
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Culture and biology in the origins of linguistic structure

Citation for published version:
Kirby, S 2017, 'Culture and biology in the origins of linguistic structure' Psychonomic Bulletin & Review, vol.
24, no. 1, pp. 118-137. DOI: 10.3758/s13423-016-1166-7

Digital Object Identifier (DOI):
10.3758/s13423-016-1166-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Psychonomic Bulletin & Review

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.3758/s13423-016-1166-7
https://www.research.ed.ac.uk/portal/en/publications/culture-and-biology-in-the-origins-of-linguistic-structure(1c19aa80-b339-4085-8453-b4634c0103d4).html


BRIEF REPORT

Culture and biology in the origins of linguistic structure

Simon Kirby1

# The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Language is systematically structured at all levels
of description, arguably setting it apart from all other instances
of communication in nature. In this article, I survey work over
the last 20 years that emphasises the contributions of individ-
ual learning, cultural transmission, and biological evolution to
explaining the structural design features of language. These 3
complex adaptive systems exist in a network of interactions:
individual learning biases shape the dynamics of cultural evo-
lution; universal features of linguistic structure arise from this
cultural process and form the ultimate linguistic phenotype;
the nature of this phenotype affects the fitness landscape for
the biological evolution of the language faculty; and in turn
this determines individuals’ learning bias. Using a combina-
tion of computational simulation, laboratory experiments, and
comparison with real-world cases of language emergence, I
show that linguistic structure emerges as a natural outcome of
cultural evolution once certain minimal biological require-
ments are in place.

Keywords Language evolution . Cultural evolution .

Computational modeling . Iterated learning

Introduction

There is undoubtedly something unusual about humans. Our
species currently numbers around 7 billion, whereas there are
fewer than 300,000 remaining of our nearest living relatives,

the chimpanzees. We have expanded across the planet to in-
habit nearly all the available habitats, and have even now
taken up permanent residence off world with over 15 years
of continuous habitation of space. By any reasonable measure,
we are a spectacularly successful species. But what is it about
us that makes us such an extraordinary primate? An obvious
candidate is the fact that we are able to share and accumulate
knowledge. Our understanding of the world, and consequent-
ly our ability to shape that world, is not limited to the knowl-
edge and skills which we can acquire in our own lifetimes.
This trait, which biologists Eors Szathmary and JohnMaynard
Smith called unlimited heredity (Maynard Smith &
Szathmary, 1995), is uniquely human and is enabled by an-
other unique trait: language.

Despite the ubiquity of communication in nature, language
is strikingly different in its structure from other forms of com-
munication, and it is this difference in structure that enables
unlimited cultural heredity. Specifically, language has a set of
structural design features such as duality of patterning
(Hockett, 1960), compositionality (Krifka, 2001; Werning,
Hinzen, & Machery, 2012), recursion (Hauser, Chomsky, &
Fitch, 2002), and semantic convexity (Gärdenfors, 2004) that
allow us to generalise from instances of language use that we
have observed to novel instances. For example, it is the fact
that language exhibits duality of patterning that means we can
construct a large meaningful vocabulary from recombination
and reuse of a relatively small collection of meaningless ele-
ments. Similarly, we can recombine and reuse these words in
novel sequences to construct phrases whose meanings are
composed of the meanings of their parts.

An overarching characterisation of these features is that
they lead to systematicity in the structure of language. In sim-
ple terms, we can say that a set of behaviours exhibits system-
atic structure to the extent that they are interdependent rather
than independent of each other. This means that a systematic
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set of behaviours will be describable in a way that is more
concise than simply listing those behaviours. So, to take the
combinatorial structure of language as an example, different
lexical entries will share phonemes, and this means that the
most concise description of a lexicon can be more concise
than if every single word was a distinct, unanalysed sequence
of unique sounds. In contrast, it is a reasonable approximation
of most animal alarm-calling behaviour to say that each com-
municative signal in an animal’s repertoire is independent of
the others. There is therefore no systematicity in, for example,
the alarm calls of the vervet monkey (Seyfarth, Cheney, &
Marler, 1980). The most concise description of the alarm-
call system is simply a list of all the alarm calls.

I have linked systematicity with concise descriptions, and
we will return to this idea throughout this article. For the time
being it is worth saying that these descriptions can be reason-
ably termed grammar in the broadest sense of that word. The
unique property of the structure of language that evolutionary
linguistics tries to explain can be described as grammar,
systematicity, or interdependence of behaviours, with the un-
derstanding that these terms are all essentially interchangeable.
Language is shot through with this property at all levels of
description, whereas it is very hard to find it elsewhere in the
vast array of communicative behaviours in the rest of nature.

So, languages are uniquely systematic forms of communi-
cation, and it is this systematicity that unites the design fea-
tures of language that make it an open-ended communication
system (duality of patterning, compositionality, recursion, and
so on). In turn, this enables our species’ greatest trick: unlim-
ited cultural heredity. Given this, a natural assumption might
be that the structure of language should be explained as the
result of a process of natural selection; that the specific design
features of human language arose due to selection for better
communicators in the evolution of our species (Pinker &
Bloom, 1990). The main message of this article is that there
are problems with this type of explanation for the origins of
linguistic structure. These stem from the fact that language is
not only the carrier of cultural information but it is also itself
transmitted culturally. I will argue that cultural transmission
radically alters the evolutionary dynamics involved in the or-
igins of language. Viewing language as a product of the inter-
actions between individual learning, cultural transmission,
and biological evolution leads us to a more nuanced picture
of the origins of systematicity in behaviour. We will see that
systematicity is not solely the result of natural selection for
communication but rather the inevitable product of cultural
transmission once certain biological prerequisites are in place.

The argument I will make is based on a series of computa-
tional models and laboratory experiments designed by myself
and colleagues over the past 20 years. These are models of the
cultural evolution of the design features of human language,
and the interactions between cultural and biological evolution.
In the next section, I survey our early attempts to model the

cultural evolution of compositionality as arising from a pro-
cess that became known as iterated learning. In Section 3, I
turn to a considerably more general Bayesian iterated learning
model of cultural evolution developed by Tom Griffiths and
colleagues that allows us to test very precisely the conse-
quences for the cultural evolution of linguistic structure of
different biologically given innate constraints. In Section 4, I
turn this around and ask what the consequences are for bio-
logical evolution of the cultural evolution of language. A co-
evolutionary model leads us to some surprising, yet robust,
predictions of the nature of the language faculty. In Section 5 I
look at how a number of experimental methods have been
combined to give us a way of exploring cultural evolution of
language in the lab that was inspired by the earlier simulation
work. This has led us to a general theory of the origins of
systematicity in behaviour as a trade-off between pressures
from learning and pressures from use. In Section 6 I will
survey experiments that aim to build bridges to the real-
world implications of this theory, connecting the emergence
of language in the lab to work on emerging sign languages. In
Section 7 I ask how general the results are, examining an
extension to a nonlinguistic task. Section 8 builds on this to
look at iterated learning in other species. As a result of these
comparative studies, I set out what the biological prerequisites
for the cultural evolution of language might be, and suggest
that self-domestication is the best candidate mechanism for
delivering up those prerequisites in humans.

Iterated learning models and the emergence
of compositionality

It is reasonably likely that you have never before encountered
the noun phrase cyan pentagon. Indeed, this particular pair of
words does not occur even once in the entire corpus of books
that Google indexes (Michel et al., 2011). I am also almost
certain I have never written or said this pair of words before
doing so just now. Yet I am nevertheless confident that you
and I now share a common mental image evoked by this
adjective–noun combination. This fact appears mundane, but
would not be possible were it not for the rich compositionality
of language. Compositionality refers to the fact that Bthe
meaning of a complex expression is a function of the mean-
ings of its . . . parts and the way in which they are combined^
(Krifka, 2001, p. 152). Because you know what cyan means
and what pentagon means and have some expectations about
combinations of adjectives and nouns, you are able to interpret
expressions such as the one above. This is not to say that
language is completely compositional—for example, black
spot has several interpretations that are not composed of the
meanings of its parts—but nevertheless it is compositionality
that gives language its open-ended expressivity, and as such is
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an important target for explanation in the evolutionary ap-
proach to language (Smith & Kirby, 2012).

