-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Dijkstra Monads for Free

Citation for published version:

Ahman, D, Hritcu, C, Martinez, G, Plotkin, G, Protzenko, J, Rastogi, A & Swamy, N 2017, Dijkstra Monads
for Free. in The 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL). ACM,
pp. 515-529, 44th ACM SIGPLAN Symposium on Principles of Programming Languages 2017, Paris,
France, 15/01/17. DOI: 10.1145/3009837.3009878

Digital Object Identifier (DOI):
10.1145/3009837.3009878

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
The 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019


https://core.ac.uk/display/80691991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3009837.3009878
https://www.research.ed.ac.uk/portal/en/publications/dijkstra-monads-for-free(05c25950-2f17-4c04-a620-8439cceeff40).html

1608.06499v1 [cs.PL] 23 Aug 2016

arxXiv

Dijkstra Monads for Free

Danel Ahman!  Citilin Hrifcu?
Jonathan Protzenko?

!University of Edinburgh

Abstract

Dijkstra monads are a means by which a dependent type theory can
be enhanced with support for reasoning about effectful code. These
specification-level monads computing weakest preconditions, and
their closely related counterparts, Hoare monads, provide the basis
on which verification tools like F*, Hoare Type Theory (HTT), and
Ynot are built. In this paper we show that Dijkstra monads can be
derived “for free” by applying a continuation-passing style (CPS)
translation to the standard monadic definitions of the underlying
computational effects.

Automatically deriving Dijkstra monads provides a correct-by-
construction and efficient way of reasoning about user-defined
effects in dependent type theories. We demonstrate these ideas
in EMF*, a new dependently typed calculus, validating it both by
formal proof and via a prototype implementation within F*. Besides
equipping F* with a more uniform and extensible effect system,
EMF* enables within F* a mixture of intrinsic and extrinsic proofs
that was previously impossible.

1. Introduction

Monads are a versatile concept:

e From Moggi (1989), they are used to give semantics to call-by-
value reduction.

e From Moggi (1989), Wadler (1990, 1992), Filinski (1994, 1999,
2010), Benton et al. (2002) and others, they are used as a way to
introduce effects into a functional language.

e From Moggi (1989); Flanagan et al. (1993); Wadler (1994)
and others, they provide a foundation on which to understand
program transformations, notably CPS.

This paper brings together this threefold use of monads to im-
prove upon a fourth use of monads, namely “Dijkstra monads”, a
recent proposal by Swamy et al. (2013, 2016) and Jacobs (2015),
who suggest using monads of predicate transformers (like Dijk-
stra’s weakest preconditions), to verify effectful programs within a
functional programming language.

1.1 Example: A Dijkstra monad for stateful computations

In Dijkstra’s (1975) weakest precondition semantics, stateful com-
putations transform postconditions relating results and final state, to
preconditions on input states. This gives rise to a Dijkstra monad:

WP_ST a=posta — pre where post a = (a * state) — Type

pre = state — Type

return WP_ST x post s0 = post (x, s0)
bind_ WP_ST f g post sO=f (A (x,sl) — g x post s1) sO

The weakest precondition (WP) of a pure term e is computed to
be return_.WP_ST e, and the WP of the sequential composition

Draft

Guido Martinez?
Aseem Rastogi®

2Inria Paris

Gordon Plotkin’
Nikhil Swamy?

3Microsoft Research

let x = el in €2 is computed to be bind WP_ST wp1l (Ax. wp2), where
wpl and wp2 are the WPs of el and e2 respectively.

Based on such a construction, Swamy et al. (2013, 2016) (build-
ing on previous work by Nanevski et al. (2008)) devised a type
system to compute WPs for higher-order, effectful programs, en-
abling their verification within a dependently typed logic. However,
these constructions require a meta-theoretic argument to establish
their soundness with respect to the semantics of effectful programs.
This typically requires proofs of various correctness and admissibil-
ity conditions, including the monad laws and monotonicity.

1.2 For fun: Deriving Dijkstra monads

Rather than being given manually, we show that these predicate
transformers can be automatically derived by CPS’ing purely func-
tional definitions of monadic effects (with answer type Type). For
instance, rather than defining WP_ST, one can simply compute it by
CPS’ing the familiar ST monad (i.e., state — a * state), deriving

WP_ST a = ((a * state) — Type) — state — Type (unfolded)

We introduce DM, a simply typed, pure, monadic metalanguage
in which one can, in the spirit of Wadler (1992), define a variety of
monadic effects, ranging from state and exceptions, to continuations.
We define a type-directed CPS translation for this language and
show that monads are translated to Dijkstra monads, i.e., monotone,
conjunctive, predicate transformer monads.

1.3 For profit: Program verification with user-defined effects

We apply our technique of deriving Dijkstra monads to F* (Swamy
et al. 2016), a dependently typed programming language that already
has at its core a system of primitive effects specified using Dijkstra
monads. Our goal is to make F*’s effect system easier to configure
and extensible beyond the primitive effects it already supports; we
proceed as follows.

