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Abstract:  

Semiconductor quantum dots and upconversion nanoparticles have been broadly 

used for live cell imaging due to their color tunability and photostability etc. However, 

these inorganic materials often contain heavy metals and potentially have metabolism 

problems. To overcome these issues, herein, we report a type of organic dye 

nanoparticles (NPs) with coating of a thin silica layer and folic acid targeting 

molecules on the surface for live cell imaging. These organic NPs possess superior 

characteristics of high fluorescence intensity, large Stokes shift, good photostability, 

emission in the NIR range, and targeted delivery, enabling them to be a powerful 

fluorescent probe for living cell imaging. In our study, we successfully demonstrate 

their applications in investigating cell division, exploring the cellular uptake kinetics 

and pathway of NPs, observing the distribution of NPs, and live-time tracking the 

trajectory of specific NPs. Considering the excellent properties and unique clathrin- 

and caveollae-independent intracellular uptake pathway, we expect that this type of 

organic dye NPs will play an important role in live cell imaging.  

Keywords: Organic fluorescence probes; Organic nanoparticles; Near-infrared 

emission; Live-time tracking; Live cell imaging 
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1. Introduction 

Live cell imaging is an ideal way for continuous observation of the activities within 

living cells and becomes increasingly important for cell biology and cancer biology as 

well as many biomedical related applications [1,2]. It has now become a routine tool 

in biomedical and life science research, and is key to understanding organismal 

development by monitoring interactions within and among cells during their growth 

and differentiation. Live cell imaging techniques play a significant role in biological 

studies and biomedical engineering. It is increasingly important to apply these 

technologies to gain critical insight of biological activities in sub-cellular and 

molecular levels in living cells [3,4]. For this, various luminescent materials have 

been explored [5-8]. Compared with conventional fluorescence dyes for imaging, 

semiconductor quantum dots are highly photostable and bright [9-11]. Also 

attractively, their emission spectra can be conveniently tuned across a wide 

wavelength range by changing the composition and size. This unique characteristic 

makes quantum dots particularly suitable for multicolor detection. Except 

semiconductor quantum dots, lanthanide ion doped upconvertion nanoparticles 

(UCNPs) which possess good photostability and non-invasion of NIR excitation have 

also been successfully used for real-time imaging and tracking in living cells [12,13]. 

Although these materials are effectively applied for live cell imaging, these probes are 

composed of inorganic materials such that the metabolism of heavy metals must be 

taken into consideration. Particularly, many semiconductor quantum dots possess high 

toxicity and this seriously limits their practical applicability [14,15]. 

To avoid the safety issue, it is intriguing to adopt organic materials in live cell 
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imaging. In comparison with inorganic imaging materials, organic molecules can be 

more biocompatible and provide much wider choices in variety [16,17]. However, the 

application of isolated organic fluorophores has been hindered by their poor 

photostability for a long period of time [18], until organic dye NPs with the 

characteristic of aggregation-induced mission (AIE) were discovered in recent years 

[19,20]. AIE organic dyes are weakly fluorescent or even do not possess fluorescence 

in solution but become highly emissive when aggregated into NPs. These NPs can 

achieve enhanced fluorescence emission with remarkable photostability and excellent 

biocompatibility. Therefore, this material holds a bright future for practical 

applications in live cell imaging. In this study, we fabricated a novel type of AIE NPs 

with an ultra-thin layer of silica coating on the surface and used it for live cell 

imaging (Scheme 1). These NPs possess large absorptivity, intense emission in NIR 

region, large Stokes shift, excellent biocompatibility, strong photobleaching resistance, 

and specific cell targeting ability, which renders them suitable for imaging with high 

sensitivity of detection. Beyond the superior properties of fluorescent probe materials, 

when they are used in living organisms, it is also essential to understand the 

interaction between the materials and cells [21,22]. Therefore, we systematically 

investigated the cellular uptake mechanism of the NPs and observed the distribution 

and intracellular transport as well as the cells’ behavior during their interaction with 

the nanostructure. The unique characteristic of our AIE NPs is that they enter cell 

through clathrin- and caveolae-independent endocytosis and this can lead to many 

advantages.  
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Scheme 1. Illustrations for the interaction between nanoparticles and cellular 
components.  
 

2. Experimental section 

2.1. Materials 

N-phenyl-substitutedamine, tetramethylorthosilicate (TMOS), 

4-bromophenylacetonitrile, N-hydroxysuccinimide (NHS), P(t-Bu)3, 

1-ethyl-3-(3-dimethylaminopropyl)-carbodiimidehydrochloride (EDC), Pd(OAc)2, 

2,7-di(4-(diphenylamino)phenyl-2,1,3-benzothiadiazol-7-yl) -9,9’-spirobifluorene 

(Spiro-BTA), hexadecyltrimethylammonium bromide (CTAB), 

3-Aminopropyltriethoxysilane (APTES), folic acid (FA), chlorpromazine 

hydrochloride, cytisine, amiloride hydrochloridedehydrate, nocodazole and 

cytochalasin D were from J&K Scientific Ltd. Chloroform, triethylamine, methanol, 
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toluene, dichloromethane, petroleum, diethyl ether, and iodine were ordered from 

Sinopharm Chemical Reagent Co Ltd. Roswell Park Memorial Institute-1640 

(RPMI-1640) medium, FA-free RPMI-1640, fetal bovine serum (FBS), 

4’,6-diamidino-2-phenylindole (DAPI), LysoTracker Green DND-26, and 

penicillin-streptomycin solution were obtained from Invitrogen (SanDiego, CA). 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was ordered 

from Sigma Aldrich (Milwaukee, WI). A human nasopharyngeal epidermal carcinoma 

cell line (KB cell) and HL-7702 cell were received from American Type Culture 

Collection (ATCC). 

