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Abstract
Recent trends in summer heat waves (HW) over Central-Eastern China and their atmospheric drivers
are investigated using the ERA Interim re-analysis. A composite analysis shows that these events are
preceded by an increase in 500 hPa geopotential height. Consequently, a subsidence anomaly develops
over the region and surface solar radiation increases. An increase in the northward moisture transport
from the tropical region is also found to increase specific humidity, leading to warmer night-time
temperatures. Feedback effects are also important: decrease of precipitation and enhanced evaporation
also increases the specific humidity and North-Westerlies due to the low pressure lead to more heat
convergence. HWoccurrence increases, especially during the last decade, and is largely due to an
increase in the mean temperature rather than to a change in dynamics, suggesting a human influence.
1. Introduction

Central-Eastern China is a region heavily populated
with large urban areas, and is thus sensitive to
environmental extreme events such as heavy rainfall,
typhoon and heat waves (HW) (Ch. 10.1.1 and 10.2.1
of the Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change, Cruz et al (2007)).
The latter events have a major impact on the society,
especially in terms of human health (Luber and
McGeehin 2008), and have been the focus of many
works (see Lu and Chen (2016)). Many studies have
found an increase in extreme heat occurrences during
the last few decades over China (e.g. Ding et al 2010,
Huang et al 2010, Qian et al 2011, Ren et al 2005,
2016, Wang and Fu 2013, Wei and Chen 2011, Zhou
and Wang 2016) whereas other studies point out the
regional differences in these trends (Ding and Qian
2011, Dong and Huang 2015, Yan et al 2011). Case
studies suggest that anticyclonic circulations are
associated with these events (e.g. Wei and Sun 2007),
but more recently Chen and Lu (2015) and Wang et al
(2016) pointed out that heat waves can occur under
different configurations of the atmospheric circulation,
depending on the region where the events take place.
Most of the previous studies used observations from
© 2017 IOP Publishing Ltd
local ground stations that can provide accurate
temperature of a specific location. However, some
issues arise when using direct observations: stations can
havemissing records, inconsistencies through time (due
to station relocation or instrumental change) and
records can be affected by local effects such as
urbanisation (Ren et al 2008, Wang and Yan 2016).

This work focuses on regional-scale HW affecting
the Central-Eastern part of China (CEC). The
considered region is large enough that the average
temperature is less sensitive to local effects. Special
attention is made to the evolution of the surrounding
dynamical environment before and after the events, to
highlight the most important controllers and feed-
backs. The aim is to identify the leading atmospheric
processes associated with the large scale HWand how
these processes have impacted the evolution of
extreme events during the last few decades. The
underlying question is: would HW frequency increase
if the background temperature had stayed constant?

The dataset and methodology are described in
section 2. The characteristics of the circulation are
analyzed in section 3 with a standard- and a lag-
composite analysis to highlight the evolution of the
atmospheric anomalies before and after the events.
Special attention is paid to the trends and the

mailto:nicolas.freychet@ed.ac.uk
https://doi.org/10.1088/1748-9326/aa5ba3
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aa5ba3&domain=pdf&date_stamp=2017-2-9
https://doi.org/10.1088/1748-9326/aa5ba3


Table 1. Definition and notation for warm events. Below the names of the thresholds are indicated the actual values used for Tmax
(first value) and Tmin (second value). Next to the notations of each events is the number of days (during the whole period) included
in these respective events.

Threshold used to select anomalous high temperatures

Variable P90abs P90ano
(29.7 °C/24.3 °C) (12.1 °C/13.1 °C)

MX2T and MN2T HW (Heat Wave)—86 d

Main heat wave definition, when the temperature is higher

than P90abs during at least 5 consecutive days and nights.

HWano—111 d

When the temperature anomaly is higher than

P90ano during at least 5 consecutive days and nights.

MX2T EH (Extreme Heat)—223 d

When the daily maximum temperature is higher than

P90abs during at least 5 consecutive days.