A core dependent type theory with monadic reflection To for-
mally study our improvements to F*, we define a new dependently
typed core calculus, EMF* (for Explicitly Monadic F*) that features
an extensible effect system. EMF* is loosely based on the Calculus
of Constructions (Coquand and Huet 1988) with (among other fea-
tures): (1) a predicative hierarchy of non-cumulative universes; (2)
a weakest-precondition calculus for pure programs; (3) refinement
types; and (4) a facility for representing user-defined effects using
the monadic reflection and reification of Filinski (1994), adapted to
the dependently typed setting. New effects can be introduced into the
language by defining them in terms of the built-in pure constructs,
related to each other via monad morphisms, and each such effect
obtains a suitable weakest precondition calculus derived from the
underlying pure WPs. We prove the calculus strongly normalizing
and the WP calculus sound for total correctness verification, for
both pure and effectful programs.

2016/8/24



Translating DM to EMF* To extend EMF* with a new effect, one
starts by defining a monadic effect (say ST) in DM. Via the CPS
transformation, we obtain the Dijkstra variant of that effect (WP_ST)
as a predicate transformer monad in EMF*. A second translation
from DM produces expression-level terms to represent monadic
computations in EMF*. A logical relations proof shows that monadic
computations are correctly specified by their predicate transformers.
We show examples of these translations at work for monadic effects
including state, exceptions, information-flow control, continuations,
and some combinations thereof.

Intrinsic and extrinsic proofs in EMF* Effectful programs in
EMF* can be proven correct using one or both of two different
reasoning styles. First, using the WP calculus, programs can be
proven intrinsically, by decorating their definitions with specifica-
tions that must be proven to be at least as strong as their WPs. We
refer to this as the intrinsic style, already familiar to users of F*, and
other tools like HTT (Nanevski et al. 2008), Dafny (Leino 2010),
and Why3 (Filliatre and Paskevich 2013).

Second, through monadic reification, EMF* allows effectful
programs to be revealed as their underlying pure implementations.
Once reified, one can reason about them via the computational
behavior of their definitions. As such, one may define effectful
programs with relatively uninformative types, and prove properties
about them as needed, via reification. This extrinsic style of proving
is familiar to users of systems like Coq or Isabelle, where it is
routinely employed to reason about pure functions. In EMF*, this
style extends smoothly to terminating effectful programs.

Primitive effects in a call-by-value semantics We see EMF* as a
meta-language in which to analyze and describe the semantics of
terms in an object language, EMFy, a call-by-value programming
language with primitive state. In the spirit of Moggi (1989), we show
that EMF* programs that treat their ST effect abstractly soundly
model EMF}; reductions—technically, we prove a simulation be-
tween EMF%; and EMF*. As such, our work is a strict improvement
on the prior support for primitive effects in F*: despite programming
and proving programs in a pure setting, stateful programs can still be
compiled to run efficiently in the primitively effectful EMFg;, while
programs with other user-defined effects (e.g., information-flow
control) can, unlike before, be executed via their pure encodings.

A prototype implementation for F* We have adapted F* to benefit
from the theory developed in this paper, using a subset of F* itself
as an implementation of DM, and viewing EMF}; as a model of
its existing extraction mechanism to OCaml. Programmers can
now configure F*’s effect system using simple monadic definitions,
use F* to prove these definitions correct, and then use our CPS
transformation to derive the Dijkstra monads required to configure
F*’s existing type-checker. To benefit from the new extrinsic proving
capabilities, we also extended F* with two new typing rules, and
changed its normalizer, to handle monadic reflection and reification.

Several examples show how our work allows F* to be easily
extended beyond the primitive effects already supported, without
compromising its efficient primitive effect compilation strategy; and
how the new extrinsic proof style places effectful reasoning in F* on
an equal footing with its support for reasoning about pure programs.

1.4 Summary of contributions

The central contribution of our work is designing three closely re-
lated lambda calculi, studying their metatheory and the connections
between them, and applying them to provide a formal and practical
foundation for a user-extensible effect system for F*. Specifically,

(1) EMF*: A new dependent type theory with user-extensible,
monadic effects; monadic reflection and reification; WPs; and

Draft

refinement types. We prove that EMF* is strongly normalizing
and that its WPs are sound for total correctness (§3).

(2) pMm: A simply typed language to define the expression-level
monads that we use to extend EMF* with effects. We define a
CPS transformation of DM terms to derive Dijkstra monads from
expression-level monads, as well as an elaboration of DM terms
to EMF*. Moreover, elaborated terms are proven to be in relation
with their WPs (§4).

(3) EMF§;: A call-by-value language with primitive state, whose
reductions are simulated by well-typed EMF* terms (§5).

(4) An implementation of these ideas within F* (§3.5, §4.6) and
several examples of free Dijkstra monads for user-defined effects
(§2). We highlight, in particular, the new ability to reason
extrinsically about effectful terms.

The auxiliary materials for this paper (https://www.fstar-lang.

org/papers/dm4free) contain appendices with complete defini-
tions and proofs for the formal results in §3, §4 (Appendix A below),
and §5. The F* source code (https://github.com/FStarLang/
FStar) now includes the extensions from §3.5 and §4.6 and the
examples from §2 (https://github.com/FStarLang/FStar/
tree/master/examples/dmé4free).

2. Illustrative examples

We illustrate our main ideas using several examples from F*,
contrasting with the state of affairs in F* prior to our work. We
start by presenting the core WP calculus for pure programs (§2.1),
then illustrate how state can be added to it (§2.2). After showing
our basic methodology on state (§2.3 and §2.4), we present a few
additional examples, including combining exceptions with state
(§2.5), information-flow control (§2.6), and continuations (§2.7).

