

Edinburgh Research Explorer

Rigorous Graphical Modelling of Movement in Collective
Adaptive Systems
Citation for published version:
Zon, N, Gilmore, S & Hillston, J 2016, Rigorous Graphical Modelling of Movement in Collective Adaptive
Systems. in T Margaria & B Steffen (eds), Leveraging Applications of Formal Methods, Verification and
Validation: Foundational Techniques: 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece,
October 10--14, 2016, Proceedings, Part I. Springer International Publishing, Cham, pp. 674-688, ISoLA
2016, Corfu, Greece, 5/10/16. DOI: 10.1007/978-3-319-47166-2_47

Digital Object Identifier (DOI):
10.1007/978-3-319-47166-2_47

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Leveraging Applications of Formal Methods, Verification and Validation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/80691988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-47166-2_47
https://www.research.ed.ac.uk/portal/en/publications/rigorous-graphical-modelling-of-movement-in-collective-adaptive-systems(6b90bd13-be7a-4979-9e96-1253a2b1bacf).html

Rigorous graphical modelling of movement in
Collective Adaptive Systems

N.Zoń, S. Gilmore, and J. Hillston

Laboratory for Foundations of Computer Science, School of Informatics,
University of Edinburgh, Edinburgh, Scotland

N.Zon@sms.ed.ac.uk

Abstract. Formal modelling provides valuable intellectual tools which
can be applied to the problem of analysis and optimisation of systems.
In this paper we present a novel software tool which provides a graph-
ical approach to modelling of Collective Adaptive Systems (CAS) with
constrained movement. The graphical description is translated into a
model that can be analysed to understand the dynamic behaviour of
the system. This generated model is expressed in CARMA, a modern
feature-rich modelling language designed specifically for modelling CAS.
We demonstrate the use of the software tool with an example scenario
representing carpooling, in which travellers group together and share a
car in order to reach a common destination. This can reduce their travel
time and travel costs, whilst also ameliorating traffic congestion by re-
ducing the number of vehicles on the road.

1 Introduction

Formal modelling of system dynamics makes possible the analysis and opti-
misation of smart city applications, many of which belong to the category of
Collective Adaptive Systems (CAS). CAS are collectives of individual compo-
nents acting and interacting within the context of a common environment. In
contrast to systems in which all components have global and perfect knowledge
of the whole system, in CAS each component has its own subset of information
with the consequence that one component’s knowledge might be erroneous or
inconsistent with the knowledge of other components. When components are
able to change their location in space, errors in knowledge about location can be
understood to reflect the component’s sensing capabilities, which can be limited
in terms of range and accuracy.

Urban transport systems provide a good example of CAS and have been
taken as a motivating context for our work. In this setting, systems often contain
components whose movement in space is restricted in some way. For example,
in bus systems, we can distinguish components that never change their location
(bus stops), components whose movement follows a specific path (buses), as
well as components that can move without additional restrictions (bus repair
service cars, pedestrians). Other urban transport systems (carpooling, trams,
bikesharing) also have components subject to one or more movement restrictions.

Graphical
model

Simulation
analysis

...
CARMA

code

Graphical
User Interface

User

Programmable API

Fig. 1. A flowchart depicting CARMA code generation from graphical input.

Such systems with constrained movement are the focus of our work. In these
systems the spatial locations of components can have a significant influence on
the performance of the collective. A direct influence is observed when an agent
is allowed or forbidden to perform specific actions based on the values of their
location attributes. An indirect influence is, for example, a situation in which
the time taken to traverse a path connecting two points is proportional to the
distance between the locations of the two points in space.

CARMA is a formal modelling language designed for the purpose of repre-
senting CAS [1]. It provides a syntax for defining components, environments and
systems as well as a number of tools for the exploration of the model, such as
static analysis and simulation. When an underlying spatial structure also has
to be captured by the model, the specification of the environment can become
complex and error-prone. Moreover, the amount of CARMA code required for
specifying these types of systems grows very rapidly with the complexity of the
network and the number of reachable states of each component. In this paper we
present an automatic tool for generating the CARMA model code from a graph-
ical input. The tool comprises a Graphical User Interface (GUI) for defining the
positions and possible movements of components, as well as a programmable
API for the representation and automatic generation of CARMA code.