EHano—225 d

When the daily maximum temperature anomaly is

higher than P90ano during at least 5 consecutive days.

MN2T TN (Tropical Night)—330 d

When the daily minimum temperature is higher than

P90abs during at least 5 consecutive days (tropical night).

TNano—309 d

When the daily minimum temperature anomaly is

higher than P90ano during at least 5 consecutive days.

Environ. Res. Lett. 12 (2017) 024015
attribution of the events in section 4. Results
are extended to two other regions in section 5 to
verify the validity of the results, and concluding
remarks are given in section 6.
2. Data and methodology
2.1. Data
In this study, data from ERA Interim reanalysis (Dee
et al 2011) are used at the sub-daily timescale at 0.75
degree resolution, and the 1979–2010 period is
selected. Though temperature extremes on the grid
scale are reduced due to the grid averaging, this dataset
is continuous in time and consistent with its
atmospheric circulation fields. This is important for
a multi-variable composite analysis. The magnitude of
the temperature is underestimated compared with
station observations (figure A1) and has been pointed
out by Mao et al (2010) for several reanalysis products.
However the variability and trend of the temperatures
are well reproduced in China (You et al 2013),
confirmed by the good correlations between the
observations and ERA Interim.

2.2. Definition of the regions
The Central-Eastern China (CEC) region is the main
focus of the study and is defined as 30°N–40°N and
105°E–125°E, similar to Lin et al (2015) CEC region.
To extend the validity of the results, two other regions
are investigated and briefly discussed as complemen-
tary results: North-Eastern China (NEC) and South-
Eastern China (SEC). These two regions are defined as
a grid box on the same longitude (105°E–125°E) but
10 degrees latitude north or south of the CEC region
(40°N–50°N for NEC, 20°N–30°N for SEC).

2.3. Heat waves definition
The methodology is described for the CEC region
but the process is similar for the two other regions.
HW are determined based on daily minimum
(nighttime, MN2T) and maximum (daytime,
MX2T) temperatures at 2 m height. The temperatures
2

are first averaged over the CEC region, thus the
events considered in this study are on a regional
scale. Moreover, only the extended summer (May-
September) of each year is considered to focus on the
warmer period of the year. A criterion of at least
5 consecutive days of anomalously high temperature
is introduced to identify a HW. To define extreme
high temperatures in China, a threshold of 35 °C is
commonly used by the China Meteorological
Administration (www.cma.gov.cn/en/WeatherWarn
ings/). However threshold-based indicators of extreme
temperatures exhibit large geographical variations and
are more appropriate for local measurements. To be
more consistent with the regional averaging used in this
study, a percentile threshold based on the regional-
averaged temperature is used. Two different percentiles
are considered (based on all days of the extended
summers during 1979–2010):
�
 Absolute (P90abs): The 90th percentile of the
daily temperature. This threshold corresponds to
the 10% warmest days of the period.
�
 Anomaly (P90ano): The 90th percentile of the
temperature after removing its interannual oscil-
lations. For this threshold, the 365 d running
mean is first removed from each daily temper-
atures. Then the percentile is computed, based on
the anomalies of temperatures, and P90ano corre-
sponds to the 10% largest anomalies of tempera-
ture during the period.

For each case, percentiles are computed separately
for MN2T and MX2T. Thus each variable uses a
different threshold. With these definitions, the long
term trends and interannual to decadal variability of
the temperature are taken into account in P90abs and
removed in P90ano. MN2T and MX2T can be
anomalously high at the same time, and they can
also be independently higher than usual (warm night
with normal day time temperature, or the opposite).
Accordingly, different types of events are defined and
summarized in table 1. It is verified that the heat wave

