residual meridional overturning circulation with wind forcing
changes (e.g., Meredith et al., 2012; Viebahn and Eden, 2012; Mun-
day et al., 2013), which has consequences for the meridional trans-
port of important tracers such as heat, salt and carbon. This article
focuses on eddy saturation.

As argued by Straub (1993), if fluid interaction with topography
is the main sink for momentum input by wind stress, and conse-
quently the zonal abyssal flow is weak, then thermal wind shear is

1463-5003/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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the dominant contribution to circumpolar transport; Pefia-Molino
et al. (2014) suggest that thermal wind shear accounts for at least
75% of the net circumpolar transport in the Southern Ocean. Thus
circumpolar transport is intimately linked to isopycnal slope, with
the slope steepness limited by baroclinic instability. Eddy satura-
tion arises through a balance between steepening of isopycnals by
wind stress, and flattening of isopycnals by the presence of the
mesoscale eddy field. While the question of whether the ocean is
in an eddy saturated state remains unconstrained by current ob-
servations, the reduction in circumpolar transport sensitivity with
varying wind stress has been observed in a variety of numerical
models that at least partially resolve a mesoscale eddy field (e.g.,
Hallberg and Gnanadesikan, 2006; Hogg and Blundell, 2006; Hogg
et al., 2008; Farneti and Delworth, 2010; Farneti et al., 2010). In
Munday et al. (2013), an eddy permitting one-sixth degree model
of a 20° wide ocean sector was integrated with varying wind forc-
ings. This eddy permitting model, employing a very small value of
the GM eddy transfer coefficient, showed near complete eddy sat-
uration. By contrast, in lower resolution half degree and two de-
gree variants of the same model, where larger values of the GM
eddy transfer coefficient were utilised, the resulting time-mean cir-
cumpolar transport displayed significant sensitivity with respect to
the wind forcing. Hogg and Munday (2014) found that although
the value of the time-mean circumpolar transport was affected by
the domain geometry, the relative insensitivity with changing wind
stress at eddy permitting resolution was robust.

Thus it has been found that the GM scheme with a spatially
and temporally constant GM eddy transfer coefficient is unable to
represent eddy saturation (see also Farneti et al., 2015). With in-
creased wind forcing, a more vigourous eddy field is to be ex-
pected. Since the GM eddy transfer coefficient in some sense spec-
ifies the intensity and efficiency of the parameterised eddy field,
it is expected that a positive correlation between the strength of
wind forcing and the magnitude of the GM coefficient eddy trans-
fer is minimally required for emergent eddy saturation. Various
proposals already exist with a non-constant GM eddy transfer co-
efficient. In Visbeck et al. (1997), using linear stability arguments, a
GM eddy transfer coefficient is proposed which depends upon the
stratification profile, as well as a mixing length. In Ferreira et al.
(2005) the eddy-mean-flow interaction in a global ocean model is
determined via an optimisation procedure, yielding diagnosed val-
ues for the GM eddy transfer coefficient. Their optimisation is used
to infer a GM eddy transfer coefficient which depends on the ver-
tical stratification, and has subsequently been incorporated into a
number of ocean general circulation models (e.g., Danabasoglu and
Marshall, 2007; Gent and Danabasoglu, 2011). The simulations de-
scribed in Gent and Danabasoglu (2011) do show some eddy com-
pensation, as a consequence of the dependence of the GM eddy
transfer coefficient on Southern Ocean stratification. However, as
discussed in Munday et al. (2013), this mechanism precludes the
model from achieving full eddy saturation.

Through the consideration of the eddy kinetic energy budget,
Cessi (2008) proposes a mixing length based eddy parameterisa-
tion, with a GM eddy transfer coefficient depending on the ocean
state and explicitly depending on the strength of the bottom drag.
An approach also based upon consideration of the eddy kinetic en-
ergy budget is discussed in Eden and Greatbatch (2008) (see also
Marshall and Adcroft, 2010), also employing a mixing length argu-
ment but utilising a local parameterised eddy kinetic energy bud-
get to inform the magnitude and spatial structure of the resulting
GM eddy transfer coefficient. While there is no conclusive observa-
tional evidence to suggest that the ocean is in an completely eddy
saturated regime, there is ample evidence from mesoscale eddy-
permitting model experiments that coarse resolution models with
current parameterisations appear unable to replicate eddy satura-

tion in a self-consistent way (e.g., the work Fyfe et al., 2007 varies
the GM eddy transfer coefficient manually with changing wind
stress).

In Marshall et al. (2012) a geometric interpretation of the eddy-
mean-flow interaction for the quasi-geostrophic equations was de-
rived. A horizontally down-gradient closure for the horizontal eddy
buoyancy fluxes leads to a GM eddy transfer coefficient of the
form

N
K:uEW, (1)

where E is the total (kinetic plus potential) eddy energy, and
N/M?2 =T is an Eady time-scale which depends on the mean strati-
fication, with N2 = —(g/p0)90%/9z and M? = (g/00)| V0|, where
g is the gravitational acceleration, pq is a reference density, p” is
the mean density averaged at fixed height, and Vy is its horizon-
tal gradient operator. A crucial point is that, if the eddy energy
is known, there are no undetermined dimensional parameters; the
only freedom is to specify the non-dimensional geometric parame-
ter o of magnitude less than or equal to one (see, e.g., Bachman
et al., 2017). A form similar to (1) also appears in Jansen et al.
(2015) — implied by their Egs. (9) and (11) — but with the eddy ki-
netic energy in place of the full eddy energy, and motivated by the
inverse energy cascade being controlled by the rate of eddy energy
generation through baroclinic instability as per Larichev and Held
(1995). However the form derived in Marshall et al. (2012) pro-
vides an explicit upper bound on the relevant geometric parameter
o; no other dimensional scaling is possible provided the geometric
parameter « is bounded away from zero. Moreover, here the eddy
energy is determined prognostically via the solution of a dynamical
equation which is coupled to the equations for the mean state.

This article assesses the ability of the Marshall et al. (2012) GM
eddy transfer coefficient to reproduce eddy saturation, via numeri-
cal calculations in an idealised, zonally averaged, two-dimensional
ocean channel model. The idealised numerical model is motivated
by the physical model discussed in Marshall et al. (2017), where
eddy saturation was demonstrated through considerations of the
momentum and eddy energy budget, together with the scaling
for the GM eddy transfer coefficient given by Eq. (1). The ability
of the Marshall et al. (2012) scheme to produce eddy saturation
is compared against a number of alternative approaches, includ-
ing approaches based upon mixing length arguments, and based
upon the Visbeck et al. (1997) proposal. Since the Marshall et al.
(2012) variant requires information about the eddy energy, the
evolution of the mean state is coupled to a prognostic equation
for the parameterised domain integrated eddy energy (cf. the local
budget for the eddy kinetic energy in Eden and Greatbatch, 2008).