The GUI supports a newly-developed graphical modelling layer on top of the
textual CARMA specification language. Our graphical modelling tool, consisting
of a graphical editor and an implementation in the form of an Eclipse IDE
plug-in, provides the user with visual ways of representing scenarios involving
stationary, mobile and path-restricted agents. The graphical representation is
then automatically translated into a CARMA language model template. The
code generation scheme is depicted in Fig. 1.

By structuring our contribution in this way, we provide additional flexibility
for CARMA users at no extra cost. If a graphical representation of the spatial
aspect of the model would be helpful as a communication or documentation aid
then the CARMA graphical editor is able to provide it. If, on the other hand,
there is no obvious benefit in having a graphical representation for a particular
model then the CARMA textual description can be produced directly instead.

The rest of the paper is structured as follows. Section 2 presents background
information on CAS, CARMA, and the CARMA tools. Section 3 explains sys-
tems with constrained movement and Section 4 presents the graphical represen-

tation of such systems. Section 5 gives more information on the API, and Section
6 presents our case study. We conclude in Section 7.

2 Background

In this section we highlight some of the difficulties encountered when modelling
CAS and give an informal introduction to the CARMA specification language.
For a more formal definition the reader is referred to [1].

2.1 Modelling CAS

A major issue in faithful representation of CAS is scalability, both with respect
to model expression and model analysis. By their nature CAS involve a large
number of heterogeneous entities, which are subject to complex rules of inter-
action and communication but with limited, local knowledge. Furthermore the
system is typically highly dynamic with both the entities and the environment
subject to change over time. Thus communication based on addresses repre-
sented by entity identity or location will fail when entities enter and leave the
system and change their location. We choose to use a process algebra-style lan-
guage in which entities are represented as components and communication is
attribute-based, meaning that communication partners are selected according to
their characteristics rather than their identity or location [2]. The language con-
cerned is CARMA (Collective Adaptive Resource-sharing Markovian Agents), a
high-level language designed specifically for modelling CAS [1].

2.2 CARMA semantics

CARMA models consist of a collective of components that are situated in the
context of an environment. Components are the dynamic entities within the
model, communicating and collaborating with other components to enact the
dynamic behaviour of the system. Each component has an associated store
recording the current state of attributes such as location, or more general status
indicators. This captures the local knowledge of the component.

These attributes form the basis of attribute-based communication where com-
munication groups are dynamically-formed, making it possible to restrict the
communication to sub-groups when it is appropriate to do so. These dynamically-
formed communication groups are known as ensembles [3]. Examples of restric-
tions could include only co-located components, only components with adequate
security permissions, or only components with sufficient battery charge. Restric-
tions are expressed as predicates associated with an action, and can be imposed
by both the sender and the receiver.

Communication can be asynchronous, non-blocking broadcast communica-
tion (with many recipients) or synchronous, blocking unicast communication α
(with only a single recipient). Broadcast communication on name α is denoted
by α? whereas unicast communication is simply α. Communication occurs in a

CARMA model when an output action from one component is matched with
input actions of other components and both predicates are satisfied. Output
predicates π place restrictions on the allowable receivers by requiring their local
stores to satisfy the predicate. Input predicates similarly place restrictions on
the admissible senders but can also inspect the values which are being sent, and
might refuse a communication on the basis of these values if they are out-of-range
or in some other way erroneous. Values which are accepted can be stored with
an update σ. Additionally, process predicates can disallow certain behaviours in
a component on the basis of the current state of the store; the process [π]P will
only evolve to the process P if the predicate π is satisfied.

Processes (P,Q, . . .) in CARMA are thus defined by the following grammar:

P,Q ::= nil | kill | act .P | P +Q | P |Q | [π]P | A (A , P)
act ::= α?[π]〈e〉σ | α?[π](x)σ | α[π]〈e〉σ | α[π](x)σ

The action prefix α?[π]〈e〉σ specifies a broadcast output of the values in a vector
of expressions e. The action prefix α?[π](x)σ specifies broadcast input of these
values into a vector of variables x. The versions without the star are the unicast
equivalents.