Notation: The syntax A(by) ... (b,) —t introduces a lambda ab-
straction, where b; ranges over binding occurrences x:t declaring a
variable x at type t. The type b; — ... — b, —c is the type of a curried
function, where c is a computation type—we emphasize the lack of
enclosing parentheses on the b;. We write just the type in b when
the name is irrelevant, and t —t’ for t — Tot t’.

2.1 WPs for pure programs

Reasoning about purely functional programs is a relatively well-
understood activity: the type theories underlying systems like Coq,
Agda, and F* are already well-suited to the task. Consider proving
that pure term sqr = A(x:int) —x * x always returns a non-negative
integer. A natural strategy is an extrinsic proof, which involves
giving sqr a simple type such as int — Tot int, the type of total
functions on integers, and then proving a lemma Vx. sqr x > 0. In the
case of F*, the proof of the lemma involves, first, a little computation
to turn the goal into Vx. x«x > 0, and then reasoning in the theory
of integer arithmetic of the Z3 SMT solver (de Moura and Bjgrner
2008) to discharge the proof.

An alternative intrinsic proof style in F* involves giving sqr type
x:int — Pure int (Apost —Vy. y> 0 = post y), a dependent function
type of the form x:t — ¢, where the formal parameter x:t is in scope in
the computation type c to the right of the arrow. Computation types
c are either Tot t (for some type t) or of the form M t wp, where M
is an effect label, t is the result type of the computation, and wp is a
predicate transformer specifying the semantics of the computation.
The computation type we give to sqr is of the form Pure t wp, the
type of t-returning pure computations described by the the predicate
transformer wp: (t — Type) — Type, a function taking postconditions
on the result (predicates of type t — Type), to preconditions. These
predicate transformers form a Dijkstra monad. In this case, the wp
states that to prove any property post of sqr x, it suffices to prove

2016/8/24


https://www.fstar-lang.org/papers/dm4free
https://www.fstar-lang.org/papers/dm4free
https://github.com/FStarLang/FStar
https://github.com/FStarLang/FStar
https://github.com/FStarLang/FStar/tree/master/examples/dm4free
https://github.com/FStarLang/FStar/tree/master/examples/dm4free

post y, for all non-negative y—as such, it states our goal that sqr x is
non-negative. To prove sqr can be given this type, F* infers a weakest
precondition for sqr x, namely Apost — post (x * x) and aims to prove
that the predicate transformer we specified is at least as strong as the
weakest one it inferred: Vpost. (Vy. y> 0 = post y) = post (x*x),
which is discharged automatically by Z3. For pure programs, this
intrinsic proof style may seem like overkill and, indeed, it often is.
But, as we will see, this mechanism for reasoning about pure terms
via WPs is a basic capability which we can leverage for reasoning
about terms with more complex, effectful semantics.

2.2 Adding WPs for state

Consider proving that incr _= let x = get() in put (x + 1) produces an
output state greater than its input state. Since this program has
the state effect, a proof by extrinsic reasoning is not completely
straightforward, because reducing an effectful computation within
a logic may not be meaningful. Instead, tools like Ynot (Chlipala
et al. 2009), HTT (Nanevski et al. 2008), and F* only support the
intrinsic proof style. In the case of F*, this involves the use of a
computation type ST’ t wp, where wp: WP_ST t and for our simple
example we take WP_ST t = ((t x int) — Type) —int — Type, i.e., the
Dijkstra state monad from the §1 with state=int.

Using the ST’ computation type in F*, one can specify for incr the
type unit — ST  unit (Apost s0 — Vsl. s1 > s0 = post ((), s1)). That
is, to prove any postcondition post of incr, it suffices to prove
post (), s1) for any sl greater than s0, the initial state—this is the
statement of our goal. The proof in F* currently involves:

(1) As discussed already in §1, one must define WP_ST t, its return
and bind combinators, proving that these specifications are sound
with respect to the operational semantics of state.

(2) The primitive effectful actions, get and put are assumed to have
the types below—again, these types must be proven sound with
respect to the operational semantics of F*.

get : unit — ST int (A post sO — post (s0, sO))
put : x:int — ST unit (4 post _ — post ((), X))

(3) Following the rule for sequential composition sketched in
81, F* uses the specifications of get and put to compute
bind_ST_WP wp_get (Ax —wp_put (x+ 1)) as the WP of incr,
which reduces to Apost sO — post ((), sO + 1).

(4) The final step requires proving that the computed WP is at least
as weak as the specified goal, which boils down to showing that
s0 + 1 > s0, which F* and Z3 handle automatically.

The first two steps above correspond to adding a new effect to
F*. The cost of this is amortized by the much more frequent and
relatively automatic steps 3 and 4. However, adding a new effect to
F* is currently an expert activity, carried out mainly by the language
designers themselves. This is in large part because the first two steps
above are both tedious and highly technical: a dangerous mixture
that can go wrong very easily.

Our primary goal is to simplify those first two steps, allowing
effects to be added to F* more easily and with fewer meta-level
arguments to trust. Besides, although F* supports customization of
its effect system, it only allows programmers to specify refinements
of a fixed set of existing effects inherited from ML, namely, state,
exceptions, and divergence. For example, an F* programmer can
refine the state effect into three sub-effects for reading, writing, and
allocation; but, she cannot add a new effect like alternative combi-
nations of state and exceptions, non-determinism, continuations, etc.
We aim for a more flexible, trustworthy mechanism for extending
F* beyond the primitive effects it currently supports. Furthermore,
we wish to place reasoning about terminating effectful programs on

Draft

an equal footing with pure ones, supporting mixtures of intrinsic
and extrinsic proofs for both.

