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Abstract
Dijkstra monads are a means by which a dependent type theory can
be enhanced with support for reasoning about effectful code. These
specification-level monads computing weakest preconditions, and
their closely related counterparts, Hoare monads, provide the basis
on which verification tools like F?, Hoare Type Theory (HTT), and
Ynot are built. In this paper we show that Dijkstra monads can be
derived “for free” by applying a continuation-passing style (CPS)
translation to the standard monadic definitions of the underlying
computational effects.

Automatically deriving Dijkstra monads provides a correct-by-
construction and efficient way of reasoning about user-defined
effects in dependent type theories. We demonstrate these ideas
in EMF?, a new dependently typed calculus, validating it both by
formal proof and via a prototype implementation within F?. Besides
equipping F? with a more uniform and extensible effect system,
EMF? enables within F? a mixture of intrinsic and extrinsic proofs
that was previously impossible.

1. Introduction
Monads are a versatile concept:

• From Moggi (1989), they are used to give semantics to call-by-
value reduction.
• From Moggi (1989), Wadler (1990, 1992), Filinski (1994, 1999,

2010), Benton et al. (2002) and others, they are used as a way to
introduce effects into a functional language.
• From Moggi (1989); Flanagan et al. (1993); Wadler (1994)

and others, they provide a foundation on which to understand
program transformations, notably CPS.

This paper brings together this threefold use of monads to im-
prove upon a fourth use of monads, namely “Dijkstra monads”, a
recent proposal by Swamy et al. (2013, 2016) and Jacobs (2015),
who suggest using monads of predicate transformers (like Dijk-
stra’s weakest preconditions), to verify effectful programs within a
functional programming language.

1.1 Example: A Dijkstra monad for stateful computations
In Dijkstra’s (1975) weakest precondition semantics, stateful com-
putations transform postconditions relating results and final state, to
preconditions on input states. This gives rise to a Dijkstra monad:

WP ST a = post a→ pre where post a = (a ∗ state)→ Type
pre = state→ Type

return WP ST x post s0 = post (x, s0)
bind WP ST f g post s0 = f (λ (x, s1)→ g x post s1) s0

The weakest precondition (WP) of a pure term e is computed to
be return WP ST e, and the WP of the sequential composition

let x = e1 in e2 is computed to be bind WP ST wp1 (λx. wp2), where
wp1 and wp2 are the WPs of e1 and e2 respectively.

Based on such a construction, Swamy et al. (2013, 2016) (build-
ing on previous work by Nanevski et al. (2008)) devised a type
system to compute WPs for higher-order, effectful programs, en-
abling their verification within a dependently typed logic. However,
these constructions require a meta-theoretic argument to establish
their soundness with respect to the semantics of effectful programs.
This typically requires proofs of various correctness and admissibil-
ity conditions, including the monad laws and monotonicity.

1.2 For fun: Deriving Dijkstra monads
Rather than being given manually, we show that these predicate
transformers can be automatically derived by CPS’ing purely func-
tional definitions of monadic effects (with answer type Type). For
instance, rather than defining WP ST, one can simply compute it by
CPS’ing the familiar ST monad (i.e., state→a ∗ state), deriving

WP ST a = ((a ∗ state)→Type)→state→Type (unfolded)

We introduce DM, a simply typed, pure, monadic metalanguage
in which one can, in the spirit of Wadler (1992), define a variety of
monadic effects, ranging from state and exceptions, to continuations.
We define a type-directed CPS translation for this language and
show that monads are translated to Dijkstra monads, i.e., monotone,
conjunctive, predicate transformer monads.

1.3 For profit: Program verification with user-defined effects
We apply our technique of deriving Dijkstra monads to F? (Swamy
et al. 2016), a dependently typed programming language that already
has at its core a system of primitive effects specified using Dijkstra
monads. Our goal is to make F?’s effect system easier to configure
and extensible beyond the primitive effects it already supports; we
proceed as follows.

A core dependent type theory with monadic reflection To for-
mally study our improvements to F?, we define a new dependently
typed core calculus, EMF? (for Explicitly Monadic F?) that features
an extensible effect system. EMF? is loosely based on the Calculus
of Constructions (Coquand and Huet 1988) with (among other fea-
tures): (1) a predicative hierarchy of non-cumulative universes; (2)
a weakest-precondition calculus for pure programs; (3) refinement
types; and (4) a facility for representing user-defined effects using
the monadic reflection and reification of Filinski (1994), adapted to
the dependently typed setting. New effects can be introduced into the
language by defining them in terms of the built-in pure constructs,
related to each other via monad morphisms, and each such effect
obtains a suitable weakest precondition calculus derived from the
underlying pure WPs. We prove the calculus strongly normalizing
and the WP calculus sound for total correctness verification, for
both pure and effectful programs.
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Translating DM to EMF? To extend EMF? with a new effect, one
starts by defining a monadic effect (say ST) in DM. Via the CPS
transformation, we obtain the Dijkstra variant of that effect (WP ST)
as a predicate transformer monad in EMF?. A second translation
from DM produces expression-level terms to represent monadic
computations in EMF?. A logical relations proof shows that monadic
computations are correctly specified by their predicate transformers.
We show examples of these translations at work for monadic effects
including state, exceptions, information-flow control, continuations,
and some combinations thereof.

Intrinsic and extrinsic proofs in EMF? Effectful programs in
EMF? can be proven correct using one or both of two different
reasoning styles. First, using the WP calculus, programs can be
proven intrinsically, by decorating their definitions with specifica-
tions that must be proven to be at least as strong as their WPs. We
refer to this as the intrinsic style, already familiar to users of F?, and
other tools like HTT (Nanevski et al. 2008), Dafny (Leino 2010),
and Why3 (Filliâtre and Paskevich 2013).

Second, through monadic reification, EMF? allows effectful
programs to be revealed as their underlying pure implementations.
Once reified, one can reason about them via the computational
behavior of their definitions. As such, one may define effectful
programs with relatively uninformative types, and prove properties
about them as needed, via reification. This extrinsic style of proving
is familiar to users of systems like Coq or Isabelle, where it is
routinely employed to reason about pure functions. In EMF?, this
style extends smoothly to terminating effectful programs.

Primitive effects in a call-by-value semantics We see EMF? as a
meta-language in which to analyze and describe the semantics of
terms in an object language, EMF?ST, a call-by-value programming
language with primitive state. In the spirit of Moggi (1989), we show
that EMF? programs that treat their ST effect abstractly soundly
model EMF?ST reductions—technically, we prove a simulation be-
tween EMF?ST and EMF?. As such, our work is a strict improvement
on the prior support for primitive effects in F?: despite programming
and proving programs in a pure setting, stateful programs can still be
compiled to run efficiently in the primitively effectful EMF?ST , while
programs with other user-defined effects (e.g., information-flow
control) can, unlike before, be executed via their pure encodings.

A prototype implementation for F? We have adapted F? to benefit
from the theory developed in this paper, using a subset of F? itself
as an implementation of DM, and viewing EMF?ST as a model of
its existing extraction mechanism to OCaml. Programmers can
now configure F?’s effect system using simple monadic definitions,
use F? to prove these definitions correct, and then use our CPS
transformation to derive the Dijkstra monads required to configure
F?’s existing type-checker. To benefit from the new extrinsic proving
capabilities, we also extended F? with two new typing rules, and
changed its normalizer, to handle monadic reflection and reification.

Several examples show how our work allows F? to be easily
extended beyond the primitive effects already supported, without
compromising its efficient primitive effect compilation strategy; and
how the new extrinsic proof style places effectful reasoning in F? on
an equal footing with its support for reasoning about pure programs.

1.4 Summary of contributions
The central contribution of our work is designing three closely re-
lated lambda calculi, studying their metatheory and the connections
between them, and applying them to provide a formal and practical
foundation for a user-extensible effect system for F?. Specifically,

(1) EMF?: A new dependent type theory with user-extensible,
monadic effects; monadic reflection and reification; WPs; and

refinement types. We prove that EMF? is strongly normalizing
and that its WPs are sound for total correctness (§3).

(2) DM: A simply typed language to define the expression-level
monads that we use to extend EMF? with effects. We define a
CPS transformation of DM terms to derive Dijkstra monads from
expression-level monads, as well as an elaboration of DM terms
to EMF?. Moreover, elaborated terms are proven to be in relation
with their WPs (§4).

(3) EMF?ST: A call-by-value language with primitive state, whose
reductions are simulated by well-typed EMF? terms (§5).

(4) An implementation of these ideas within F? (§3.5, §4.6) and
several examples of free Dijkstra monads for user-defined effects
(§2). We highlight, in particular, the new ability to reason
extrinsically about effectful terms.

The auxiliary materials for this paper (https://www.fstar-lang.
org/papers/dm4free) contain appendices with complete defini-
tions and proofs for the formal results in §3, §4 (Appendix A below),
and §5. The F? source code (https://github.com/FStarLang/
FStar) now includes the extensions from §3.5 and §4.6 and the
examples from §2 (https://github.com/FStarLang/FStar/
tree/master/examples/dm4free).

2. Illustrative examples
We illustrate our main ideas using several examples from F?,
contrasting with the state of affairs in F? prior to our work. We
start by presenting the core WP calculus for pure programs (§2.1),
then illustrate how state can be added to it (§2.2). After showing
our basic methodology on state (§2.3 and §2.4), we present a few
additional examples, including combining exceptions with state
(§2.5), information-flow control (§2.6), and continuations (§2.7).

Notation: The syntax λ (b1) ... (bn)→t introduces a lambda ab-
straction, where bi ranges over binding occurrences x:t declaring a
variable x at type t. The type b1 → ...→bn →c is the type of a curried
function, where c is a computation type—we emphasize the lack of
enclosing parentheses on the bi. We write just the type in b when
the name is irrelevant, and t→t’ for t→Tot t’.

2.1 WPs for pure programs
Reasoning about purely functional programs is a relatively well-
understood activity: the type theories underlying systems like Coq,
Agda, and F? are already well-suited to the task. Consider proving
that pure term sqr = λ (x:int)→x ∗ x always returns a non-negative
integer. A natural strategy is an extrinsic proof, which involves
giving sqr a simple type such as int→Tot int, the type of total
functions on integers, and then proving a lemma ∀x. sqr x ≥ 0. In the
case of F?, the proof of the lemma involves, first, a little computation
to turn the goal into ∀x. x∗x ≥ 0, and then reasoning in the theory
of integer arithmetic of the Z3 SMT solver (de Moura and Bjørner
2008) to discharge the proof.

An alternative intrinsic proof style in F? involves giving sqr type
x:int→Pure int (λpost→∀y. y≥ 0 =⇒ post y), a dependent function
type of the form x:t→c, where the formal parameter x:t is in scope in
the computation type c to the right of the arrow. Computation types
c are either Tot t (for some type t) or of the form M t wp, where M
is an effect label, t is the result type of the computation, and wp is a
predicate transformer specifying the semantics of the computation.
The computation type we give to sqr is of the form Pure t wp, the
type of t-returning pure computations described by the the predicate
transformer wp: (t→Type)→Type, a function taking postconditions
on the result (predicates of type t→Type), to preconditions. These
predicate transformers form a Dijkstra monad. In this case, the wp
states that to prove any property post of sqr x, it suffices to prove
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post y, for all non-negative y—as such, it states our goal that sqr x is
non-negative. To prove sqr can be given this type, F? infers a weakest
precondition for sqr x, namely λpost→post (x ∗ x) and aims to prove
that the predicate transformer we specified is at least as strong as the
weakest one it inferred: ∀post. (∀y. y≥ 0 =⇒ post y) =⇒ post (x∗x),
which is discharged automatically by Z3. For pure programs, this
intrinsic proof style may seem like overkill and, indeed, it often is.
But, as we will see, this mechanism for reasoning about pure terms
via WPs is a basic capability which we can leverage for reasoning
about terms with more complex, effectful semantics.

2.2 Adding WPs for state
Consider proving that incr = let x = get() in put (x + 1) produces an
output state greater than its input state. Since this program has
the state effect, a proof by extrinsic reasoning is not completely
straightforward, because reducing an effectful computation within
a logic may not be meaningful. Instead, tools like Ynot (Chlipala
et al. 2009), HTT (Nanevski et al. 2008), and F? only support the
intrinsic proof style. In the case of F?, this involves the use of a
computation type ST′ t wp, where wp: WP ST t and for our simple
example we take WP ST t = ((t ∗ int)→Type)→ int→Type, i.e., the
Dijkstra state monad from the §1 with state=int.

Using the ST′ computation type in F?, one can specify for incr the
type unit→ST′ unit (λpost s0→∀s1. s1 > s0 =⇒ post ((), s1)). That
is, to prove any postcondition post of incr, it suffices to prove
post ((), s1) for any s1 greater than s0, the initial state—this is the
statement of our goal. The proof in F? currently involves:

(1) As discussed already in §1, one must define WP ST t, its return
and bind combinators, proving that these specifications are sound
with respect to the operational semantics of state.

(2) The primitive effectful actions, get and put are assumed to have
the types below—again, these types must be proven sound with
respect to the operational semantics of F?.

get : unit→ST′ int (λ post s0→post (s0, s0))
put : x:int→ST′ unit (λ post →post ((), x))

(3) Following the rule for sequential composition sketched in
§1, F? uses the specifications of get and put to compute
bind ST WP wp get (λx→wp put (x + 1)) as the WP of incr,
which reduces to λpost s0→post ((), s0 + 1).

(4) The final step requires proving that the computed WP is at least
as weak as the specified goal, which boils down to showing that
s0 + 1 > s0, which F? and Z3 handle automatically.

The first two steps above correspond to adding a new effect to
F?. The cost of this is amortized by the much more frequent and
relatively automatic steps 3 and 4. However, adding a new effect to
F? is currently an expert activity, carried out mainly by the language
designers themselves. This is in large part because the first two steps
above are both tedious and highly technical: a dangerous mixture
that can go wrong very easily.