Because compositionality is a such a fundamental and
ubiquitous design feature of language, appears to be unique
or near-unique to humans, and appears to be designed for the
purpose of conveying novel meanings reliably, it seems plau-
sible that this would be a target for explanation in terms of
natural selection (Pinker & Bloom, 1990). In this view, a mu-
tation or mutations occurred during our evolution that led to
some individuals with the property of compositionality being
specified in their faculty of language. These individuals would
have a fitness advantage through being able to convey an
open-ended range of meanings, ensuring that the trait would
increase in frequency in the population.

A potential problem with these types of explanations is that
they assume relatively straightforward connections between
genetic variation, phenotypic variation, and variation in fit-
ness. The relationship between genes and language is arguably
as, or more complex than, any phenotype in nature. This is
because properties of language, such as compositionality,
emerge from a dual inheritance mechanism (Henrich &
McElreath, 2007) involving not only genetic, but also cultural
transmission (see Fig. 1). I produce sentences the way I do
because my faculty of language came into contact with in-
stances of linguistic behaviour produced by other individuals
in my speech community. Whether your theory of the acqui-
sition of language emphasises the role of linguistic data as
triggers for parametric alternatives in the state of the language
faculty (Gibson & Wexler, 1994), or treats linguistic data as
input to a more general inferential learning process (Perfors,
Tenenbaum, & Regier, 2011), it is clearly the case that the
nature of the language we speak is the result of some combi-
nation of what we individually bring to the task of language
acquisition and the nature of the data we are exposed to.

Equally, the data we are exposed to is the product of other
individuals who acquired their language in the same way.

Language therefore persists through a particular form of
cultural transmission which we call iterated learning (Kirby,
2001). A behaviour is transmitted by iterated learning if it is
acquired through observation of that behaviour in another in-
dividual who themselves acquired it in the same way. This
much is obvious and uncontroversial. After all, we can ob-
serve this process at work during language change (Andersen,
1973; Keller, 1994). However, it is also possible that this
process is involved not only in change but also in the origins
of linguistic structure. Before we can be confident of a
straightforward explanation for compositionality in terms of
natural selection, we need to understand the role of iterated
learning in shaping the form languages take. Before placing
the explanatory burden entirely on the genetic side of the dual
inheritance process, we need to knowwhether the cultural side
could do the job just as well.

In the late 1990s, a number of researchers attempted to explain
the origins of compositionality in a series of computer simula-
tions in which cultural, rather than biological, evolution was the
only mechanism (Kirby, Griffiths, & Smith, 2014; Smith, 2014).
These models varied quite widely, employing very different
types of learning, from connectionist approaches (Batali, 1998;
Brace, Bullock, & Noble, 2015; Kirby & Hurford, 2002; Smith,
Brighton, & Kirby, 2003), to models of exemplar learning
(Batali, 2002), to highly symbolic approaches to grammar induc-
tion (Brighton, 2002; Brighton, Smith, & Kirby, 2005; Kirby,
2000, 2002). Nevertheless they shared the same basic structure
in implementing an iterated learning process. Simulated agents
learn to associate signals (usually strings of characters from an
alphabet) to meanings (e.g. numeric vectors, or structured repre-
sentations of some external environment) by observing a sample
of the signalling behaviour of other agents in the simulation.
They then go on to produce signalling behaviour themselves,
which will become the training data for other agents, and so on.

Despite their differences in models of learning, these various
simulations converged on a similar set of results. If the models
are initialised with a random language—in other words, if the
first agents are trained with noncompositional, random pairings
of signals and meanings—then compositionality nevertheless
emerges in the simulations over time as the language is passed
from agent to agent. See Fig. 2 for example results from a
model by Brighton (2002).

The rate of evolution of compositionality in these models
turns out to be related to properties of the space of possible
meanings in the simulation (Smith, Kirby, & Brighton, 2003),
and what proportion of the language is observed in the lifetime
of an agent (Hurford, 2002). Intuitively, this latter parameter
can be thought of as the bottleneck on cultural transmission of
language. It turns out that up to some limit, the less data the
learners see (the tighter the bottleneck), the more rapidly
compositionality will evolve. In the real world, the bottleneck

GENES
LANGUAGE 

FACULTY
GRAMMAR

UTTERANCES

UTTERANCES

GENES LANGUAGE 
FACULTY

GRAMMAR

UTTERANCES

Fig. 1 Language evolution involves dual inheritance mechanisms. The
language faculty is shaped by genes that are inherited and evolve
biologically. The language we speak is the product of a second, cultural
inheritance mechanism as grammars arise from the interaction between
our language faculty and utterances we are exposed to

Psychon Bull Rev



is the limited data a child sees from which she must recon-
struct the language of her speech community.1

For a language to persist unchanged from one generation to
the next through iterated learning, it must pass through this bot-
tleneck of use. In other words, the grammar of a language must
be reconstructable from a sample of the possible instances of

linguistic behaviour that language might produce. A Bholistic^
(Wray, 1998) language made up of random, idiosyncratic
pairings of meanings and signals can only be learned if each
and every such pairing is seen by every learner. The bottleneck
needs to be wide for a holistic language to get through. On the
other hand, a language in which some regularity exists in the
mapping between meanings and signals—such as occurs in a
compositional language—may persist even if not every meaning
is observed. This is because the learner may be able to generalise
from observed meaning–signal pairs to unobserved ones.
Random fluctuations in the language of the population in these
simulations leads eventually to regularities being observed by
learners who are exposed to a subsample of the data. As learners
generalise these regularities to unseen items, then the next

1 If we consider individual features of language, we can think of this bottle-
neck as being more severe in some cases and less so in others. To take a very
simple case, when learning the past tense of verbs, the pressure from the
bottleneck will be stronger for verbs with lower frequency than those which
turn up more frequently in the child’s linguistic experience. Kirby (2001)
points out that this leads very naturally to the well-known fact that high-
frequency verbs are more likely to be irregular in their past tense.

1

10

20

25

50

Fig. 2 Example results from Brighton’s (2002) simulation of iterated
learning. Each diagram shows a finite state transducer that maps between
sequences of characters (representing signals) and feature vectors
(representing meanings). Each transducer is labelled with a number indi-
cating which generation it came from. The details are not important (and,
indeed, are too small to be visible in this figure), but it is clear that
transducers early in the simulation are larger and more complex than later

ones. Importantly, despite this the early complex languages are less ex-
pressive. The transducers do not cover the entire possible set of meanings
in the simulation. However, by the end, highly compact representations
have emerged. These later languages are completely general, expressing
the entire set of meanings in a compositional way such that different
substrings correspond to different features of the meaning
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generation of learners has clearer evidence for the existence of
these regularities than the previous generation did. In this way,
the bottleneck on cultural transmission leads inevitably to a cu-
mulative increase in the generalisability of the language being
transmitted (Hurford, 2000). We can therefore think of cultural
transmission by iterated learning as an adaptive system, shaping
language to be increasingly transmissible. Indeed, a typical anal-
ysis of iterated learning models looks at the learnability of the
language at each cultural generation, measured by how similar
one generation’s language is compared to the previous. The trend
in these models is for language to evolve to be increasingly
learnable over time.

Note that this is a subtly different perspective than the one
usually found in discussions of learnability in cognitive sci-
ence. Instead of asking what the learner needs to successfully
acquire the target grammar, we ask what the language needs
to be successfully acquired. In the former perspective, poverty
of the input stimulus suggests a learnability problem. In the
latter, poverty of stimulus is the cause of the linguistic struc-
ture that ameliorates that problem (Zuidema, 2003). Our lan-
guage has a way of generalising to novel meanings such as
cyan pentagons precisely because generations of language
users had to try and acquire their language without seeing all
possible meanings expressed. Of course, this doesn’t mean
that learnability problems are solved by taking an iterated
learning perspective. It is still valuable to try and understand
precisely what the requirements are that the learning problem
for language places on the language faculty. However, what
the iterated learning perspective suggests is that we should
assume that data the learner is given is optimally adapted to
being learnable by whatever machinery is available to the
learner. In other words, the learner can expect to be born into
the best of all possible worlds for learning (Chater &
Christiansen, 2010). This stands in stark contrast to some
foundational results in the learnability literature (Gold,
1967), which consider the case where any grammar from a
class might be the target for the learner, the worst of all pos-
sible worlds for learning.