2.3 CPS’ing monads to Dijkstra monads

Instead of manually specifying WP_ST, we program a traditional
ST monad and derive WP_ST using a CPS transform. In §4.1 we
formally present DM, a simply typed language in which to define
monadic effects. DM itself contains a single primitive identity monad
7, which (as will be explained shortly) is used to control the CPS
transform. We have implemented DM as a subset of F*, and for
the informal presentation here we use the concrete syntax of our
implementation. What follows is an unsurprising definition of a
state monad st a, the type of total functions from s to identity
computations returning a pair (a * s).

letsta=s—1t(axs)

let return (x:a) : st a=As0 —x, sO

let bind (f:ist a) (g:a —stb) :stb=24s0 —let x,s1 =fs0ingxsl
let get () : sta=As0 —s0, s0

let put (x:s) : stunit=A_—(), x

This being a subset of F*, we can use it to prove that this definition is
indeed a monad: proofs of the three monad laws for st are discharged
automatically by F* below (feq is extensional equality on functions,
and assert p requests F* to prove p statically). Other identities
relating combinations of get and put can be proven similarly.

let right_unit_st (f:st ) = assert (feq (bind f return) f)
let left_unit_st (x:c) (f:(a — st B)) = assert (feq (bind (return x) f) (f x))
let assoc_st (fist o) (g:(a — st B)) (h:(B —st y)

= assert (feq (bind f (A x — bind (g x) h)) (bind (bind f g) h))

We then follow a two-step recipe to add an effect like st to F*:

Step 1 To derive the Dijkstra monad variant of st, we apply a
selective CPS transformation called the x-translation (§4); first, on
type st a; then, on the various monadic operations. CPS’ing only
those arrows that have 7-computation co-domains, we obtain:

(st a)* = a—((ax*xs)—Type) — Type

return® =  Axs0 post — post (x, sO)

bind* = Afgs0 post —fs0 (A(x,s1) — g x sl post)
get* = A0 s0 post — post (s0, sO)

put* = Ax_post — post ((), x)

Except for a reordering of arguments, the terms above are identical to
the analogous definitions for WP_ST. We prove that the x-translation
preserves equality: so, having shown the monad laws for st a, we
automatically obtain the monad laws for (st a)*. We also prove
that every predicate transformer produced by the *-translation is
monotone (it maps weaker postconditions to weaker preconditions)
and conjunctive (they distribute over conjunctions and universals,
i.e., infinite conjunctions, on the postcondition).

Step 2 The *-translation yields a predicate transformer semantics
for a new monadic effect, however, we still need a way to extend
F* with the computational behavior of the new effect. For this, we
define a second translation, which elaborates the definitions of the
new monad and its associated actions to Pure computations in F*. A
first rough approximation of what we prove is that for a well-typed
DM computation e : T t, its elaboration e has type Pure t e* in EMF*.

The first-order cases are particularly simple: for example,
return = return has type x:a — Pure a (return* x) in EMF*; and
get = get has type u:unit — Pure s (get* u) in EMF*. For a higher-
order example, we sketch the elaboration of bind below, writing
st t wp for s0:s — Pure t (wp s0):

bind : wpfi(st a)* — fist a wpf
—wpg:(a — (st b)*) — g:(x:a — st b wpgx)
—st b (bind* wpf wpg)
= Awpffwpg gsO —letx,s1=1s0ingxsl

2016/8/24



Intuitively, a function in DM (like bind) that abstracts over
computations (f and g) is elaborated to a function (bind) in EMF*
that abstracts both over those computations (f and g again, but at
their elaborated types) as well as the WP specifications of those
computations (wpf and wpg). The result type of bind shows that it
returns a computation whose specification matches bind*, i.e., the
result of the CPS’ing *-translation.

In other words, the WPs computed by F* for monads imple-
mented as Pure programs corresponds exactly to what one gets by
CPS’ing the monads. At first, this struck us as just a happy coinci-
dence, although, of course, we now know that it must be so. We see
our proof of this fact as providing a precise characterization of the
close connection between and WPs and CPS transformations.

2.4 Reity and reflect, for abstraction and proving

Unlike prior F* formalizations which included primitive exception
and state effects, the only primitive monad in EMF* is for Pure
computations.! Although the translations from DM yield pure
definitions of monads in F*, programming directly against those pure
implementations is undesirable, since this may break abstractions.
For instance, consider an integer-state monad whose state is expected
to monotonically increase: revealing its representation as a pure term
makes it hard to enforce this invariant. We rely on Filinski’s (1994)
monadic reflection for controlling abstraction.

Continuing our example, introducing the state effect in F*
produces a new computation type ST (a:Type) (wp: (st a)*) and two
coercions

reify : ST a wp —s0:s — Pure (a * s) (wp s0)
reflect : (s0:s — Pure (a * s) (wp s0)) = ST a wp

The reify coercion reveals the representation of an ST computation
as a Pure function, while reflect encapsulates a Pure function as a
stateful computation. As we will see in subsequent sections, in some
cases to preserve abstractions, one or both of these coercions will
need to be removed, or restricted in various ways.