The paper proceeds as follows. In Section 2 the GM scheme and
the Marshall et al. (2012) parameterisation variant are revisited, fo-
cusing in particular on the energetics of the problem, and provid-
ing physical and mathematical arguments as to why the Marshall
et al. (2012) variant may be expected to have skill in producing
emergent eddy saturation. Section 3 contains the details of the ide-
alised numerical model and of the other parameterisation variants
considered in this work. The implementation of the parameteri-
sation variants and their results are presented in Section 4 for a
case where the GM eddy transfer coefficient is assumed to be con-
stant over the domain, and in Section 5 for a case where the GM
eddy transfer coefficient is spatially varying, focusing on the case
where a spatial structure depending upon the vertical stratification
is enforced. The paper concludes in Section 6, where the results are
discussed, and a recipe for implementation in a global circulation
models is proposed.
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2. Gent-McWilliams and energetic constraints
2.1. The Gent-McWilliams scheme and the energetic consequences

The GM scheme parameterises the effects of baroclinic eddies
via the introduction of an adiabatic stirring of the mean density,
acting to decrease the available potential energy of the system
(e.g., Gent and McWilliams, 1990). Limiting consideration to the
Boussinesq case, the mean density equation, zonally averaged at
constant density (Andrews, 1983; McDougall and McIntosh, 2001;
Young, 2012), is

ap* @ p*) I p¥)
o T Ay Ttz

where p* is the mean density field associated with averaging at
constant density (see Young, 2012), with the thickness-weight av-
eraged meridional velocity at constant density given by

-1
~  f0p

and w* defined such that (again following Young, 2012)
v 4 ow*
ay 0z
Following McDougall and McIntosh (2001),

0 0 0
w w w*

where u* is the velocity zonally averaged at constant height, and
u* is the eddy transport velocity, with

oF oW ov  ow

Yz Tyt ez
The GM scheme then takes the form

—KS 0
w=Vx| 0 |=|-0(s)/0z], (7)
0 d(ks)/dy

where « is the GM eddy transfer coefficient, and s is the slope of
the mean density surfaces

ap*\ [ 0p* !
)

The energetic consequences of the GM scheme are as follows.
Consider the zonally averaged hydrostatic Boussinesq equations in
the form

T

=0, (2)

ap*
oz G)

i

=0. (4)

—o. (6)

L 0u*  _,0u -z =z
W‘f‘vzaiy‘f‘ 7_.’?221: _D7 (93)
o 0" _, o7 2 1 0P
19p° gp*
0= ———+ —=—. 9
Po 0z po (c)

Here contributions from Reynolds stresses are neglected it is
assumed that all significant forcing F° and dissipation D’ occurs
in the zonal mean momentum equation, and p* is used in place
of p? in the hydrostatic relation (consistent with the discussion in
appendix B of McDougall and McIntosh, 2001). A budget for the
mean energy may be obtained by multiplying by the mean veloc-
ity, integrating over the domain, using incompressibility and the
mean density equation, and assuming that the normal components

of both ¥ and u* vanish on all boundaries. The resulting budget
becomes

dt//[ P + = ,001/21/2+p gz]dydz

=//p0a (F —E)dydz+/ whgo* dy dz. (10)

The last term is a conversion term which, via substituting w* from
Eq. (7) and performing an integration by parts, results in

% // [1p0ﬁzﬁz + 1/001727 + ,o#gz] dydz

//,oou (F —D)dydz / ,OOK dydz (11)

with horizontal and vertical buoyancy frequencies M and N respec-
tively, where
2 g dp*

NP = -2 (12)

ap*
dy

The final term in Eq. (11) is the conversion of eddy energy to mean
energy. It follows that the eddy energy equation takes the form
(see Appendix A for a more complete derivation)

d M
a//mEdydz://poKWdydz—A, (13)

where it is assumed that the eddy energy source from external
forcing is negligible compared to the eddy energy generation given
in the first term on the right hand side of (13). Here, poE is the
eddy energy density, and A represents the dissipation of eddy en-
ergy, for example via topographic form stress. A simple model for
this dissipation term is

A=-) // ooE dydz, (14)

where A is a dissipation time scale. The eddy energy budget
(13) then becomes

d ([ Edydz= M4d dz—A || Edydz (15)
a/ Y —//KWY ‘// vz

The first right-hand-side term in Eq. (13), which is a stratification
weighted integral of the GM eddy transfer coefficient, is a conse-
quence of the GM scheme but is independent on the precise vari-
ant of the GM eddy transfer coefficient used.

M= £

2.2. Marshall et al. (2012) geometric framework and consequences

In Marshall et al. (2012) a geometric framework for the eddy
fluxes is proposed. In particular a horizontally down-gradient clo-
sure for the horizontal eddy buoyancy fluxes yields

k =oF % (16)
where « is a non-dimensional geometric eddy efficiency parameter
that is bounded in magnitude by one. Provided o N/M? is bounded
away from zero and infinity, this implies that the magnitude of the
GM eddy transfer coefficient should scale with the eddy energy
E. This is the case if the mean density has a non-trivial gradient
in both the horizontal and vertical directions, and if the geomet-
ric parameter « is bounded away from zero. Note that the depen-
dence on the eddy energy is linear, as opposed to a square root
dependence that is suggested by a mixing-length based argument
(e.g., Cessi, 2008; Eden and Greatbatch, 2008). A linear dependence
of the eddy energy may be obtained as in Jansen et al. (2015) if
the length scale has a dependence on square root of the eddy en-
ergy also. With this form, once information about the eddy energy
is known, for example from the solution of a parameterised eddy
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energy budget, then the only remaining freedom is in the specifi-
cation of the non-dimensional geometric parameter o bounded in
magnitude by one (see, e.g., Bachman et al., 2017).

The physical implications of this closure are described in
Marshall et al. (2017). Here we highlight the relevant properties in
terms of the expected scaling of the eddy energy on « and the dis-
sipation, and further the implications for the scaling of the emer-
gent zonal transport, eddy energy, and GM eddy transfer coeffi-
cient.