By convention in a CARMA model activity names begin with a lowercase
letter, function and component names begin with a capital letter, and process
names are written in all caps. Expressions in the CARMA language (as used in
function bodies) are generated by the following grammar.

e1, e2, e3 ::= return e1 | if(e1){e2} | if(e1){e2} else {e3} | e1; e2 | a1 | b1
a1, a2 ::= 0 | 1 | · · · | −a1 | a1 + a2 | a1 − a2 | a1 ∗ a2 | a1/a2
b1, b2 ::= true | false | a1 > a2 | a1 >= a2 | a1 == a2 | a1 <= a2 | a1 < a2

| !b1 | b1 && b2 | b1||b2

The environment in a CARMA model provides a context for the components.
It imposes constraints on activities performed by components, determining the
rate at which activities such as communication or movement can take place, with
the option to set the rate to zero, if necessary environmental conditions are not
met.

CAS are inherently spatially distributed systems and they typically involve
large populations of components with the location of a component often con-
straining the activities that it can perform. In a CARMA model the respon-
sibility for exerting these constraints lies with the environment. Thus the en-
vironment records the global state of the model and mediates the component
interactions in the collective. Capturing complex spatial arrangements of com-
ponents can mean that the environment must include functions to represent the
spatial structures and the permissible placement and movement of components
within those structures. For example, in a recently published CARMA model [4],
ambulances travel along paths in a network, in order to reach locations at which
accidents have occurred. There are two types of stationary components, hospi-
tals and stations, and these are the locations to which ambulances can return
when idle, until being activated when an accident occurs. In this scenario, even a

cyclepath

road node

road

Fig. 2. An example of a system with constrained movement. The two graphs represent
cyclepaths (shown in red) and roads (shown in blue). Path nodes are located on nodes
of a hexagonal grid (in this case superimposed over a map of the centre of a city), and
can be shared between all path types. Path-bounded components can travel along one
or both of the defined paths, depending on the component type.

relatively simple road network results in a large amount of CARMA code, in the
form of functions in the environment, to capture the spatial layout and possible
paths. This is difficult for the modeller and it is this problem which we seek to
address with the CARMA graphical editor described in this paper.

2.3 CARMA software and simulation

Software support for modelling in CARMA is provided by the CARMA Eclipse
plug-in [5], a toolset which supports the modelling process from model construc-
tion to execution and evaluation and analysis of results. Specifically, in this paper
we will use the graphical tool for CARMA code generation and a discrete-event
stochastic simulator to explore the possible behaviour of the generated CARMA
models. Both of the mentioned tools are available for download from the website
http://quanticol.sourceforge.net/.

3 Systems with constrained movement

In the current form of the graphical modelling tool we focus on systems in which
the movement of components is constrained to follow certain routes in space,
each route defined by a path, as seen in Figure 2. More precisely, we consider
systems which have the following properties:

1. The environment of the system contains the definition of one or more paths
(represented by graphs) which specific groups of components can traverse in
order to change their location.

2. Components can be classified into one of three groups based on their ability
to move in space:
(a) Stationary components — their location attributes are constant.
(b) Path-bounded components — can only move along specified paths, their

location attribute values belong to the set of node locations of nodes
within the specified paths.

(c) Free components — can freely change their location attribute to any
value (but are still bound by the environment’s definition of space, i.e.
a grid).

3. The spatial locations of components within the system contribute either di-
rectly or indirectly to measures calculated during model evaluation.

– In other words we are interested not only in the topological arrangements
of the locations of components but also in the distances between nodes.

Examples of systems with constrained movement include public/private trans-
port networks, heterogeneous computer networks, pedestrian city networks, se-
cure computer networks, animal migration networks, and many others.

4 Graphical representation of spatial elements

In this section we outline the key elements available to the modeller in our
graphical editor; essentially these are a graphical palette for specifying paths
and a template of icons for representing components.

4.1 Representation of paths

Paths are represented by graphs consisting of nodes, connected by edges. Nodes
are placed on a grid which is an unbounded 2D plane, tessellated by hexagons or
rectangles to define grid points. To reflect their placement on grid points every
node has a location attribute which is a co-ordinate in two-dimensional space.
The edges in a path graph are directed and coloured (see Figure 3). The direction
of an edge constrains movement on that edge to be in that direction. The colour
of an edge constrains the types of components which can move along the edge.

The graphical palette allows the user to instantiate path, and the path con-
necting them, by laying out the nodes on the hexagonal grid. From the user’s
point of view, the creation of path node instances is very similar to the creation
of component instances. Path nodes are distinct objects from components, and
their instances are processed differently for the purpose of CARMA code gen-
eration. In contrast to component instances, path nodes are incorporated into
CARMA functions instead. Each node can have zero or more incoming and out-
going connections of any colour, each colour representing a distinct path. All
nodes have the same colour, and it is assumed that if a node has a connection
of a particular colour, any component allowed to move along the route of this
colour may assume the location attributes of that node.