Our primary goal is to simplify those first two steps, allowing
effects to be added to F? more easily and with fewer meta-level
arguments to trust. Besides, although F? supports customization of
its effect system, it only allows programmers to specify refinements
of a fixed set of existing effects inherited from ML, namely, state,
exceptions, and divergence. For example, an F? programmer can
refine the state effect into three sub-effects for reading, writing, and
allocation; but, she cannot add a new effect like alternative combi-
nations of state and exceptions, non-determinism, continuations, etc.
We aim for a more flexible, trustworthy mechanism for extending
F? beyond the primitive effects it currently supports. Furthermore,
we wish to place reasoning about terminating effectful programs on

an equal footing with pure ones, supporting mixtures of intrinsic
and extrinsic proofs for both.

2.3 CPS’ing monads to Dijkstra monads
Instead of manually specifying WP ST, we program a traditional
ST monad and derive WP ST using a CPS transform. In §4.1 we
formally present DM, a simply typed language in which to define
monadic effects. DM itself contains a single primitive identity monad
τ , which (as will be explained shortly) is used to control the CPS
transform. We have implemented DM as a subset of F?, and for
the informal presentation here we use the concrete syntax of our
implementation. What follows is an unsurprising definition of a
state monad st a, the type of total functions from s to identity
computations returning a pair (a ∗ s).

let st a = s→τ (a ∗ s)
let return (x:a) : st a = λ s0→x, s0
let bind (f:st a) (g:a→st b) : st b = λ s0→ let x,s1 = f s0 in g x s1
let get () : st a = λ s0→s0, s0
let put (x:s) : st unit = λ → (), x

This being a subset of F?, we can use it to prove that this definition is
indeed a monad: proofs of the three monad laws for st are discharged
automatically by F? below (feq is extensional equality on functions,
and assert p requests F? to prove p statically). Other identities
relating combinations of get and put can be proven similarly.

let right unit st (f:st α) = assert (feq (bind f return) f)
let left unit st (x:α) (f:(α →st β )) = assert (feq (bind (return x) f) (f x))
let assoc st (f:st α) (g:(α →st β )) (h:(β →st γ))

= assert (feq (bind f (λ x→bind (g x) h)) (bind (bind f g) h))

We then follow a two-step recipe to add an effect like st to F?:

Step 1 To derive the Dijkstra monad variant of st, we apply a
selective CPS transformation called the ?-translation (§4); first, on
type st a; then, on the various monadic operations. CPS’ing only
those arrows that have τ -computation co-domains, we obtain:

(st a)? = a→ ((a ∗ s)→Type)→Type
return? = λx s0 post→post (x, s0)
bind? = λ f g s0 post→ f s0 (λ (x,s1)→g x s1 post)
get? = λ () s0 post→post (s0, s0)
put? = λx post→post ((), x)

Except for a reordering of arguments, the terms above are identical to
the analogous definitions for WP ST. We prove that the ?-translation
preserves equality: so, having shown the monad laws for st a, we
automatically obtain the monad laws for (st a)?. We also prove
that every predicate transformer produced by the ?-translation is
monotone (it maps weaker postconditions to weaker preconditions)
and conjunctive (they distribute over conjunctions and universals,
i.e., infinite conjunctions, on the postcondition).

Step 2 The ?-translation yields a predicate transformer semantics
for a new monadic effect, however, we still need a way to extend
F? with the computational behavior of the new effect. For this, we
define a second translation, which elaborates the definitions of the
new monad and its associated actions to Pure computations in F?. A
first rough approximation of what we prove is that for a well-typed
DM computation e : τ t, its elaboration e has type Pure t e? in EMF?.

The first-order cases are particularly simple: for example,
return = return has type x:a→Pure a (return? x) in EMF?; and
get = get has type u:unit→Pure s (get? u) in EMF?. For a higher-
order example, we sketch the elaboration of bind below, writing
st t wp for s0:s→Pure t (wp s0):

bind : wpf:(st a)? → f:st a wpf
→wpg:(a→ (st b)?)→g:(x:a→st b wpgx)
→st b (bind? wpf wpg)
= λwpf f wpg g s0→ let x, s1 = f s0 in g x s1
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Intuitively, a function in DM (like bind) that abstracts over
computations (f and g) is elaborated to a function (bind) in EMF?

that abstracts both over those computations (f and g again, but at
their elaborated types) as well as the WP specifications of those
computations (wpf and wpg). The result type of bind shows that it
returns a computation whose specification matches bind?, i.e., the
result of the CPS’ing ?-translation.

In other words, the WPs computed by F? for monads imple-
mented as Pure programs corresponds exactly to what one gets by
CPS’ing the monads. At first, this struck us as just a happy coinci-
dence, although, of course, we now know that it must be so. We see
our proof of this fact as providing a precise characterization of the
close connection between and WPs and CPS transformations.

2.4 Reify and reflect, for abstraction and proving
Unlike prior F? formalizations which included primitive exception
and state effects, the only primitive monad in EMF? is for Pure

computations.1 Although the translations from DM yield pure
definitions of monads in F?, programming directly against those pure
implementations is undesirable, since this may break abstractions.
For instance, consider an integer-state monad whose state is expected
to monotonically increase: revealing its representation as a pure term
makes it hard to enforce this invariant. We rely on Filinski’s (1994)
monadic reflection for controlling abstraction.

Continuing our example, introducing the state effect in F?

produces a new computation type ST (a:Type) (wp: (st a)?) and two
coercions

reify : ST a wp→s0:s→Pure (a ∗ s) (wp s0)
reflect : (s0:s→Pure (a ∗ s) (wp s0))→ST a wp

The reify coercion reveals the representation of an ST computation
as a Pure function, while reflect encapsulates a Pure function as a
stateful computation. As we will see in subsequent sections, in some
cases to preserve abstractions, one or both of these coercions will
need to be removed, or restricted in various ways.

To introduce the actions from DM as effectful actions in F?, we
reflect the pure terms produced by the elaboration from DM to EMF?,
obtaining actions for the newly introduced computation type. For
example, after reflection the actions get and put appear within F? at
the types below:

get : unit→ST s (get? ())
put : s1:s→ST unit (put? s1)

As in §2.2, we can still program stateful functions and prove them
intrinsically, by providing detailed specifications to augment their
definitions—of course, the first two steps of the process there are
now automatic. However, we now have a means of doing extrinsic
proofs by reifying stateful programs, as shown below (taking s=int).

let StNull a = ST a (λ s0 post→∀x. post x)
let incr : StNull unit = let n = get() in put (n + 1)
let incr increases (s0:s) = assert (snd (reify (incr()) s0) = s0 + 1)

The StNull unit annotation on the second line above gives a weak
specification for incr. However, later, when a particular property of
incr is required, we can recover it by reasoning extrinsically about
the reification of incr() as a pure term.

1 We leave divergence out of scope of the present work as a relatively
orthogonal concept. We envisage adding divergence to EMF? and DM as a
second primitive effect in the future, with divergent computations interpreted
in a partial correctness semantics with only intrinsic proving available. We do
not foresee any significant difficulties in doing this, following the treatment
of divergence of Swamy et al. (2016). We expect this to provide partial-
correctness Dijkstra monads for free.

2.5 Combining monads: state and exceptions, in two ways
To add more effects to F?, one can simply repeat the method-
ology outlined above. For instance, one can use DM to define
exn a = unit→τ (option a) in the obvious way (the unit is necessary,
cf. §4.1), our automated two-step recipe extends F? with an effect
for terminating programs that may raise exceptions. Of course, we
would like to combine the effects to equip stateful programs with
exceptions and, here, we come to a familiar fork in the road.

State and exceptions can be combined in two mutually incompat-
ible ways. In DM, we can define both stexn a = s→τ ((option a) ∗ s)
and exnst a = s→τ (option (a ∗ s)). The former is more familiar to
most programmers: raising an exception preserves the state; the
latter discards the state when an exception is raised, which though
less common, is also useful. We focus first on exnst and then discuss
a variant of stexn.

Relating st and exnst Translating st (as before) and exnst to
F? gives us two unrelated effects ST and ExnST. To promote ST
computations to ExnST, we define a lift relating st to exnst, their
pure representations in DM, and prove that it is a monad morphism.

let lift (f:st a) : exnst a = λ s0→Some (f s0)
let lift is an st exnst morphism =
assert (∀ x. feq (lift (ST.return x)) (ExnST.return x));
assert (∀ f g. feq (lift (ST.bind f g)) (ExtST.bind (lift f) (λ x→ lift (g x))))

Applying our two-step translation to lift, we obtain in F? a
computation-type coercion from ST a wp to ExnST a (lift? wp).
Through this coercion, and through F?’s existing inference al-
gorithm (Swamy et al. 2011, 2016), ST computations are im-
plicitly promoted to ExnST computations whenever needed. In
particular, the ST actions, get and put, are implicitly available
with ExnST. All that remains is to define an additional action,
raise = λ () s0→None, which gets elaborated and reflected to F? at
the type unit→ExnST a (λ p→p None).

ExnST programs in F? can be verified intrinsically and extrin-
sically. For an intrinsic proof, we show div intrinsic below, which
raises an exception on a divide-by-zero. To prove it, we make use
of an abbreviation ExnSt a pre post, which lets us write specifica-
tions using pre- and postconditions instead of predicate transform-
ers, which can be more convenient—the F? keywords, requires and
ensures are only there for readability and have no semantic content.

let ExnSt a pre post = ExnST a (λ s0 p→
pre s0 ∧ ∀x. post s0 x =⇒ p x)

let div intrinsic i j : ExnSt int
(requires (λ →True))
(ensures (λ s0 x→match x with

| None→ j=0
| Some (z, s1)→s0 = s1 ∧ j <> 0 ∧ z = i / j))

= if j=0 then raise () else i / j

Alternatively, for an extrinsic proof, we give a weak specification
for div extrinsic and verify it by reasoning about its reified definition
separately. This time, we add a call to incr in the ST effect in case of
a division-by-zero. F?’s type inference lifts incr to ExnST as required
by the context. However, as the proof shows, the incr has no effect,
since the raise that follows it discards the state.

let ExnStNull a = ExnST a (λ s0 post→∀x. post x)
let div extrinsic i j : ExnStNull int = if j=0 then (incr(); raise ()) else i / j
let lemma div extrinsic i j =

assert (match reify (div extrinsic i j) 0 with
| None→ j = 0
| Some (z, 0)→ j <> 0 ∧ z = i / j)

Using reify and reflect we can also build exception handlers,
following ideas of Filinski (Filinski 1999). For example, in try div
below, we use a handler and (under-)specify that it never raises an
exception.
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let try div i j : ExnSt int
(requires (λ →True))
(ensures (λ x→Option.isSome x))

= reflect (λ s0→match reify (div intrinsic i j) s0 with
| None→Some (0, s0)
| x→x)

More systematically, we can first program a Benton and Kennedy
(2001) exception handler in DM, namely, as a term of type

exnst a→ (unit→exnst b)→ (a→exnst b)→exnst b

and then translate it to F?, thereby obtaining a weakest precondition
rule for it for free. More generally, adapting Plotkin and Pretnar’s
algebraic effect handlers (Plotkin and Pretnar 2009) to user-defined
monads m, handlers can be programmed in DM as terms of type

m a→ (m b→b)→ (a→b)→b

and then imported to F?. We leave a more thorough investigation of
such effect handlers for Dijkstra monads to the future.

An exception-counting state monad: stexnC For another combi-
nation of state and exceptions, we define stexnC, which in addition
to combining state and exceptions (in the familiar way), also intro-
duces an additional piece of integer state to count the number of
exceptions that are raised. In DM, (omitting the standard return and
bind) we write:

let stexnC a = (s ∗ int)→τ (option a ∗ (s ∗ int))
let raise () = λ (s, n)→None, (s, n + 1)
let lift (f:st a) : stexnC a = λ (s, n)→ let x, s1 = f s in Some x, (s1, n)

Notice that raise increments a counter. Adding StExnC to F? pro-
ceeds as before. But, we need to be a bit careful with how we use
reflection. In particular, an implicit invariant of stexnC is that its
second state cell monotonically increases and actually counts the
number of raised exceptions. If a programmer is allowed to reflect
any (s ∗ int)→Pure (option a ∗ (s ∗ int)) wp into an StExnC computa-
tion, then this invariant can be broken. Programmers can rely on F?’s
module system to simply forbid the use of StExnC.reflect in client
modules. Depending on the situation, the module providing the ef-
fect may still reveal a restricted version of the reflect operator to a
client, e.g., we may only provide reflect increasing to clients, which
only supports reflecting computations whose exception counter does
not decrease. Of course, this only guarantees that the counter over-
approximates the number of exceptions raised, which may or may
not be acceptable.

let reflect increasing (f: (s ∗ int)→Pure (option a ∗ (s ∗ int)) wp)
: StExnC a (λ (s0, n) post→

wp s0 (λ (s1, n1)→post (s1, n1) ∧ n1 ≥ n0))
= reflect f

The standard combination of state and exceptions (i.e., stexn)
was already provided primitively in F?. The other two combinations
shown here were not previously supported, since F? only allowed
primitive effects. In the next two subsections, we present encodings
of two other user-defined effects: a dynamic information-flow
control monitor (§2.6) and continuations (§2.7).

2.6 Information-flow control
Information-flow control (Sabelfeld and Myers 2006) is a paradigm
in which programs are deemed secure when one can prove that its
behavior observable to an adversary is independent of the secrets
the program may manipulate, i.e., they are non-interferent. Monadic
reification allows us to prove non-interference properties directly,
by relating multiple runs of an effectful program (Benton 2004). For
example, take the simple stateful program below:

let ifc h = if h then (incr(); let y = get() in decr(); y) else get() + 1

It is easy to prove this program non-interferent via the extrinsic,
relational proof below, which states that regardless of its secret input
(h0, h1), ifc when run in the same public initial state (s0) produces
identical public outputs. This generic extrinsic proof style is in
contrast to Barthe et al. (2014), whose rF? is a custom extension to
F? supporting only intrinsic relational proofs.

let ni ifc = assert (∀ h0 h1 s0. reify (ifc h0) s0 = reify (ifc h1) s0)

Aside from such relational proofs, with user-defined effects, it is
also possible to define monadic, dynamic information-flow control
monitors in DM, deferring non-interference checks to runtime, and to
reason about monitored programs in F?. Here’s a simplified example,
inspired by the floating label approach of LIO (Stefan et al. 2011).
For simplicity, we take the underlying monad to be exnst, where the
state is a security label from a two-point lattice that represents the
secrecy of data that a computation may have observed so far.

type label = Low | High
let difc a = label→τ (option (a ∗ label))

Once added to F?, we can provide two primitive actions to inter-
face with the outside world, where DIFC is the effect corresponding
to difc. Importantly, writing to a public channel using write Low
when the current label is High causes a dynamic failure signaling a
potential Leak of secret information.

let join l1 l2 = match l1, l2 with | , High | High, →High | →Low
val read : l:label→DIFC bool (λ l0 p→∀b. p (Some (b, join l0 l)))
let flows l1 l2 = match l1, l2 with | High, Low→ false | →true
val write : l:label→bool→DIFC unit (λ l0 p→

if flows l0 l then p (Some ((), l0)) else p None)

As before, it is important to not allow untrusted client code
to reflect on DIFC, since that may allow it to declassify arbitrary
secrets. Arguing that DIFC soundly enforces a form of termination-
insensitive non-interference requires a meta-level argument, much
like that of Stefan et al. (2011).