With Eq. (16), the eddy energy budget (15) becomes

% /Edydz:/ (@sN — M)Edydz, (17)
where s = —M?2/N2. In particular, in steady state, the balance

/ (@sN — A)Edydz = 0 (18)
holds. Note that, from thermal wind shear,

%g; 1%7 SN2, (19)
and hence

.[/(ako o —A)Edydz:o. (20)

This is an expression of an eddy energy weighted balance between
the eddy energy generation rate due to the eddies, given by the
first integrand term, and the eddy energy dissipation rate, given
by the second. The integral balance can be achieved if the verti-
cal shear increases with the dissipation rate A, and decreases with
the geometric parameter «. Note that, following the argument of
Straub (1993), the zonal mean transport, defined as

L (0
transport = / / u“dydz (21)
0o JorL

and making the assumption that " (—L;) = 0, scales with the ver-
tical shear appearing as a factor in the first integrand term. Hence
Eq. (20) suggests that the zonal transport defined in Eq. (21) scales
with the dissipation rate A, and scales inversely with the geomet-
ric parameter «, but not explicitly on the external forcing F*. For
an appropriately smooth eddy energy the following scaling (see
Appendix B for details)

/// Il

is further suggested, again indicating increased transport with in-
creasing A, and decreased transport with increased «, but not on
the external forcing F (cf. Marshall et al., 2017).

These scalings may be interpreted as follows. Increasing A
means the emergent eddy generation rate needs to increase to
maintain the integral balance (20), which is achieved via changes
in the emergent stratification profile, resulting in steeper isopyc-
nals and thus a larger transport. An analogous explanation for de-
creasing « suggests an increase in the transport.

Similar scalings of the emergent eddy energy and GM eddy
transfer coefficient may be derived. Consider the mean energy
equation along with (16). At steady state and assuming the dis-
sipation of the mean is small, the mean energy equation is

//( il 8u

For fixed A, and assuming saturation such that #* and N do not
depend on the forcing parameter, Eq. (23) suggest that E ~ |fZ|. As
a consequence, since K = oE(N/M?), but N/M? is largely invariant
to changes in forcing, this results in « ~ |le. On the other hand,

8u

)\
)aa x (22)

uz>dydz: 0. (23)

the functional dependence of the emergent eddy energy and GM
eddy transfer coefficient on varying A and « is not so straightfor-
ward, since it is the vertical stratification weighted transport that
is more directly influenced by these two parameters.

The suggested dependencies and scalings for the emergent
properties are then: (i) the transport (21) to be independent of the
magnitude of forcing, increasing with increased dissipation and de-
creasing with increased «; (ii) GM eddy transfer coefficient x to
scale linearly with the magnitude of wind forcing; (iii) eddy en-
ergy level to increase linearly with the magnitude of wind forc-
ing. These scalings are confirmed later via diagnosing the emergent
properties from the simulation data.

3. Numerical implementation

The Marshall et al. (2012) variant for the GM eddy trans-
fer coefficient given by Eq. (16), together with the parameterised
eddy energy budget in Eq. (15), is implemented in a simpli-
fied two-dimensional model, similar to that employed in Marshall
(1997) and Marshall and Radko (2003) (see also Gent et al., 1995).
The channel model is described in Section 3.1, and the other pa-
rameterisations to be tested against the Marshall et al. (2012) pa-
rameterisation are detailed in Section 3.2.

3.1. Channel model

A linear equation of state is considered, with p = pg(1 + Bs(S —
So) — Br(T —Ty)), where S is salinity, T is temperature, Bg 1 are ex-
pansion coefficients, and Ty and Sy are a reference temperature and
salinity respectively. The prognostic equation for the mean density
is (cf. Gent et al., 1995)

ap*
ot

The mean density is advected by the residual velocity i =
(0,9, w¥)T, which is the sum of the Eulerian circulation #* and
the eddy induced transport velocity u*. The domain is chosen
to be (¥.2) € (0,Ly) x (—L,0), and the equation is solved with
no-normal-flow boundary conditions i - n =0 on boundaries. The
model is integrated in time until it reaches a steady state, with
the convergence criterion to be defined.

As a simple model for a forced-dissipative configuration, the
Eulerian circulation appearing in the prognostic Eq. (24) is taken
to satisfy the f-plane steady state equation
_fT/Z_l a(fs_fb)s %ﬁ"'ﬂ

y
and the thermal wind Eq. (19), where 75 is the surface wind stress,
and Tt is a representation of the bottom form stress (see Marshall,
1997). At the surface, the wind stress is

(l — Cos Zyty) (26)
Ly

with peak wind stress 7, linearly decreasing to zero within the
upper grid cell of the model. The bottom stress 7, is chosen to
exactly cancel the local surface wind stress, i.e., t, = 75, applied
within the bottom cell, representing the bottom form stress across
topographic barriers (Munk and Palmén, 1951). A choice of 7 ef-
fectively specifies the Eulerian circulation associated with the Dea-
con cell (cf. Marshall, 1997). The state po* determines the eddy in-
duced transport velocity (0, v*, w*)T through Eq. (7), which is then
used to form the residual velocity to time step the prognostic Eq.
(24). Assuming that T vanishes at the sea floor due to topography
blocking the flow, ¥ may be diagnosed via thermal wind shear re-
lation (19).

+ —( Do%) + o (W) = 0. (24)

-0, (25)

%(,z=0) =
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Table 1

Parameter values used in the numerical model. The values of a, b and c are chosen
to roughly coincide with the stratification profiles from the World Ocean Circula-
tion Experiment (Gouretski and Kolterman, 2004; Koltermann et al., 2011) for the
Southern Ocean.

Parameter  Value Units Description

(Ly, L) (2000, 3) km domain size

(Ay, Az) (10, 0.1) km grid spacing

C 0.1 - CFL number

Smax 5x 1072 — slope clipping value s in generating the
eddy induced transport velocity

N2, 5x 1076 s2 minimum value of N? in the integrands

1 10~ - tolerance for switching off convective
013 1 i itchi ff i
sorting scheme
2 - - tolerance for solution convergence
101 1 e luti
0 —10~ rad s- oriolis parameter
04 ds! Corioli
Lo 1000 kg m—3 reference density
g 9.8 ms2 gravitational acceleration
a 28 kg m~3  base density for p*(t = 0) given in (28)
b -0.6 kg m—3 factor for p*(t = 0) given in (28)
c 750 m e-folding depth for p*(t=0) given in

(28)

The prognostic equations are discretised in space using a uni-
form resolution Arakawa C-grid (Arakawa and Lamb, 1977) with
y- and z-direction grid spacings of Ay and Az respectively. The
density p* is defined at the cell centres, fluxes and derivatives of
o* on cell interfaces, with appropriate interpolation of the fields
where required. The boundary conditions are implemented by set-
ting boundary fluxes to zero. The forcing and dissipation are taken
to be applied over the top and bottom cells. A fourth order Runge-
Kutta method is employed to time step the prognostic Eq. (24) and
eddy energy Eq. (15), with a variable At chosen at the end of each
time step so as to target a desired Courant number C (Courant
et al., 1928),

D] [w*]
max (Ay A7 At <C. (27)

For numerical stability in integrating the parameterised eddy en-
ergy equation, the variable time step is further restricted so that
At < 12 hours. The calculations are initialised with an exponential
density profile

o#(t =0) = po + a+ be?*, (28)

where a, b, ¢ are as in Table 1, informed by the World Ocean Cir-
culation Experiment (Gouretski and Kolterman, 2004; Koltermann
et al.,, 2011) data.