2.2. Preparation of FA-APTES 

Twenty mg of FA were dissolved in 2 mL of DMSO followed by addition of 6 mg 

of NHS and 10 mg of EDC and stirring for 30 min. Subsequently, 50 µL of APTES 

were added, and the mixture was allowed to react for 48 hours under nitrogen. 

2.3. Preparation and functionalization of NPAPF@SiO2-FA NPs 

NPAPF and poly(maleicanhydride-alt-1-octadecene)-poly(ethyleneglycol) 

(C18PMH-PEG) were synthesized as stated in literature [20,23]. Solvent exchange 

method was used to prepare NPAPF NPs. Briefly, 100 µL of 1 mM NPAPF/THF 

solution were added dropwisely into 5 mL of aqueous solution. After stirring at 1000 

rpm for 5 min, the sample was left to stabilize for 72 h. NPAPF@SiO2-FA NPs were 

synthesized according to a previously described classical method [24]. Fifty mg of 

CTAB were added into 30 ml of prepared NPAPF NPs solution followed by vigorous 

stirring for 30 min. The oil-in-water microemulsion was heated to 40 ºC and aged at 
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the temperature for 10 min to evaporate tetrahydrofuran. One hundred µL of 2 M 

NaOH solution were added, and the mixture was heated to 55 ºC. Then, 100 µL of 

TMOS and 1 mL of ethylacetate were slowly added to the reaction solution in 

sequence. After 1 h reaction, 250 µL of APTES-FA were added. Ten min later, 25 µL 

of APTES were filled and the solution was stirred for 12 h. Subsequently, the 

as-synthesized NPAPF@SiO2-FA NPs were washed 3 times with 4 ºC water to 

remove the unreacted species and then dispersed in water. To extract CTAB from the 

NPs, 10 µL of HCl were added to the dispersion (pH=1.4) and stirred for 3 h at 60 ºC. 

Finally, 300 µL of 1mg/mL C18PMH-PEG/H2O were added to 10 mL of 

NPAPF@SiO2-FA NPs solutions to modify the surface of the NPs. After ultrasonic 

treatment for 5 min, the solutions were stored at 4 ºC. 

2.4. Characterization 

A number of drops of NPAPF@SiO2-FA NPs suspensions were placed slowly onto 

a silicon substrate. After drying, a 2-nm thick gold layer was deposited on the samples 

for SEM observation with FEI Quanta 200 FEG. The size of the NPs was measured 

by dynamic light scattering (DLS) at 25 ºC. UV-vis absorption spectra were recorded 

with a Perkin-Elmer Lambda 750 UV/vis/NIR spectrophotometer. Fluorescence 

spectra were measured with a Horiba JobinYvon luminescence spectrometer 

FluoroMax 4.  

The fluorescence quantum yield of the NPAPF@SiO2-FA NPs in aqueous solution 

was measured using 2,7-di(4-(diphenylamino)phenyl-2,1,3-benzothiadiazol-7-yl) 

-9,9’-spirobifluorene (Spiro-BTA) (QY = 0.45) as a standard. The quantum yield was 
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calculated according to the following equation:  

ηs=ηr ∗ �Ar A�⁄ � ∗ �I� Ir⁄ � ∗ �n�
	 nr

	⁄ �	  

Where ηr and ηs are the fluorescence quantum yield of reference material (standard) 

and sample, respectively; Ar and As the absorbance of reference and sample at a 

certain excitation wavelength, respectively; Ir and Is the total emission intensity of 

reference and sample at an excitation wavelength, respectively; nr and ns the refractive 

index of the solvent of reference and sample, respectively. The absorbance value A 

was remained below 0.05 during the measurement. The refractive index of water and 

THF at 20 ºC is 1.33 and 1.4, respectively. 

The release kinetics of the dye molecules from NPAPF@SiO2-FA NPs was 

investigated with the following procedures. Firstly, 30 µM of NPAPF@SiO2-FA NPs 

were dispersed in 1.5 mL of water. Secondly, the samples were centrifuged to 

precipitate the NPs at different time points. Thirdly, the fluorescence intensities of the 

supernatant and the precipitated NPs were all measured. 

2.5. Cell culture 

KB cells were cultured in FA free RPMI-1640 medium containing 10% FBS and 1% 

penicillin/streptomycin solution. HL-7702 cells were cultured in normal RPMI-1640 

medium with 10% FBS and 1% penicillin/streptomycin solution. The concentrations 

of FA in FA-free and normal culture medium were 3 nM and 2.26 µM, respectively. 

All cells were cultured at 37 ºC in a humidified atmosphere containing 5% CO2. 