We can now write programs like the one below, and rely on the
dynamic checks to ensure they are secure.

let b1, b2 = read Low, read Low in write Low (b1 && b2)
let b3 = read High in write High (b1 || b3); write Low (xor b3 b3)

In this case, we can also prove that the program fails with a None
at the last write Low. In contrast to the relational proof sketched
earlier, dynamic information-flow control is conservative: even
though the last write reveals no information on the low channel,
the monitor raises an error.

2.7 CPS’ing the continuation monad
As a final example before our formal presentation, we ask the
irresistible question of whether we can get a Dijkstra monad for free
for the continuation monad itself—indeed, we can.

We start by defining the standard continuation monad, cont, in
DM. Being a subset of F?, we can prove that it is indeed a monad.
The equality we need for this proof is an extensional equality
at higher order—we use F?’s refinement types to define kont, a
variant of cont augmented with an extensional equality principle,
and (automatically) prove the monad laws for kont.

let cont a = (a→τ ans)→τ ans
let return x = λk→k x
let bind f g k = f (λ x→g x k)
(∗ kont: continuations with an extensional equality principle ∗)
let kont a = f:(cont a){∀ k1 k2. feq k1 k2 =⇒ f k1 = f k2}
(∗ kont is a monad ∗)
let r unit (f:kont a) = assert (feq (bind f return) f);
let l unit (x:a) (f:(a→kont b)) = assert (feq (bind (return x) f) (f x))
let assoc (f:kont a) (g:a→kont b) (h:b→kont c) =

assert (feq (bind f (λ x→bind (g x) h)) (bind (bind f g) h))
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Following our two-step recipe, we derive the Dijkstra variant
of cont, but first we define some abbreviations to keep the notation
manageable. The type kwp a is the type of a predicate transformer
specifying a continuation a→τ ans; and kans is the type of a
predicate transformer of the computation that yields the final answer.

kwp a = a→kans = (a→τ ans)?

kans = (ans→Type)→Type = (τ ans)?

Using these abbreviations, we show the ?-translation of cont,
return and bind. Instead of being just a predicate transformer,
(cont a)? is a predicate-transformer transformer.

(cont a)? = kwp a→kans
return? = λ (x:a) (wp k:kwp a)→wp k x
bind? = λ f g (wp k:kwp b)→ f (λ (x:a)→g x wp k)

For step 2, we show the elaboration of return and bind to F?,
using the abbreviation kt a wp for the type of the elaborated term k,
where the DM term k is a continuation of type a→τ ans and wp=k?.
As illustrated in §2.3, elaborating higher-order functions from DM to
F? introduces additional arguments corresponding to the predicate
transformers of abstracted computations.
kt a wp = x:a→Pure ans (wp x)
return : x:a→wpk:kwp a→k:kt a wpk→Pure ans (return? x wpk)

= λx wpk k→k x
bind : wpf:(cont a)?

→ f:(wpk:kwp a→k:kt a wpk→Pure ans (wpf wpk))
→ wpg:(a→ (cont b)?)
→ g:(x:a→wpk:kwp b→k:kt b wpk→Pure ans (wpg x wpk))
→ wpk:kwp b
→ k:kt b wpk
→ Pure ans (bind? wpf wpg wpk)
= λwpf f wpg g wpk k→ f (λx→wpg x wpk) (λx→g x wpk k)

In the case of return, we have one additional argument for the
predicate transformer of the continuation k—the type of the result
shows how return relates to return?. The elaboration bind involves
many such additional parameters, but the main point to take away is
that its specification is given in terms of bind?, using the predicate
transformers wpf, wpg, wpk in place of the f, g, k computations. In
both cases, the definitions of return and bind match their pre-images
in DM aside from abstracting over and passing around the additional
WP arguments.

To better see the monadic structure in the types of return and
bind we repeat these types, but this time writing cont a wp for the
type wpk:kwp a→k:kt a wpk→Pure ans (wp wpk):
return : x:a→cont a (return? x)
bind : wpf:(cont a)? → f:cont a wpf

→ wpg:(a→ (cont b)?)→g:(x:a→cont b (wpg x))
→ cont b (bind? wpf wpg)

3. Explicitly monadic F?

We begin our formal development by presenting EMF?, an explicitly
typed, monadic core calculus intended to serve as a model of F?. As
seen above, the F? implementation includes an inference algorithm
(Swamy et al. 2016) so that source programs may omit all explicit
uses of the monadic return, bind and lift operators. We do not revisit
that inference algorithm here and leave as future work a formal
proof that after inference, F? terms can be elaborated into EMF?

(along the lines of the elaboration of Swamy et al. (2011)).

3.1 Syntax
Figure 1 shows the EMF? syntax. We highlight several key features.

Expressions, types, WPs, and formulae are all represented uni-
formly as terms; however, to evoke their different uses, we often
write e for expressions, t for types, wp for WPs, and φ for logical

Terms
e, t,wp,φ ::= x | T | x:t{φ} | λx:t.e | x:t→ c | e1 e2

| caset(e as y) x.e1 x.e2 | run e | reify e
| reflect e |M.liftM′ t wp e | F.act ē
| M.return t e |M.bind t1 t2 wp1 e1 wp2 x.e2

Computation types
c ::= Tot t |M t wp where M ∈ {Pure, F}

Signatures of monadic effects and lifts
S ::= D | S,D | S,L

D ::= F


repr = t ; wp type = t
return = e ; return? = wp
bind = e ; bind? = wp
act j = e ; act?j = x j:t j→ c j


L ::= { M.liftM′ = e; M.lift?M′ = wp }

Figure 1. Syntax of EMF?

formulae. Terms include variables (x,y,a,b,w etc.); refinement types
x:t{φ}; λ abstractions; dependent products with computation-type
co-domains, x:t → c (with the sugar described in §2); and appli-
cations. Constants T include Typei, the ith level from a countable
hierarchy of predicative universes.2 We also include constants for
non-dependent pairs and disjoint unions; the former are eliminated
using fst and snd (also constants), while the latter are eliminated
using caset(e as y) x.e1 x.e2, which is standard dependent pattern
matching with an explicit return type t and a name for the scrutinee
y, provided only when the dependency is necessary.

Computation types (c) include Tot t, the type of total t-returning
terms, and M t wp, the type of a computation with effect M, return
type t, and behavior specified by the predicate transformer wp. Let
M range over the Pure effect as well as user-defined effects F .

Explicit monadic returns, binds, actions, lifts, reify, and reflect.
M.return and M.bind are the monad operations for the effect M,
with explicit arguments for the types and predicate transformers.
M.liftM′ t wp e lifts the e : M t wp to M′. A fully applied F action
is written F.act ē. The reify and reflect operators are for monadic
reflection, and run coerces a Pure computation to Tot.

Signatures for user-defined effects EMF? is parameterized by a
signature S. A user-defined effect F t wp is specified using D,
the result of translating a DM monad. A definition D is a record
containing several fields: repr is the type of an F computation reified
as a pure term, wp type is the type of the wp argument to F ; return,
bind, and act j are EMF? expressions, and return?, bind?, and act?j
are EMF? WPs (act j is the jth action of F). We use S.F.return to
denote the lookup of the return field from F’s definition in the
signature S, and similar notation for the other fields.

2 We have yet to model F?’s universe polymorphism, making the universes in
EMF? less useful than the ones in F?. Lacking universes polymorphism, we
restrict computation to have results in Type0. A simple remediation would
be replicate the monad definitions across the universe levels.
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T-RETURN
S;Γ ` e : Tot t

S;Γ `M.return t e : M t (S.M.return? t e)

T-BIND
S;Γ ` t2 : Type0 S;Γ ` wp2 : x:t1→ S.M.wp type t2

S;Γ ` e1 : M t1 wp1 S;Γ,x:t1 ` e2 : M t2 (wp2 x)
S;Γ `M.bind t1 t2 wp1 e1 wp2 x.e2 : M t2 (S.M.bind? t1 t2 wp1 wp2)

T-LIFT
S;Γ ` e : M t wp

S;Γ `M.liftM′ t wp e : M′ t (S.M.lift?M′ wp)

T-ACT
S.F.act? = x:t→ c
∀i. S;Γ ` ei : ti

S;Γ ` F.act ē : c[ē/x̄]

T-REIFY
S;Γ ` e : F t wp

S;Γ ` reify e : Tot (S.F.repr t wp)

T-REFLECT
S;Γ ` e : Tot (S.F.repr t wp)

S;Γ ` reflect e : F t wp

T-RUN
S;Γ ` e : Pure t wp S;Γ |= ∃p.wp p

S;Γ ` run e : Tot t

T-SUB
S;Γ ` e : c′ S;Γ ` c′ <: c

S;Γ ` e : c

T-REFINE
S;Γ ` t : Typei

S;Γ,x:t ` φ : Type j

S;Γ ` x:t{φ} : Typei

C-PURE
S;Γ ` t : Type0

S;Γ ` wp : (t→ Type0)→ Type0

S;Γ ` Pure t wp : Type0

Figure 2. Selected typing rules for EMF?

For example, for the ST monad from §2.3, we have3:

ST{ wp type = λa.s→ (a∗ s→ Type0)→ Type0
repr = λa w.s0:s→ Pure (a∗ s) (w s0)
return = λa.return
return? = λa.return?

bind = λa b.bind
bind? = λa b.bind?

get = get
get? = get?

put = put
put? = put? }

where (as described in §2.3) return : a→ x:a→ repr a (return? a x);
and similarly for bind, get, and put.

In addition to the monad definitions D, the signature S contains
the definitions of lifts that contain an EMF? expression and an EMF?

WP. We use notations S.M.liftM′ and S.M.lift?M′ to look these up in
S. Finally, the signature always includes a fixed partial definition for
the Pure monad, only containing the following definitions:

Pure{wp type = λa:Type0. (a→ Type0)→ Type0
return? = λa:Type0. λx:a. λ p:(a→ Type0). p x
bind? = λa. λb. λw1. λw2. λ p. w1 (λx. (w2 x) p) }

The other fields are not defined, since Pure is handled primitively
in the EMF? dynamic semantics (§3.3).

3.2 Static semantics
The expression typing judgment in EMF? has the form S;Γ ` e : c,
where Γ is the list of bindings x : t as usual. Selected rules for the
judgment are shown in Figure 2. In the rules, we sometimes write
S;Γ ` e : t as an abbreviation for S;Γ ` e : Tot t.

Monadic returns, binds, lifts, and actions. Rules T-RETURN,
T-BIND, and T-LIFT simply use the corresponding wp specifica-

3 We use sans serif font for the actual field values.

S-TOT
S;Γ ` t ′ <: t

S;Γ ` Tot t ′ <: Tot t

S-PURE
S;Γ ` t ′ <: t S;Γ |= ∀p.wp p⇒ wp′ p

S;Γ ` Pure t ′ wp′ <: Pure t wp

S-F
S;Γ ` S.F.repr t ′ wp′ <: S.F.repr t wp

S;Γ ` F t ′ wp′ <: F t wp

S-PROD
S;Γ ` t <: t ′

S;Γ,x : t ` c′ <: c
S;Γ ` x:t ′→ c′ <: x:t→ c

S-REFINEL

S;Γ ` x:t{φ}<: t

S-REFINER
S;Γ,x : t |= φ

S;Γ ` t <: x:t{φ}

S-CONV
S ` t ′ −→∗ t ∨ S ` t −→∗ t ′

S;Γ ` t ′ <: t

Figure 3. Selected subtyping rules for EMF?

tion from the signature for M to compute the final wp. For ex-
ample, in the case of the ST monad from §2.3, S.ST.return? t =
λx:t.λ s0:s.λ post.post (x,s0). Rule T-ACT is similar; it looks up
the type of the action from the signature, and then behaves like the
standard function application rule.

Monadic reflection and reification. Rules T-REIFY and T-
REFLECT are dual, coercing between a computation type and its
underlying pure representation. Rule T-RUN coerces e from type
Pure t wp to Tot t. However, since the Tot type is unconditionally
total, the second premise of the rule checks that the wp is satisfiable.

Refinements, computations types, and proof irrelevance. EMF?’s
refinement and computation types include a form of proof irrele-
vance. In T-REFINE, the universe of x:t{φ} is determined by the
universe of t alone, since a witness for the proposition φ is never ma-
terialized. Refinement formulas φ and wps are manipulated using an
entailment relation, S;Γ |= φ , for a proof-irrelevant, classical logic
where all the connectives are “squashed” (Nogin 2002), e.g., p ∧ q
and p =⇒ q from §2, are encoded as x:unit{p ∗ q} and x:unit{p→q},
and reside in Type0. Similar to T-REFINE, in C-PURE, the universe
of a computation type is determined only by the result type. Since
the wp is proof irrelevant, the use of Type0 in the type of wp is quite
natural, because its proof content is always squashed.

Subsumption and subtyping judgment. T-SUB is a subsumption
rule for computations, which makes use of the two judgments S;Γ `
c <: c′ and S;Γ ` t <: t ′, shown (selectively) in Figure 3. Rule S-
PURE checks that t ′ <: t, and makes use of the S;Γ |= φ relation to
check that wp is stronger than wp′, i.e. for all postconditions, the
precondition computed by wp implies the precondition computed
by wp′.