To introduce the actions from DM as effectful actions in F*, we
reflect the pure terms produced by the elaboration from DM to EMF*,
obtaining actions for the newly introduced computation type. For
example, after reflection the actions get and put appear within F* at
the types below:

get : unit — ST s (get* ()
put : sl:s = ST unit (put* s1)

Asin §2.2, we can still program stateful functions and prove them
intrinsically, by providing detailed specifications to augment their
definitions—of course, the first two steps of the process there are
now automatic. However, we now have a means of doing extrinsic
proofs by reifying stateful programs, as shown below (taking s=int).

let StNull a=ST a (4 s0 post — Vx. post x)
let incr _: StNull unit = let n = get() in put (n + 1)
let incr_increases (sO:s) = assert (snd (reify (incr()) s0) =s0 + 1)

The StNull unit annotation on the second line above gives a weak
specification for incr. However, later, when a particular property of
incr is required, we can recover it by reasoning extrinsically about
the reification of incr() as a pure term.

I'We leave divergence out of scope of the present work as a relatively
orthogonal concept. We envisage adding divergence to EMF* and DM as a
second primitive effect in the future, with divergent computations interpreted
in a partial correctness semantics with only intrinsic proving available. We do
not foresee any significant difficulties in doing this, following the treatment
of divergence of Swamy et al. (2016). We expect this to provide partial-
correctness Dijkstra monads for free.

Draft

2.5 Combining monads: state and exceptions, in two ways

To add more effects to F*, one can simply repeat the method-
ology outlined above. For instance, one can use DM to define
exn a = unit — T (option a) in the obvious way (the unit is necessary,
cf. §4.1), our automated two-step recipe extends F* with an effect
for terminating programs that may raise exceptions. Of course, we
would like to combine the effects to equip stateful programs with
exceptions and, here, we come to a familiar fork in the road.

State and exceptions can be combined in two mutually incompat-
ible ways. In DM, we can define both stexn a ='s — 7((option a) * s)
and exnst a =s — T(option (a * s)). The former is more familiar to
most programmers: raising an exception preserves the state; the
latter discards the state when an exception is raised, which though
less common, is also useful. We focus first on exnst and then discuss
a variant of stexn.

Relating st and exnst Translating st (as before) and exnst to
F* gives us two unrelated effects ST and ExnST. To promote ST
computations to ExnST, we define a lift relating st to exnst, their
pure representations in DM, and prove that it is a monad morphism.

let lift (f:st a) : exnst a = As0 — Some (f s0)
let lift_is_an_st_exnst_morphism =
assert (V x. feq (lift (ST.return x)) (ExnST.return x));
assert (V f g. feq (lift (ST.bind f g)) (ExtST.bind (lift f) (1 x — lift (g x))))

Applying our two-step translation to lift, we obtain in F* a
computation-type coercion from ST awp to ExnST a (lift* wp).
Through this coercion, and through F*’s existing inference al-
gorithm (Swamy et al. 2011, 2016), ST computations are im-
plicitly promoted to ExnST computations whenever needed. In
particular, the ST actions, get and put, are implicitly available
with ExnST. All that remains is to define an additional action,
raise = A() sO — None, which gets elaborated and reflected to F* at
the type unit —ExnST a (A p —p None).

ExnST programs in F* can be verified intrinsically and extrin-
sically. For an intrinsic proof, we show div_intrinsic below, which
raises an exception on a divide-by-zero. To prove it, we make use
of an abbreviation ExnSt a pre post, which lets us write specifica-
tions using pre- and postconditions instead of predicate transform-
ers, which can be more convenient—the F* keywords, requires and
ensures are only there for readability and have no semantic content.

let ExnSt a pre post = ExnST a (A s0 p —
pre sO A Vx. post sO x => p x)
let div_intrinsici j : ExnSt int
(requires (A _ — True))
(ensures (A sO x — match x with
| None — j=0
| Some (z,s1) »s0=s1Aj<>0Az=i/]))
=if j=0 then raise () else i/ j

Alternatively, for an extrinsic proof, we give a weak specification
for div_extrinsic and verify it by reasoning about its reified definition
separately. This time, we add a call to incr in the ST effect in case of
a division-by-zero. F*’s type inference lifts incr to ExnST as required
by the context. However, as the proof shows, the incr has no effect,
since the raise that follows it discards the state.

let ExnStNull a = ExnST a (A4 sO post — Vx. post x)
let div_extrinsic i j : ExnStNull int = if j=0 then (incr(); raise ()) else i/
let lemma_div_extrinsici j=
assert (match reify (div_extrinsic i j) 0 with
| None —+j=0
| Some (z,0) »j<>0Az=i/])

Using reify and reflect we can also build exception handlers,
following ideas of Filinski (Filinski 1999). For example, in try_div
below, we use a handler and (under-)specify that it never raises an
exception.

2016/8/24



let try_divij: ExnStint
(requires (A _ — True))
(ensures (A _x — Option.isSome x))
= reflect (A sO — match reify (div_intrinsic i j) sO with
| None — Some (0, s0)
[ x —=x)

More systematically, we can first program a Benton and Kennedy
(2001) exception handler in DM, namely, as a term of type

exnst a — (unit —exnst b) — (a —exnst b) —exnst b

and then translate it to F*, thereby obtaining a weakest precondition
rule for it for free. More generally, adapting Plotkin and Pretnar’s
algebraic effect handlers (Plotkin and Pretnar 2009) to user-defined
monads m, handlers can be programmed in DM as terms of type

ma—(mb—b)—>(@—b)—b

and then imported to F*. We leave a more thorough investigation of
such effect handlers for Dijkstra monads to the future.