http://www.cma.gov.cn/en/WeatherWarnings/
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Figure 1. Composites of atmospheric field anomalies during HW events, for (a) MX2T (shading, °C) and MN2T (contours, °C);
(b) Z500 (shading, m), U200 (black contours, m s�1), W500 (green contours, Pa s�1); (c) SLP (shading, hPa), SSR (red contours, W),
U850 (vectors); (d) Q (shading, g kg�1), RH (black contours, percentage). The blue box in all plots indicates the CEC region. Solid and
dash contours indicate positive and negative anomalies respectively. Only regions with significant results are shown.
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affects the whole region, with MN2T and MX2T
increasing over a large area (figure 1(a)) with
anomalies larger than 2 �C. It is important to
remember that the events considered in the study
have a large spatial scale (hundreds of kilometres) and
are persistent (more than 5 d), and results may differ
from local heat wave studies. Though the main focus
of this study is on the HW, other types of events are
used for analysis purpose and to highlight the
physical processes.
2.4. Computation of the composites
The characteristics of the circulation associated with
HW events is analyzed using a composite analysis. A
common methodology is to compute composites by
removing the climatological signal. However with this
definition anomalies may be biased by long term
trends for some variables, such as the increase in
atmospheric moisture content or geopotential height
in a warmer climate. Here our main focus is to identify
processes that can lead to short timescale heat waves
(5 d). Thus, to remove long term trends on the
atmospheric variables, the anomalies of dynamical and
thermodynamical variables are computed by remov-
ing the 30 d mean (of the respective variables) around
each day included in a HW. The methodology is also
tested by removing the 45 d mean but results are very
similar. Then anomalies are averaged for the whole
1979–2010 period to obtain a composite anomaly
associated with HW. Results are tested with a student
t-test (comparing the mean and standard deviation of
the composites with the mean and standard deviation
of the summer climatology at each grid point)
and considered significant when above the 90%
confidence level.
3

3. Dynamical control of the heat waves
3.1. Main characteristics of the circulation
associated to the HW events
The composite analysis is performed for the following
atmospheric variables: 500 hPa geopotential height
(Z500), 200 hPa zonal wind (U200), 850 hPa wind
(U850), 500 hPa vertical velocity (W500), surface solar
radiation (SSR), sea level pressure (SLP), 850 hPa
specific (Q) and relative (RH) humidity fields (see
Supplementary appendix A.1 available at stacks.iop.
org/ERL/12/024015/mmedia for the list of acronyms).
Results are shown in figure 1 for HW.

A well-defined positive anomaly in Z500 is visible
over the studied region, associated with a W500
subsidence anomaly and a northward displacement of
the upper level subtropical jet. These patterns facilitate
clear sky conditions over the region, shown by a positive
anomaly in SSR. A low pressure anomaly (SLP) also
develops over North-Eastern China due, we speculate,
to a dynamical adjustment to the heating and a
development of a meridional cell. Indeed, it is verified
that an ascending motion anomaly in W500 develops to
thenorthof theCECregion, inresponse to thesubsidence
over CEC region (figure A2(a)). The low is associated
with a cyclonic anomaly in U850. The main signal is an
increase in South-Easterlies but during the later phase of
the HW (investigated later with the lag-composites) the
North-Westerlies increase significantly. Q tends to
increase over a large area while RH is reduced (figure 1
(d)), i.e. the absolute humidity increases but the relative
humidity decreases because of warmer air temperatures.

The anomalies in Z500 are probably due to a
north-westward extension of an enhanced Western
North Pacific High (supported by the anticyclonic

http://stacks.iop.org/ERL/12/024015/mmedia
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signal on these variables. In (a) and (b), circle symbols indicate values that are above the 90% confidence interval based on a t-test.
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anomaly on U850 over the Pacific), and the associated
subsidence (W500) and increase of SSR create
favorable conditions for a warming of daytime
temperature. The increase in moisture transport is
related to an atypical strong advection over the South
and East Asia region. It leads to a reduction of the
night-time radiative cooling (verified by a negative
anomaly on the outgoing long wave radiation at the
top of the atmosphere, supplementary figure A2(b))
and creates conditions for warmer nights. Thus, two
separate mechanisms act together and lead to hot
conditions during both day- and night-time. More-
over, as pointed out by Chen and Lu (2015, 2016), the
circulation developing over North-Eastern China can
bring warm air to North-East China due to the foehn
effect of the mountains over the Mongolian Plateau,
which could increase temperatures locally or over the
region. An estimation of the foehn effect, using the
atmospheric mass flux and the variation of topogra-
phy, indicates a magnitude of about 10% to 15% of the
total energy flux. The heat released by the formation of
precipitation (over the SLP low anomaly) can also be
advected by the North-Westerlies. Different processes
can act together but the main point is that the North-
Westerlies associated with the cyclonic anomaly create
a convergence of energy over the CEC region. The
4