Nodes are automatically named by the CARMA graphical editor as they
are introduced. A node named nA will have integer x and y coordinates nAx

Fig. 3. A screenshot of the graphical interface for path and components layout.

and nAy. Nodes can later be renamed by the user to semantically-meaningful
identifiers.

4.2 Representation of components

The user can specify a component type using structured input. The identifier and
appearance of the component can be defined as well as the processes defined in
the component, its allowable path and non-movement actions. Once a component
type has been defined instances of that component type can then be placed
within the graphical layout (by drag and drop). Component instances of the
same type differ only in the values of their attributes and therefore can be
represented by identical symbols. Their placement on the grid determines their
location attribute. The state of a component, given by the value of one of its
attributes, can determine if that instance is allowed to move on a particular path.
For example, in the carpooling case study presented in Section 6, Car instances
that are in the state PRIVILEGED can use both available lanes, while instances
in the state NORMAL can only move along the slow lane.

4.3 Example scenarios

Examples of systems that can be defined in the CARMA graphical editor include
networks of paths. Each path is specified by a directed graph. The locations of the
nodes of these graphs are restricted to a set of points on the plane (i.e. as nodes
of a hexagonal grid). Nodes can belong to more than one graph — in this case, a
component at a node may have a choice over the available paths, depending on
the location, the type of the component, or the state of the instance, as explained
above.

A simple urban scenario One example of a scenario with components that
have movement constraints is an urban environment with four types of path-
bounded components: Bikes, Cars, Pedestrians and Rollerskaters, which move
within the environment using paths of the following three types: Pavement,
Road, Cyclepath. Components’ access to these paths is shown in the table below:

Component name Pavement Road Cyclepath

Bike allowed allowed allowed
Car forbidden allowed forbidden

Pedestrian allowed forbidden forbidden
Rollerskater allowed forbidden allowed

In this example, the ability of a component to move along a path segment of
a specific type depends only on the type of the component, not its attribute
values.

Listing 1.1 shows an example of an automatically generated function repre-
senting a two-way segment of a cyclepath. Similar functions are generated for
each path type defined within the system. These functions are used within pro-
cess predicates to impose the movement constraints that are appropriate for each
component type. This can be seen in the subsequent listing, Listing 1.2, showing
an automatically generated Rollerskater component.

Listing 1.1. A CARMA function to query the existence of a cycle path.

fun bool ExistsPath Cyclepath(int xFrom, int yFrom,
int xTo, int yTo){

if (xFrom == nAx && yFrom == nAy

&& xTo == nBx && yTo == nBy){
return true;

}
if (xFrom == nBx && yFrom == nBx

&& xTo == nAx && yTo == nAy){
return true;

}
return false;

}

Listing 1.2. The Rollerskater component, parameterised by its initial location (x, y),
and initial process state Z.

component Rollerskater(int x, int y, process Z) {
store{
attrib x := x;
attrib y := y;
}
behaviour{
M =

[ExistsPath Cyclepath(my.x, my.y, nAx, nAy)]
move Cyclepath?[false]〈〉{my.x := nAx, my.y := nAy}.M

+ [ExistsPath Cyclepath(my.x, my.y, nBx, nBy)]
move Cyclepath?[false]〈〉{my.x := nBx, my.y := nBy}.M

+ [ExistsPath Pavement(my.x, my.y, nC x, nC y)]
move Pavement?[false]〈〉{my.x := nC x, my.y := nC y}.M;

}
init{ Z }
}

For each path node accessible from a given path type, we define an action
with a predicate which ensures that there exists an incoming connection from
the component’s current location to the potential next location node. If the
predicate is satisfied, the component may perform the action which results in an
update of the values of its location attributes.

Movement actions are broadcast output actions, which means that compo-
nents will perform them spontaneously without trying to synchronize with other
components.