An exception-counting state monad: stexnC For another combi-
nation of state and exceptions, we define stexnC, which in addition
to combining state and exceptions (in the familiar way), also intro-
duces an additional piece of integer state to count the number of
exceptions that are raised. In DM, (omitting the standard return and
bind) we write:

let stexnC a = (s * int) — T (option a * (s * int))
let raise () = A(s, n) — None, (s, n + 1)
let lift (f:st a) : stexnC a=A(s, n) —let x,s1 =fsin Some x, (s1, n)

Notice that raise increments a counter. Adding StExnC to F* pro-
ceeds as before. But, we need to be a bit careful with how we use
reflection. In particular, an implicit invariant of stexnC is that its
second state cell monotonically increases and actually counts the
number of raised exceptions. If a programmer is allowed to reflect
any (s * int) — Pure (option a * (s x int)) wp into an StExnC computa-
tion, then this invariant can be broken. Programmers can rely on F*’s
module system to simply forbid the use of StExnC.reflect in client
modules. Depending on the situation, the module providing the ef-
fect may still reveal a restricted version of the reflect operator to a
client, e.g., we may only provide reflect_increasing to clients, which
only supports reflecting computations whose exception counter does
not decrease. Of course, this only guarantees that the counter over-
approximates the number of exceptions raised, which may or may
not be acceptable.

let reflect_increasing (f: (s * int) — Pure (option a * (s x int)) wp)
: StExnC a (4 (s0, n) post —
wp s0 (A (s1, nl) = post (s1, n1) A nl > n0))
= reflect f

The standard combination of state and exceptions (i.e., stexn)
was already provided primitively in F*. The other two combinations
shown here were not previously supported, since F* only allowed
primitive effects. In the next two subsections, we present encodings
of two other user-defined effects: a dynamic information-flow
control monitor (§2.6) and continuations (§2.7).

2.6 Information-flow control

Information-flow control (Sabelfeld and Myers 2006) is a paradigm
in which programs are deemed secure when one can prove that its
behavior observable to an adversary is independent of the secrets
the program may manipulate, i.e., they are non-interferent. Monadic
reification allows us to prove non-interference properties directly,
by relating multiple runs of an effectful program (Benton 2004). For
example, take the simple stateful program below:

let ifc h = if h then (incr(); let y = get() in decr(); y) else get() + 1

Draft

It is easy to prove this program non-interferent via the extrinsic,
relational proof below, which states that regardless of its secret input
(h0, h1), ifc when run in the same public initial state (s0) produces
identical public outputs. This generic extrinsic proof style is in
contrast to Barthe et al. (2014), whose rF* is a custom extension to
F* supporting only intrinsic relational proofs.

let ni_ifc = assert (V h0 h1 s0. reify (ifc h0) sO = reify (ifc h1) s0O)

Aside from such relational proofs, with user-defined effects, it is
also possible to define monadic, dynamic information-flow control
monitors in DM, deferring non-interference checks to runtime, and to
reason about monitored programs in F*. Here’s a simplified example,
inspired by the floating label approach of LIO (Stefan et al. 2011).
For simplicity, we take the underlying monad to be exnst, where the
state is a security label from a two-point lattice that represents the
secrecy of data that a computation may have observed so far.

type label = Low | High
let difc a = label — T (option (a * label))

Once added to F*, we can provide two primitive actions to inter-
face with the outside world, where DIFC is the effect corresponding
to difc. Importantly, writing to a public channel using write Low
when the current label is High causes a dynamic failure signaling a
potential Leak of secret information.

let join 11 12 = match 11, 12 with | _, High | High, - — High | - — Low
val read : I:label — DIFC bool (A 10 p —Vb. p (Some (b, join 10 1)))
let flows I1 12 = match I1, 12 with | High, Low — false | _ — true
val write : l:label —bool — DIFC unit (A 10 p —

if flows 10 | then p (Some ((), 10)) else p None)

As before, it is important to not allow untrusted client code
to reflect on DIFC, since that may allow it to declassify arbitrary
secrets. Arguing that DIFC soundly enforces a form of termination-
insensitive non-interference requires a meta-level argument, much
like that of Stefan et al. (2011).

We can now write programs like the one below, and rely on the
dynamic checks to ensure they are secure.

let b1, b2 = read Low, read Low in write Low (bl && b2)
let b3 = read High in write High (b1 || b3); write Low (xor b3 b3)

In this case, we can also prove that the program fails with a None
at the last write Low. In contrast to the relational proof sketched
earlier, dynamic information-flow control is conservative: even
though the last write reveals no information on the low channel,
the monitor raises an error.

2.7 CPS’ing the continuation monad

As a final example before our formal presentation, we ask the
irresistible question of whether we can get a Dijkstra monad for free
for the continuation monad itself—indeed, we can.