From biology to culture: The Bayesian approach

The results from the early models of iterated learning
reviewed suggest that the best explanation for the origins of
compositionality should place significant explanatory burden
on cultural, rather than biological, evolution. Compositional
structure emerges in a remarkably wide range of models with
quite different assumptions about the nature of the learner.
What they share are not specific properties of the learning
model but rather the fact that behaviour is transmitted by iter-
ated learning through a cultural bottleneck.

But there is a problem with this approach. The claim is that
it is cultural rather than biological evolution that explains the

origins of compositionality. A sceptical response is simply that
the compositionality that emerges in the simulations is simply
built into the properties of the learning algorithms in some
straightforward way. If this is true, then perhaps in the real
world cultural evolution is simply the mechanism whereby
design features built into the biologically given language fac-
ulty are realised in the distribution of languages we see in the
world. In other words, cultural evolution does no more than
map transparently from properties of the biology of an indi-
vidual to properties of language.

We already have some reason to doubt that this sceptical
position. We know from the simulation models that the size of
the bottleneck makes a difference to the process of cultural evo-
lution, as do features of the space of meanings (Smith et al.,
2003). This tells us that iterated learning does something over
and above simply expressing inherent properties of the learner.
The variety of different learning models, from connectionist to
symbolic, that converge on the same results is also striking.
Nevertheless, it is far from clear what precisely is built into many
of the models of learning used in these simulations.What exactly
is entailed about innateness from the use of a simple recurrent
network in onemodel (Batali, 1998), and how does it relate to the
built-in assumptions of a heuristically driven grammar induction
in another (Kirby, 2001)?More importantly, canwemake amore
general claim about the relationship between innate constraints
and emergent linguistic structure implied by iterated learning, or
are we limited to simply runningmany simulations with as many
different architectures as possible?

These questions led eventually to an alternative approach
tomodelling iterated learning, first set out in detail by Griffiths
and Kalish (2007), that makes absolutely explicit the contri-
bution of the learner to the process of cultural evolution. In
line with a great deal of work in cognitive science (Chater,
Tenenbaum, & Yuille, 2006), they model learning as hypoth-
esis selection in a Bayesian framework. Learners in this ap-
proach combine experience (i.e. the utterances that the learner
observes) with prior inductive bias (i.e. whatever constraints
the learner brings to the task by virtue of their biology) to
calculate the probability of each hypothesis (i.e. grammar).
Bayes’ rule tells us how to relate these quantities:

P hjdð Þ∝P djhð ÞP hð Þ;
where h is the hypothesis, d is the set of data the learner has
been exposed to, P(d|h) is the likelihood of that data given that
hypothesis, and P(h) is the a priori probability of the hypoth-
esis independently of the data seen. It is this last term, the prior
bias, that corresponds to a model of what the learner’s biology
brings to the task of learning. A rational learner will pick a
hypothesis based on the a posteriori probability of that hypoth-
esis given the data they have been exposed to, P(h|d). In this
way, the Bayesian approach allows us to provide an explicit
model of the contribution of the learner’s cognitive biases and

Psychon Bull Rev



predict which languages that learner is likely to acquire given
some set of data.

This completely explicit approach to modelling learn-
ing bias is exactly what we want in order to escape
from the problem of having a wide range of approaches
to modelling learning without any clarity about what
each of these approaches implies. We can simply plug
in different distributions for the prior bias, P(h), and use
this to change the preferences of our learners. The next
step that Griffiths and Kalish (2007) took was to work
out what would happen to languages passed down
chains of such learners through cultural transmission.
The key question here is how will having particular
biases affect the outcomes of culture?

In the simplest case, we have a single agent who generates
data according to their hypothesis. In other words, they will
produce a set of data, d, that reflects the likelihood of that data
given the hypothesis, P(d|h). A second learner, representing
the next generation in an iterated learning chain, observes the
data of the first learner and calculates P(h|d) for each hypoth-
esis using Bayes’ rule, and uses this to pick a hypothesis, h’.
The way this is done varies between models, in ways that have
interesting consequences (Kirby, Dowman, & Griffiths,
2007). To simplify, for the moment we will assume that
learners pick the best hypothesis. This is often referred to as
MAP learning, because the learner is picking the hypothesis
with the maximum a posteriori probability given the data.
Once h’ is selected, this second generation learner generates
a set of data, d’ (consistent with h’), which a third learner
observes, and so on down the generations.

The key questions for this model are: What happens to h
over time? And how does this relate to the prior, P(h)?
Griffiths and Kalish (2007) suggest an approach to under-
standing this process in very general terms. Consider a single
step of learning: The hypothesis at one generation results in a
probability distribution over hypotheses at the next genera-
tion. This gives us a transition matrix, giving the probability
of iterated learning taking us from any one hypothesis to any
other.2 Various parameters potentially shape the values in this
transition matrix—most notably the prior bias, P(h), and the
bottleneck (i.e. how much data the learner is exposed to).

Once we have a transition matrix, we want to derive the
consequences of iterated learning for the distribution of lan-
guages. In particular, we are interested in the stationary
distribution of languages. This is the probability distribution
over hypotheses that we expect to see once cultural evolution
has run for enough generations for the influence of the initial
hypothesis of the first learner to no longer be felt. Assuming
that language has been around on the planet for long enough

that there is no longer any trace of the first language spoken, we
can equate stationary distribution and language universals.3

We can mathematically derive the stationary distribution
from a transition matrix with some basic linear algebra, and
this therefore allows us to make general predictions about the
relationship between the prior bias of the learner, P(h), and the
actual distribution of cross-linguistic variation this would give
rise to. In other words, Bayesian iterated learning gives us a set
of modelling tools which allow us to precisely understand
what cultural evolution contributes to the explanation of lan-
guage universals over and above what is built into our model
of learning.

Kirby, Dowman, and Griffiths (2007) work through a sim-
ple example of Bayesian iterated learning to understand the
relationship between what is built into the learner and what is
the outcome of cultural evolution. They use morphological
regularity as their example. Consider a space of meanings that
a language needs to convey. Meanings can be expressed either
using a regular paradigm or as irregular exceptions. What is
the relationship between whatever prior bias the learners have
in favour of regularity and the distribution of regularity we see
in the stationary distribution?

Figure 3 shows results of this model for different strengths
of prior bias, and different amounts of training data (i.e. the
bottleneck on cultural transmission). These results show very
clearly that while the existence of a bias in favour of regularity
is important (otherwise there would be nothing in the model
distinguishing the different types of languages), the strength
of this bias makes no difference. In addition, languages in the
stationary distribution appear far more regular than the prior
bias would suggest. Cultural evolution amplifies the biases of
the learner. What does determine how regular the languages
become is the width of the bottleneck. The less data the
learners see, the more regularity is favoured.

This result is one from a range of studies of Bayesian iter-
ated learning, varying various parameters of the models in-
cluding the hypothesis selection strategy (Griffiths & Kalish,
2007), the size of the population of learners (Burkett &
Griffiths, 2010; K. Smith, 2009), and structure in the space
of meanings (Perfors & Navarro, 2014). In most, but not all
(Kalish, Griffiths, & Lewandowsky, 2007), models the sta-
tionary distribution is influenced by the prior bias of the
learners but does not mirror it perfectly.

The implications of these results for how we go about
explaining the origins of linguistic structure are far reaching.
They demonstrate that we cannot be sure that any particular
theory of the language faculty will make the right predictions
about the nature of language without embedding that theory in

2 This matrix is sometimes referred to as the Q matrix in models of
language evolution (Nowak, Komarova, & Niyogi, 2002).