2.6. In vitro cytotoxicity 

HL-7702 cells in complete RPMI-1640 medium，or KB cells in FA free RPMI-1640 
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medium were placed in 96-well plates (50,000/well) followed by 24 h incubation. The 

media were then replaced with fresh ones containing different concentrations of 

NPAPF@SiO2-FA NPs. The cell incubation was maintained for 24, 48 or 72 h in 

different groups. Then the cells were treated with 20 µL of MTT solution (5 mg/mL in 

PBS) and the plates were incubated for another 5 h at 37 ºC. After that the medium in 

each well was removed and 150 µL of DMSO was added to dissolve the formed 

formazan crystals. Finally, the cell viabilities were determined by measurement of the 

absorbance. 

2.7. FA targeted NPAPF@SiO2-FA NPs for in vitro imaging 

KB cells were cultured in 24-well plates (800 µL of FA-free medium in each well), 

200 µL of 15 µM NPAPF@SiO2 NPs and NPAPF@SiO2-FA NPs were added 

separately into different groups followed by incubation at 37 ºC for 4 h. In the two 

control groups, KB cells were pre-incubated at 4 ºC for 1 h and then each group was 

incubated with either NPAPF@SiO2 NPs or NPAPF@SiO2-FA NPs at 4 ºC for 4 h. 

The cells were then labeled with blue-colored nuclei-specific DAPI. Confocal 

microscopy observation of the cells was performed on a Leica laser scanning confocal 

microscope. For DAPI channel, the excitation was set as 405 nm and the emission 

was collected in the range of 420–480 nm. For NPs, the excitation was 488 nm and 

the emission was 580–700 nm. All cells were washed twice with cell culture medium 

before imaging. The fluorescence intensities were further measured by flow cytometry 

for quantitative analysis.  

2.8. Photo-stability test of NPAPF@SiO2-FA NPs in living cells 
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KB cells maintained with FA-free RPMI-1640 medium were plated onto 35 mm 

glass-bottom cell culture plates. KB cells subcultured from the same source were 

stained either with 3 µM NPAPF@SiO2-FA NPs or FITC with same concentration for 

4 h. Before imaging, the cells were washed for three times. All groups of cells were 

excited by 20% power of argon laser (λex = 488 nm). The irradiation time interval was 

1.315 s. The collected emission windows of NPAPF@SiO2-FA NPs and FITC are in 

the ranges of 580-700 and 505-600 nm, respectively. The fluorescence intensities of 

the samples were normalized in relative to the initial intensity of the first scan of 

NPAPF@SiO2-FA NPs and FITC stained cells. 

2.9. Cellular uptake of NPAPF@SiO2-FA NPs 

KB cells were seeded in 35 mm diameter glass dishes with a cell density of 1×105 

cells/mL. After reaching 60% confluence, the cells were treated with 3 µM 

NPAPF@SiO2-FA NPs for 4 h. At different time points, cells were observed with a 

confocal laser scanning microscope equipped with CO2 and temperature control 

through imaging. Cell division studies were carried out during the cellular uptake 

progress. The concentration of NPAPF@SiO2-FA NPs was 6 µM. 

2.10. Cellular uptake pathways 

The effect of temperature on the cellular uptake was investigated by pre-incubating 

KB cells in a serum-free medium at 4 ºC for 1 h and then incubated with 

NPAPF@SiO2-FA NPs at the same temperature for 4 h. In different groups, KB cells 

were pre-incubated with various inhibitors including chlorpromazine (10 µg/mL) to 

inhibit the formation of clathrin vesicles, cytisine (1 µg/mL) to inhibit caveolae, and 
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amiloride (50 µM) to inhibit micropinocytosis. The incubation was all at 37 ºC and 

for 1 h. Subsequently, the inhibitor solutions were removed, NPAPF@SiO2-FA NPs in 

media containing inhibitors with the same concentrations were added and further 

incubated at 37 ºC for 4 h. As a control group, cells were incubated with 

NPAPF@SiO2-FA NPs without inhibitor treatment. The cells were washed with ice 

cold PBS for three times, and fixed with fresh 4% paraformaldehyde for 5 min at 

room temperature. The nuclei of the cells were stained with DAPI and visualized 

under confocal laser scanning microscopy (CLSM). The fluorescence intensities were 

measured by flow cytometry for quantitative analysis.  

2.11. Colocalization of NPs and lysosomes 

KB cells were incubated with 50 nM LysoTracker Green DND-26 at 37 ºC for 30 

min and then with NPAPF@SiO2-FA NPs (3 µM) for an additional 4 h. After 

incubation, the cells were washed with ice cold PBS and fixed for visualization. 

2.12. Active transport of internalized NPAPF@SiO2-FA NPs 

Three µM of NPAPF@SiO2-FA NPs were added into KB cells and incubated for 4 

h at 37 ºC to allow particle internalization. Then the medium was removed. Cells were 

then washed several times with PBS in order to remove NPAPF@SiO2-FA NPs that 

were not internalized. Finally, the motions of endocytosed NPAPF@SiO2-FA NPs 

within the cells were recorded by time-lapse acquisition of image every 1.315 s. To 

study the cellular uptake and intracellular transport inhibition effect of 

cytoskeleton-disrupting drugs, 5 µM of cytochalasin D and 30 µM of nocodazole were 

applied to the cells for 30 min to disrupt actin filaments and microtubules, 
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respectively. Then the cells were further treated with NPAPF@SiO2-FA NPs for 4 h 

before confocal microscopy observation. 