For user-defined monads F , the subtyping check delegates
to their underlying representation S.F.repr. Rule S-PROD is the
standard dependent function subtyping. Rule S-REFINEL permits
dropping the refinement from the subtype, and rule S-REFINER
allows subtyping to a refinement type, if we can prove the formula
φ for an arbitrary x. Finally, rule S-CONV states that the beta-
convertible types are subtypes of each other (S ` t −→ t ′ is the
small-step evaluation judgment, introduced in the next section).

3.3 EMF? dynamic semantics
We now turn to the dynamic semantics of EMF?, which is formalized
as a strong small-step reduction relation. Evaluation context are
defined as follows:

E ::= • | λx:t.E | E e | e E | run E | reify E | reflect E
| M.bind t1 t2 wp1 E wp2 x.e2 |M.return t E
| M.liftM′ t wp E | F.act ē E ē′ | caset(E as ) x.e1 x.e2
| caset(e as ) x.E1 x.e2 | caset(e as ) x.e1 x.E2
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R-APP

S ` (λx:t.e) e′ −→ e[e′/x]

R-RUN

S ` run (Pure.return t e)−→ e

R-PUREBIND

S ` Pure.bind t1 t2 wp1 (Pure.return t e1) wp2 x.e2 −→ e2[e1/x]

R-REIFYRET

S ` reify (F.return t e)−→ S.F.return t e

R-REIFYREFLECT

S ` reify (reflect e)−→ e

R-REIFYBIND
e′ = S.F.bind t1 t2 wp1 (reify e1) wp2 x.(reify e2)

S ` reify (F.bind t1 t2 wp1 e1 wp2 x.e2)−→ e′

R-REIFYACT

S ` reify(F.act ē)−→ S.F.act[ē/x̄]

R-REIFYLIFT

S ` reify(M.liftM′ t wp e)−→ S.M.liftM′ t wp (reify e)

Figure 4. Dynamic semantics of EMF? (selected reduction rules)

The judgment has the form S ` e−→ e′. We show some selected
rules in Figure 4. The main ideas of the judgment are: (a) the Tot
terms reduce primitively in a standard manner, (b) Pure.bind is
also given a primitive semantics, however (c) to β -reduce other
monadic operations (binds, returns, actions, and lifts), they need to
be reified first, which then makes progress using their underlying
implementation in the signature.

Semantics for Pure terms. Rule R-PUREBIND reduces similarly
to the usual β -reduction. For run e, the semantics first evaluates e to
Pure.return t e′, and then run removes the Pure.return and steps
to the underlying total computation e′ via R-RUN.

Semantics for monadic returns and binds. Rule R-REIFYBIND
looks up the underlying implementation S.F.bind in the signature,
and applies it to e1 and e2 but after reifying them so that their effects
are handled properly. In a similar manner, rule R-REIFYRET looks
up the underlying implementation S.F.return and applies it to e.
Note that in this case, we don’t need to reify e (as we did in bind),
because e is already a Tot term.

Semantics for monadic lifts and actions. Rules R-REIFYACT
and R-REIFYLIFT also lookup the underlying implementations
of the lifts and actions in the signature and use them. Rule R-
REIFYLIFT in addition reifies the computation e. For lifts, the
arguments ē are already Tot.

3.4 EMF? metatheory
We prove several metatheoretical results for EMF?. First, we prove
strong normalization for EMF? via a translation to the calculus of
inductive constructions (CiC) (Paulin-Mohring 2015).

Theorem 1 (Strong normalization). If S;Γ ` e : c and CiC is
strongly normalizing, then e is strongly normalizing.

Proof. (sketch) The proof proceeds by defining a translation from
EMF? to CiC, erasing refinements and WPs, inlining the pure
implementations of each monad, and removing the reify and reflect
operators. We show that this translation is a type-preserving, forward
simulation. If CiC is strongly normalizing, then EMF? must also be,
since otherwise an infinite reduction sequence in EMF? could not be
matched by CiC, contradicting the forward simulation.

Theorem 2 (Subject Reduction). If S;Γ ` e : c and S ` e −→ e′,
then S;Γ ` e′ : c.

This allows us to derive a total correctness property for the
Pure monad saying that run-ing a Pure computation produces a
value which satisfies all the postconditions that are consistent with
the wp of the Pure computation.

Corollary 3 (Total Correctness of Pure). If S; · ` e : Pure t wp, then
∀p. S; · ` p : t→ Type0 and S; · |= wp p, we have S ` run e−→∗ v
such that S; · |= p v.

For the user-defined monads F , we can derive their total cor-
rectness property by appealing to the total correctness of the
Pure monad. For instance, for the ST monad from §2.3, we can de-
rive the following corollary simply by using the typing of reify and
Corollary 3.

Corollary 4 (Total Correctness of ST ). If S; · ` e : ST t wp, then
∀p,s0. S; · ` s0 : s, S; · ` p : t× s→ Type0 and S; · |= wp s0 p, then
S ` run ((reify e) s0)−→∗ v such that S; · |= p v.

3.5 Implementation in F?

The implementation of F? was relatively easy to adapt to EMF?. In
fact, EMF? and DM and the translation between them were designed
to match F?’s existing type system, as much as possible. We describe
the main changes that were made.

User-defined non-primitive effects are, of course, the main new
feature. Effect configurations closely match the D form from Fig-
ure 1, the main delta being that non-primitive effects include pure
implementations or M.bind, M.return, M.liftM′ etc.

Handling reify and reflect in the type-checker involved imple-
menting the two relatively simple rules for them in Figure 2. A more
significant change was made to F?’s normalization machinery, ex-
tending it to support rules that trigger evaluation for reified, effectful
programs. In contrast, before our changes, F? would never reduce
effectul terms. The change to the normalizer is exploited by F?’s
encoding of proof obligations to an SMT solver—it now encodes the
semantics of effectful terms to the solver, after using the normalizer
to partially evaluate a reified effectful term to its pure form.

Running programs with user-defined effects is achieved by ex-
tracting it to OCaml, as is usual for F?, except we now inline the
definitions of the underlying pure terms. Effects marked as primitive
are extracted as before while making use of primitive effects in
OCaml—this is formally justified in §5.

4. Dijkstra monads for free
This section formally presents DM, a language for defining effects
by giving monads with their actions and lifts between them. Via a
pair of translations, we export such definitions to EMF? as effect
configurations. The first translation of a term e, a CPS, written e?
produces a predicate-transformer from DM term; the second one is
an elaboration, e, which produces an EMF? implementation of a
DM term. The main result shows that for any DM term the result of
the ?-translation is in a suitable logical relation to the elaboration
of the term, and thus a valid specification for this elaboration. We
also show that the ?-translation always produces monotonic and
conjunctive predicates, properties that should always hold for WPs.
Finally, we show that the ?-translation preserves all equalities in
DM, and thus translates DM monads into EMF? Dijkstra monads.

4.1 Source: DM effect definition language
The source language DM is a simply-typed lambda calculus aug-
mented with an abstract monad τ , as in §2.3. The language is es-
sentially that of Filinski (1994) with certain restrictions on allowed
types to ensure the correctness of elaboration.

There are two effect symbols: n (non-effectful) and τ . The typing
judgment is split accordingly, and ε ranges over both of them. Every
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monadic term needs to be bound via bindτ to be used.4 Functions
can only take non-effectful terms as arguments, but may return a
monadic result.

The set of DM types is divided into A types, H types, and C types,
ranged over by A, C, and H, respectively. They are given by the
grammar:

A ::= X | b | A n−→ A | A+A | A×A
H ::= A |C
C ::= H τ−→ A | H n−→C |C×C

Here X ranges over type variables (needed to define monads)
and b are base types. The τ-arrows represent functions with a
monadic result, and our translations will provide WPs for these
arrows. A types are referred to as “τ-free”, since they contain no
monadic operations. C types are inherently computational in the
sense that they cannot be eliminated into an A type: every possible
elimination will lead to a monadic term. They are referred to as
“computational types”. H types are the union of both, and are called
“hypothesis” types, as they represent the types of possible functional
arguments. As an example, the state monad is represented as the
type S τ−→ (X×S), where X is a type variable and S is some type
representing the state.

DM types do not include “mixed” A×C pairs, computational
sums C+H, functions of type C n−→ A, or types with right-nested
τ-arrows. We do allow nesting τ-arrows to the left, providing the
generality needed for the continuation monad, and others. These
restrictions are crafted to carefully match EMF?. Without them, our
translations, would generate ill-typed or logically unrelated EMF?

terms, and they do not appear to be severe in practice, as evidenced
by the examples in §2.

The syntax for terms is (κ standing for constants):

e ::= x | e e | λx:H. e | κ(e, . . . ,e)
| (e,e) | fst(e) | snd(e)
| inl(e) | inr(e) | case e inl x:A. e; inr y:A. e
| returnτ e | bindτ e to x in e

Typing judgments have the forms ∆ | Γ ` e : H !n and ∆ | Γ ` e : A !τ ,
where ∆ is a finite sequence of type variables and Γ is a normal
typing context, whose types only use type variables from ∆. Here
are some example rules:

∆ | Γ,x:H ` e : H ′!ε

∆ | Γ ` λx:H. e : H ε−→ H ′!n

∆ | Γ ` f : H ε−→ H ′!n ∆ | Γ ` e : H!n

∆ | Γ ` f e : H ′!ε

∆ | Γ ` e : A!n

∆ | Γ ` returnτ e : A!τ

∆ | Γ ` e1 : A!τ ∆ | Γ,x : A ` e2 : A′!τ

∆ | Γ ` bindτ e1 to x in e2 : A′!τ
In these rules we implicitly assume that all appearing types are
well-formed with respect to the grammar, e.g., one cannot form a
function of type C n−→ A by the abstraction rule.

As an example, returnST = λx:X . λ s:S. returnτ (x,s) has type
X n−→ S τ−→ (X×S), using these rules.

When defining effects and actions, one deals (at a top level) with
non-effectful C types (C !n). We present our main results (Theorem 5
and Theorem 6) for terms typed in an empty Γ as these are the most
interesting cases; of course to show them, we prove more general
results.

4.2 The ?-translation
The essence of the ?-translation is to translate returnτ e and
bindτ e1 to x in e2 to the returns and binds of the continuation

4 In this formalization, bind and return appear explicitly in source programs.
When using our implementation, however, the user need not call bind and
return; rather, they write programs in a direct style, and let-bindings are
turned into binds as needed. §4.6 provides some details on the interpretation
and elaboration of concrete F? terms as DM terms.

monad. We begin by defining a translation H?, that translates any H
type to the type of its predicates by CPS’ing the τ-arrows. First, for
any τ-free type A, A? is essentially the identity, except we replace
every arrow n−→ by a→. Then, for computation types, we define:

(H n−→C)? = H?→C?

(C×C′)? = C?×C′?

(H τ−→ A)? = H?→ (A?→ Type0)→ Type0

Note that all arrows on the right hand side of the translation have a
Tot codomain, as per our notational convention.

In essence, the codomains of τ-arrows are CPS’d into a WP,
which takes as argument a predicate on the result and produces a
predicate representing the “precondition”. All other constructs are
just translated recursively: the real work is for the τ-arrows.

For example, for the state monad S τ−→ (X×S), the ?-translation
produces the EMF? type S→ (X ×S→ Type0)→ Type0. It is the
type of predicates that map an initial state and a postcondition (on
both result and state) into a proposition. Modulo isomorphism (of
the order of the arguments and Currying)5 this is exactly the type of
WPs in current F?’s state monad (cf. §1, §2.3).

The two main cases for the ?-translation for well-typed DM
terms are shown below; every other case is simply a homomorphic
application of ? on the sub-terms.

(returnτ e)? =λ p:(A?→ Type0). p e? when ∆ | Γ ` e : A!n
(bindτ e1 to x in e2)

?=λ p:(A′?→ Type0). e?1 (λx:A. e?2 p)
when ∆ | Γ,x : A ` e2 : A′!τ

Formally, the ?-translation and elaboration are defined over a
typing derivation, as one needs more information than what is
present on the term. The ?-translation of terms and types are
related in the following sense, where we define the context ∆ as
X1 : Type0, . . . ,Xn : Type0 when ∆ = X1, . . . ,Xn (we assume that
type variables are also EMF? variables).

After translation, one can abstract over the variables in ∆ to
introduce the needed polymorphism in EMF?. This will also be the
case for elaboration.

For example, for the previous definition of returnST we get the
translation λx:X . λ s:S. λ p:(X×S→Type0). p(x,s), which has the
required transformer type: S→ (X × S→ Type0)→ Type0. It is
what one would expect: to prove a postcondition p about returnST x,
one needs to prove p(x,s) where s is the initial state.

Theorem 5 (well-typing of ?-translation).
∆ | · ` e : C !n implies ∆ ` e? : C?.

4.3 Elaboration
Elaboration is merely a massaging of the source term to make it
properly typed in EMF?. During elaboration, monadic operations are
translated to those of the identity monad in EMF?, namely Pure.

Elaboration of types We define two elaboration translations
for DM types, which produce the EMF? types of the elaborated
expression-level terms. The first translation A maps an A type to a
simple EMF? type, while the second one FC wp maps a C type and
a term wp of type C? (a specification) into an EMF? computational
product or pair. The A translation is the same as the CPS one, i.e.,
A = A?.

The FC wp (where wp : C?) translation is defined by:

(1) FC×C′ wp =def FC (fst wp)×FC′ (snd wp)
(2) F

C
ε−→H

wp =def w′:C?→ FC w′→ Gε
H(wp w′)

(3) F
A

ε−→H
wp =def x:A→ Gε

H(wp x)

5 One can tweak our translation to generate WPs that have the usual
postcondition to precondition shape. However we found the current shape to
be generally easier to work with.
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(1) x = x (5) fst(e) = fst e
(2) κ(e1, . . . ,en) = κ e1 . . . en (6) snd(e) = snd e
(3) λx:A.e = λx:A.e (7) inl(e) = inl e
(4) λx:C.e = λxw:C?.λx:FC xw.e (8) inr(e) = inr e
(9) e1e2 = e1 e2 (∆ | Γ ` e2 : A !n)
(10) e1e2 = e1 (e?2 sΓ) e2 (∆ | Γ ` e2 : C !n)
(11) (e1,e2) = (e1,e2)
(12) case e inl x:A1.e1; inr y:A2.e2 = case(e) x.e1 y.e2 (∆ | Γ,x:A1 ` e1 : A !ε)
(13) case e inl x:A1.e1; inr y:A2.e2 = caseFC case(z) x.(e?1 sΓ) y.(e?2 sΓ)(e as z) x.e1 y.e2 (∆ | Γ,x:A1 ` e1 : C !n)
(14) returnτ e = Pure.return A e (∆ | Γ ` e : A !τ)
(15) bindτ e1 to x:A in e2 = Pure.bind A A′ (e?1 sΓ) e1 (λx:A?.e?2 sΓ) x.e2 (∆ | Γ,x : A ` e2 : A′ !τ)

Figure 5. The elaboration of DM terms to EMF?