3 Note that there is a great deal of debate about the form language uni-
versals take (see, e.g. Kirby, 1999, for review), but in general they specify
a (potentially probabilistic) constraint on the ways we expect languages to
vary. This is what we mean by Bstationary distribution.^
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a model of culture. Only by doing so will we be able to
figure out the long-run consequences the language faculty
has for the dynamics of cultural evolution. For example,
faced with a completely universal property of language,
such as compositionality, we might be tempted to build that
into our model of the language faculty as a hard constraint,
leading us to seek an explanation in terms of the biological
evolution of the language faculty for such a constraint on
the nature of language. However, it turns out that such a
hard constraint is not required. It may be that only soft (and
domain general) biases in favour of simplicity are required
(Culbertson & Kirby, 2015) given that iterated learning in
the presence of a bottleneck is sufficient to amplify these
biases. Similarly, we cannot Bread off^ properties of the
language faculty straightforwardly from our observations
of the nature of language.

The lesson is that we should be careful not to seek simple
mappings between language universals and the language fac-
ulty. Languages adapt culturally as an inevitable consequence
of iterated learning in such a way that over time they become
optimised for transmissibility. The tougher the transmission
bottleneck, the more pressure there is on language to adapt.

However, it is also important to emphasise that the results
of Bayesian iterated learning do not imply that biology has no
role to play in the explanation of language structure. On the
contrary, this work places the prior bias right at the centre of
the picture. In this view, individual cognition and cultural
transmission interact. Linguistic structure is the emergent con-
sequence of that interaction.

From culture to biology: Evolutionary implications
of iterated learning

In Section 2, I pointed out that language evolution can be seen
as arising from a dual inheritance process. Both cultural and
biological evolution are potentially involved in shaping lan-
guage. Nevertheless, up to this point we have said nothing
about biological evolution. The Bayesian iterated learning
model enables us to characterise precisely how the nature of
language emerges from a population with particular cognitive
biases through cultural evolution, but remains silent about
how those cognitive biases got there in the first place, or what
types of bias we should expect. In this section, I will briefly
survey how the Bayesian iterated learning model can be ex-
panded to include biological evolution, effectively giving us a
complete picture of how individual learning, cultural trans-
mission, and biological evolution interact.

We want to understand what kind of language faculty is
likely to evolve, given what we now know about the process
of cultural evolution through iterated learning. In Bayesian
terms we can ask how the prior bias will evolve under selec-
tion. We treat the prior bias as something determined by our
genes, and accordingly create populations of language
learners who inherit their prior bias from their parents. We
implement iterated learning in the standard way by allowing
individuals to learn their language from others in the popula-
tion. Finally, the fitness of a learner is determined by howwell
they have learned the language of the population. This can be
seen as a proxy for howwell learners will communicate within
their speech community.4

Thompson, Kirby, and Smith (2016) set out a model of this
coevolutionary process and examine its behaviour under a
wide range of assumptions. Here, I will describe the simplest

4 This simplification assumes that all languages are equally effective for
communication. However, the model has been extended to deal with
cases where some languages confer an inherent fitness benefit
(Thompson, Kirby, & Smith, 2016).

Fig. 3 Results from the Bayesian iterated learning model in Kirby et al.
(2007). Languages vary in their regularity in this model, and five examples
are shown in order of decreasing regularity. The solid line represents the prior
bias of the learners favouring regularity. In the top graph, the bias is relatively
strong, whereas in the bottom it is vanishingly small (all languages have
almost but not quite the same prior probability). The various dashed lines
indicate the distribution of languages that arise from cultural evolution with
different amounts of training data each generation. As the number of training
examples (m) decreases, the bottleneck on transmission tightens and the prior
preference for regular languages is amplified. However, different prior bias
strengths have no effect on the distribution of languages that emerges
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form of their model. The model consists of a series of gener-
ations, with multiple agents at each generation. Each agent
learns a language from data produced by the previous gener-
ation (in the simplest case, each agent receives data from a
randomly chosen single agent in the previous generation).
Fitness is assigned by how closely an agent’s language after
learning is complete matches the languages of the other agents
in the same generation. The fittest individuals pass on their
genes to the next generation, with some small chance of mu-
tation in the genes.

In the simplest form of this simulation, there are just two
types of language (language Type 0, and language Type 1).
Each type of language gives rise to utterances that unambigu-
ously indicate the language being spoken, except that there is a
small chance of noise, meaning that the speaker may produce an
utterance indicative of the wrong language type. The prior bias,
and hence themodel of the innate language faculty, in thismodel
can be expressed as a single number between 0 and 1, giving the
prior probability assigned to languages of Type 1. So, a prior
bias greater than 0.5 indicates a learner who prefers languages of
Type 1, whereas a prior less than 0.5 indicates a preference for
Type 0. The closer to 0 or 1 that the prior is, the closer the model
is to implementing a hard, inviolable constraint.

In the model, this continuous bias arises from the additive
effect of multiple discrete genes, each contributing a small
amount to the bias. A set of genes all indicating a preference
for languages of Type 1 will lead to a prior bias of 1, whereas a
mix of Type-1 favouring and Type-0 favouring genes will lead
to a prior bias of 0.5. This schememeans that any bias is possible
(within some granularity defined by the total number of genes)
but maintaining a strong bias against mutation pressure requires
selection for that bias. To put it another way, random drift will
tend to lead to a mix of genes favouring Type 1 and genes
favouring Type 0, pulling the prior towards 0.5.

With all these elements in place, we have a very simple
model that incorporates individual learning of languages, cul-
tural evolution of languages, and biological evolution of the
learners. Notice that there are interactions between all three of
these. The way agents learn is shaped by their genes. The dis-
tribution of languages that emerge is determined in part by the
innate biases of the learners. Finally, the fitness of the learners is
dependent on the languages spoken in the population. This

interlocking set of complex adaptive systems operating at dif-
ferent timescales is what gives rise to language (see Fig. 4).

Figure 5 shows the results of running a numerical version
of the model5 with two starting conditions: a strongly
constraining population, in which every agent is born only
being able to acquire languages of Type 1, and a Bblank slate^
population, in which learners have no a priori preference for
either type of language. In both cases, the initial culture, that
is, the data that the very first generation learns from, is one in
which both types of language are spoken in nearly equal pro-
portion, with a small preference for Type 1. Despite their dif-
ferent starting conditions, the end result of these simulations is
identical: a population with a very weak bias in favour of
languages of Type 1, but one in which almost everyone speaks
languages of Type 1.

The combination of learning, culture, and evolution leads
to predictions about language universals and the language
faculty that are not immediately obvious.We predict the emer-
gence of strong universals in the population—languages will
appear to vary within a set of hard constraints—but these
universals will be supported by the weakest possible innate
predisposition. Thompson et al., (2016) test a very wide range
of models with different assumptions about the nature of lan-
guage, population structure, fitness pressures, and so on, lead-
ing them to the conclusion that this is a very general result,
robust to variation in parameters, and not limited to particular
features of their particular model.

This result appears to be the inevitable consequence of
cultural transmission intervening between genotype and ulti-
mate phenotype for language. We can run the same model
again, but with culture turned off, so that the language that a
learner acquires is determined entirely by their prior biases
(but fitness is still calculated in the same way and will be
dependent on the frequency of different language genes in
the population). Only in this acultural scenario do strong in-
nate constraints evolve.

The take-home message of these results, and related
models of the interactions between learning and evolution
(Chater, Reali, & Christiansen, 2009; Kirby & Hurford,

CULTURAL
EVOLUTION

BIOLOGICAL
EVOLUTION

LANGUAGE 
STRUCTURE

INDIVIDUAL
LEARNING/USE

LEARNING BIAS
DETERMINES CULTURAL DYNAMICS

EMERGENT UNIVERSALS
SHAPE FITNESS LANDSCAPE

BIOLOGY DETERMINES
LEARNING BIAS

Fig. 4 Language structure arises
from a complex set of interactions
between three complex adaptive
systems operating at different
scales

5 By this I mean a version of the model with an infinite population, with
learning, culture and evolution implemented as difference equations.
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1997; Smith & Kirby, 2008), is that culture matters. These
models suggest that the addition of cultural evolution pro-
foundly alters the way in which biological evolution proceeds.
It provides an example ofmasking, an often neglected force in
evolution that Deacon (2010) argues is particularly important
in human evolution, in which the relationship between genetic
variation and its effects on fitness can change. Iterated learn-
ing amplifies small biases, leading them to have large effects
on the distribution of languages that are the result of cultural
evolution. Because of this, small deviations from neutrality
arising from genetic variation are highly visible to natural
selection due to their large ultimate phenotypic effects. In
other words, culture unmasks small variations in the language
faculty, potentially making innate biases more evolvable.