We start by defining the standard continuation monad, cont, in
DM. Being a subset of F*, we can prove that it is indeed a monad.
The equality we need for this proof is an extensional equality
at higher order—we use F*’s refinement types to define kont, a
variant of cont augmented with an extensional equality principle,
and (automatically) prove the monad laws for kont.

let cont a=(a —Tans) — Tans
let return x = Ak — k x
let bind fgk=f(A x —gxk)
(* kont: continuations with an extensional equality principle %)
let kont a = f:(cont a){V k1 k2. feq k1 k2 = f k1 = f k2}
(* kont is a monad *)
let r_unit (f:kont a) = assert (feq (bind f return) f);
let I_unit (x:a) (f:(a — kont b)) = assert (feq (bind (return x) f) (f x))
let assoc (f:kont a) (g:a — kont b) (h:b —kont c) =
assert (feq (bind f (A x — bind (g x) h)) (bind (bind f g) h))

2016/8/24



Following our two-step recipe, we derive the Dijkstra variant
of cont, but first we define some abbreviations to keep the notation
manageable. The type kwp a is the type of a predicate transformer
specifying a continuation a — tans; and kans is the type of a
predicate transformer of the computation that yields the final answer.

kwpa = a—kans = (a—Tans)*
kans = (ans —>Type) > Type = (7ans)*
Using these abbreviations, we show the x-translation of cont,

return and bind. Instead of being just a predicate transformer,
(cont a)* is a predicate-transformer transformer.

(conta)® = kwpa—kans
return* = A(x:a) (wp_k:kwp a) - wp_k x
bind* = Afg(wp_k:kwp b) —f (A(x:a) =g x wp_k)

For step 2, we show the elaboration of return and bind to F*,
using the abbreviation kt a wp for the type of the elaborated term k,
where the DM term k is a continuation of type a — tans and wp=k*.
As illustrated in §2.3, elaborating higher-order functions from DM to
F* introduces additional arguments corresponding to the predicate
transformers of abstracted computations.

kt awp = x:a — Pure ans (wp x)

return : x:a —wpk:kwp a — k:kt a wpk — Pure ans (return* x wpk)
= Axwpk k =k x
bind . wpf:(cont a)*

— fi(wpk:kwp a — k:kt a wpk — Pure ans (wpf wpk))

— wpg:(a —(cont b)*)

— g:(x:a »wpk:kwp b — k:kt b wpk — Pure ans (wpg x wpk))
— wpk:kwp b

— k:kt b wpk

— Pure ans (bind* wpf wpg wpk)

= Awpf f wpg g wpk k —f (Ax — wpg x wpk) (Ax — g x wpk k)

In the case of return, we have one additional argument for the
predicate transformer of the continuation k—the type of the result
shows how return relates to return*. The elaboration bind involves
many such additional parameters, but the main point to take away is
that its specification is given in terms of bind*, using the predicate
transformers wpf, wpg, wpk in place of the f, g, k computations. In
both cases, the definitions of return and bind match their pre-images
in DM aside from abstracting over and passing around the additional
WP arguments.

To better see the monadic structure in the types of return and
bind we repeat these types, but this time writing cont a wp for the
type wpk:kwp a — k:kt a wpk — Pure ans (wp wpk):

return : x:a —cont a (return* x)

bind : wpfi(cont a)* — f:cont a wpf
— wpg:(a — (cont b)*) — g:(x:a — cont b (wpg x))
— cont b (bind* wpf wpg)

3. Explicitly monadic F*

We begin our formal development by presenting EMF*, an explicitly
typed, monadic core calculus intended to serve as a model of F*. As
seen above, the F* implementation includes an inference algorithm
(Swamy et al. 2016) so that source programs may omit all explicit
uses of the monadic return, bind and lift operators. We do not revisit
that inference algorithm here and leave as future work a formal
proof that after inference, F* terms can be elaborated into EMF*
(along the lines of the elaboration of Swamy et al. (2011)).

3.1 Syntax
Figure 1 shows the EMF* syntax. We highlight several key features.

Expressions, types, WPs, and formulae are all represented uni-
formly as terms; however, to evoke their different uses, we often
write e for expressions, ¢ for types, wp for WPs, and ¢ for logical

Draft

Terms
e,t,wp, ¢ = x|T|xt{¢}|Axte|xt —c|e e
|  case/(easy)x.e; x.ep | rune|reify e

|  reflecte | M.liftyy t wp e | F.act é

|  M.returnt e | M.bind t] t) wpy e] wp, x.€3

Computation types
c n= Tott|Mtwp where M € {Pure, F}

Signatures of monadic effects and lifts

S u= D|S,D|S,L

repr =t ; wpihype = t

return = e ; return® = wp
D u=F bind = e ; bind* = wp

act; = e ; act; = Xjij—cj
L u= { Mliftyy =e; M.lift}*u/ =wp }

Figure 1. Syntax of EMF*

formulae. Terms include variables (x, y,a, b, w etc.); refinement types
xit{¢}; A abstractions; dependent products with computation-type
co-domains, x:t — ¢ (with the sugar described in §2); and appli-
cations. Constants T include Type;, the ith level from a countable
hierarchy of predicative universes.” We also include constants for
non-dependent pairs and disjoint unions; the former are eliminated
using fst and snd (also constants), while the latter are eliminated
using case; (e as y) x.ej x.ep, which is standard dependent pattern
matching with an explicit return type ¢ and a name for the scrutinee
v, provided only when the dependency is necessary.

Computation types (¢) include Tot ¢, the type of total ¢-returning
terms, and M t wp, the type of a computation with effect M, return
type ¢, and behavior specified by the predicate transformer wp. Let
M range over the Pure effect as well as user-defined effects F.