To avoid unbounded velocities associated with weak stratifica-
tion, the slope tapering of Gerdes et al. (1991) with tapering func-
tion

2
Feiw(2) = min (1, <|i?;’)‘|> ) (29)

is employed, and it is §= Fg (¥, 2)s that is used in computing
the parameterised eddy transport velocity (7). The advective form
of the GM scheme is employed (e.g., Griffies et al., 1998; Griffies,
1998). In equations in which a division by the vertical stratifica-
tion N2 appears (e.g. the first right-hand-side term of Eq. (15)) this
is replaced with

N? = max (N2

min’

N?) (30)
with a chosen value of the minimum vertical stratification men.
Tests have shown the value ernm determines somewhat the eddy
energy growth: too large a value and the eddy energy growth is
inhibited, while too small a value results in very large eddy energy
growth with non-negligible contributions from the model at depth.

During time stepping a basic convection scheme is applied,
with each vertical water column sorted by density within each

Runge-Kutta stage. The convection scheme facilitates the develop-
ment of out-cropping at the surface, which would otherwise be
constrained by the initially constant surface density and the no-
normal-flow boundary condition. The convection scheme is dis-
abled when

_ J1p¥ - pf?dydz
g2 ™t 777"
[ 1o¥|2dydz

where pﬁz are outputs that are separated in time by some thresh-
old (taken to be at least 50 days in dimensional time), and & is a
user-defined tolerance. A solution is deemed to have converged to
a steady state when £ < &,, for some convergence threshold &, <
&1. For each of the two cases (spatially constant in Section 4 and
stratification dependent in Section 5) an initial steady state control
run of the GEOM variant, with a wind forcing of 7y = 0.2 N m—2
was computed, and used to tune the free parameters of the other
parameterisations. Subsequently, all other calculations were each
restarted from a previously converged solution at a nearby param-
eter value and integrated for a maximum of a further 100 years
if 7o > 0.1 N m~2, and for a maximum of a further 500 years if
7o < 0.1 N m~2. If a steady state was not reached in this time the
calculation was excluded from further analysis; this criterion af-
fects only the stratification dependent case.
Model parameter values are provided in Table 1.

<&, (31)

3.2. Alternative GM eddy transfer coefficients

For comparison, a number of alternative variants based on ex-
isting parameterisation schemes are also implemented in the ide-
alised numerical model. A scheme that employs a mixing length
assumption and has dependence on the eddy energy is given by

k = amvEL, (32)

where ay. is some non-dimensional parameter (without a formal
bound) and L is a mixing length scale to be specified. This scheme
has a weaker dependence on the eddy energy. An approach of this
form is described in Eden and Greatbatch (2008), where the eddy
energy is replaced with the eddy kinetic energy, and the length
scale is taken to be the minimum of the Rhines scale and the
Rossby deformation radius (their Eq. 25). Setting the mixing length
equal to the Rhines scale increases the eddy kinetic energy ex-
ponent to 3/4, and hence this is closer to the linear energy scal-
ing in Eq. (16). A similar mixing length approach is taken in Cessi
(2008) where a statistically steady version of (15) is utilised to de-
rive a form of the GM eddy transfer coefficient that has explicit
dependence on the bottom drag. In Cessi (2008), the eddy kinetic
energy is used in place of the eddy energy, and L is chosen to be
the Rossby deformation radius.

Note that the derivation of Eden and Greatbatch (2008), in their
Eq. (26), suggests that the GM eddy transfer coefficient should
have a linear dependence on the eddy kinetic energy. However in
their work the chosen length scale implicitly sets the magnitude of
the eddy kinetic energy. Here, instead, the eddy energy is parame-
terised directly. In Jansen et al. (2015) a mixing length which scales
with the square root of the eddy kinetic energy is discussed, yield-
ing a form equivalent to the scaling of (16), with the eddy kinetic
energy again used in place of the eddy energy.

Based on instability arguments, Visbeck et al. (1997) proposed

12 M?
K = Oy 5 = aVMHSsz’ (33)

where ayyys iS some non-dimensional parameter (again without
a formal bound). This variant has no explicit dependence on the
eddy energy, and instead depends only on the mean stratification.
In Section 3d of Visbeck et al. (1997) the length scale L is related
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Table 2

Functional dependence of the four considered variants on the eddy energy E, the
horizontal stratification M, and the vertical stratification N, expressed in the form
Kk <xEAMBNC, Where relevant the mixing length parameter has been set equal to the
Rossby deformation radius Lp = NH/|f].

Variant Functional form A B C
CONST K = Ko = koE°MON? 0 0 0
GEOM Kk =aET = aE'M—2N! 1 -2 1
ML K = anivVELy = o (H/ fo)EV/2MON? 1/2 0 1
VMHS* and VMHS k= aymusL3 /T = aywns (H2/f2)E°M2N! 0 2 1

to the grid scale, Rossby deformation radius, and the width of the
baroclinic zone.

Diagnosing diffusivities from a 4° global numerical ocean model
constrained using observation data and via an adjoint based opti-
misation, in Ferreira et al. (2005), it is suggested that

NZ
K = koS, S=-—— (34)

where kg is some reference GM eddy transfer coefficient value,
and S imparts a spatial structure to the GM eddy transfer coef-
ficient that is dependent on the vertical stratification. The use of
such a structure function results in a GM eddy transfer coefficient
that is large towards the ocean surface whilst being small in the
deep ocean where the stratification is weak. The reference value
Ko is normally taken to be constant (e.g., Ferreira et al., 2005; Dan-
abasoglu and Marshall, 2007; Gent and Danabasoglu, 2011).

3.3. Summary

In summary, the four variants for the GM eddy transfer coeffi-
cient considered in this article are:

e a constant GM eddy transfer coefficient, denoted CONST;

e the Marshall et al. (2012) derived variant, denoted GEOM;

e a mixing length variant similar to the approach of Eden and
Greatbatch (2008) and Cessi (2008), denoted ML;

¢ a scheme similar to that described in Visbeck et al. (1997), de-
noted VMHS*.