2.13. Kinetics of exocytosis of NPAPF@SiO2-FA NPs 

For investigating the exocytosis of nanostructures, KB cells were incubated with 3 

µM NPAPF@SiO2-FA NPs for 4 h to get a substantial intracellular uptake. Then, the 

cells were washed three times with PBS and placed in a fresh cell culture medium. At 

different time points, an aliquot of the medium was collected and its fluorescence 

intensity was determined. 

2.14. In vivo NIR fluorescence imaging 

All in vivo experiments were performed in compliance with the relevant laws and 

institutional guidelines and also approved by Laboratory Animal Center of Soochow 

University. The BALB/c female mice with age of 5 to 6 weeks were purchased from 

Suzhou Industrial Park Animal Technology Co., Ltd. and were housed in a standard 

facility. 4T1 tumor-bearing mice were intravenously injected with 200 µL of 60 µM 

NPAPF@SiO2-FA NPs and imaged using a Maestro in vivo fluorescence imaging 

system (CRi Inc.). Green light with a peak wavelength at 523 nm was used as the 

excitation source. Spectral imaging from 600 nm to 750 nm (10 nm step) was carried 

out with various exposure times for each image frame. Autofluorescence (particularly 

from food residues in the stomach and intestine) was decreased by exposure time. The 

mouse was marked out by green line in situ corresponding with the bright-filed image. 

2.15. Biodistribution 

4T1 bearing BALB/c mice were just treated with NPAPF@SiO2-FA NPs at a dose 
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of 200 µL and then were sacrificed at 1, 2, 6, 12, 24 and 48 h. Fluorescence of various 

organs and tissues were spectrally measured by the Maestro system. The averaged 

fluorescent intensity was calculated for a semi-quantitative biodistribution analysis. 

 

3. Results and discussion 

3.1. Synthesis and characterization of NPAPF@SiO2-FA NPs 

NPAPF is an AIE dye with weak fluorescence in THF. We firstly used a solvent 

exchange method to prepare NPAPF NPs in aqueous solution. Subsequently, a very 

thin silica layer was grown on NPAPF NPs (termed NPAPF@SiO2) followed by 

anchoring FA molecules on the surface to produce NPAPF@SiO2-FA NPs. Growth of 

an optically transparent SiO2 layer is to improve the stability of the NPs. Attachment 

of FA on the surface of the NPs is for targeted delivery to specific cells with folate 

receptors (FR) [25]. SEM and TEM images of NPAPF@SiO2-FA NPs are displayed in 

Fig. 1a and 1b. These NPs are spherical in shape and have an average diameter of 90 

nm. DLS analysis shows their average hydrodynamic diameter is approximately 120 

nm (Fig. S1b). There is a thin silica shell of about 10 nm coated on the surface of the 

NPs (Fig. S2a), and this can be confirmed by the EDX analysis presented in Fig. S2b. 

The successful linkage of FA to the surface of NPAPF@SiO2 NPs is demonstrated by 

the FTIR spectrum (Fig. S4). 

The optical properties of NPAPF in THF and NPAPF NPs in aqueous solution are 

shown in Fig. 1c. The emission of the THF solution of NPAPF is extremely low. 

However, after making it into NPs in aqueous solution, the material is strongly 
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luminescent with a peak at 650 nm. The fluorescence intensity of NPAPF@SiO2-FA 

NPs is higher than that of the NPAPF NPs with the same concentration. It is possibly 

due to the protection of the inert silica shell. Attractively, the NPs display a large 

Stokes shift of ~175 nm and intense emission in NIR region. Beyond the excellent 

optical properties of the NPs, C18PMH-PEG can be used to modify the material and 

this enables the nanostructures to be water-dispersible, bio-compatible and highly 

stable [26-28]. After surface functionalization, the size of the NPs shows a slight 

increase (Fig. S1b). The modified NPs can largely maintain their size and 

fluorescence in different media spanning from water, PBS, and serum to solutions of 

various pH values (2-10) during the 80 h observation period (Fig. 1d and Fig. S5a). In 

aqueous solution, the fluorescence intensity of the NPAPF@SiO2-FA NPs is stable. 

During 48 hours period of time, only about 4% of the dye molecules is released (Fig. 

S3). The QY of NPAPF@SiO2-FA NPs was measured to be 11.8%. Overall, all of 

these features make the NPs particularly suitable for in bioimaging. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

 

 

Fig. 1. (a) SEM images of NPAPF@SiO2-FA NPs; (b) TEM images of 
NPAPF@SiO2-FA NPs and NPAPF NPs without a layer of silica coating (inset); (c) 
UV-vis absorption spectrum of NPAPF@SiO2-FA NPs and photoluminescence (PL) 
spectra of NPAPF in THF, uncoated NPAPF NPs and NPAPF@SiO2-FA NPs; (d) 
fluorescence stability of modified NPAPF@SiO2-FA NPs under different conditions.  
 

Except the excellent stability and optical properties of NPs, good biocompatibility 

is also essential for their application in live cell imaging. Thus, standard MTT assay 

was used to determine the potential cytotoxicity of NPAPF@SiO2-FA NPs. We 

investigated the viability of two different cell lines including KB and HL-7702 cells 

when incubated with NPAPF@SiO2-FA NPs. As shown in Fig. S5, both cell lines 

exhibit very high viability of greater than 90% after 24, 48, and 72 h incubation with 

NPAPF@SiO2-FA NPs at different concentrations from 1.25 to 20 µM. These findings 

demonstrate that the NPAPF@SiO2-FA NPs are biocompatible and cause low 

interference on cell proliferation. 