Explicit monadic returns, binds, actions, lifts, reify, and reflect.
M .return and M.bind are the monad operations for the effect M,
with explicit arguments for the types and predicate transformers.
M. liftyy t wp e lifts the e : M t wp to M’. A fully applied F action
is written F.act é. The reify and reflect operators are for monadic
reflection, and run coerces a Pure computation to Tot.

Signatures for user-defined effects EMF* is parameterized by a
signature S. A user-defined effect F' ¢ wp is specified using D,
the result of translating a DM monad. A definition D is a record
containing several fields: repr is the type of an F' computation reified
as a pure term, wp_type is the type of the wp argument to F; return,
bind, and act ; are EMF* expressions, and return*, bind*, and actj
are EMF* WPs (act j is the j’h action of F). We use S.Freturn to

denote the lookup of the return field from F’s definition in the
signature S, and similar notation for the other fields.

2 We have yet to model F*’s universe polymorphism, making the universes in
EMF* less useful than the ones in F*. Lacking universes polymorphism, we
restrict computation to have results in Typeg. A simple remediation would
be replicate the monad definitions across the universe levels.

2016/8/24



T-RETURN
S;T'He:Tott

S;THM.returnt e : Mt (S.M.return™ t e)

T-BIND
S;T'=1: Typeg S;I'=wpy txity — S.M.wp_type ty
S;Tkey M wp, S;T,xitibey: Mt (wpy x)

S;T+M.bind t; tp wp e wpy x.e: M ty (S.M.bind" t| t; wp wp,)
T-AcT
S.F.act* =xit —c
S;T'Fe:Mtwp Vi.S5;'ke;:t;
S;THMliftyp t wpe: M ¢ (S.M.liﬁl*v[, wp) S:Th Facté: cle/x]

T-LIFT

T-REIFY
S;I'He:Ftwp

S;T'Freify e : Tot (S.F.repr t wp)

T-REFLECT
S;T'Fe: Tot (S.F.reprt wp)

S;T k- reflecte: F t wp

T-RUN T-SuB
S;TFe:Puretwp S;C=3pwpp SiThe:d S;T'Hd <:c

S;I'Hrune: Tott S;T'ke:c
T-REFINE C-PURE
S;'t:Type; S;T=1:Typeg

S;Tyxit = ¢ : Type;
S;TExt{¢}: Type;

S;THwp: (t — Typeg) — Typey
S;I' Puret wp : Typeg

Figure 2. Selected typing rules for EMF*

For example, for the ST monad from §2.3, we have?:

ST{ wpuaype = Aas— (axs— Typeg) — Typey
repr = Aaw.sg:s — Pure (axs) (wso)
return = Aa.return
return* = Aa.return*
bind = Aa b.bind
bind* = Aab.bind*
get = get
get” = get*
put = put
pur = put" }

where (as described in §2.3) return : @ — x:a — repr a (refurn* a x);
and similarly for bind, get, and put.

In addition to the monad definitions D, the signature S contains
the definitions of lifts that contain an EMF* expression and an EMF*
WP. We use notations S.M.lift and S.M. lift;w/ to look these up in
S. Finally, the signature always includes a fixed partial definition for
the Pure monad, only containing the following definitions:

Pure{wp_type = ALa:Typey. (a — Typey) — Type,
return* = Aa:Typey. Ax:a. Ap:(a — Typeg). p x
bind* = da. Ab. Awy. Awy. Ap.wy (Ax. (wp x) p) }

The other fields are not defined, since Pure is handled primitively
in the EMF* dynamic semantics (§3.3).

3.2 Static semantics

The expression typing judgment in EMF* has the form S;T'Fe: ¢,
where I is the list of bindings x : ¢ as usual. Selected rules for the
judgment are shown in Figure 2. In the rules, we sometimes write
S;T"F e : t as an abbreviation for S;I"F e : Tot 7.

Monadic returns, binds, lifts, and actions. Rules T-RETURN,
T-BIND, and T-LIFT simply use the corresponding wp specifica-

3 We use sans serif font for the actual field values.

Draft

S-Tor
S;TH! <t
S:T'H Tot <: Tott

S-PURE
S;THY <t SSTEVpwpp=wp' p

S;T'F Puret wp' <:Puret wp

S-PrOD
S-F S;THe<:t
S;TFS.Freprt wp' <:S.F.reprt wp S;Tx:tkc <:ie

S;THFt wp <:Ftwp S;Thxt' = <xt—c

S-REFINER S-CoNv
S-REFINEL S;Cx:t=¢ Sk —*t v Skt —*1
S;Thxt{g} <t S;THt<:xt{¢} S;THt <t

Figure 3. Selected subtyping rules for EMF*

tion from the signature for M to compute the final wp. For ex-
ample, in the case of the ST monad from §2.3, S.ST.return* t =
Ax:t.Asy:s.Apost.post (x,s0). Rule T-ACT is similar; it looks up
the type of the action from the signature, and then behaves like the
standard function application rule.

Monadic reflection and reification. Rules T-REIFY and T-
REFLECT are dual, coercing between a computation type and its
underlying pure representation. Rule T-RUN coerces e from type
Pure r wp to Tot t. However, since the Tot type is unconditionally
total, the second premise of the rule checks that the wp is satisfiable.

Refinements, computations types, and proof irre