The topology-defining functions generated from the layout palette can be
seen to have three roles: to store information, provide a mechanism for retrieving
it, and to guard the global knowledge with respect to access rules defined for
each component and location. In the modelling style implemented in CARMA,
only the environment has global knowledge and components have only local
knowledge. Thus the components can only access information about the paths
in the system through the interface defined by the functions. These functions can
be considered to be part of the environment. At the same time, the actions of
any component are generated in such a way that only information concerning its
current location can be requested. Thus, the restriction that components have
only local knowledge is respected. Having no memory of their previous locations
and no insight into future ones, components are unable to request information
outside of their locality, even though a declarative specification of the network
topology is always available to them through the interface.

5 Automatic code generation

The Java API for automatic code generation can be used as part of the Eclipse
IDE plug-in as a middle layer between graphical input and the CARMA code
input. This API can also be used as a standalone Java package, for users to define
models directly from the level of the Java language or to provide their own GUI
implementations. One reason to use the API in this way could be if we are
generating CARMA code from available runtime data, instead of constructing
the graphical representation manually using the graphical editor.

The Java representation of a CARMA model is a two-part specification,
consisting of definitions of component types, constants, functions and measures
(the template), and their use in a particular case (the instance). The CARMA
code generation API reflects this structure, but constrained movement functions
and component actions (which usually belong to the template part of a system),

are generated with the use of information about a particular system instance
(locations of path nodes and components).

Because of the need to explicitly specify location values and allowable connec-
tions for each state of each component, specification of movement constraints in
CARMA is error-prone when typed by hand. The automatically generated code
can be seen as a draft of a model, providing the definition of the movement
policies applicable to a particular scenario. The user can later supplement the
code with custom behaviour, where required.

6 Case Study: Carpooling

Carpooling is a means of improving traffic congestion in urban areas where large
numbers of people move from one place to another at similar times during the
day. It takes advantage of the infrastructure of High Occupancy Vehicle (HOV)
road lanes, introduced on main roads in some cities. These lanes are less con-
gested, and therefore allow faster and more comfortable travel; however only cars
having at least a particular number of passengers are allowed to use them. The
introduction of this infrastructure triggers the spontaneous formation of queue
points, where people wait to be picked up by a car travelling in a particular
direction. Both the owner of the car and passengers benefit from such an ar-
rangement, saving time and money for journeys. The overall traffic situation in
the city also improves since more people will choose to leave their cars at home
and become a passenger, therefore reducing the total number of cars on the road.

Modelling carpooling can provide insights into the functioning of the system
in practice and inform decisions on where to put pickup points in the network.

In our model, the Car component can change its state between NORMAL
and PRIVILEGED, and its ability to move along a certain path depends on the
current state of a particular instance (see Listing 1.3).

Component name Fast lane Slow lane

Car (NORMAL) forbidden allowed
Car (PRIVILEGED) allowed allowed

Listing 1.3. A Car component which has two local process states, NORMAL and
PRIVILEGED. Note that here we show only the movement aspects of behaviour gen-
erated from the GUI.

component Car(int x, int y, process Z) {
store{
attrib x := x;
attrib y := y;
}
behaviour{
NORMAL =

[ExistsPath SlowLane(my.x, my.y, nAx, nAy)]
move SlowLane?[false]〈〉{my.x := nAx, my.y := nAy}.NORMAL

+ [ExistsPath SlowLane(my.x, my.y, nBx, nBy)]
move SlowLane?[false]〈〉{my.x := nBx, my.y := nBy}.NORMAL;

// Modeller−specified code to be added here.
PRIVILEGED =

[ExistsPath SlowLane(my.x, my.y, nAx, nAy)]
move SlowLane?[false]〈〉{my.x := nAx, my.y := nAy}.PRIVILEGED

+ [ExistsPath SlowLane(my.x, my.y, nBx, nBy)]
move SlowLane?[false]〈〉{my.x := nBx, my.y := nBy}.PRIVILEGED

+ [ExistsPath FastLane(my.x, my.y, nAx, nAy)]
move FastLane?[false]〈〉{my.x := nAx, my.y := nAy}.PRIVILEGED

+ [ExistsPath FastLane(my.x, my.y, nBx, nBy)]
move FastLane?[false]〈〉{my.x := nBx, my.y := nBy}.PRIVILEGED;

}
init{ Z }

}

Our model of carpooling is different from the one discussed by Yang and
Huang in [6] in that they focus on exploring the various ways in which introducing
multiple HOV lanes with toll differentiation influences the overall social welfare
in a community, whereas we study the impact of lane speed differentials and
the efficiency of passenger loading at queue points. Another approach to the
problem was taken by Hussain et al. in [7] where they analysed the ways in
which potential passengers can negotiate and reach agreements in order to form
successful carpools with highest possible levels of satisfaction depending on their
preferred start and offload location. Agent-based methods are also used by Guo
et al. in [8] when using a genetic algorithm to solve the long-term car pooling
problem efficiently with limited exploration of the search space. Simulation is
the preferred computational method for car-pooling problems because the often-
studied long-term car-pooling problem is a computationally hard combinatorial
analysis problem best addressed by heuristics and simulation methods [9].