3.2. FA targeted cell imaging 

FR commonly over-expresses in many types of cancer cells and are broadly used 

for targeting delivery of therapeutic molecules and biological probes [29]. KB cells 

cultured in FA-free medium have high FR expression on their surface. FA–targeted 

NPs display high affinity properties with the receptor [30,31]. This enables them to 

rapidly bind to the cell surface. The internalization of NPs into cells can be studied 

through monitoring their fluorescence within cells by confocal microscopy imaging. 

The results are presented in Fig. S6a. From the figure, it can be found that, in the KB 

cells incubated with NPAPF@SiO2-FA NPs at 37 ºC, the intensity of the red 
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fluorescence is significantly higher than that in the cells incubated with NPAPF@SiO2 

NPs under the same conditions. Even at 4 ºC at which the endocytosis pathway of the 

NPs is largely suppressed, we still can obtain a similar finding. This is probably due to 

the fact that FA plays a crucial role for cellular uptake at 4 ºC [32]. The quantity 

analysis of the NPs internalization under different conditions was further carried out 

by flow cytometry. As shown in Fig. S6b and S6c, the fluorescence intensity of 

NPAPF@SiO2-FA NPs in KB cells is as high as three times of that of NPAPF NPs at 

37 ºC and ten times higher than that of NPAPF NPs at 4 ºC. These results clearly 

demonstrate FA modified NPs are able to efficiently target FR-positive cells. Because 

of this, high quality cellular imaging can be realized even with very low 

concentrations of NPs. 

3.3. Long-term imaging  
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Fig. 2. (a) Signal loss (%) of NPAPF@SiO2-FA NPs with increasing number of scans. 
Data for FITC (green curve) are shown for comparison. (b) Fluorescence images of 
living KB cells incubated with NPAPF@SiO2-FA NPs at different scans. The numbers 
of scans are shown in upper left corner. The scale bar indicates 10 µm. 

For bioimaging applications, it is highly desirable to allow the fluorescence probe 

to have a good photo-stability. To study the photo-stability of NPAPF@SiO2-FA NPs, 

we carried out an experiment of using the NPs for long-term imaging with an 

excitation of 488 nm. The imaging of Fluorescein isothiocyanate (FITC) under the 

same condition was also performed as a reference, as FITC is the most commonly 

used dye in the field [33,34]. As shown in Fig. 2a, after 211 scans, the signal loss of 

NPAPF@SiO2-FA NPs is less than 20% (Movie S1). In a stunning contrast, the 
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remaining fluorescence signal of FITC is only 20% of the initial value (Movie S2). 

The direct comparison clearly demonstrates the superior photo-stability of the 

red-emitting NPAPF@SiO2-FA NPs, which makes them hold great potential for 

long-term bioimaging. Fig. 2b shows fluorescent images of KB cells experiencing 

increasing number of scans when NPAPF@SiO2-FA NPs were used as a fluorescence 

probe. It is obvious that the red fluorescence is still ultra-bright after 200 scans.  

3.4. Cellular uptake studies 

3.4.1. KB cell exposure to NPAPF@SiO2-FA NPs 

Fig. 3 shows the time-dependent fluorescence images of KB cells cultured in 

FA-free medium at different times after exposure to 3 µM NPAPF@SiO2-FA NPs. At 

30 min after the addition of NPAPF@SiO2-FA NPs, the outer surface of the cell is 

visibly stained and the NPs start to gradually accumulate on the surface. Subsequently, 

more and more NPs are internalized by the cell and transported to the perinuclear 

region. After 4 h, NPAPF@SiO2-FA NPs are mostly distributed in the cell peripheries 

region and perinuclear region. Interestingly, we also observed cell divisions in which 

the internalized particles are shared by two daughter cells. One example is shown in 

Fig. 4. This is a clear piece of evidence that the cell division can still occur after cells 

being treated with NPAPF@SiO2-FA NPs. Overall, the material has favorable 

biocompatibility and cells proliferate normally. 
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Fig. 3. Time-dependent imaging of NPAPF@SiO2-FA NPs uptake in cultured KB 
cells. The experiment was performed under living cell condition (5% CO2, 37 ºC) 
with the concentration of NPAPF@SiO2-FA NPs of 3 µM. Scale bars: 10 µm. 

 
Fig. 4. A KB cell being divided during observation. The internalized 
NPAPF@SiO2-FA NPs are shared by the two daughter cells. The concentration of 
NPAPF@SiO2-FA NPs was 5 µM. Scale bar: 10 µm. 
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3.4.2. The endocytic pathways of NPAPF@SiO2-FA NPs 

  

Fig. 5. Effect of different inhibitors on the intracellular uptake of NPAPF@SiO2-FA 
NPs. KB cells were either untreated or pre-treated with 10 µg/mL of chlorpromazine, 
1 µg/mL of cytisine, or 50 µM of amiloride. Chlorpromazine, cytisine, and amiloride 
were applied to inhibit clathrin-mediated endocytosis, caveolae and micropinocytosis, 
respectively. In another group, cells were cultured for 1 h at 4 ºC for energy inhibition. 
Subsequently, cells were treated with NPAPF@SiO2-FA NPs for 4 h without washing. 
The energy inhibition group was still kept at 4 ºC. (a) Confocal microscopy images 
displaying intracellular uptake of NPAPF@SiO2-FA NPs (red fluorescence). The cell 
nuclei were stained by DAPI and are shown in blue. (b) The intracellular uptake of 
NPs was further quantitatively analyzed by flow cytometry and the corresponding 
data are illustrated in the graph (c). The scale bars in (a) are 20 µm. 