Each of these four variants are considered subject to two ap-
proximations, with implementation details given in the appropri-
ate sections. This first is where the GM eddy transfer coefficient is
assumed to be spatially constant. The second is one where the GM
eddy transfer coefficient has an imposed spatial structure set by
S from Eq. (34), to be in line with more modern numerical mod-
els (e.g., Danabasoglu and Marshall, 2007; Gent and Danabasoglu,
2011). Where relevant all length scales are set equal to the Rossby
deformation radius Lp = NH/|f]|. All the implemented variants are
coupled to the parameterised eddy energy Eq. (15), although this
plays a prognostic role only for the GEOM and ML variants.

The use of a prescribed spatial structure for the GM eddy trans-
fer coefficient contradicts somewhat with the original intention of
the scheme described in Visbeck et al. (1997). Thus a variant, de-
noted VMHS, is additionally considered, which uses the full local
dependence as specified in Eq. (33). Note, however, the length scale
is still set equal to the Rossby deformation radius, which differs
from the length scale used in Visbeck et al. (1997).

Table 3

The four parameterisation variants differ in their functional de-
pendence on the eddy energy and the mean stratification, as sum-
marised in Table 2.

4. Spatially constant Gent-McWilliams eddy transfer coefficient
4.1. Implementation details

In this section the case of spatially constant GM eddy trans-
fer coefficient is considered, employing the CONST, GEOM, ML and
VMHS* variants described in Section 3.3. The CONST variant is sim-
ply employed by taking a constant value of x. To obtain a spatially
constant GM eddy transfer coefficient for the GEOM variant with
k = aE(N/M?), the terms are appropriately re-arranged, and inte-
grating over the domain leads to

_ J[Edydz
~*77(MZ/N) dydz’

The domain integrated eddy energy [/ E dydz is computed by solv-
ing (15).
For the ML variant, an analogous approach yields
[f VEdydz
=0MLT 7y a0 a0
J/Q/L)dydz

However the domain integral of the square root of the eddy en-
ergy is not available. Use of the Cauchy-Schwarz inequality (e.g.,
Eq. B.1 with p=q = 2) leads to

ff«/fdydzf \/LyTz\///ijdz

and so the ML variant is implemented as

NI e

Jf/L)dydz

Here a prescribed value for the new parameter «; is chosen.
For the VMHS* variant the form

[JL2(M?/N) dy dz
=00,
LL,

K (35)

K

K =01

K (37)
is used. The VMHS variant with fully local dependence on the
mean state is considered in Section 5.

The initial state is spun up from rest first using the GEOM vari-
ant, with 1p =02 Nm=2, A =2 x 1077 s~! and « = 0.1. The asso-
ciated initial and equilibrium states are shown in Fig. 1. The equi-
librium state here has a transport of around 77 Sv and a domain
average parameterised eddy energy (divided by the reference den-
sity pg) of around 0.01 m2 s=2, the latter being similar to the level
given in the observations of Meredith and Hogg (2006). From this
control run and taking the mixing length L to be the Rossby de-
formation radius Lp = NH/|f| for the ML and VMHS* variants, the
emergent « and end state p* are used to calibrate x for CONST, o4
for the ML variant in (36) and «; for the VMHS* variant in (37),
which are used for subsequent calculations where 7y and A are
varied. The GEOM parameter values used in the parameter sweep
is given in Table 3.

Parameter values employed in the GEOM calculations. The value for the control run displayed in Fig. 1 is for 7y =

02Nm2 A=2x10"7s"!and o =0.1.

Parameter ~ Values Units Description
To 0.01, 0.05 to 1.00 in 0.05 spacing N m~2 peak wind stress
A (0.5,0.6,0.7,0.8,0.9,1.0,2.0,3.0,4.0,5.0) x 107 s7! eddy energy dissipation rate

o (0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.20, 0.30, 0.40, 0.50) —

non-dimensional GEOM factor
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Fig. 1. Initial stratification and equilibrium stratification from the spinup of the control run with 7 =02 N m 2, A =2x 107 s~! and o = 0.1 using the GEOM variant
(leading to an emergent x = 800 m?s~'). The same contour levels are used for both panels.
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Fig. 2. Transport at varying (a) peak wind forcing 7o and (b) eddy energy dissipation rate A for the four parameterisation variants.

4.2. Results

The transport associated with the equilibrium states with vary-
ing values for Ty and A are shown in Fig. 2. It is clear that CONST
and VMHS* show significant sensitivity of the mean transport with
respect to the peak wind stress. By contrast, the ML variant shows
reduced sensitivity. Notably, the GEOM variant shows very low
sensitivity to varying wind stress, and thus exhibits emergent eddy
saturation. For varying eddy energy dissipation rate A, CONST and
VMHS* are by construction independent of A, while the ML and
GEOM variants show increased transport with increased dissipa-
tion. These observed behaviours are consistent with the analysis
given in Section 2.2.

Denoting the domain average by

() = LyiL [[Oayez (38)

the emergent x and (E) are shown in Fig. 3. The ML and VMHS*
variants show a sub-linear dependence of the emergent « on the
peak wind stress T, while the GEOM variant exhibits an almost
linear dependence. For the ML and GEOM variants the emergent
k decreases with increasing A. The scaling of ¥ and (E) with peak
wind stress 7, for the GEOM variant, is consistent with the ar-
guments given in Section 2.2. It is found here that increasing the
dissipation decreases the emergent eddy energy level.

The emergent eddy saturation property of the GEOM variant is
not limited to this parameter set. Fig. 4 shows contour plots of
the transport in (7o, A) and (7o, &) parameter space. As expected,

there is very little dependence of the transport on ¢ and only at
extreme parameter values is a variability seen in the contour plot.
This shows robustness of the insensitivity to strength of peak wind
over a range of parameters.

To show how the other emergent properties of the GEOM vari-
ant depend on « and A, the transport, GM eddy transfer coefficient,
and domain averaged eddy energy over (A, o) parameter space are
shown in Fig. 5. Increasing o« reduces the mean transport as ex-
pected, from the discussion in Section 2.2. The GM eddy transfer
coefficient « is found to increase with increasing «. The values
of the emergent « are consistent with the emergent transport, al-
though large values are observed where the parameterised eddies
are very efficient (small A, large «). The eddy energy has a more
complex dependence on «, but for weaker dissipation increasing o
leads to a decrease in the eddy energy.