composite patterns for HW and HWano are very
similar, indicating that processes governing heat waves
in this region are independent of long term climate
variability.

The main mechanisms governing the increase in
MN2T and MX2T are highlighted by comparing
composites of TN and EH (not shown). EH has a
larger dynamical signal with a stronger anomaly in
U200 and Z500, and drier conditions with higher SSR
and lower Q. TN is mostly associated with an
enhanced moisture flux from the tropical and
subtropical areas and a large increase in Q and RH.
Thus, there are two complementary mechanisms
(local heating and moisture advection) that can act
either separately (leading to EH or TN respectively) or
act together, leading to HW events.

3.2. Drivers and feedback processes
To analyse the control of the dynamics in more details,
a lag-composite analysis is performed. The methodol-
ogy used to obtain the composites is the same as
described above, except that anomalies are computed
from 1 to 10 d after and before each day associated
with a heat wave (figure 2). Results are averaged over
the region of interest, except for U200 and SLP that are
averaged over the regions of their respective maximum
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anomalies observed in figure 1. The 2 m mean
temperature (T2M), MN2T and MX2T are also
considered to verify the temperature evolution during
the HWevents. Moreover, the anomaly of the vertically
integrated transport of moisture (Equations of
variables 71 and 72 in Berrisford et al (2011)) across
each border of the domain is included to analyse the
moisture advection (TQ, figure 3(a)). The averaged
moisture convergence (TQC, Equations of variable 84
in Berrisford et al (2011)) over the domain is
compared with the evaporation minus precipitation
flux (EP) in figure 2(b). The horizontal energy
transport (TET, including the latent heat, potential
and dry static energy, Equations of variables 75 and 76
in Berrisford et al (2011)) across the borders of the
domain is also illustrated in figure 3(b). The associated
heat convergence (THC, Equations of variable 86 in
Berrisford et al (2011)) averaged over the domain is
compared with the SSR in figure 2(c).

The positive anomalies in Z500 and subsidence
anomaly in W500 start to develop seven to six days
before the peak of the HW (figure 2). These are quickly
followed by an increase in SSR while THC remains
low. Thus SSR is the main driver for the increase in
MX2T during the first phase of the event. Then both
Z500 andW500 anomalies decay following the peak of
the HW. This supports the idea that atmospheric
dynamics are the key driver of these events. Total heat
convergence sharply increases during the HW, due to
the reversal of the energy transport across 40�N,
confirming the important role of the feedback from
5

the cyclonic and low pressure anomaly (visible on TET
maps in supplementary figure A3). This feedback
increases the heat convergence in the region during the
HWand keeps the temperatures anomalously high. In
terms of moisture changes, it is also noticeable that
TQC is anomalously high before the HW, due to an
increase in TQ from the tropical regions (30°N border,
figure 3, and TQ in supplementary figure A3). Before
the HW, TQC is about the same order as EP, thus both
the local increase of EP and the moisture transport are
necessary to create the humid conditions associated
with the events. EP decreases rapidly during the event,
but TQC remains high for a longer time and acts to
maintain high absolute humidity. It is verified that the
increase in EP is mainly due to a lack of precipitation
(not shown), but also to an increase in evaporation
(10% to 20% of the signal) that dry the soil humidity
content.