6.1 Specification in CARMA

In CARMA, we are able to define the Carpooling scenario, by specifying the
actions available for each component state separately, and relating them to the
predefined paths between nodes. In our model of the carpooling scenario, Car
components move along path segments and can pick up passengers waiting at
QueuePoints located at path nodes (see Figure 4). The maximum number of pas-
sengers that can travel in a car at a time is defined as the constant MAX SEAT.

A Car component can perform movement actions only when it is in one of the
following states: NORMAL, PRIVILEGED. Cars in the state NORMAL have
fewer passengers than the value of the constant SEAT THRESHOLD. A car can
change its state to PRIVILEGED by interacting with QueuePoint components
in order to increase its number of passengers. Specifically, when a Car component
is co-located with a QueuePoint component, the car and the queue can perform
a sequence of actions in order to transfer a number of passengers from the queue
into the car.

Fig. 4. A schematic view of the carpooling scenario. Path topology is the same for
both the fast and the slow lane. The movement action over slow lanes has a lower rate.

QueuePoint components can be in one of the following states: EMPTY,
FULL, FILLED and OCCUPIED. If the queue is not EMPTY or OCCUPIED,
it can synchronize with the car on the offerPerson output unicast action. The
offerPerson action sends a message from the QueuePoint component to the Car
component containing information about the number of people waiting in the
queue, available for pickup. Car components try to maximize the number of new
passengers, while respecting the constraint that the number of uploaded passen-
gers has to be less than or equal to the number of people available at the queue
and the remaining capacity of the car. The Car component and the queue then
perform the carUpdate unicast action in which the car informs the queue the
number of passengers it can take, and the queue decreases its size accordingly,
as shown in Figure 5.

Car Queue
Point

offerPerson:
 my.location
 my.size

carUpdate:
 my.location
 my.peopleTaken

Fig. 5. A schematic representation of the information exchange between Car and Queue
Point components during passenger pickup.

During this transfer, both the Car and the QueuePoint go into additional
transition states. For a car, this state is LOADING and any car in this state
cannot perform movement actions. For a queue, the state is OCCUPIED, which
signifies that the component is busy performing a pickup action sequence with
a car and cannot start performing pickup actions with any additional cars.

In this model, passengers waiting in queues do not have a specified destination
or direction in which they want to go. It is assumed that if a person is waiting at
a particular QueuePoint, they are willing to travel in the direction of cars that
arrive at this QueuePoint to perform pickups.

To represent the completion of journeys, Car components also perform a
spontaneous (unsynchronized) broadcast output action releasePassenger, with
a constant rate, which decreases the number of passengers in the car by one.
This is analogous to real world situations in which people queue at designated
locations, but can get out at arbitrary times and locations.

6.2 Results

The results of simulation runs of our model are presented in Fig. 6 and Fig. 7.
Rates have been chosen to appropriately represent the real world scenario. In
order for the travel in the privileged lane to be beneficial, the movement action
over this lane must have a higher rate than the movement action on the slow lane.
The offerPerson action of the QueuePoint must also be sufficiently fast to ensure
that the delay imposed by the interaction at the QueuePoint can be compensated
by the increased speed in the priority lane. The rate at which a queue acquires
new passengers is another value that can have an impact on the efficacy of the
scheme. In real world scenarios, queues usually do not have a constant maximum
size, but they do not grow infinitely; an approaching pedestrian will choose not
to join the queue when it is sufficiently large. Similarly, a model in which the
queue size is very low cannot demonstrate any benefit from carpooling.

7 Conclusions

In this paper we have presented a newly-developed software tool which assists
with the creation of CARMA models of systems in which location and movement
play a significant role. CAS by their nature are large-scale systems so concepts
such as location, separation, distance and movement very often have roles to
play in their models.