Here we use the notation that Gn
C(wp) = FC wp and Gτ

A(wp) =
Pure A wp.

The main idea is that if an EMF? term e has type FC wp, then
wp is a proper specification of the final result. Putting pairs aside
for a moment, this means that if one applies enough arguments
ei to e in order to eliminate it into a Pure computation, then
e ēi : Pure A (wp s̄i), where each si is the specification for each
ei. This is naturally extended to pairs by the definition, defining the
specification for a pair as a pair of proper specifications, as shown
by case (1) above.

In case (2), the w′ : C? arguments introduced by F are relevant for
the higher-order cases, and serve the following purpose, as illustrated
in §2.3 (for the translation of bind for the ST monad, and in §2.7 for
the continuation monad): when taking computations as arguments,
we first require their specification in order to be able to reason
about them at the type level. Taking these specification arguments
is also the only way for being WP-polymorphic in EMF?. Note that,
according to the dependencies, the C? argument is only used in the
specifications, while we shall see in elaboration that only the FC wp
is used in the expressions. When elaborating terms, we pass this
specification as an extra argument where needed.

In case (3), when elaborating functions taking an argument of A
type there is no need to take a specification, since the argument is
completely non-effectful and can be used at both expression- and
type-levels. Informally, a non-effectful term is its own specification.

Returning to our state monad example, the result of F
S

τ−→(X×S)
wp

is s:S→ Pure (X×S) (wp s), i.e., the type of a function f which
for any p, if one can prove wp s p, then f s satisfies p.

Elaboration of terms is defined in Figure 5 and is, as expected,
mostly determined by the translation of types. The translation is
formally defined over typing derivations, however, for brevity, we
present each translation rule simply on the terms, with the important
side-conditions we rely on from the derivation shown in parenthesis.
We describe only the most interesting cases.

Computational abstractions and applications (cases 4 and 10)
Case (4) translates a function with a computational argument x:C to a
function that expects two arguments, a WP xw:C? and x itself, related
to xw at a suitably translated type. We track the association between
x and xw using a substitution sΓ, which maps every computational
hypothesis x : C in Γ to xw (of type C?) in Γ, In case (10), when
passing a computation argument e2, we need to eliminate the double
abstraction introduced in case (4), passing both e?2 sΓ, i.e. the WP of
e2 (substituting free computation variables), and e2 itself.

Return and bind (cases 14 and 15) The last two rules show the
translation of return and bind for τ to return and bind for Pure in
EMF?. This is one of the key points: in the elaboration, we interpret
the τ as the identity monad in EMF?, whereas in the ?-translation,
we interpret τ as the continuation monad. Theorem 6, our main

theorem, shows that EMF?’s WP computation in the Pure monad for
e produces a WP that is logically related to the the ?-translation of
e, i.e., WPs and the CPS coincide formally, at arbitrary order.

Theorem 6 (Logical relations lemma).
∆ | · ` e : C !n implies ∆ ` e : FC e?

4.4 Monotonicity and conjunctivity
A key property of WPs is monotonicity: weaker postconditions
should map to weaker preconditions. This is also an important F?

invariant that allows for logical optimizations of WPs. Similarly,
WPs are conjunctive: they distribute over conjunction and universal
quantification in the postcondition. We show that any EMF? term
obtained from the ?-translation is monotonic and conjunctive,
for higher-order generalizations of the usual definitions of these
properties (Dijkstra 1997).

We first define a logical relation between EMF? terms t1 .t t2,
read “t1 stronger than t2 at type t” and producing an EMF? formula
in Type0, by recursion on the structure of t:

x.Type0 y =def x⇒ y
x.b y =def x = y
x.X y =def x = y
f .t1→t2 g =def ∀x1,x2 : t1, x1 .t1 x2⇒ f x1 .t2 g x2
x.t1×t2 y =def fst x.t1 fst y∧ snd x.t2 snd y
x.t1+t2 y =def (∃v1,v2 : t1, x = inl v1 ∧ y = inl v2 ∧ v1 .t1 v2) ∨

(∃v1,v2 : t2, x = inr v1 ∧ y = inr v2 ∧ v1 .t2 v2)

where b represents any EMF? base type and X any variable6.
For any type t that doesn’t mention Type0, the relation reduces

to extensional equality. The relation is only defined for the subset of
EMF? types that are all-Tot and non-dependent. All types resulting
from the ?-translation will be in this subset, so this not a limitation
for our purposes.

The . relation is not reflexive. We say that a closed EMF?

expression e for which · ` e : Tot t is monotonic when · � e .t e.
For the first-order WPs this coincides with the standard definition,
and for higher-order predicates it gives a reasonable extension. For
a first-order example, let’s take the type of WPs for ST programs:
S→ (S→ Type0)→ Type0:

f .S→(S→Type0)→Type0
f

≡ ∀s1,s2.s1 = s2⇒ f s1 .(S→Type0)→Type0)
f s2

⇐⇒ ∀s. f s.(S→Type0)→Type0
f s

≡ ∀s, p1, p2, p1 .S→Type0
p2⇒ f s p1 .Type0

f s p2
⇐⇒ ∀s, p1, p2,(∀s′, p1 s′⇒ p2 s′)⇒ ( f s p1⇒ f s p2)

6 We can get a stronger result if we don’t restrict the relation on type variables
to equality and treat it abstractly instead. For our purposes this is not needed
as we plan to instantiate type variables with predicate-free types
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This is exactly the usual notion of monotonicity for imperative
programs (Dijkstra 1997): “if p2 is weaker than p1, then f s p2 is
weaker than f s p1 for any s”.

Since the . relation is trivially preserved by application, mono-
tonicity is too. Also, first-order predicates on base types (such as
first-order pre-/postconditions) are always monotonic according to
this definition.

We proved that the ?-translation of any well-typed source term
e : C !n gives a monotonic e? at the type C?. This result is more
general than it appears at a first glance: not only does it mean that
WPs obtained by any defined return and bind are monotonic, but
also for any action or function. Also, lifts between monads and
other higher-level computations will preserve this monotonicity.
Furthermore, the relation � in the conclusion of the theorem is
EMF?’s validity judgment, i.e., we prove that these properties are
actually provable within F? without needing to rely on some meta-
level reasoning.

Theorem 7 (Monotonicity of ?-translation).
For any e and C, ∆ | · ` e : C !n implies ∆ � e? ≤C? e?.

We give a similar higher-order definition of conjunctivity, and
prove similar results ensuring the ?-translation provides conjunctiv-
ity. The definition for conjunctivity is given by the following, where
a describes the predicate-free types (including variables).

C(a→Type0)→Type0
(w) =def ∀p1, p2.w p1 ∧w p2 = w (λx.p1 x∧ p2 x)

Ca(x) =def true
Ct1→t2 ( f ) =def ∀x : t1,Ct1 (x)⇒ Ct2 ( f x)
Ct1×t2 (p) =def Ct1 (fst p)∧Ct2 (snd p)

Again, the relation is not defined on all types, but it does include
the image of the type-level ?-translation, so it is enough for our
purposes. This relation is also trivially preserved by application. We
then prove:

Theorem 8 (Conjunctivity of ?-translation).
For any e and C, ∆ | · ` e : C !n implies ∆ � CC?(e?)

4.5 The ?-translation preserves equality and monad laws
We define an equality judgment on source terms that is basically
βη-equivalence, augmented with the monad laws for the abstract τ

monad. We show that the ?-translation preserves this equality.

Theorem 9 (Preservation of equality by CPS).
If ∆ | · ` e1 = e2 : H !ε then ∆ � e?1 = e?2 .

Since the monad laws are equalities themselves, any source
monad will be translated to a specification-level monad of WPs.
This also applies to lifts: source monad morphisms are mapped to
monad morphisms between Dijkstra monads.

4.6 Implementing the translations in F?

We devised a prototype implementation of the two translations in
F?. Users define their monadic effects as F? terms in direct style,
as done in §2, and these definitions get automatically rewritten
into DM. As explained in §2, instead of τ-arrows (H τ−→ A), we
use a distinguished F? effect τ to indicate where the CPS should
occur. The effect τ is defined to be an alias for F?’s Tot effect,
which allows the programmer to reason extrinsically about the
definitions and prove that they satisfy various properties within
F?, e.g., the monad laws. Once the definitions have been type-
checked in F?, another minimalistic type-checker kicks in, which
has a twofold role. First, it ensures that the definitions indeed belong
to DM, e.g., distinguishing A types from C types. Second, it performs
bidirectional inference to distinguish monadic computations from
pure computations, starting from top-level annotations, and uses
this type information to automatically introduce returnτ and bindτ

as needed. For instance, in the st example from §2.3, the type-
checker rewrites x, s0 into returnτ (x,s0); and let x, s1 = f s0 in ...

into bindτ f s0 to x,s1 in . . . ; and g x s1 into returnτ (g x s1).
The elaboration maps let-bindings in DM to let-bindings in F?; the
general inference mechanism in F? takes care of synthesizing the
WPs, meaning that the elaboration, really, is only concerned about
extra arguments for abstractions and applications.

Once the effect definition is rewritten to DM, our tool uses
the ?-translation and elaboration to generate the WP transformers
for the Dijkstra monad, which previously would be written by
hand. Moreover, using the . relation from §4.4, several other WP
combinators are derived to be used internally by the F? type-checker;
again previously these had to be written by hand.

5. EMF? with primitive state
As we have seen in §3, EMF? encodes all its effects using pure
functions. However, one would like to be able to run F? programs
efficiently using primitive effects. In this section, we show how
EMF?’s pure monads apply to F?’s existing compilation strategy,
which provides primitive support for state via compilation to OCaml,
which, of course, has state natively.7 The main theorem of §5.1 states
that well-typed EMF? programs using the state monad abstractly (i.e.,
not breaking the abstraction of the state monad with arbitrary uses
of reify and reflect) are related by a simulation to EMF?ST programs
that execute with a primitive notion of state. This result exposes a
basic tension: although very useful for proofs, reify and reflect can
break the abstractions needed for efficient compilation. In §5.2, we
show how to get the best of both worlds by relying on F?’s Ghost
effect—by restricting reify and reflect to computationally irrelevant
code (e.g., proofs), we can use them freely for proving and then
erase them before compilation for efficient execution.

5.1 EMF?ST: A sub-language of EMF? with primitive state
The syntax of EMF?ST corresponds to EMF?, except, we configure it
to just use the ST monad. Other effects that may be added to EMF?

can already be expanded into their encodings in its primitive Pure
monad—as such, we think of EMF?ST as modeling a compiler target
for EMF? programs extended with ST implemented primitively,
and other arbitrary effects implemented purely. We thus exclude
from EMF?ST the reify and reflect operators and drop type and WP
arguments of return, bind and lift operators, since these are no longer
relevant here.

The operational semantics of EMF?ST is a small-step, call-by-value
reduction relation between pairs (s,e) of a state s and a term e. The
relation includes the pure reduction steps of EMF? simply carrying
the state along (we only show ST-beta), and three primitive reduction
rules for ST, shown below. The only irreducible ST computation
is ST.return v. The term ST.bind e x.e′ reduces even without an
enclosing reify, since the state is primitive.

(s,(λx:t.e)v) (s,e[v/x]) ST-beta
(s,ST.bind (ST.return v) x.e) (s,e[v/x]) ST-bind
(s,ST.get ()) (s,ST.return s) ST-get
(s,ST.put s′) (s′,ST.return ()) ST-put

Relating EMF? to EMF?ST We define a (partial) translation from
EMF? to EMF?ST, and show that one or more steps of reduction
in EMF?ST are matched by one or more steps in EMF?. This result
guarantees that it is sound to verify a program in EMF? and execute
it in EMF?ST, since the verification holds for all EMF? reduction
sequences, and EMF?ST evaluation corresponds to one such reduction.

The main intuition behind our proof is that the reduction of
reflect-free EMF? programs maintains terms in a very specific
structure—a stateful redex reduces in a context structured like

7 F? also compiles exceptions natively to OCaml, however we focus only on
state here, leaving a formalization of primitive exceptions to the future—we
expect it to be similar to the development here.
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a telescope of binds, with the state threaded sequentially as the
telescope evolves. We describe this invariant structure as an EMF?

context, K, parameterized by a state s, where Ê is a single-hole,
reify-and-reflect-free EMF? context, a refinement of the evaluation
contexts of §3, to be filled by a reify-and-reflect free EMF? term,
f . Additionally, we separate the Ê contexts by their effect into
several sorts; Ê : Tot and Ê : Pure are contexts which when filled
by a suitably typed term produce in EMF? a Tot or Pure term,
respectively; the case Ê : Inert is for an un-reified stateful EMF?

term. The last two cases are the most interesting, representing the
base and inductive case of the telescope of a stateful term “caught
in the act” of reducing—we refer to them as the Active contexts. We
omit the sort of a context when it is irrelevant.

K s ::= Ê : Tot | Ê : Pure | Ê : Inert | reify Ê s : Active
| Pure.bind (K s) p.((λx.reify f ) (fst p) (snd p)) : Active

Next, we define a simple translation {[·]} from contexts Ks to EMF?ST .

{[Ê]}= Ê
{[reify Ê s]}= Ê
{[Pure.bind (K s) p.((λx.reify f ) (fst p) (snd p))]}

= ST.bind {[K s]} x. f

Theorem 10 (Simulation). For all well-typed closed, filled contexts
K s f , either K s is Inert, or one of the following is true:

(1) ∃K′s′ f ′. (s,{[K s]} f ) + (s′,{[K′ s′]} f ′)
and K s f −→+ K′ s′ f ′ and sort (K s) = sort (K′ s′)
and if K′ s′ is not Active then s = s′.