To summarize, the leading process comes from the
mid-troposphere (Z500 and W500) and the moisture
transport (TQ). Other variables are responding to
these forcings but can also have a positive feedback
effect, especially the lack of precipitation and increase
in evaporation that increase the humidity and the heat
advection at the northern boundary of CEC due to the
development of the low pressure system.

HWano has the same signals except that the
magnitude of the anomalies are slightly different. The
main difference in the processes between EH (or
EHano) and TN (or TNano) is that the former has a
weak signal on TQ and a stronger response on W500
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while the later has a larger increase in TQ (across the
South boundary of CEC) preceding the event. This
confirms the findings of the previous studies that
extreme heat is associated with subsidence anomaly and
dry conditions while tropical night is linked to humid
conditions. Finally, results are very similar for events
using P90ano as a threshold. Thus, the processes
associated to hot MN2TorMX2Tseem to be consistent
through time (whether the long term trend is taken or
not into account) and the events are driven by the same
mechanisms. MX2T is increased due to solar radiation
and relatively dry conditions during day time while
MN2T stays high during the night due to the reduced
cooling by the atmospheric moisture.
4. Long-term trends and attribution

Analyses above highlighted the leading character of the
atmospheric dynamics in driving HW events. In this
section, we first examine how the occurrence of heat
waves have changed since 1980. Then the reasons of the
change in theoccurrenceofHWis analyzed, focusingon
the relative role of dynamics vs general warming.

The trends in the MN2T and MX2T intensity and
the occurrence of heat waves are displayed in figure 4.
Both MN2Tand MX2T have increased by about 1 °C.
It is noticeable that the mean trend is mostly due to a
6

fast transition during the mid-90s. It has been pointed
out in several studies (e.g. Dong et al 2016a, Wei and
Chen 2011) and is also observed in other parts of the
world (e.g. Dong et al 2016b, Robson et al 2011,
Sutton and Dong 2012). Before and after this
transition, the linear trend is much smaller. However,
there is no such transition in the HW (and EH or TN)
signal. All heat waves based on P90abs show a
noticeable increase in occurrence during the period
1979–2010. Thus, it is becoming more common for
abnormal high temperatures to persist for several
consecutive days over the region. It is also noticeable
that the timing of the HW tends to shift between the
first and the last decade of the analyzed period.

As illustrated by figure A4, HW events mostly
occur during the mid-summer (mid-July) for the first
decade while they occur later (until mid-August) for
the last decade. The change in the emergence periods
of heat waves is especially visible for EH events. During
the last decade, they occur much more early in the
summer (from early June) and can last until
September, extending EH season. On the contrary,
TN do not show a clear shift in the seasonal signal but
only an increase of events during the mid-summer
period. Finally, in figure 4(b) the HW signal suggests
a decadal oscillation, with many events during
1988–1994, no events during 1995–1999 and then
more events. However this signal is not found on EH
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or TN or in temperatures (MN2Tand MN2T) and the
interannual variability is not correlated to ENSO event
years. Hence it may be due to weather variability.
However, figure 4 of Kenyon and Hegerl (2007) shows
that the influence of El-Niño on extreme temperatures
over China during the summer is locally significant,
thus the influence of climate oscillation can still play a
role in the number of heat waves.