Crucially, however, there is a flip side to this unmasking
effect. The amplification of biases that are the result of cultural
evolution simultaneously mask the strength of biases from the
view of natural selection. Variation in the genes encoding
strength of bias simply have no fitness consequences. Cultural
evolution leads to the same phenotypic outcome, the same dis-
tribution of languages, whether the agents have a weak, defea-
sible preference or a hard, inviolable constraint. The inevitable
result is a degradation of strong constraints due to masking.

These results suggest, on purely evolutionary grounds, that
we should expect the language faculty—or at least the part of
the language faculty involved in language acquisition—to
take the form of weak biases to the extent that those biases
have evolved under selection for communication. This should

be our default assumption, even in cases where we see evi-
dence for strong constraints at the level of actual linguistic
variation. To turn this argument on its head, if we have good
independent evidence that there are some hard constraints on
the acquisition of language, it is unlikely that those constraints
are the result of natural selection for communication.

Put simply, taking culture seriously in an evolutionary
model has lead us to the conclusion that the language faculty
may contain domain-specific constraints only if they are
weak, and strong constraints only if they are domain general.

Language evolution in the lab

The models I have covered so far suggest that a culturally
transmitted system will spontaneously adapt to aid its own
survival through iterated learning. Changes introduced into
the evolving language at each generation will persist to the
extent that they are learnable by subsequent generations. The
inevitable result appears to be a cumulative increase in
learnability of the transmitted system.

Wherever we see results in abstract simulations, a reason-
able concern is whether they also apply straightforwardly in
the real world. In the case of these models of language evolu-
tion, we can wonder whether human biases are similar to the
ones we build into our models, and whether it is reasonable to
imagine that languages adapting to increase their learnability

GENES
GENES

CULTURE

GENES
GENES

CULTURE

Fig. 5 Results from the coevolutionary model with two different starting
points (Thompson et al., 2016). The plots on the left show the distribution
of genes that evolve, with high or low values of Bi^ on the x-axis indicating
a strong constraint in favour of Type 1 or Type 0 languages, respectively,
and a value of 50 indicating no bias. The plots on the right show time
courses indicating how the genes of the population evolve (values greater
than 0.5 indicating a bias in favour of Type 1), and how the languages
evolve culturally (high values indicating a prevalence of languages of Type
1 in the population). The top row shows the outcome of gene-culture

coevolution with an initial population of unbiased learners and a very
slight majority of languages of Type 1 being spoken in the population.
The bottom row shows the outcome with an initial population of strongly
constrained learners. In both cases the outcome is the same: a strong
universal preference for languages of Type 1 in the culture, but the weakest
possible bias in favour of languages of Type 1 in the language faculty of
the learners. (Thanks to Bill Thompson for the graph; for more details and
explanation, see Thompson, 2015)
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by becoming more structured is something that would happen
on a sensible timescale outside of computer simulation.

These concerns have lead over the past decade or so to a
number of attempts to recreate the iterated learning process in
the psychology experiment lab with real human agents. The
idea is essentially to combine artificial language learning ex-
periments from psycholinguistics (Reber, 1967) with diffusion
chain and artificial microsociety paradigms from experimental
cultural evolution (Mesoudi & Whiten, 2008). We can then
ask whether we can observe the spontaneous creation of lin-
guistic structure through cultural transmission and whether
this mirrors the predictions of our models.

The general design of these studies can be exemplified by a
simple drawing experiment by Tamariz and Kirby (2015). In
this study, a modification of the classic serial reproduction task
of Bartlett (1932), participants were shown an abstract draw-
ing on a sheet of paper and then asked to recreate it on another
sheet of paper. Their drawing was then shown to the next
participant in the experiment, who was asked to recreate the
drawing on a third sheet, and so on. Tamariz and Kirby (2015)
ran two conditions of the experiment—the copy condition, in
which the drawing being recreated remained in view while it
was copied, and the memory condition, in which the picture
was removed from view as soon as participants started draw-
ing. In both conditions, errors in the reproduction process led
to the drawings evolving gradually over the Bgenerations^ in
the experiment. Different chains in the experiment diverged
from the same starting drawing in a way analogous to the
distinct lineages that evolve in a wide variety of cultural do-
mains in the real world. However, the structure of the draw-
ings differed consistently in the two conditions. Specifically,
the drawings in the memory condition evolved cumulatively
to be simpler than those in the copy condition, whose com-
plexity remained at the same level as the original. Tamariz and
Kirby (2015) quantify this by measuring the compressibility
of the bitmap files created by scanning the drawings.
Remarkably, the file size of the drawings created by a variety
of compression algorithms decreased consistently over gener-
ations in the memory condition, but not in the copy condition.

This result demonstrates that cultural evolution does not
merely lead to drift through copying error. The memory condi-
tion, bymaking participants map the external drawing into some
internal representation and then out again, enforces a bottleneck
on the cultural transmission process that does not exist in the
copy condition. The inevitable result is that the drawings adapt
to this bottleneck. Simpler, more compressible drawings are
easier for participants to hold in memory than complex, incom-
pressible ones, and this acts as a bias that applies at some point in
the process between seeing the original drawing and reproduc-
ing it. This bias may be so small that it is undetectable at the
level of one instance of copying, but over time it is amplified by
the iterated copying process, leading to the results that we see at
the end of the chains.

What Tamariz and Kirby (2015) do for drawings can also
be applied tominiature artificial languages, effectively extend-
ing the methods of artificial language learning from learning
in a single generation to the cultural transmission of language
over multiple generations. The question is whether the kinds
of systematic structure that we are interested in (e.g.
compositionality) can be shown to emerge in the lab in a
way similar to what is seen in the models reviewed in the
previous sections.

In the first of these experiments, Kirby, Cornish, and Smith
(2008) had participants learn a miniature artificial language in
which strings of syllables labelled coloured moving shapes. In
all there were three colours, three shapes, and three move-
ments, leading to 27 possible scenes to be labelled. The initial
language consisted of entirely random strings so there was no
systematicity in the relationship between signals and mean-
ings. After being exposed to half of this language, participants
were asked to label the full set of 27 scenes (i.e. they had to
recall the strings they were trained on and also generalise to
unseen meanings). The resulting language from the first par-
ticipant became the language that was used to train the second
participant in the experiment (with a different selection of
items withheld from training). This process was repeated for
10 Bgenerations^ in four separate chains from different ran-
dom initial languages.

Following the previous body of simulation studies, Kirby
et al. (2008) predicted that the languages would evolve to be
increasingly learnable over generations in the experiment, and
that they would do this by virtue of becoming compositionally
structured. This is expected because there is a bottleneck on
the transmission of the languages imposed by withholding
half of the data. However, the result of the experiment didn’t
match what was expected from the simulations. Although the
languages did indeed become more learnable over genera-
tions, they did not do so by becoming compositional. The
initial random language is strictly unlearnable—there is no
way a participant in the experiment could possibly correctly
generalise to unseen meanings. This is generally true for the
first few generations of the experiment. At this stage, the lan-
guage is changing rapidly as learners introduce errors in the
transmission as a result of the unlearnability of the language.
In contrast, the final generations of the experiment are typified
by highly learnable—and therefore stable—languages which
permit accurate generalisation to unseen meanings. In this
sense, they appear just like the results of the simulation
models. Where they differ is the precise way in which the
languages have evolved to maximise learnability.