(2) K s is Active and ∃v s′.(s,{[K s]} f ) ∗ (s′,ST.return v)
and K s f −→+ Pure.return (v,s′).

(3) K s is Pure and ∃v.{[K s]} f = K s f = Pure.return v.
(4) K s is Tot and ∃v.{[K s]} f = K s f = v.

5.2 Restoring reify and reflect for extrinsic proofs
Theorem 10 applies only to programs that lack reflect and use reify
only in a very specific manner, as described by the telescoping
invariant. To apply the theorem to F?, we make use of its facilities
for erasing computationally irrelevant code and its module system.
To justify F?’s primitive effect implementation, we argue that F?

programs using the ST monad are free of reify and reflect, after
erasure of computationally irrelevant code, and hence the post-
erasure programs are candidates for Theorem 10. We briefly describe
how this works, next.

First, as described in §2.5, we use the module system to hide both
the reify and reflect operators from clients of a module FStar.State
defining the ST effect. We expose to clients only ghost reify, a
function equivalent to reify, but exposed to clients at the signature
shown below. Notice that the function’s co-domain is marked
with the Ghost effect, meaning that it can only be used within
specifications (e.g., WPs and assertions)—any other use will be
flagged as a typing error by F?.

ghost reify: ST a wp→Ghost (s0:s→Pure (a ∗ s) (wp s0))

Next, within FStar.State, we implement the following combina-
tor, refine ST, a total function that allows a client to augment the
specification of an effectful function f from some wp to a weaker
one that additionally records that the value returned by f on any argu-
ment and input state s0 corresponds to the computational behavior
of the (ghostly) reification of f.

refine ST: f:(x:a→ST b (wp x))
→Tot (x:a→ST b (λ s0 post→
wp x s0 (λ r→ r = ghost reify (f x) s0 =⇒ post r)))

6. Related work
We have already discussed many elements of related work through-
out the paper. Here we focus on a few themes not covered fully
elsewhere.

Representing monads Our work draws a lot from Filinski’s (1994)
monadic reflection methodology, for representing and controlling
the abstraction of monads. In particular, our DM monad definition
language is essentially the language of (Filinski 1994) with some
restrictions on the allowed types. Beyond controlling abstraction,
Filinski shows how monadic reflection enables a universal imple-
mentation of monads using composable continuations and a single
mutable cell. We do not (yet) make use of that aspect of his work,
partly because deploying this technique in practice is challenging,
since it requires compiling programs to a runtime system that pro-
vides composable continuations. Filinski’s (1999) work on repre-
senting layered monads generalizes his technique to the setting of
multiple monads. We also support multiple monads, but instead of
layering monads, we define each monad purely, and relate them via
morphisms. This style is better suited to our purpose, since one of
our primary uses of reification is purification, i.e., revealing the pure
representation of an effectful term for reasoning purposes. With
layering, multiple steps of reification may be necessary, which may
be inconvenient for purification. Finally, Filinski (2010) gives an
operational semantics that is extensible with monadic actions, taking
the view of effects as being primitive, rather than encoded purely.
We take a related, but slightly different view: although effects are
encoded purely in EMF?, we see it as language in which to analyze
and describe the semantics of a primitively effectful object language,
EMF?ST, relating the two via a simulation.

Dependent types and effects Nanevski et al. developed Hoare
type theory (HTT) (Nanevski et al. 2008) and Ynot (Chlipala et al.
2009) as a way of extending Coq with effects. The strategy there is to
provide an axiomatic extension of Coq with a single catch-all monad
in which to encapsulate imperative code. Being axiomatic, their
approach lacks the ability to reason extrinsically about effectul terms
by computation. However, their approach accommodates effects
like non-termination, which EMF? currently lacks. Interestingly, the
internal semantics of HTT is given using predicate transformers,
similar in spirit to EMF?’s WP semantics. It would be interesting
to explore whether or not our free proofs of monotonicity and
conjunctivity simplify the proof burden on HTT’s semantics.

Zombie (Casinghino et al. 2014) is a dependently typed language
with general recursion, which supports reasoning extrinsically about
potentially divergent code—this approach may be fruitful to apply
to EMF? to extend its extrinsic reasoning to divergent code.

Another point in the spectrum between extrinsic and intrinsic
reasoning is Charguéraud’s (2011) characteristic formulae, which
provide a precise formula in higher-order logic capturing the seman-
tics of a term, similar in spirit to our WPs. However, as opposed
to WPs, characteristic formulae are used interactively to prove pro-
gram properties after definition, although not via computation, but
via logical reasoning. Interesting enough, characteristic formulae
are structured in a way that almost gives the illusion that they are
the terms themselves. CFML is tool in Coq based on these ideas,
providing special tactics to manipulate formulas structured this way.

Brady (2013) encodes algebraic effects with pre- and postcondi-
tions in Idris in the style of Atkey’s (2009) parameterized monads.
Rather than speaking about the computations themselves, the pre-
and postconditions refer to some implicit state of the world, e.g.,
whether or not a file is closed. In contrast, F?’s WPs give a full
logical characterization of a computation. Additionally, the WP
style is better suited to computing verification conditions, instead of
explicitly chaining indices in the parameterized monad.
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It would be interesting, and possibly clarifying, to link up with
recent work on the denotational semantics of effectful languages
with dependent types (Ahman et al. 2016); in our case one would
investigate the semantics of EMF? and EMF?ST, which has state, but
extended with recursion (and so with nontermination).

Continuations and predicate transformers We are not the first to
study the connection between continuations and predicate transform-
ers. For example, Jensen (1978) and Audebaud and Zucca (1999)
both derive WPs from a continuation semantics of first-order imper-
ative programs. While they only consider several primitive effects,
we allow arbitrary monadic definitions of effects. Also while their
work is limited to the first-order case, we formalize the connec-
tion between WPs and CPS also for higher-order. The connection
between WPs and the continuation monad also appears in Keimel
(2015); Keimel and Plotkin (2016).

7. Looking back, looking ahead
While our work has yielded the pleasant combination of both a
significant simplification and boost in expressiveness for F?, we
believe it can also provide a useful foundation on which to add
user-defined effects to other dependently typed languages. All that
is required is the Pure monad upon which everything else can be
built, mostly for free.

On the practical side, going forward, we hope to make use of the
new extrinsic proving capabilities in F? to simplify specifications
and proofs in several ongoing program verification efforts that
use F?. We are particularly interested in furthering the relational
verification style, sketched in §2.6. We also hope to scale EMF? to
be a definitive semantics of all of F?—the main missing ingredients
are recursion and its semantic termination check, inductive types,
universe polymorphism, and the extensional treatment of equality.

Along another axis, we have already mentioned our plans to
add non-termination (§2.4) to DM and EMF?, and to investigate
translations of effect handlers (§2.5). We also hope to enhance DM
in other ways, e.g., relaxing the stratification of types and adding
inductive types which will allow us to define monads for some forms
of nondeterminism and many forms of I/O. Enriching DM further,
one could also add dependent types, reducing the gap between it and
F?, and bringing within reach examples like Ahman and Uustalu’s
(2013) dependently typed update monads.
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A. Appendix
In this appendix we provide proofs and auxiliary results for the
theorems that appear in the body of the paper. We also show the full
type system for the source language.

A.1 The definitional language DM

In the typing judgment, the metavariable ∆ represents a set of type
variables that remains fixed throughout typing. It is used to introduce
top-level let-polymorphism on all CPS’d/elaborated terms. A type
is well-formed in the context ∆ if all of its variables are in ∆. In
rigor, all judgments from here onwards are subject to that constraint,
which we do not write down. A context Γ is well-formed if both
(1) all of its types are well-formed according to ∆ (2) no variable
names are repeated. This last condition simplifies reasoning about
substitution and does not limit the language in any way.

We assume that every base type in DM is also a base type in
EMF? (or that there exists a mapping from them, formally), and that
source constants are also present and with the same type (formally,
also a mapping for constants that respects the previous one).

The typing judgment for DM is given in Figure 6. We assume
that the types appearing in the rules are well-formed. For example,
in the (ST-PAIR) rule, either both H and H ′ are in A or both are in
C etc.

A.2 CPS translation (WP generation)
The full ?-translation for DM expressions is given in Figure 7. The
one for types was previously defined. We define translation on
environments in the following way:

∆ = X1, . . . ,Xm

∆? = X1 : Type0, . . . ,Xm : Type0

Γ = x1 : H1, . . . ,xn : H1

Γ? = x1 : H?
1 , . . . ,xn : H?

1

One can then prove the following:

Lemma 11 (Well-typing of ?-translation). For any Γ, e, A and H:

∆ | Γ ` e : H !n =⇒ ∆?,Γ? ` e? : H?

∆ | Γ ` e : A !τ =⇒ ∆?,Γ? ` e? : (A?→ Type0)→ Type0

Proof. By induction on the typing derivation.

In this lemma statement, and in those that follow, when writing
e? we refer to the translation of e using the typing derivation from
the premise.

A.3 Elaboration
The definitions of A and the F relation were previously given.
For elaboration, we also translate environments, in the following
manner:

∆ = X1, . . . ,Xm

∆ = X1 : Type0, . . . ,Xm : Type0

x : A = x : A x : C = xw : C?,x : FC xw
Γ = x1 : H1, . . . ,xn : Hn

Γ = x1 : H1, . . . ,xn : Hn

Note that for any computational variable in the context, we introduce
two variables: one for its WP and one for its actual expression. The
xw variable, which is assumed to be fresh, is used only at the WP
level. Also note that ∆ = ∆?.

For any Γ, we define the substitution sΓ as [xw
i1/xi1 , . . . ,x

w
ik/xik ],

for the computational variables xi1 , . . . ,xik ∈ Γ.
Similarly to Lemma 11 we show that:

Lemma 12 (Well-typing of ?-translation — elaboration contexts).
For any Γ, e, A and C we have:

∆ | Γ ` e : H !n =⇒ ∆,Γ ` e?sΓ : H?

∆ | Γ ` e : A !τ =⇒ ∆,Γ ` e?sΓ : (A?→ Type0)→ Type0

For expression elaboration we aim to show that:

∆ | Γ ` e : A !n
∆,Γ ` e : A

∆ | Γ ` e : C !n
∆,Γ ` e : FC e?sΓ

∆ | Γ ` e : A !τ

∆,Γ ` e : Pure A (e?sΓ)

A.4 Statement of the logical relations lemma
Our main theorem is the fact the ?-translation of a term is properly
related, via the F relation, to its elaboration. This means it provides
an adequate logical representation of the term.

Theorem 13 (Logical relations lemma). For any ∆,Γ,e,C,A:

∆ | Γ ` e : C !n =⇒ ∆,Γ ` e : FC e?sΓ

∆ | Γ ` e : A !τ =⇒ ∆,Γ ` e : Pure A (e?sΓ)

Note that in both cases, e : H !ε implies e : Gε
H(e

? sΓ), as per the
definition of G given before.

As a trivial corollary of this theorem, we get that if a compu-
tational term is typable in the empty context (∆ | · ` e : C !n) then
∆ ` e : FC e?, as stated in the paper.

A.5 Proof of the logical relation lemma
Theorem 14. For any A, ∆ | Γ ` e : A !n =⇒ e = e? sΓ. (That is,
syntactic equality).

Proof. By induction on the typing derivation. The cases for (ST-
RET) and (ST-BIND) do not apply.

(1) (ST-VAR)
Our goal is to show x = x sΓ. Since the type of x is A the
substitution does not affect x, thus they’re trivially both x.

(2) (ST-CONST)
Say ∆ | Γ ` κ(b1, . . . ,bn) : b !n. By the induction hypothesis we
know that bi = b?i sΓ for each i. We thus trivially get our goal by
substitution of the arguments.

(3) (ST-ABS)
Say we concluded ∆ | Γ ` λx : A.e : A n−→ A′ !n. Our premise is
(note the substitution from the IH does not affect x, as it has an
A-type) the fact that e = e? sΓ. We need to show that:

λx : A. e = (λx : A. e)?

which is just
λx : A. e = λx : A?. e?

which is trivial from our hypothesis and since A =def A?.
(4) (ST-APP)

Say we concluded ∆ | Γ ` f e : A′ !n by the premises

∆ | Γ ` f : A n−→ A′ !n ∆ | Γ ` e : A !n

(it cannot be the case that e has some C type, because of the type
restrictions). From the inductive hypotheses we have:

f = f ? sΓ =⇒ f e = ( f ? sΓ) e =⇒

f e = ( f ? sΓ) (e? sΓ) =⇒ f e = ( f e)? sΓ

As required.
(5) (ST-FST), (ST-SND), (ST-PAIR), (ST-INL), (ST-INR)

All of these are trivial by applying the IH. For (ST-PAIR) one
needs to note that the restrictions will ensure that the type of the
pair will be an A-type.
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ST-VAR
x : H ∈ Γ

∆ | Γ ` x : H !n

ST-CONST
∆ | Γ ` ei : bi !n κ : b1, . . . ,bn→ b

∆ | Γ ` κ(e1, . . . ,en) : b !n

ST-ABS
∆ | Γ,x : H ` e : H ′ !ε

∆ | Γ ` λx : H.e : H ε−→ H ′ !n

ST-APP

∆ | Γ ` e : H ε−→ H ′ !n ∆ | Γ ` e′ : H !n
∆ | Γ ` ee′ : H ′ !ε

ST-PAIR
∆ | Γ ` e : H !n ∆ | Γ ` e′ : H ′ !n

∆ | Γ ` (e,e′) : H×H ′ !n

ST-FST
∆ | Γ ` e : H×H ′ !n
∆ | Γ ` fst(e) : H !n

ST-INL
∆ | Γ ` e : A !n

∆ | Γ ` inl(e) : A+A′ !n

ST-CASE
∆ | Γ ` e : A+A′ !n ∆ | Γ,x : A ` e1 : H !ε ∆ | Γ,x : A′ ` e2 : H !ε

∆ | Γ ` case e inl x : A.e1; inr y : A′.e2 : H !ε

ST-RET
∆ | Γ ` e : A !n

∆ | Γ ` returnτ e : A !τ

ST-BIND
∆ | Γ ` e : A !τ ∆ | Γ,x : A ` e : A′ !τ

∆ | Γ ` bindτ e to x : A in e′ : A′ !τ

Figure 6. Typing rules of DM

x? = x K(e1, . . . ,en)
? = K e?1 . . . e?n

( f e)? = f ? e? (λx : H. e)? = λx : H?. e?
fst(e)? = fst e? snd(e)? = snd e?
inl(e)? = inl e? inr(e)? = inr e?
(e1,e2)

? = (e?1,e
?
2) (case e0 inl x : A. e1; inr y : A′. e2)

? = case(e?0) x.e?1 y.e?2

(returnτ e)? = λ p : A?→ Type0. p e? (when ∆ | Γ ` e : A!n)
(bindτ e1 to x in e2)

? = λ p : A′?→ Type0. e?1 (λx : A. e?2 p) (when ∆ | Γ,x : A ` e2 : A′!τ)

Figure 7. Definition of the ?-translation for DM terms

(6) (ST-CASE)
Say we concluded ∆ | Γ ` case e inl x : A0.e1; inr y : A1.e2 :
A2 !n. As inductive hypothesis we have:

e = e? sΓ e1 = e?1 sΓ e2 = e?2 sΓ

(e1 and e2 are typed in the context extended with x and y
respectively, however since they are A-types the substitution
is the same)
The goal is:

(case(e) x.e1 y.e2)
= (case(e? sΓ) x.e?1 sΓ y.e?2 sΓ)

From the IHs, and since A =def A? we get our goal.