5. Stratification dependent Gent-McWilliams eddy transfer
coefficient

5.1. Implementation details

In this section a dependence of the GM eddy transfer coeffi-
cient on the vertical stratification is introduced, again with four
variants based upon the CONST, GEOM, ML, and VMHS* discussed
in Section 3.2. The simplest CONST variant is now replaced with
the form proposed in Ferreira et al. (2005)

NZ
N2

ref

K =kKkoS, S= (39)
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Fig. 3. Emergent (a, b) « and (c, d) domain integrated eddy energy (E) at varying peak wind forcing 7 (a, ¢) and eddy energy dissipation rate A (b, d), for the four

parameterisation variants.
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Fig. 4. Contour plot of the emergent transport (in Sv) for the GEOM variant over (a) (o, A) space (with & = 0.1), and (b) (7o, @) space (with A =2 x 10-7 s~ ~ 0.017 day™").

The values for the parameter sweep are given in Table 3.

This imparts a vertical as well as horizontal spatial structure to the
GM eddy transfer coefficient. Unlike Ferreira et al. (2005), how-
ever, since the simple dynamical model employed here has no
restoring boundary conditions at the surface to maintain a sur-
face stratification, the use of eref at the ocean surface as in Ferreira
et al. (2005) is perhaps not a suitable choice. Instead, eref is taken
to be Nﬁnm here. With this, no tapering of S is employed. A Gaus-
sian ten by ten point smoother with a three point standard devi-
ation was applied to the density field po* before taking derivatives
to form S, for numerical stability reasons.

The GEOM variant becomes x = koS = «E(N/M?), where again
o is a prescribed constant. Re-arranging, integrating over the do-
main, and now assuming that kg is a constant in space leads to

[fEdydz )S'

K = KOS = (aff(Mz/N)dedz (40)

The domain integrated eddy energy [/ E dydz is computed by solv-
ing Eq. (15) as before.

For the ML variant, an analogous approach yields

B [ VEdydz
= (“ML GD) dydz)s’

and use of the Cauchy-Schwarz inequality leads to

VL /[TEdydz\ o an

T\ dydz

Here a prescribed value for the parameter «; is again chosen.

For the variant based on Visbeck et al. (1997), with the GM
eddy transfer coefficient given by « = k¢S = aymus (M2/N)L2, two
forms are used. Assuming k is a constant in space results in the
VMHS* variant

. (az S/ L2(M?/N) dy dz)

JfSdydz (42)
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for the parameter sweep are given in Table 3.
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Fig. 6. Equilibrium stratification and final GM eddy transfer coefficient distribution of the control run with ¢ = 0.1, 7o =0.2 Nm2 and A =2 x 10~7 s~! using the GEOM
variant. This leads to an emergent reference GM eddy transfer coefficient «y = 10.1 m? s~! with the choice of Nfef = ermn’ and a domain maximum GM eddy transfer
coefficient of kmax = 2900 m? s~1. The contour levels for the stratification profile are the same as for Fig. 1.

Alternatively the form (33) may be used directly, resulting in the
VMHS variant

M2,
K =03 WL , (43)
where now «3 is a prescribed constant. This latter form introduces
an additional explicit dependence on the local value of M and the
local mixing length L.

As for the previous constant GM eddy transfer coefficient case,
the initial state is spun up from rest first using the GEOM vari-
ant, with g=0.2 Nm2, A =2x10"7 s~! and o = 0.1. The ini-
tial state is the same one shown in Fig. 1, and Fig. 6 shows the
equilibrium stratification profile and the associated spatially vary-
ing GM eddy transfer coefficient. This equilibrium state here has
a transport of around 66 Sv and a domain average parameterised
eddy energy of around 0.009 m2 s~2. From this control run and
taking the mixing length L to be the Rossby deformation radius
Lp = NH/|f| as before for the ML and VMHS* variants, the emer-
gent « and end state p* are used to calibrate «( for CONST in
(39), arq for ML in (41) and o, for the VMHS* in (42), which are
used for subsequent calculations where Tty and A are varied. For

the direct VMHS variant, the functional dependence of ¥k on M and
N differs from the functional dependence specified by S. Here an
initial value of a3 in (43) is chosen manually so that a similar level
of transport is obtained, though note that the results presented
here are still slightly detuned. Other simulation details are kept
the same as in Table 1 except that the convergence tolerance &,
is now set to 5 x 10713, as there is more variability given that «
is allowed to vary over space. No minimum or maximum values of
k are imposed. Calculations are restarted from a previously con-
verged calculation for 500 model years, and those that do not con-
verge within the period are excluded from the diagrams. The same
values displayed in Table 3 are used for the parameter sweep.

5.2. Results

The resulting transport with varying 7o and A for the five
parameterisation variants is shown in Fig. 7. The GEOM variant,
though possessing a slight increase in transport as 7 is increased,
again exhibits relative insensitivity of the transport to changes in
wind forcing. It is notable that the ML variant also show a re-
duction of the sensitivity of the mean transport with respect to
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Fig. 7. Transport at varying (a) peak wind forcing 7, and (b) eddy energy dissipation rate A for the five parameterisation variants, showing only converged solutions.
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Fig. 8. Emergent domain maximum GM eddy transfer coefficient kmax (panel a, b) and domain integrated eddy energy (E) (panels c, d) at varying peak wind forcing 7,
(panels a, ¢) and eddy energy dissipation rate A (panels b, d), for the five parameterisation variants. Non-converged solutions have been omitted.

the peak wind stress compared to its respective case with spa-
tially constant GM eddy transfer coefficient. The GEOM variant
once again exhibits a strong dependence on the eddy energy dissi-
pation rate A.

Fig. 8 shows the emergent domain maximum GM eddy transfer
coefficient kmax, and (E), for varying 7y and A, again only show-
ing converged solutions. As before, for varying 7, a roughly linear
trend of x with 7y is seen in the GEOM variant. Varying A again
does not affect CONST, VMHS*, or VMHS by definition, while this
has some effect on the ML variant and somewhat larger effect on
the GEOM variant. For the ML and especially GEOM variants, in-
creasing A decreases k. Further, the eddy energy level is found to
decrease with increased dissipation.

The emergent eddy saturation for the GEOM variant is again
found to be robust over a range of parameters, as shown in Fig. 9.
Fig. 10 shows contour plots of the emergent properties with vary-
ing A and «. In both figures, non-converged states have been
greyed out. Although showing much more variability than the
analogous spatially constant « case in Fig. 5, there is a pattern
of increased transport at increasing A or decreasing «, and of de-
creased kg at increasing A or decreasing «. Note the region with
low A and large o has small transport, large (E) and thus large
Kmax. The resulting parameterised eddies in the large A and small
o region are very weak, and it may be seen that the oscillations
of the mean state appears to persist and have not been deemed to
converge according to the imposed criterion.