Once we demonstrate that NPAPF@SiO2-FA NPs can be used for long-term live 

cell imaging and the cell behavior (e.g., division) is not negatively affected by the 

treatment of such NPs, we next performed a systematic study to explore the cellular 

uptake mechanism of the NPs. When cells are pre-incubated at low temperature (4 ºC), 

the cellular uptake of NPAPF@SiO2-FA NPs is significantly inhibited (Fig. 5a). It 

suggests that the endocytosis of NPAPF@SiO2-FA NPs is an energy-dependent 

process. Subsequently, three endocytosis inhibitors including chlorpromazine, cytisine, 
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and amiloride were employed to inhibit clathrin-mediated endocytosis, 

caveolae-mediated endocytosis, and micropinocytosis, respectively [35]. As shown in 

Fig. 5a, b, and c, all of the inhibitors retard the cellular uptake of NPAPF@SiO2-FA 

NPs to different extents. When KB cells are pre-incubated with CPZ, cytisine and 

amiloride, the reductions of cellular uptake are 20%, 17% and 14%, respectively, 

comparing with the control group. However, none of these inhibitors leads to 

predominant inhibition of intracellular uptake, so it is most possible that clathrin- and 

caveolae-independent endocytosis plays a crucial role in the internalization of the NPs. 

After silica coating, the surface topography of NPs changed. Nude NPs have a very 

smooth surface but the surface becomes relatively rough after the coating which may 

induce these NPs enter cells via clathrin- and caveolae-independent endocytosis 

pathway not the normal way. However, the detailed reason of this unique endocytosis 

pathway for NPAPF@SiO2-FA NPs still require extensive further work [36,37]. 

3.4.3. Intracellular fate of NPAPF@SiO2-FA NPs 

Generally, if NPs are internalized by cells through clathrin-mediated endocytosis, 

the materials will be enclosed into endosomes and lysosomes. Because of the 

ultra-low pH values and enzymes in these organelles, the enclosed material can be 

degraded [38]. In comparison, pathways such as caveolar uptake, macropinocytosis 

and clathrin- and caveolae-independent uptake are somewhat nonspecific and the 

transport environment is neither acidic nor digestive. To determine the distribution of 

NPAPF@SiO2-FA NPs with cells, we stained the lysosomes and applied confocal 

microscopy imaging for observation. In Fig. S7, lysosomes are stained with green 
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fluorescence and NPAPF@SiO2-FA NPs displayed in red. If yellow fluorescence is 

observed in the merged images, it will suggest that the NPAPF@SiO2-FA NPs have 

been located in the lysosomal compartments. However, yellow signal is rarely seen in 

the overlay. Apparently, almost all NPs are distributed in the cytoplasm and only very 

few are trapped within lysosomes. Therefore, this pathway is different from the 

classical endo/lysosomal trafficking form for the intracellular delivery of 

nanomaterials and may serve as a promising endocytosis pathway avoiding lysosomal 

degradation of the internalized materials. Non-clathrin and non-caveolae uptake 

pathway results in non-degradative cellular uptake and prompt perinuclear 

accumulation. This advantage has already been used for cancer therapy. For example, 

polymer-based nanoparticle systems deliver drug and gene directly to the perinuclear 

region which can avoid being degraded in the lysosomers [39], thus delivery efficacy 

is able to be greatly enhanced. Similarly, fluorescent probes internalized through 

clathrin- and caveolae-independent pathway can also prevent from being degraded 

within the enzyme-rich and low-pH environment so that they can maintain strong 

fluorescence intensity, which is very beneficial for long-term imaging. 

3.5. Active transport of internalized NPAPF@SiO2-FA NPs 

After NPAPF@SiO2-FA NPs are internalized into cells, they are able to transport 

from one place to another. Real-time images can be employed to visualize the 

movement of the NPs. In our study, we successfully discovered that some individual 

NPs originally at the periphery region of cells are transported to the nucleus with an 

example shown in Fig. 6a. One explanation is that NPAPF@SiO2-FA NPs are actively 
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transported by intracellular motor proteins on the microtubules or actin filaments [40]. 

To confirm this, inhibition studies at the early uptake stage were carried out. We 

pre-incubated KB cells with cytoskeleton disrupting drugs including 30 µM of 

nocodazole and 5 µM of cytochalasin D whose roles are to inhibit the polymerization 

of microtubules and disrupt the actin filaments, respectively [41]. As shown in Fig. 6c, 

application of the microtubule-disrupting nocodazole leads to a decreased appearance 

of NPAPF@SiO2-FA NPs inside the center of the cell and most NPs locate in the cell 

periphery without moving to the perinuclear area. Employment of cytochalasin D also 

causes strong suppression of internalization. However some NPAPF@SiO2-FA NPs 

can still reach perinuclear region. These results reveal that microtubule-dependent 

motor proteins like dyneins and kinesins are liable for the transportation of the NPs. 