Now, when considering the heat waves based on
P90ano, no significant trend is found (figure 4). Thus
there is no indication that MN2T and MX2T develop
longer or more intense anomalies relatively to the
background temperature. It supports the idea that the
increase in heat waves frequency, defined with a
threshold based on the absolute temperature, is mainly
due to an increase in the global background tempera-
ture, and not in a change of dynamical conditions or
anomalies, consistent with previous studies of human
influence on extreme temperatures over China (Lu et al
2016, Sun et al 2014). This point is verified by
calculating the evolution of the main dynamical
anomalies that were identified as precursors to the heat
waves (Z500 and TQ) and the results are displayed in
figure 5. None of the variables investigated shows a
significant trend during the 1979–2010 period.
Dynamics anomalies lasting for 5 d of more are also
investigated to examine whether atmospheric anom-
alies could last longer. Again, no significant trend is
found. Based on these results, we infer that the
increase of HWevents observed in CEC is mainly due
to the increase in the background temperature. This
finding is consistent with Qian et al (2011) even if the
methodology is different. This highlights the impor-
tance of the mean change of the temperature over
China. It is worth noting that this conclusion is based
on regional-scale HW and could be different at
smaller scale where local effects may be dominant,
such as changes in land use and urbanisation.
Moreover, Ding et al (2010) found a significant shift
in large scale dynamics when comparing years with
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low or high occurrence of hot days. Thus the impact
of the dynamics at longer timescale can also be
important. Here we considered only the high
frequency variability of the dynamics (anomalies of
one to five days) and this variability do not show a
significant shift during the three investigated decades.
5. Can results be extended to other regions?

To extend the validity of the above conclusions, the
diagnostics are repeated for two other regions in
Eastern China (NEC and SEC) and briefly discussed
here. The dynamical processes associated with HW in
NEC present some similarities to CEC results, with a
large signal on Z500, U200 and moisture variables.
However the patterns on SLP and wind and their
potential feedback processes are different. As for the
SEC region, it does not exhibit clear composites with
our methodology, but Chen and Lu (2015) showed
that for this region there is a local anticyclone,
associated with a southwesterly anomaly at the
northwest. It is clear that dynamical anomalies
associated with HW vary with the region of analysis,
and our findings for CEC cannot be generalized.
However, both SEC and NEC regions exhibit very
similar results for the trends in heat waves and confirm
results from Chen et al (2016). Specifically, both
experience an increase in occurrences when using an
absolute threshold (P90abs), and no significant trend
when using anomalies relative to the yearly-averaged
temperature to define HW (P90ano). It confirms that
the increase in heat wave occurrence over Eastern
China is mainly due to the rise in the mean
temperature, independently of the chosen region.
6. Concluding remarks

The characteristics of heat waves affecting Eastern
China have been investigated in this study. It was
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found that the main driver of these events is an
atmospheric dynamical anomaly. Before a HW, a
positive anomaly in the 500 hPa geopotential height
develops and is accompanied by a subsidence anomaly
and an increase in surface solar radiation. A lag-
composite analysis highlighted the leading role of
dynamics in heat wave events. It was found that the
advection of heat and moisture from tropical regions
have clear positive anomalies preceding the HW.
Moreover, feedback effects (lack of precipitation and
increase in evaporation over CEC, and heat conver-
gence due to the development of a cyclonic anomaly
over the northern region) play a significant role in
maintaining high temperatures during the events.

The trend in heat waves is found to be positive
during the 1979–2010 period when using a fixed
threshold based on the absolute temperature during
the same period. But no tendency is discernible when
using anomalies of temperature to define heat waves,
which removes the interannual oscillations and the
long-term trend of the mean temperature. This
indicates that the background temperature is becom-
ing warm enough that day- and night-time temper-
atures are considered abnormally warm (compared to
the climatology) more often. However, there is no
indication that anomalously warm days or nights
relative to the yearly mean occur more frequently.
Moreover, no significant change in the occurrence of
dynamical patterns leading to heat waves was found,
confirming that the observed increasing trend in the
heat waves is mainly due to the increase in the mean
temperature. Similar results were found for other
regions in Eastern China (NEC and SEC).

It should be noted that the definition of heat waves
in this study include a persistence of five consecutive
days criteria. Thus the trends in the number of extreme
high temperatures may be different compared to the
trend in heat waves, as the number of warm days could
still increase (even if removing the trend and oscillation
of the background temperature) but not occur
consecutively. Finally, heat waves analyzed in this study
are based on regional-scale temperatures. Local temper-
atures could have significant different trends and be
associated with predominant local mechanisms espe-
cially in urban areas (such as aerosols), and should be
studied independently. Aerosols effects are not included
in ERAInterim and could have critical impact on the
variability of extreme temperatures.
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