By concentrating on location and movement, our graphical modelling tool
provides a convenient separation of concerns between the spatial aspects of a
model (such as location, proximity and movement) and the dynamic aspects of
a model (such as attribute and state update, communication, and synchronisa-
tion). We believe that this separation can be helpful in allowing the modeller to
focus their attention on particular aspects of the model in isolation.

Our graphical model-generation tool handles all of the low-level aspects of
location representation such as placement on a co-ordinate system and the con-
sistent handling of co-ordinate values throughout the model. This level of detail

A

B

se
gm

en
ts

 tr
av

el
le

d
se

gm
en

ts
 tr

av
el

le
d

time

time

Fig. 6. Experiment showing how the movement rate in the fast lane impacts on lane
usage (number of road segments traversed). Panel A: fast lane movement is 5 times
faster than slow lane; Panel B: the movement rate is the same in both lanes.

A

B

co
un
t

co
un
t

time

time

Fig. 7. Experiment showing the impact of the rate at which people are loaded as
QueuePoints. Panel A: the loading rate is 1.5; Panel B: this rate is 10.0.

is often tedious and error-prone to maintain manually so we believe that the
model generation approach also benefits modellers here.

We demonstrated the use of our software tool on a typical CAS case study
and paired our model-generation tool with the CARMA Eclipse Plug-in to take
a model of a car pooling system from high-level design through compilation into
Java and subsequent execution as a simulation study of the system. This gave
us insights into the dynamics of carpooling, and provides some validation of the
correctness of the transformation of our graphical design into running code.

Acknowledgements: This work is supported by the EU QUANTICOL project,
600708. We thank the anonymous referees for many helpful suggestions.

References

[1] M. Loreti and J. Hillston, “Modelling and Analysis of Collective Adaptive Systems
with CARMA and its Tools.” To appear, 2016.

[2] Y. Abd Alrahman, R. De Nicola, and M. Loreti, “On the power of attribute-
based communication,” in Formal Techniques for Distributed Objects, Components,
and Systems: 36th IFIP WG 6.1 International Conference, FORTE 2016, Held
as Part of the 11th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings
(E. Albert and I. Lanese, eds.), pp. 1–18, Springer, 2016.

[3] R. De Nicola, D. Latella, A. Lluch-Lafuente, M. Loreti, A. Margheri, M. Massink,
A. Morichetta, R. Pugliese, F. Tiezzi, and A. Vandin, “The SCEL language: De-
sign, implementation, verification,” in Software Engineering for Collective Auto-
nomic Systems - The ASCENS Approach (M. Wirsing, M. M. Hölzl, N. Koch, and
P. Mayer, eds.), vol. 8998 of Lecture Notes in Computer Science, pp. 3–71, Springer,
2015.

[4] V. Galpin, “Modelling ambulance deployment with CARMA,” in Coordination
Models and Languages: 18th IFIP WG 6.1 International Conference, COORDI-
NATION 2016, Held as Part of the 11th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June
6-9, 2016, Proceedings (A. Lluch Lafuente and J. Proença, eds.), pp. 121–137,
Springer, 2016.

[5] J. Hillston and M. Loreti, “CARMA Eclipse plug-in: A tool supporting design and
analysis of Collective Adaptive Systems.” To appear, 2016.

[6] H. Yang and H.-J. Huang, “Carpooling and congestion pricing in a multilane high-
way with high-occupancy-vehicle lanes,” Transportation Research Part A: Policy
and Practice, vol. 33, no. 2, pp. 139 – 155, 1999.

[7] I. Hussain, L. Knapen, S. Galland, A.-U.-H. Yasar, T. Bellemans, D. Janssens,
and G. Wets, “Agent-based simulation model for long-term carpooling: Effect of
activity planning constraints,” Procedia Computer Science, vol. 52, pp. 412 – 419,
2015.

[8] Y. Guo, G. Goncalves, and T. Hsu, “A multi-agent based self-adaptive genetic algo-
rithm for the long-term car pooling problem,” Journal of Mathematical Modelling
and Algorithms in Operations Research, vol. 12, no. 1, pp. 45–66, 2012.

[9] G. Correia and J. Viegas, “A conceptual model for carpooling systems simulation,”
Journal of Simulation, vol. 3, pp. 61–68, 2009.