Dyneins are responsible for transporting vesicular cargos toward the end of the 

microtubules near the nucleus, while kinesins possess similar function but moving 

materials from the nucleus to the cell periphery region [42,43]. For the trajectory 

observation in Fig. 6a (Movie S3), it is most possible that dyneins are playing 

important roles. Additionally, we also explored that some NPs are transported away 

from the perinuclear region (Fig. 6b，Movie S4), probably by kinesins. 
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Fig. 6. (a) Trajectory of a nanoparticle transported from the cell periphery to the 
perinuclear region presumably by dyneins. (b) Trajectory of a nanoparticle transported 
from the perinuclear region to the cell periphery presumably by kinesins. (c) 
Inhibition of NPAPF@SiO2-FA NPs transport by cytoskeleton-disrupting drugs. 
Confocal images of NPAPF@SiO2-FA NPs incubated in the absence (control) and 
presence of the microtubule-disrupting drug nocodazole (30 µM), and actin-disrupting 
drug cytochalasin D (5 µM). KB cells were treated with the drug for 1h in serum-free 
media at 37 ºC and were then incubated with 3 µM NPAPF@SiO2-FA NPs for 4 h. 
Scale bars: 10 µm. 

3.6. NPAPF@SiO2-FA NPs exocytosed by cells 

Exocytosis is one of the behaviors of cells. It has been shown that the retention time 

of NPs within cells can be influenced by their size, surface properties and endocytic 

pathways. It has been reported that nanoparticles captured into lysosomes can be 

exocytosed with lysosomes as the vehicles. While, if nanoparticles have lysosome 

escape ability, they will stably reside in cytoplasm and the excretion rate will be very 
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low [37]. In line with this, we can expect NPAPF@SiO2-FA NPs stay in cytosol and 

are exocytosed relatively slowly as our mechanism study has shown that they enter 

cells through non-clathrin and non-caveolae pathway. In order to study the exocytosis 

of NPAPF@SiO2-FA NPs, we placed the cells containing internalized nanostructures 

in a medium and measured the fluorescence intensity of the medium at different times. 

As illustrated in Fig. S8, the fluorescence intensity increases with extended incubation 

time and saturates after 8 hours. We speculate that the exocytosis mainly happens to 

the small fraction of NPs which was internalized through clathrin-mediated 

endocytosis, while most NPs can still remain in the cytoplasm of cells. Since a large 

portion of NPAPF@SiO2-FA NPs can remain within cells for prolonged time, these 

nanostructures would be desirable for long-term imaging. 

3.7. In vivo imaging and biodistribution 

NPAPF@SiO2-FA NPs were examined for in vivo bioimaging applications.  

NPAPF@SiO2-FA NPs (200 µL of 60 µM solution for each mouse) were 

intravenously injected into 4T1 tumor-bearing BALB/c mice. As shown in Fig. S9, at 

12 h after injection, the fluorescence of the NPAPF@SiO2-FA NPs was distinctively 

bright red and spatially resolved in the tumor site, indicating the preferential 

accumulation of NPAPF@SiO2-FA NPs in the tumor. Such a high signal-to-noise ratio 

is particularly beneficial for NIR probes for cancer diagnosis. We then studied the 

biodistribution of the NPs by imaging the major organs and the tumor tissues of the 

4T1 tumor-bearing BALB/c mouse at different post injection time points (Fig. S10). 

The fluorescence of NPAPF@SiO2-FA NPs in the tumor tissues increased with time. 
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After 48 h post injection, prominent accumulation of NPAPF@SiO2-FA NPs in tumor 

sites was observed (56.9% ID g-1). These studies clearly evidenced the advantages of 

the NPAFN@SiO2-FA NPs for in vivo imaging. 

 

4. Conclusion 

In summary, we fabricated a novel type of FA targeted core-shell organic dye NPs 

as a fluorescent probe. With the superior characteristics of high fluorescence intensity, 

large Stokes shift, good photostability, emission in the NIR range, targeted delivery, 

and biocompatibility, these NPAPF@SiO2-FA NPs can realize high quality imaging at 

low concentrations, enabling long-term and real-time imaging in living cells. By using 

these NPs for imaging, we investigated cell division, the cellular uptake kinetics and 

pathway of NPs, as well as the distribution and intracellular transport of NPs. Cell 

division during imaging shows that the cells still remain normal metabolic activities. 

Cellular uptake of the NPs is time and energy dependent. Clathrin- and 

caveolae-independent pathway is the main form in the endocytic progress for these 

unique NPs. The major advantage of as-prepared NPAPF@SiO2-FA NPs is that these 

nanostructures enter cells via clathrin- and caveolae-independent endocytosis pathway. 

This leads to improved intracellular uptake and prolonged stay within cells and 

correspondingly enhanced fluorescence intensity and potential for long-term 

imaging/tracking of cells. The capacity of intracellular tracking of specific NPs allows 

us to use the probe for investigating molecular motors inside living cells. Overall, we 

prepared an organic fluorescent probe with superior characteristics and successfully 
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demonstrated its powerful applications in live cell imaging for various studies. 
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Additional data: 

Movie. S1. shows long-term imaging of NPAPF@SiO2-FA NPs with an excitation of 

488 nm. 

Movie. S2. shows long-term imaging of FITC with an excitation of 488 nm. 

Movie. S3. shows the trajectory of a nanoparticle transported from the cell periphery 

to the perinuclear region. 

Movie. S4. shows the trajectory of a nanoparticle transported from the perinuclear 

region to the cell periphery. 