Theorem 15. If ∆ | Γ ` e : A !n, then ∆,Γ ` e : A.

Proof. By induction on the typing derivation.

(1) (ST-VAR)
We have ∆ | Γ ` x : A !n, with x ∈ Γ. By the translation for
environments, we have x : A in Γ, so this is trivial.

(2) (ST-CONST)
For any constant κ : (b1, . . . ,bn) → b say we have ∆ | Γ `
κ(e1, . . . ,en) : b !n by (ST-CONST) (note that b and all the bi
are in A). This means that for every i we have as inductive
hypothesis:

∆,Γ ` ei : bi

Since κ is also a target constant of the same type, we thus have:

∆,Γ ` κ e1 . . . en : b

Which is exactly our goal as b = b.

(3) (ST-FST), (ST-SND), (ST-PAIR), (ST-INL), (ST-INR)
Trivial by using IH.

(4) (ST-CASE)
Say we concluded ∆ | Γ ` case e inl x : A0.e1; inr y : A1.e2 :
A2 !n by (ST-CASE). Our IHs give us

∆,Γ ` e : A0 +A1
∆,Γ,x : A0 ` e1 : A2
∆,Γ,y : A1 ` e2 : A2

By a non-dependent application of T-CaseTot we get

∆,Γ ` case(e) x.e1 y.e2 : A2

Which is our goal.
(5) (ST-ABS), (ST-APP)

Both trivial from IHs.

Before jumping into the logical relation lemma, we will require
the following auxiliary lemma, of which we make heavy use.

Lemma 16 (Invariancy of FC w). If Γ �w1 =w2, then Γ ` FC w1 <:
FC w2.

Proof. By induction on C.

(1) C τ−→ A
We need to show that

Γ ` F
C

τ−→A
w1 <: F

C
τ−→A

w2

Which is
Γ` xw :C?→FC xw→Pure A (w1 xw)<: xw :C?→FC xw→Pure A (w2 xw)

After two applications of (ST-PROD) (and some trivial reflexiv-
ity discharges), the required premise to show is:

Γ,xw : C?,: FC xw ` Pure A (w1 xw)<: Pure A (w2 xw)
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By (S-PURE) we’re required to show that A is a subtype of itself
(which is trivial by reflexivity of subtyping (S-CONV)) and that
w2 is stronger than w1, which can be easily proven as they are
equal.

(2) A τ−→ A
Very similar to the previous case, but simpler.

(3) C n−→C′
We need to show that

Γ ` F
C

n−→C′
w1 <: F

C
n−→C′

w2

Which is
Γ` xw :C?→FC xw→FC′ w1 xw <: xw :C?→FC xw→FC′ w1 xw

After two applications of (ST-PROD) (and some trivial reflexiv-
ity discharges), the required premise to show is:

Γ,xw : C?,: FC xw ` FC′ w1 xw <: FC′ w2 xw

As in this context we can show w1 xw = w2 xw we apply our IH
to the type C′ and are done.

(4) A n−→C′
Also very similar to the previous case, but simpler.

(5) C×C′
Trivial by IHs and concluding that fst w1 = fst w2, and similarly
for snd.

Proof of Theorem 13 (Logical relations lemma)

Proof. The two parts are proved by a joint structural induction.

(1) (ST-VAR)
We have ∆ | Γ ` x : C !n, with x ∈ Γ. By the translation for
environments, we have xw : C? and x : FC xw in Γ. Since x is
covered by the substitution sΓ, what we need to prove is ∆,Γ `
x : FC xw, which is exactly what we have in the environment.

(2) (ST-PAIR)
Suppose we proved (e1,e2) : C1 ×C2 !n by (ST-PAIR). We
want to show: ∆,Γ ` (e1,e2) : FC1×C2 (e

?
1,e

?
2) sΓ, i.e., that (after

reduction inside F):

∆,Γ ` (e1,e2) : FC1 e?1sΓ×FC2 e?2sΓ

This is trivial by applying both IHs.
(3) (ST-FST), (ST-SND)

Suppose we proved ∆ | Γ ` fst(e) : C1 !n by (ST-FST). We need
to then show

∆,Γ ` fst e : FC1 fst e?sΓ

By our induction hypothesis we have ∆,Γ ` e : FC1×C2 e?sΓ,
which is

∆,Γ ` e : FC1 fst e?sΓ×FC2 snd e?sΓ

It is therefore easy to see that we have our goal.
(4) (ST-ABS)

There are two cases:
• A ε−→ H

Suppose we concluded ∆ | Γ ` λx : A.e : A ε−→H !n. Then we
have ∆ |Γ,x : A` e : H !ε and so, by the induction hypothesis,
in both cases for ε we have

∆,Γ,x : A ` e : Gε
H(e

? sΓ)

And we have to show:

∆,Γ ` λx : A.e : F
A

n−→H
(λx : A?.e?) sΓ

Which is

∆,Γ ` λx : A.e : x : A→ Gε
H((λx : A?.e?) sΓ x)

Since the substitution does not cover x, the argument to G is
just e? sΓ, thus we use our IH to conclude this easily.
• C ε−→ H

Suppose we concluded ∆ | Γ ` λx : C.e : C ε−→H !n. Then we
have ∆ | Γ,x : C ` e : H !ε and so, by the induction hypothesis
we have, in either case for ε:

∆,Γ,xw : C?,x : FC xw ` e : Gε
H(e

? sΓ [xw/x])

And we have to show:

∆,Γ ` λxw : C?.λx : FC xw.e : F
C

ε−→H
(λx : C?.e?) sΓ

Which is
∆,Γ ` λxw : C?.λx : FC xw.e

: xw : C?→ FC xw→ Gε
H((λx : C?.e?) sΓ xw)

Using T-Abs twice we can conclude this via

∆,Γ,xw : C?,x : FC xw ` e : Gε
H((λx : C?.e?) sΓ xw)

Since the substitution does not cover x, the argument to F
reduces to e? sΓ [xw/x], thus we use our IH to conclude this
easily.

(5) (ST-APP)
Again, There are two possible cases:
• A ε−→ H

We concluded ∆ | Γ ` f e : G !ε . Our premises are ∆ | Γ ` f :
A ε−→C !n and ∆ | Γ ` e : A !n. The IH for f is, expanding F:

∆,Γ ` f : x : A→ Gε
H(( f ? sΓ) x)

By T-App, and since e : A, this is just:

∆,Γ ` f e : Gε
H(( f ? sΓ) e)

Since from a previous theorem we know we have e = e? sΓ

(syntactically), we can conclude:

∆,Γ ` f e : Gε
H(( f ? sΓ) (e? sΓ))

This is exactly:

∆,Γ ` f e : Gε
H(( f e)? sΓ)

which is our goal, in either the C !n or the A !τ case.
• C ε−→ H

We concluded ∆ | Γ ` f e : H !ε . Our premises are ∆ | Γ ` f :
C ε−→ H !n and ∆ | Γ ` e : C !n The IHs are, expanding F:

∆,Γ ` f : xw : C?→ FC xw→ Gε
H(( f ? sΓ) xw)

∆,Γ ` e : FC e? sΓ

Thus by two uses of T-App (noting that it’s well typed by
our IH for e), we can conclude:

∆,Γ ` f (e? sΓ) e : Gε
C′(( f ? sΓ) (e? sΓ))

This is just, syntactically:

∆,Γ ` f e : Gε
C′(( f ? sΓ) (e? sΓ))

which is our goal, in either the C !n or the A !τ case.
(6) (ST-CASE)

There are two cases depending on wether we eliminate into C !n
or A !τ . Both of these cases are quite dull, and deal mostly with
the typing judgment on the target. This may be skipped without
hindering any of the main ideas.
• C !n

Suppose that ∆ | Γ ` e : A+ A′ !n, ∆ | Γ,x : A ` e1 : C !n,
and ∆ | Γ,y : A′ ` e2 : C !n, so that ∆ | Γ ` case e inl x :
A.e1; inr y : A′.e2 : C !n. We will go into detail only for e1
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as the typing and reasoning for e2 is exactly analogous. As
inductive hypothesis for e1 we have

∆,Γ,x : A ` e1 : FC e?1 sΓ

We wish to show:
∆,Γ ` caseFC case(z) e?1 sΓ e?2 sΓ

(e as z) x.e1 y.e2

: FC (case(e?) x.e?1 y.e?2) sΓ

Which is
∆,Γ ` caseFC case(z) x.e?1 sΓ y.e?2 sΓ

(e as z) x : A.e1 y : A′.e2

: FC case(e? sΓ) x.e?1 sΓ y.e?2 sΓ

Since e= e? sΓ we will prove this has type FC case(e) x.e?1 sΓ y.e?2 sΓ.
By T-CaseTot, we should show:

∆,Γ ` e : A+A′
∆,Γ,x : A ` e1 : FC case(inl x) x.e?1 sΓ y.e?2 sΓ

(And the one for e2). We get the first one trivially by theorem
15. The second is by reduction equivalent to:

∆,Γ,x : A ` e1 : FC e?1 sΓ

Which is exactly our IH for e1, so we’re done.
• A !τ

Our hypotheses are:
∆,Γ ` e : A0 +A1
∆,Γ,x : A0 ` e1 : Pure A2 (e?1 sΓ)
∆,Γ,y : A1 ` e2 : Pure A2 (e?2 sΓ)

Applying T-Case (non-dependently) we get.
∆,Γ ` case(e) x.e1 y.e2 :

Pure A2 (case(e) x.e?1 sΓ y.e?2 sΓ)

Since we know e = e? sΓ and since A =def A? this is exactly:
∆,Γ ` case(e) x.e1 y.e2 :

Pure A2 ((case(e?) x.e?1 y.e?2) sΓ)

Which is our goal.
(7) (ST-RET)

We have ∆ | Γ ` e : A !n. We need to show:

∆,Γ ` returnτ e : Pure A (returnτ e? sΓ)

i.e.

∆,Γ ` Pure.return A e : Pure A (λ p : A?→ Type0. (e
? sΓ))

This is a trivial consequence of Theorem 14 by using the T-Ret
rule of EMF?, and the fact that A =def A?.

(8) (ST-BIND)
Suppose we have ∆ | Γ ` e1 : A !τ , and ∆ | Γ,x : A ` e2 : A′ !τ ,
and so ∆ | Γ ` bindτ e1 to x : A in e2 : A′ !τ . We have to show:

∆,Γ`bindτ e1 to x : A in e2 : Pure A′ ((bindτ e1 to x : A in e2)
? sΓ)

that is:
∆,Γ ` Pure.bind A A′ (e?1 sΓ) e1 (λx : A?.e?2 sΓ) (λx : A.e2) :

Pure A′ (λ p : A′?→ Ty. e?1(λx : A?.e?2 p))

By our IHs we have:
∆,Γ ` e1 : Pure A (e?1 sΓ)
∆,Γ,x : A ` e2 : Pure A′ (e?2 sΓ)

So we get:

∆,Γ ` λx : A.e2 : x : A→ Pure A′ (e?2 sΓ)

By the T-Bind rule we can conclude:
∆,Γ ` Pure.bind A A′ (e?1 sΓ) e1 (λx : A?.e?2 sΓ) (λx : A.e2) :

Pure A′ (λ p : A′→ Ty. e?1(λx : A.e?2 p))

Since A = A? and A′ = A′? this is exactly our goal.

Note: in this proof, we didn’t use any specific fact about Pure,
except the relation between monad operations and their WPs, so this
is all generalizable to another target monad that’s already defined
and satisfies the base conditions for return and bind.

A.6 Equality preservation
We want to show that any source monad will give rise to specification-
level monads in the target. This will be a consequence on the fact
that equality is preserved by the ?-translation. From equality preser-
vation we also get the property that lifts are monad morphisms
without further effort.

First we define equality for the source language. It is basically
standard βη-equivalence adding the monad laws for the base monad
T . We keep the type and effect of each equality. It is an invariant
that if we can derive an equality, both sides are well-typed at the
specified type and effect.

The definition of the equality judgment is in Figure 8. Besides
those rules, there is a congruence rule for every source construct, as
expected.

We then prove that:

∆ | Γ ` e1 = e2 : H !ε

∆,Γ � e?1 sΓ = e?2 sΓ

Where by � it is meant the validity judgment of EMF?.

Theorem 17 (Preservation of equality by CPS). If ∆ | Γ ` e1 = e2 :
H !ε for any ∆,Γ,e1,e2,H,ε , then one has ∆,Γ � e?1 sΓ = e?2 sΓ .

Proof. By induction on the equality derivation. Most of the cases are
trivial, since EMF? has very similar rules for equality. The interesting
cases are the monadic equalities, which we show here:

(1) (EQ-M1)
We concluded

∆ | Γ ` bindτ m to x in (returnτ x) = m : A !τ

Thus we need to show that

∆,Γ � (bindτ m to x in (returnτ x))? sΓ = m? sΓ

That is:

∆,Γ � (λ p. (m? sΓ)(λx. (λ p′. p′ x) p)) = m? sΓ

This is trivially provable by βη-reduction.
(2) (EQ-M2)

We concluded

∆ | Γ ` bindτ (returnτ e) to x in f x = f e : A′ !τ

thus we need to show that

∆,Γ � (bindτ (returnτ e) to x in f x)? sΓ = ( f e)? sΓ

That is:

∆,Γ � (λ p. (λ p′. p′ e?) (λx. f ? x p)) sΓ = ( f ? sΓ)(e? sΓ)

Note that since x /∈ FV ( f ) =⇒ x /∈ FV ( f ? sΓ), this is easily
shown by βη-reduction as well.