6. Conclusions
6.1. Summary

In this article the problem of emergent eddy saturation in
coarse resolution ocean modelling with parameterised mesoscale
eddies has been considered. Specifically, an idealised zonally av-
eraged channel configuration was used to test the sensitivity of
mean zonal transports with respect to the strength of surface
wind forcing, and additionally with respect to the strength of to-
tal eddy energy dissipation and closure parameters. Variants of
the Gent and McWilliams (1990) scheme have been tested, with
a constant GM eddy transfer coefficient, a GM eddy transfer co-
efficient with a stratification dependence based upon that de-
scribed in Visbeck et al. (1997), a GM eddy transfer coefficient
with a mixing-length inspired energy dependence (e.g., Eden and
Greatbatch, 2008; Cessi, 2008), and a GM eddy transfer coeffi-
cient derived from the geometric framework described by Marshall
et al. (2012). For the schemes with eddy energy dependence a pa-
rameterised equation for the domain integrated eddy energy was
solved. By integrating over the domain, specific closures were de-
rived, falling into two classes — one where the GM eddy trans-
fer coefficient was spatially constant, and one where the GM eddy
transfer coefficient had a spatial structure based upon that de-
scribed in Ferreira et al. (2005). A form with additional stratifica-
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7o = 0.2 N m~2. The values for the parameter sweep are given in Table 3. Regions with non-converged solutions have been greyed out.

tion dependence, closer to the original proposal of Visbeck et al.
(1997), was additionally tested.

It was found that the scheme derived from the geometric
framework of Marshall et al. (2012) led to almost complete emer-
gent eddy saturation, with little or no significant dependence of
the mean transport on the surface wind stress magnitude. This
lack of dependence was additionally observed for a wide range
of eddy energy dissipation time scales and parameterisation pa-
rameter values. Moreover, it was found that the changes to the
equilibrium stratification profile with different values of peak wind
stress were small (not shown). Furthermore, the dependence of the
transport and other emergent quantities are consistent with the
physical and mathematical arguments given in Section 2.2. On the
other hand, the use of a basic spatially and temporally constant
GM eddy transfer coefficient led to a very significant dependence
of the mean zonal transport with respect to the wind stress, sim-
ilar to behaviour reported in low resolution ocean model tests de-
scribed in Munday et al. (2013). Variants based upon the Visbeck
et al. (1997) and upon mixing length arguments were generally
found to have a somewhat reduced sensitivity, but did not exhibit
full eddy saturation.

6.2. Discussion and future work

This work focuses on eddy saturation, but an equally important
process that has not been investigated in this work is the ability
of the GM eddy transfer coefficient variants in showing eddy com-
pensation. In particular, the extent of eddy compensation depends
upon both the magnitude and the spatial structure of the eddy
induced transport, and the degree to which it cancels with the
local Eulerian circulation (Meredith et al., 2012). The model con-
sidered in this article has no representation for ocean basins and
hence is unsuitable for studying eddy compensation. An investiga-
tion into the ability of the Marshall et al. (2012) variant of the GM
eddy transfer coefficient in showing emergent eddy compensation
would require a more sophisticated eddy energy budgets than the
one employed here, and is left as future work.

Assuming that the eddy energy is given via a parameterised
eddy energy budget, the only remaining freedom in the Marshall
et al. (2012) variant is in the specification of the non-dimensional
geometric parameter ¢, as all dimensional information on the
magnitude of the GM eddy transfer coefficient is already pro-
vided by the eddy energy and mean stratification. In this work
o was chosen to have a constant value of 0.1, which was guided
by the diagnoses of the equilibrated states in a three-layer wind
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forced quasi-geostrophic double gyre simulation (Marshall et al.,
2012) and an Eady spindown simulation of the hydrostatic prim-
itive equations (Bachman et al., 2017). In diagnostic calculations
o is not a constant, and in particular & was found in Bachman
et al. (2017) to vary depending on whether the system is in a lin-
ear growth phase or in later phases of the spindown evolution. It is
perhaps of theoretical interest to have « evolving in time to cap-
ture the initial instability, finite-amplitude regime, and transition
into an equilibrated state, although this is beyond the scope of the
current work.

In this paper we have found that the functional dependence for
the GM eddy transfer coefficient proposed in Marshall et al. (2012),
which incorporates energetic constraints through the solution of
a parameterised eddy energy budget, yields near total emergent
eddy saturation in a highly idealised configuration. While the de-
gree of saturation in the ocean is not known, numerical models
do appear to support this dynamically interesting regime, and this
parameterisation variant is able to show emergent eddy saturation.
A clear extension would be to implement and test this scheme in
a global ocean model. Since the GM scheme is normally already
built into global ocean circulation model as a core component, it
would appear the main additional challenge would be (i) to add
a parameterised eddy energy budget that couples with the GM
scheme, and (ii) derive an appropriate form for a local parame-
terised eddy energy budget. The domain integrated eddy energy
budget employed here is much too restrictive for use in a global
ocean model. We envisage the scheme may be implemented into
an operational global circulation model as follows:

1. Solve for the provisional eddy transport velocities, with a pre-
ferred vertical profile for the eddy transfer coefficient, utilising
the standard GM scheme;

2. Vertically integrate the implied eddy form stress and com-
pare with the theoretical prediction derived from the Marshall
et al. (2012) geometric framework, using a prescribed non-
dimensional parameter «;

3. Solve for the parameterised, vertically integrated eddy energy
budget, analogous to Eden and Greatbatch (2008) but for the
full, rather than kinetic, eddy energy;

4, Rescale the eddy transport velocities, equivalent to rescaling the
GM eddy transfer coefficient, uniformly over the vertical col-
umn such that each vertical integral of the eddy form stress
matches the theoretical prediction from the Marshall et al.
(2012) geometric framework.

By applying the energetic constraint in the vertical integral of
the eddy form stresses, the recipe given above succeeds in retain-
ing the positive-definite conversion of mean to eddy energy asso-
ciated with the GM scheme, as well as the derived energetic con-
straint given in the Marshall et al. (2012) geometric framework.

In a closure for ocean turbulence one must typically tune the
closure parameters in order to match a desired large-scale or
mean state of interest. However for many key questions in phys-
ical oceanography, it is not only the mean state itself, but also the
sensitivity of that mean state to external changes, which is of in-
terest. This is, for example, critical to the understanding of the long
time response of the ocean and broader climate system to long
term forcing changes. The Gent-McWilliams closure is now a key
component in large scale climate relevant ocean modelling, but it
has been found that existing variants of the scheme in wide use,
in particular with a constant Gent-McWilliams eddy transfer co-
efficient, do not yield accurate representations of ocean transport
sensitivities with respect to changed in wind forcing (e.g., Farneti
and Gent, 2011; Gent and Danabasoglu, 2011). This work provides
the first evidence that the phenomenon of eddy saturation may be
captured without major changes to the existing Gent-McWilliams
closure, simply by employing the Marshall et al. (2012) form for

the GM eddy transfer coefficient, derived from first principles with
no tunable dimensional parameters, coupled with a parameterised
eddy energy budget. A proposal on how this scheme may be im-
plemented into a global circulation model via the addition of a pa-
rameterised eddy energy equation has been given here. Investiga-
tions into implementing this into a general circulation model, as
well as theoretical developments for a parameterised eddy energy
budget, are under investigation.
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Appendix A. Eddy energetics

In Section 2.1 the integrated mean energy equation is consid-
ered. Here a corresponding integrated eddy energy equation is de-
rived.