Fig. S1. shows the SEM image of NPAPF NPs without a layer of silica coating and 

the hydrodynamic diameters of NPAPF NPs, NPAPF@SiO2-FA NPs and PEGlyated 

NPAPF@SiO2-FA NPs. 

Fig. S2. shows high-resolution TEM image of NPAPF@SiO2-FA NPs and the EDX 

pattern of NPAPF@SiO2-FA NPs acquired by TEM. 

Fig. S3. shows the evolution of the fluorescence intensity of NPAPF@SiO2-FA NPs 

and the release kinetics of dye molecules from NPAPF@SiO2-FA NPs. 

Fig. S4. shows the FTIR spectra of FA and FA-APTES. 

Fig. S5 shows the size stability of modified NPAPF@SiO2-FA NPs and cell 

viabilities.  

Fig. S6. shows FA targeted cell imaging. 

Fig. S7. shows the distribution of NPAPF@SiO2-FA NPs and lysosomes within KB 

cells. 

Fig. S8. shows the evolution of the PL intensities of the cell media after incubating 

with cells for different time points. 

Fig. S9. shows in vivo fluorescence image of a mouse at 12 h after injection of the 



NPAPF@SiO2-FA NPs. 

Fig. S10. shows spectrally resolved ex vivo fluorescence images of organs. 

 

 

 

 

Movie. S1. 

 

 

 

Movie. S2. 
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Movie. S1-2. Long-term imaging of NPAPF@ SiO2-FA NPs with an excitation of 488 

nm. The imaging of Fluorescein isothiocyanate (FITC) under the same condition was 

also performed as a reference. 

 

 

 

Movie. S3. 

 

 

 

 

Movie. S4. 
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Movie. S3. Some NPs are transported from cell periphery to the perinuclear region.  

Movie. S4. Some NPs are transported from the perinuclear region to cell periphery. 

 

 

Fig. S1. (a) SEM image of NPAPF NPs without a layer of silica coating (b) The 

hydrodynamic diameters of NPAPF NPs, NPAPF@SiO2-FA NPs and PEGlyated 

NPAPF@SiO2-FA NPs. 

 

 

 

 

Fig. S2. (a) A high-resolution TEM image of NPAPF@SiO2-FA NPs. (b) EDX pattern 

of NPAPF@SiO2-FA NPs acquired by TEM. 



 

 

Fig. S3. The evolution of the fluorescence intensity of NPAPF@SiO2-FA NPs and the 

release kinetics of dye molecules from NPAPF@SiO2-FA NPs. 

 

 

 

 

 

 



 

Fig. S4. FTIR spectra of FA and FA-APTES. 

 

 

 

 

 

 

 



 

Fig. S5. (a) Size stability of modified NPAPF@SiO2-FA NPs under different 

conditions. (b), (c) and (d) present the cell viabilities of KB cells and HL-7702 cells 

incubated with NPAPF@SiO2-FA NPs for 24, 48, and 72 h, respectively. The cell 

viabilities were determined using MTT assay. 

 

 

 



Fig. S6. FA targeted cell imaging. KB cells were cultured in FA-free medium. In two 

groups, 3 μM NPAPF@SiO2-FA NPs or NPAPF@SiO2 NPs were added into cells and 

incubated at 37 ºC for 4 h. The other two groups of KB cells were pre-incubated at 4 

ºC for 1 h and then incubated with either NPAPF@SiO2 NPs or NPAPF@SiO2-FA 

NPs at 4 ºC for 4 h. (a) Confocal images of different NPs uptake at different 

temperatures. (b) Flow cytometry analysis of cells under various conditions. (c) 

Quantity analysis of the fluorescence intensities of cells. Values were obtained from 

the flow cytometry analysis shown in (b). Scale bars: 20 μm. 



 

Fig. S7. (a) Distribution of NPAPF@SiO2-FA NPs and lysosomes within KB cells. 

Lysosomes were stained with LysoTracker (green). Red fluorescence is from the NPs. 

Co-localization of NPs with lysosome should appear in yellow in the merged images. 

Scale bars: 10 μm. (b) Magnified image of the white boxed area in (a). Scale bar: 10 

μm. 

 

 

 

 

 

 



 

Fig. S8. Evolution of the PL intensities of the cell media after incubating with cells 

for different time points. NPAPF@SiO2-FA NPs were internalized into the cells in 

advance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Fig. S9. (a) Bright-field image of a tumor-bearing mouse and NPAPF@SiO2-FA NPs 

solution (inset). (b) In vivo fluorescence image of a mouse at 12 h after injection of 

the NPAPF@SiO2-FA NPs with 5 ms exposure time. The inset shows the fluorescence 

image of NPAPF@SiO2-FA NPs in the storage equipment with 10 ms exposure time. 

 

 

 

 

 

 

 



 

Fig. S10. Spectrally resolved ex vivo fluorescence images of organs before injection 

and at 2, 6, and 12 h after injection of the NPAPF@SiO2-FA NPs NPs. Li: liver, M: 

muscle, Sk: skin, I: intestine, St: stomach, Lu: lung, H: heart, K: kidney, Sp: spleen, 

and T: tumor. (b) Semi-quantitative biodistribution of NPAPF@SiO2-FA NPs in mice 

determined by the averaged fluorescence intensity of each organ (after subtraction of 

the fluorescence intensity of each organ before injection). Error bars were based on 

three mice per group. 
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