Rather than becoming compositionally structured, the lan-
guages became highly ambiguous (see Fig. 6). Whereas the ini-
tial random languages had 27 distinct strings—one for each
meaning—the final languages had as few as two. The languages
had become more learnable by simply jettisoning words.
Interestingly, they did this in a nonrandom way. Words would
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map onto regions of the set of meanings in such a way that they
systematically underspecified certain features of the scenes. For
example, a languagemight evolve that simply did not encode the
colour dimension, or which collapsed the distinction between
shapes for a particular category of movements. This systematic
underspecification is an adaptation by language to the challenge
of being transmitted through a bottleneck, but it is one that comes
at the cost of the expressivity of the language.

In retrospect, this is perhaps an obvious outcome. The most
learnable language of all is after all a highly degenerate one in
which every meaning is expressed by a single word. Given
that the only process in our iterated learning experiment is
learning, this is the only pressure operating on the evolving
language. The languages inevitably evolve to reflect our prior
bias, and in this experiment this appears to strongly favour
simpler, more compressible, languages—languages that
underspecify in a systematic way.

So where does this leave compositionality? I suggest that
compositionality is not the result merely of a pressure for
learnability, and hence simplicity, but an interaction of that
simplicity pressure and a partially countervailing pressure
favouring languages that are expressive. The obvious source
of an expressivity pressure is from communication (Fay,
Garrod, Roberts, & Swoboda, 2010; Galantucci, 2005;
Garrod, Fay, Lee, Oberlander, & Macleod, 2007). To test this
idea, Kirby et al. (2015) and Winters et al. (2015) extend the
iterated learning experiments to include interaction as well as
learning. Instead of a single participant at each generation, two
participants learn the same language and then take turns
playing a communication game over networked computer ter-
minals. In this game, they alternately play as director and
matcher. The director has to send a signal that will allow the
matcher to pick out a particular scene from an array of alter-
natives. At the end of multiple rounds of the communication

game, the last labels for each scene used by one of the partic-
ipants is used as the language that is passed on to the next pair
of participants in the chain.

In this new version of the experiment, we have iterated
learning and dyadic interaction both potentially shaping the
language as it evolves over time in the experiment. The result
is strikingly different from that found in the first experiment
described. Rather than a degenerate language, a compositional
one evolves. In Kirby et al. (2015), the scenes are three different
shapes with four different textures applied to them, and lan-
guages evolve that have prefixes corresponding to shapes and
suffixes corresponding to texture (or vice versa). These compo-
sitional languages are more learnable than the initial random
holistic ones, but unlike the degenerate languages in the previ-
ous experiment, they are also expressive (see Fig. 7a).

Is this result due to the combination of iterated learning and
dyadic interaction, or is dyadic interaction alone sufficient? To
test this, Kirby et al. (2015) run the experiment again, but rather
than replacing participants at each generation, they keep the
same pair of participants in the lab throughout. In this way,
we can isolate the effect of repeated transmission to learners
on the evolution of the language.

The result is that the original random holistic language,
which is already fully expressive because a distinct string is
associated with each meaning, does not evolve much at all (see
Fig. 7b). The language neither becomes compositional, nor
does it degenerate. It seems that compositionality only emerges
in these experiments where there is both a pressure to be sim-
ple, driven by learning, and a pressure to be expressive, driven
by communication. With only the former pressure, we get
highly compressible degenerate languages; with only the latter,
we get noncompressible, expressive, holistic languages.

At this point it is worth addressing a justifiable concern
about this kind of study. Our aim is to illuminate the forces
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Fig. 6 Example languages from Kirby, Cornish. and Smith’s (2008)
experimental iterated learning study. The language on the left is the output
of the first learner in a transmission chain, after they attempted to learn an
initial randomly generated language. In this experiment, the language
labelled 27 different scenes involving different coloured shapes moving.
The language changed gradually as it was passed down 10 generations of

learners to become the one indicated on the right. The same 27 scenes are
now labelled with only five words, which carve up the space in systematic
ways, for example by movement. The language on the left is unlearnable
from a subsample, whereas the language on the right is easy to learn.
(Colour figure online)
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at play in the origin of design features of human language,
such as compositionality, by using human participants in a
miniature language transmission experiment. But all our par-
ticipants already have a language. How do we know that what
we are seeing expressed in the experiments is a result of cul-
tural transmission amplifying fundamental learning biases, or
simply a reflection of acquired bias? To put it bluntly, are the
resulting languages compositional because our participants
already speak compositional languages?

To address this, Kirby et al. (2015) replicate their experi-
mental results in a Bayesian iterated learning model in which
there are generations of pairs of agents that interact and learn
from each other, just as in the experiments. Of course, the
advantage of a simulation over an experiment is that we can
be explicit about the source of bias. The agents are exposed to
signal-meaning pairs and acquire a language that is defined as
a mapping from meanings to signals. Crucially, Kirby et al.
(2015) implement a very general simplicity bias (Chater &
Vitányi, 2003), based on an approximation of the
Kolmogorov complexity of the languages. Specifically, fol-
lowing Brighton (2002), agents prefer languages that can be
expressed as concise context-free transducers (see Fig. 8).
During interaction, agents have an additional bias against sig-
nals that would not discriminate the target meaning in context
(Frank & Goodman, 2012).

The results of the simulation match the experimental find-
ings closely. Without interaction, iterated learning alone leads
to the simplest possible language. In other words, degenerate
languages with only a single word for all meanings. Without
transmission to new learners, interaction alone leads to expres-
sive but incompressible languages in which every meaning is
labelled with a distinct string. Only when both interaction and
transmission to new learners are in play in the model does
compositionality evolve as a solution to the problem of jointly
optimising expressivity and learnability. These results suggest
that the emergence of compositionality in our experiments is
not a simple reflection of the fact that our participants already
speak a compositional language.

From lab to the real world

The experiments and models described above suggest that cul-
tural transmission of language leads inevitably tomore andmore
compressible languages (within certain expressivity limits de-
rived from the use of language for discrimination between
meanings). The hypothesised prior bias in favour of simplicity/
compressibility is extremely general (Chater &Vitányi, 2003)—
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Fig. 8 Languages from the simulation in Kirby et al. (2015). Each language
maps between a simple meaning space (consisting of two binary features,
here represented as colour and shape) and a signal space (consisting of strings
of length, two from an alphabet of two characters). The prior for each lan-
guage is based on the coding length of the language in bits (L). This is
computed by first representing the language as a grammar with semantic
annotations, and then encoding that grammar in a minimally redundant form
as a string of characters. The coding length of that string reflects our intuitions
that a degenerate language with a single word is simpler than a holistic
language with a distinct word for each meaning, and that the complexity of
a compositional language lies between these two extremes

egewawu mega gamenewawu

egewawa megawawa gamenewawa

egewuwu megawuwu gamenewuwu

ege wulagi gamane

manunumoko moko konu

wekihumanunu mokowekihu lawa

makihu mahiku wekihulawa

manunumonu nomu wekihu

a

b

Fig. 7 Example languages from Kirby, Tamariz,, and Smith’s (2015) exper-
iment involving both interaction and transmission to new learners (A), and
interaction alone (B). Compositional structure emerges in the former case
where both learning and communication put pressure on the language to be
both compressible and expressive. Here, the language uses a prefix to indicate
shape and a suffix to indicate the fill texture. When only interaction is in-
volved, a largely uncompressible, holistic language emerges
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arguably a feature of any reasonable learning system.
Nevertheless, a domain-general bias such as this can have
domain-specific effects. Culbertson and Kirby (2015) point out
that the same underlying preference for simplicity can have quite
varied effects in different domains of language as it interacts
with diverse linguistic representations. For example, the simplic-
ity bias can favour compositionality, as seen above,
combinatoriality (Verhoef, 2012), phonological structure
(Wedel, 2012), regularisation (Smith & Wonnacott, 2010),
cross-category harmony (Culbertson, Smolensky, & Legendre,
2012), scope isomorphic ordering principles (Culbertson &
Adger, 2014), kinship systems (Kemp & Regier, 2012), colour
terms (Xu, Dowman, & Griffiths, 2013), spatial vocabulary
(Carstensen, Xu, Smith, & Regier, 2015), semantic convexity
(Carr, Smith, Cornish, & Kirby, 2016; Gärdenfors, 2004), and
numeral systems (Xu & Regier, 2014). Linguistic properties
such as these may be the inevitable result of adaptation of lan-
guages through iterated learning.