Eddy equations, associated with the mean Eq. (9), are

ou”” au?  oJu* TR [T [T . 17
T +u Ix +Uay +w 52 +u W-ﬁ-v 8—y+w ——fv
4 1z 74
- —u~ aa”x vz aauy —w~ 88”2 - plaaix +F7-D? (Ala)
0
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v v’z vz 1 dp”?
1z _ 1z Wz _
=" ay 0z 0o 0y’ (A1)
74 1z
0= 188” _ &~ (Alc)
Po 0z Lo

(...)”* denotes an eddy component associated with a zonal average
at fixed height - for example p’? = p — p*. It is assumed through-
out this section that f’? =0, and that g and pq are spatially and
temporally constant. In the following it is further assumed that the
mean and eddy velocities (0, 77, sz)T and (u?,v?, w/Z)T are incom-
pressible and have zero normal component on domain boundaries.

Multiplying Eq. (A.1a) by u’?, equation (A.1b) by 1%, zonally av-
eraging at constant height, using the hydrostatic relation (A.1c),
and integrating over the domain, leads to the integrated eddy ki-
netic energy budget

f/po Kdydz = //pou’Z(F’Z D7) dydz
E)uZ
12192 1Z\\)/Z
//,00[ WEVE + o utw

+ aal/z v/zv/z + %Uz Vz2w'z i|dy dZ,

/ / gw’z,o/z dydz, (A.2)
with eddy kinetic energy (per unit volume)
po K = %pou’lu/zz + %pov’zv’zz. (A.3)
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Now from the density equation

dp [ d(up)  dwp)  d(wp) _
2t T oy T 0

multiplying by the height z, zonally averaging at constant height,
and integrating over the domain, leads to

//W/Zp/l dydz — //
= // p Z dydz— a('O*z)dydz
ot at
- / wptdydz,
where p* = p* —p? is the difference between the two mean
densities. Assuming that the eddy transport velocity (0, v*, w*)T

has zero normal component on domain boundaries, multiplying
Eq. (2) by the height z and integrating over the domain yields

s

Combining Egs. (
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(A.5)

*z
) dydz = / w* p*dy dz. (A6)

A.2), (A.5), and (A.6) leads to the integrated eddy

- // wgp*dydz — / w'gp*dydz, (A7)
with total eddy energy (per unit volume)

poE = %poWz - %poWz - p'g. (A8)
The first right-hand-side term in Eq. (A.7) is the eddy energy
generation due to forcing in the horizontal momentum equations.
The second right-hand-side term is the mean-to-eddy energy con-
version due to the eddy Reynolds stresses. The third right-hand-
side term is the mean-to-eddy energy generation due to the eddy
transport velocity, and corresponds exactly to the conversion term
appearing in the mean energy Eq. (10). The final term is an ad-
ditional conversion term which arises from the direct application
of an average at constant height to the hydrostatic relation (see
the discussion in McDougall and McIntosh, 2001, appendix B). Re-
placing p* with p* in Eq. (9¢) would lead to the appearance of a
corresponding term in the integrated mean energy equation.

Appendix B. Deriving Eq. (22)

If both the GM eddy transfer coefficient and the eddy energy
dissipation scale with the eddy energy, then there is an apparent
degeneracy in the eddy energy Eq. (15). If, for example, the scaling
factors are constant, then the integrated eddy energy can be fac-
tored out, leading to a balance between the rates of eddy energy
generation and dissipation. In this appendix this property is for-
malised somewhat via the use of appropriate integral inequalities.

It is assumed that functions f and g are suitably smooth
such that Hdlder’s inequality (e.g., Doering and Gibbon, 1995,
Appendix A)

p 1 1
172l < 1lsligh 10 = ([ 170R) 7. 2+ o<1
(B.1)

may be applied. Choosing the Holder conjugates p=2 and q =2
(i.e. a generalised Cauchy-Schwartz inequality) and applying the
above inequality to the steady state eddy energy Eq. (15) leads to

|f100
gN

0z

AEN = @|[Ell 2 (B.2)
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Notice that the L! norm is the integral of the absolute value, and
so ||E||;1 = ff Edydz. From this, it follows that
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, (B.3)
12

for € e (0, 1]. Although IEll;1 < |IE]l;2 (a consequence of Hélder’s
inequality), if ||E||;: ~ ||E|l> then the relation (22) is suggested
from this bound. Note that this implies a lower bound on the
weighted norm on the right hand side.

Some more progress may be made if the norms of the deriva-
tives may be assumed to be small. Assuming a bounded Lip-
schitz domain, the ||E|> term may be controlled by utilising
the Gagliardo-Nirenberg interpolation inequality (Nirenberg, 1959,
Section 2; see also Appendix A of Doering and Gibbon, 1995),
which states that

1D fllee < GID™ FUEN £l + Call Fllus,
1S (1 1
p d rod

q (B.4)
with D being a weak derivative, d is the dimensionality of the do-
main, 1 <1, q < o0, j/m <a < 1,and s > 0 is arbitrary. This does
not cover some exceptional cases, though they are not of inter-
est here. The constants C; , only depend on the domain and the
choice of the parameter values. For d = 2 here, taking j =0, p=2
and s=1, it is noted that m=1, r=1 and a=1 is one option
(which is a form of the Sobolev inequality; e.g., Evans 1998, Sec-
tion 5.6.1), and taking s = 1 and f =E results in

IEllz < GIIDE]lp + GIIE] - (B.5)
Ifm=1,r=2 a=1/2 and q =1 instead, then
IENlz < GIDENIEN? + GlE L, (B.6)

which is analogous to the inequality of Nash (1958). Other possi-
bilities exist involving higher derivatives. Either way, assuming that
the terms involving the derivatives are small compared to G|E|;1,
then the relation (22) again follows, with a constant of proportion-
ality that only depends on the domain and the parameter values
chosen in the Gagliardo-Nirenberg interpolation inequality and is
bounded away from zero and infinity. Again, this implies a lower
bound on the weighted norm on the right hand side.
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