(3) (EQ-M3)
We concluded

∆ | Γ ` bindτ (bindτ m to x in e1) to y in e2
= bindτ m to x in (bindτ e1 to y in e2) : A′′ !τ

thus we need to show that
∆,Γ � (bindτ (bindτ m to x in e1) to y in e2)

? sΓ

= (bindτ m to x in (bindτ e1 to y in e2))
? sΓ

Draft 17 2016/8/24



EQ-BETA

∆ | Γ,x : H ` e1 : H ′ !ε ∆ | Γ ` e2 : H !n
∆ | Γ ` (λx : H.e1)e2 = e1[e2/x] : H ′ !ε

EQ-ETA

∆ | Γ ` e : H ε−→ H ′ !n x /∈ FV (e)

∆ | Γ ` (λx : H.e x) = e : H ε−→ H ′ !n

EQ-APP

∆ | Γ ` e1 = e′1 : H ε−→ H ′ !n ∆ | Γ ` e2 = e′2 : H !n
∆ | Γ ` e1 e2 = e′1 e′2 : H ′ !ε

EQ-ABS

∆ | Γ,x : H ` e = e′ : H ′ !ε

∆ | Γ ` (λx : H.e) = (λx : H.e′) : H ε−→ H ′ !n

EQ-REFL

∆ | Γ ` e : H !ε

∆ | Γ ` e = e : H !ε

EQ-SYMM

∆ | Γ ` e1 = e2 : H !ε

∆ | Γ ` e2 = e1 : H !ε

EQ-TRANS

∆ | Γ ` e1 = e2 : H !ε ∆ | Γ ` e2 = e3 : H !ε

∆ | Γ ` e1 = e3 : H !ε

EQ-PAIR

∆ | Γ ` e : H×H ′ !n
∆ | Γ ` (fst(e),snd(e)) = e : H×H ′ !n

EQ-CASE

∆ | Γ ` e : A+A′ !n
∆ | Γ ` case e inl x.inl(x); inr x.inr(x) = e : A+A′ !n

EQ-M1
∆ | Γ ` m : A !τ

∆ | Γ ` bindτ m to x in (returnτ x) = m : A !τ

EQ-M2

∆ | Γ ` e : A !n ∆ | Γ ` f : A τ−→ A′ !n x /∈ FV ( f )
∆ | Γ ` bindτ (returnτ e) to x in f x = f e : A′ !τ

EQ-M3
∆ | Γ ` m : A !τ ∆ | Γ,x : A ` e1 : A′ !τ ∆ | Γ,y : A′ ` e2 : A′′ !τ x /∈ FV (e2)

∆ | Γ ` bindτ (bindτ m to x in e1) to y in e2 = bindτ m to x in (bindτ e1 to y in e2) : A′′ !τ

Figure 8. Equality rules for DM

That is:
∆,Γ � (λ p. (λ p′. (m? sΓ) (λx. (e?1 sΓ)p′)) (λy. (e?2 sΓ) p))

= (λ p. (m? sΓ) (λx. (λ p′. (e?1 sΓ) (λy. (e?2 sΓ) p′)) p))

Note that since x /∈ FV (e2) =⇒ x /∈ FV (e?2), this is also easily
shown by βη-reduction.

The proof above is easy, and that should not be surprising, as
we are translating our abstract monadic operations into a concrete
monad (continuations), thus our source equalities should be trivially
satisfied after translation.

A.7 Monotonicity
We’re interested in the monotonicity of WPs. Firstly, we need a
higher-order definition for this property. Throughout this section we
mostly ignore the image of our ?-translation and work with a larger
subset of EMF? language. This gives us a stronger result than strictly
necessary.

The types where the translation is defined are those non-
dependent and monad-free (meaning every arrow in them is a
Tot-arrow). No ocurrence of Pure is allowed. The types of specifi-
cations are always of this shape, so this is not a limitation.

For non-empty environments the theorem states:

Theorem 18 (Monotonicity of ?-translation— environments). For
any ∆,Γ,e,H,A one has:

1. ∆ | Γ ` e : H !n =⇒ ∆,Γ12 � e?1 .H? e?2

2. ∆ | Γ ` e : A !τ =⇒ ∆,Γ12 � e?1 .(A?→Type0)→Type0
e?2

Where if Γ = x1 : t1, . . . ,xn : tn we define Γ12 = x1
1 : t?1 ,x

2
1 :

t?1 , [x1 .t?1 x2], . . . essentially duplicating each variable and intro-
ducing a strengthening hypothesis between them ([φ ] is notation for
h : φ , where h does not appear free in the RHS). We then define
the “1” substitution as [x1

1/x1, . . . ,x1
n/xn] and similarly for “2”. This

trivially implies both previous monotonicity theorems.

Proof. We prove these two propositions by induction on the typing
derivation for e. Throughout the proof ∆ plays no special role, so
we just drop it from the reasoning, keeping in mind that it has to be
there for having well-formed types (but nothing else).

Note that during the proof we treat .X abstractly, so any
instantiation with a proper type (not necessarily those where .
reduces to equality) would be OK.

Throughout this proof we sometimes skip the subindices for .
in favor of compactness. Hopefully, they should be clear from the
context.

(1) (ST-VAR)
We need to show x1

i .t?i x2
i . This is trivial from the context and

by using the (V-ASSUME) rule.
(2) (ST-CONST)

The constants only deal with base types, so all inductive hypothe-
ses for the arguments reduce to an equality, as does our goal. Our
goal is is then trivially provable by applications of (V-EQP).

(3) (ST-ABS)
Say we concluded Γ,x : t ` e : s !ε As IH we have:

Γ
12,x1 : t?,x2 : t?, [x1 .t? x2] � e?1[x1/x].s′ e?2[x2/x]

Where s′ is either s? or (s?→ Type0)→ Type0 depending on ε .
The proof is independent of this. What we need to prove is:

Γ
12 � (λx : t?.e?1).t?→s′ (λx : t?.e?2)

Which by definition is:

Γ
12 � ∀x1,x2 : t?, x1.t? x2 =⇒ (λx : t?.e?1) x1.s′ (λx : t?.e?2) x2

By reduction ((V-EQRED) + (V-EQ*)), this is equivalent to:

Γ
12 � ∀x1,x2 : t?, x1 .t? x2 =⇒ e?1[x1/x].s′ e?2[x2/x]

Which we can conclude from our IH and three applications on
(V-∀I).

(4) (ST-APP)
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Say Γ ` f : t ε−→ s !n and Γ ` e : a !n. As inductive hypothesis we
get:

Γ
12 � f ?1 .t?→s′ f ?2

Γ
12 � e?1 .t? e?2

Where s′ is either s? or (s?→ Type0)→ Type0 depending on ε .
Again, the proof is independent of this. Expanding the definition
of . on the left we get:

Γ
12 � ∀x1,x2 : t?, x1 .t? x2 =⇒ f ∗1 x1 .s′ f ∗2 x2

We instantiate (using (V-∀E)) x1,x2 with e?1,e?2, and apply
(V-MP) with our other IH to get:

Γ
12 � f ∗1 e?1 .s′ f ∗2 e?2

Which is exactly our goal in any ( n−→,
τ−→) case.

(5) (ST-RET)
Say Γ ` returnτ e : t !τ . Our IH gives us:

Γ
12 � e?1 .t? e?2

And we need to show that:

Γ
12 � (λ p. p e?1).(t?→Type0)→Type0

(λ p. p e?2)

That is:

Γ
12 � ∀p1, p2, p1. p2 =⇒ (λ p. p e?1) p1.Type0

(λ p. p e?2) p2

By reduction:

Γ
12 � ∀p1, p2, p1 . p2 =⇒ p1 e?1 .Type0

p2 e?2

Which is trivially provable by preservation of . by application
and the IH for e.

(6) (ST-BIND)
Say Γ`m : a !τ and Γ,x : a` e : b !τ , so we get Γ`bindτ m to x in e :
b !τ . Our IHs are:

Γ12 � m?1 .(a→Type0)→Type0
m?2

Γ12,x1 : a?,x2 : a?, [x1 .a? x2] � e?1 [x1/x].(b→Type0)→Type0
e?2 [x2/x]

We need to show that:

Γ
12 � (λ p.m?1 (λx.e?1 p)).(b?→Type0)→Type0

(λ p.m?2 (λx.e?2 p))

Which can be simplified to:

Γ
12, p1, p2, [p1. p2]�m?1 (λx.e?1 p1).Type0

m?2 (λx.e?2 p2)

Since m?1 . m?2 by the IH, this can be concluded by:

Γ
12, p1, p2, [p1 . p2] � λx.e?1 p1 .a?→Type0

λx.e?2 p2

Which can be simplified to:

Γ12, p1, p2, [p1 . p2],x1 : a?,x2 : a?, [x1 .a? x2] �
e?1 [x1/x] p1 .Type0 e?2 [x2/x] p2

Weakening the IH for e we know e?1 [x1/x] . e?2 [x2/x] in
this context. Since we also have p1 . p2 and . is preserved by
application we have our goal.

(7) (ST-PAIR), (ST-FST), (ST-INL)
All trivial from IHs.

(8) (ST-CASE)
By case analysis on the IH for the sum type, and reduction.

Having this proof implies that any well-typed term will be given a
monotonic specification. And, as a consequence, functions preserve
monotonicity.

A.8 Conjunctivity
The definition of conjunctivity on EMF? predicate types was given
previously. The full theorem which we prove is this:

Theorem 19 (Conjunctivity of ?-translation— environments). For
any ∆,Γ,e,H,A one has:

1. ∆ | Γ ` e : C !n =⇒ ∆,ΓC � CC? (e?)
2. ∆ | Γ ` e : A !τ =⇒ ∆,ΓC � C(A?→Type0)→Type0

(e?)

Where when Γ = x1 : t1, . . ., we define ΓC = x1 : t?1 , [Ct?1 (x1)], . . ..
This trivially implies the previously stated theorem by taking Γ = ·.

Proof. By induction on the typing derivations. Once again, ∆ does
not play a big role and we omit it.

(1) (ST-VAR)
Trivial from context, for any type.

(2) (ST-CONST)
Does not apply as no constant gives a type C !n nor A !τ

(3) (ST-ABS)
Say we concluded Γ,x : t ` e : s !ε (where that might be C !n or
A !τ , we treat both cases uniformly). From the IH we get

ΓC,x : t?, [Ct?(x)] � Cs′(e)

Where s′ is s? or (s?→Type0)→Type0 according to (s,ε). By
applying (V-∀I) twice we get:

ΓC � ∀x : t?.Ct?(x)⇒ Cs′(e)

Which is the same, by reduction, as:

ΓC � ∀x : t?.Ct?(x)⇒ Cs′((λx. e x) x)

Thus by definition of C:

ΓC � Ct→s′(λx. e x)

As required for both cases.
(4) (ST-APP)

Trivial by the preservation of C by application, in both cases
(applies (V-MP)).

(5) (ST-RET)
Say we concluded Γ ` returnτ e : A !τ . Our goal is then:

ΓC � C(A?→Type0)→Type0
(λ p. p e?)

Which is:
ΓC � ∀p1, p2. (λ p. p e?)p1∧ (λ p. p e?)p2

= (λ p. p e?)(λx.p1 x∧ p2 x)

By reduction that’s equivalent to:

ΓC � ∀p1, p2. p1 e?∧ p2 e? = p1 e?∧ p2 e?

Which is trivially true (without use of any IH) by (V-REFL).
(6) (ST-BIND)

Say we concluded Γ ` bindτ e1 to x in e2 : A′ !τ , where e1 : A !τ .
Our IHs are:

ΓC � C(A?→Type0)→Type0
(e?1)

ΓC,x : A?, [CA?(x)] � C(A′?→Type0)→Type0
(e?2)

We need to show:

ΓC � C(A′?→Type0)→Type0
(λ p.e?1(λx.e?2 p))

Expanding the definition, this is:

ΓC � ∀p1, p2. (λ p.e?1(λx.e?2 p)) p1∧ (λ p.e?1(λx.e?2 p)) p2
= (λ p.e?1(λx.e?2 p))(λx.p1 x∧ p2 x)

By reduction, this is equivalent to:

ΓC � ∀p1, p2. e?1(λx.e?2 p1)∧ e?1(λx.e?2 p2)
= e?1(λx.e?2 (λx.p1 x∧ p2 x))
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By the IH for e2 we know ∀x. e?2 (λx.p1 x∧ p2 x) = e?2 p1 ∧
e?2 p2. By reduction and (V-EXT) this means (λx.e?2 (λx.p1 x∧
p2 x)) = (λx.e?2 p1 ∧ e?2 p2) Thus we replace on the RHS (via
(V-SUBST)) and get:

ΓC � ∀p1, p2. e?1(λx.e?2 p1)∧ e?1(λx.e?2 p2)
= e?1(λx.e?2 p1∧ e?2 p2)

By some η-expansion and the IH for e1 we can turn this to:

ΓC � ∀p1, p2. e?1(λx.e?2 p1)∧ e?1(λx.e?2 p2)
= e?1(λx.e?2 p1)∧ e?1(λx.e?2 p2)

Which is trivially provable by (V-REFL).
(7) (ST-PAIR), (ST-FST)

All trivial by IHs.
(8) (ST-INL)

Does not apply for the cases we consider.
(9) (ST-CASE)

Trivial by (V-SUMIND) and the IHs.

Thus, any term obtained by the ?-translation (return, bind,
actions, lifts, ...) will be conjunctive in this sense, which means
they also preserve the property through application.

With a completely analogous definition and proof we get the
expected result of conjunctivity over (non-empty) universal quantifi-
cation. The non-empty requirement is not actually stressed during
that proof, but it’s the wanted result as WPs (which can be taken as
arguments) might not distribute over empty universals.
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