There is, however, something a little peculiar about this
argument. It seems to suggest that the cultural evolution of
language is one of cumulative decrease in complexity. The
starting point in the compositionality experiments is provided
by the experimenter and involves every meaning being con-
veyed by a distinct random signal. This initial random lan-
guage is simply unlearnable. This is a reasonable starting point
for an experiment, perhaps, but it begs the question of what
this random, uncompressible, complex, holistic initial lan-
guage corresponds to in the real world. To put it another
way, what is a reasonable model of the very first language
prior to any cultural evolution having taken place?

Answering this questionmight appear hopeless. If we assume
that all existing languages had a common ancestor, that ancestor
is lost in prehistory, and languages do not fossilise. This belief—
of the impossibility of studying an ultimate progenitor lan-
guage—is surprisingly widespread in the field of language evo-
lution. Fortunately, the premise is quite clearly false: All existing
languages do not share a common ancestor. Language has sprung
forth multiple times in history. We know this because we have
exceptionally well-documented cases of it having done so very
recently, giving us the opportunity to observe possible initial
conditions for the cultural evolution of language directly.

This evidence comes from emerging sign languages such
as Nicaraguan Sign Language (Senghas, Kita, & Ozyürek,
2004), Al-Sayyid Bedouin Sign Language (Aronoff, Meir, &
Sandler, 2005), Kata Kolok (de Vos, 2015), and Adamarobe
Sign Language (Nyst, 2007), among others. In these cases, a
sufficient number of deaf individuals without access to an
existing language are brought together either through the for-
mation of deaf schools and clubs or by an increase in genes for
deafness in a closed population (Meir, Israel, Sandler, Padden,
& Aronoff, 2012). The spontaneous creation of a new sign
language appears to be the inevitable consequence of this
kind of situation. This, therefore, provides us with

extraordinarily precious instances of the evolution of lan-
guage in the real world.

Now, of course, this can only tell us about the process of
cultural evolution. All the individuals involved in the emer-
gence of these new languages are obviously fully modern
humans! The extent to which significant coevolution involv-
ing both genetic changes and cultural changes occurred in the
origins of the very first languages is an open question, and the
goal of the models of Section 4 is to begin to explore the
consequences of any such coevolution. Relatedly, there is vig-
orous debate about whether there was a stage in the evolution
of language in which an ancestor of ours possessed something
that was not quite a fully modern language faculty, and as a
result spoke a protolanguage that was not quite a fully modern
language (Arbib & Bickerton, 2010; Jackendoff, 1999).

Nevertheless, it would be wrong to dismiss emerging sign
language data as being irrelevant to the issue of language
evolution. It shows us that cultural processes in a population
of individuals possessing a modern language faculty can cre-
ate a language where one previously did not exist, and, fur-
thermore, it shows us precisely the steps involved in doing so.

In the Nicaraguan Sign Language case (Senghas et al.,
2004), we can discern at least three stages in the creation of
the language. First, there are multiple independent instances of
the creation of homesign in a geographically dispersed popu-
lation of isolated deaf children. Homesign is a method of
communication that deaf children of hearing parents use if
they are only exposed to cospeech gesture. Second, multiple
homesigning children are brought together in a cohort in a
deaf school and begin forming conventions of communicating
with one another. Finally, new cohorts of individuals join the
growing community, are exposed to the existing conventions
being formed by the previous cohort, and transform these
conventions through learning.

There are, therefore, three processes involved in the crea-
tion of a language like Nicaraguan Sign Language. There is
the initial improvisation of homesign (Goldin-Meadow &
Brentari, 2015), interaction between signing individuals, and
iterated learning as the emerging language is passed down
through cohorts. The experimental methods described in
Section 5 allow us to examine the contribution of interaction
and iteration to the emergence of systematic structure, but do
not consider the role of improvisation, which is why we ended
up with the slightly awkward step of constructing an initial
random language for the first participants in a chain to learn.

Fortunately, there is a growing experimental literature on im-
provisation of communicative behaviour in the gestural domain
(Christensen, Fusaroli, & Tylén, 2016; Goldin-Meadow, So,
Ozyürek, & Mylander, 2008; Schouwstra & de Swart, 2014).
The so-called silent gesture paradigm looks at how hearing adults
who don’t know any sign language convey various concepts
using only their hands. The focus of much of the work in this
area has been on uncovering biases in the way events are
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conveyed, and this research has demonstrated convincingly that
there is limited, if any, influence from participants’ native lan-
guage on the ordering of elements in improvised gesture.

If silent gesture can be used as a stand in for the early, impro-
vised forms that language might take (e.g. in homesign), then a
reasonable approach would be to combine this method with the
experimental iterated learning techniques described in Section 5.
Smith, Abramova, Cartmill, and Kirby (2016) look at the way in
which complex events are represented in an experimentally
evolving miniature sign language. The initial input to the trans-
mission chains in this experiment consisted of improvised ges-
tures conveying events depicted by 16 animations of a moving
ball. The ball animations were designed to each exhibit one of
four possible paths (the ball could be moving in an s shape, in a
circle, diagonally, or horizontally), and simultaneously exhibit
one of four possible manners (the ball could be sliding, spinning,
rolling, or jittering). Consistent with data from cospeech gesture
(Senghas et al., 2004) and other silent-gesture experiments (Clay,
Pople, Hood, & Kita, 2014), improvised gestures almost univer-
sally conveyed these two aspects of the event simultaneously.

The next stage of the experiment involved new participants
learning to produce gestures on the basis of the previous,
improvised, gestures. The recorded gestures of these partici-
pants became the target for a second generation of learners and
so on in the standard fashion for an iterated learning experi-
ment. Over generations, the gestures became more systematic
and compressible. In some chains, the previously simulta-
neous gestures for the complex events became segmented
and linearised, with manner being expressed separately,
followed by path. In this sense, the languages became less
iconic, but more systematic (because the exact same gesture
is reused across multiple events). This finding mirrors the way
manner/path separation emerges in the second and third co-
horts of Nicaraguan Sign Language (Senghas et al., 2004).

How general is the evolution of systematicity?

Throughout this article I have emphasised the idea that cultur-
al evolution naturally leads to systematicity in language, and
that this is driven by a general prior bias for simple, compress-
ible representations of the world being amplified by transmis-
sion through iterated learning. I have shown how this may
explain the origins of some fundamental design features of
language, and noted that it might also lead tomore specifically
linguistic universals, such as word-order harmony, as the
domain-general bias for simplicity interacts with linguistic
representations (Culbertson & Kirby, 2015).

All of the experiments described so far have framed the task
that participants are undertaking in linguistic or communicative
terms. For example, the original iterated learning experiments
referred to the task as one of Blearning an alien language^; the
interaction experiments are set up to elicit explicitly

communicative behaviour from pairs of participants; and so on.
This leaves open the question whether the systematicity we see
emerging in these experiments requires a linguistic framing—
whether the bias in favour of systematicity is specific to
language.

Additionally, one could argue that the design of many of
these experiments might lead participants to treat the behav-
iour they are being exposed to as a system right from the
outset, rather than a collection of independent behaviours to
be learned. In other words, the systematicity that emerges
might be as much a product of how these experiments are
framed as it is about a general tendency for cultural evolution
to lead to systematic structure.

To address this concern, Cornish, Smith, and Kirby (2013)
designed an iterated sequence learning experiment in which par-
ticipants perform a series of independent memory tasks, each
presented in the form of a familiar sequence recall game: the
BSimon^ game. In Cornish et al.’s (2013) version of the game,
a sequence of coloured lights is presented on a touch screen
interface, after which participants simply have to immediately
recall the sequence they just saw. Each participant played 120
of these games, consisting of 60 sequences presented in two
blocks. Participants were organised into chains such that the first
participant was presented with 60 random sequences (each of
length 12), and subsequent participants were presented with the
sequences produced by the previous participant in the chain.

In this way, 60 lineages of sequences were created for each
chain of participants run in the experiment. Just like in other
iterated learning experiments, participants in later generations
in a chain found the task easier than earlier participants. This
was a result of the sequences evolving to be easier to remem-
ber as collections of chunks (see Fig. 9). Note that this exper-
iment was framed as a series of independent imitation games,
with no inherent expectation of the 60 games being systemat-
ically related to each other. Nevertheless, systematic interde-
pendence of sequences emerges in this experiment. The set of
sequences is more compressible in later generations, and a
new set of participants tested on the sequences find them
harder to imitate if they are drawn from different chains than
if they are drawn from the same chain.

As in previous iterated learning experiments, the set of
behaviours being transmitted adapts to maximise its own ac-
curacy of transmission. In this case, sequences that share fea-
tures in common are easier to copy than sequences that are all
distinct since chunks that are learned from one sequence are
easier to recall if they also appear in a later one.6

6 This experiment does not include the pressure for expressivity discussed
earlier. As a result, we would expect that eventually the set of sequences
would become less diverse, perhaps finally collapsing to a limiting case of
a single sequence repeated 60 times. Because of the huge size of the signal
space, and the initial conditions of random sequences, this is likely to take
many generations.
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The fact that global systematicity can emerge even in an
experiment design that involves immediate recall rather
than explicit learning opens up a wide range of experimen-
tal methods that can test the generality of the cultural evo-
lution of structure in behaviour. Recently, we have extend-
ed this method to investigate music (Ravignani, Delgado,
& Kirby, 2016), and shown that six universals of rhythmic
structure (Savage, Brown, Sakai, & Currie, 2015) emerge
naturally from the cultural transmission of sets of drum-
ming patterns.

Comparative approaches to iterated learning
and human uniqueness

The fact that we see systematic structure emerging even
in nonlinguistic tasks opens up the obvious question
about whether this cultural process is unique to humans
or whether we should expect this to be observed in a
wider range of species. The simplicity of the immediate
imitation iterated learning experiment design described
in the previous section lends itself very nicely to the
construction of a nonhuman iterated learning paradigm,
opening up the possibility of a comparative biology of
iterated learning.

Claidiere, Smith, Kirby, and Fagot (2014) use this method-
ology to look at cultural evolution of sets of behaviours in a
population of baboons. Rather than recalling sequences, the
baboons are briefly presented with four illuminated squares in
a 4 × 4 array, and then attempt to tap on the four squares that
were illuminated. If they get three or four squares correct, they
receive a food reward. Whatever grid pattern they produce is
stored for presentation to the next baboon in the transmission
chain, and a total of 50 grid patterns form the set of items that
are transmitted from animal to animal.

Just as in the human iterated learning experiments, animals
later in the chains find the task easier than those early in the
chains. The set of grids gradually evolves to be easier to copy.
Again, mirroring the human results, this happens by virtue of

the emergence of systematicity in the set: a small number of
recognisable, and hence generalisable, grid shapes emerges
that are reused across the set, and different chains evolve dif-
ferent characteristic generalisations over the set of patterns
(see Fig. 10).

This experiment demonstrates that, given the right kind of
experimental setup, cumulative cultural evolution of structure
in behaviour can arise in a nonhuman primate. If we cast the
net a little wider, we can actually see analogs of this process in
the wild. Birdsong is the most obvious candidate for a com-
plex behaviour that is transmitted through iterated learning. In
many species, male birds acquire their song through exposure
to the song of the previous generation. In line with our predic-
tions, we see systematic structure in song (Berwick, Okanoya,
Beckers, & Bolhuis, 2011). Fehér, Wang, Saar, Mitra, and
Tchernichovski (2009) demonstrated this experimentally in
zebra finches by constructing chains of transmission in which
the initial song was produced by a male bird who had been
raised in acoustic isolation. Such a bird produces abnormal
song which lacks a range of features that typify wild zebra
finch song. Fehér et al. (2009) then allowed these isolated

Fig. 10 The initial and final grid patterns from one of the chains in (Claidiere
et al., 2014) baboon study. The initial patterns were a set of 50 4 × 4 grids in
which four cells were lit up. The baboonswere rewarded for recalling the four
lit squares correctly for each grid pattern, and their responses were transmitted
to the next baboon in the chain. After 12 generations, the set of patterns had
evolved to become systematic, with each chain having a particular distribu-
tion of statistically rare patterns known as tetrominos (highlighted in colour in
the example). Importantly, the baboons did not find the tetrominos easier to
copy when they occurred singly in a set of random grids. It was only when
they appeared alongside other tetrominos in the set of 50 that the transmissi-
bility advantage emerged. (Colour figure online)

Fig. 9 Two sequences drawn from the final set of 60 sequences in the last
generation of one of the chains in Cornish et al.’s (2013) experiment. Note
how the structure of the two is similar, with the exception that the second
involved a doubling of the elements in the first part of the sequence. The
hierarchical structure shown is suggested by the parallels between these
and other sequences in the set. (Colour figure online)
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birds to raise a brood who learned their song from their fa-
thers. This process was then repeated for four generations,
revealing precisely how the atypical song was transmitted
from one cultural generation to the next. Strikingly, the song
at the end of the chains looked more like species-typical wild-
type song than the abnormal isolate song at the start of the
chains. Importantly, the change was gradual, with modifica-
tions to the song in the direction of wild-type structure accu-
mulating over several generations.

The fact that the cumulative cultural evolution of structure
can be observed in species other than humans raises the ques-
tion of why only humans have language. If iterated learning
leads straightforwardly to structure in behaviour, why don’t
we see it throughout nature? As Berwick and Chomsky (2016)
ask: Why only us? There must be something about human
biology that leads to our species alone possessing language.
In particular, given the results of our experiment in baboons,
why don’t even our closest primate relatives exhibit either
systematically structured behaviour or, indeed, cumulative
culture in the wild?

I think the answer to that question comes when we look at
the scaffolding we had to build into our baboon experiment
design for the study to be successful. The baboons did not
know that the patterns they were recreating were the product
of another animal, nor that their own patterns would be trans-
mitted to another. They were participating in social learning
without being aware of it. In fact, the reason the baboons
attempted to copy the grid pattern of another individual is
simply because we provided a highly reliable reward structure
for doing so. The behaviour of the robotic food dispenser in
Claidiere and Fagot’s lab is what lead them to copy large sets
of behaviours, and ultimately what lead to the cumulative
cultural evolution of systematic behaviour.

Whereas the baboons had an exogenous reward mecha-
nism that provided the platform for cultural evolution in that
experiment, humans do not—at least not in most cases.
Instead, uniquely among primates, we appear to have an en-
dogenous reward mechanism for copying vast sets of behav-
iours. For some reason, we appear to seek out opportunities to
copy not just a handful of behaviours, but whole sets of them.
This drive forms part of the platform required for iterated
learning.

In addition to wanting to copy, we also appear unusu-
ally predisposed to share; what Fitch (2010) calls
Mitteilungsbedürfnis. These two predispositions—to
learn signals, and to share meanings—are the two ingre-
dients that seem to be required for our models of the
emergence of compositionality through iterated learning.
Our models are specifically designed to acquire signals
paired with meanings, and the agents are required to pro-
duce signals for a set of meanings to transmit the behav-
iour they learn from one generation to the next. So, if we
are looking for the unique human adaptation that gives us

systematic structure in language, then perhaps we need to
be looking for the biological origins of these two traits.

One approach is to look for analogous traits in other
species. I will provide two suggestive examples, both in-
volving domestication. First is the case of the so-called
farm fox experiment (Belyaev, 1979; Trut, 1999). In this
experiment, Siberian foxes were artificially selected purely
for lack of aggression. Over the course of 30 generations,
a remarkable suite of phenotypic changes took place in
which the foxes took on traits typical of domesticated
species, including variations in coat colour and changes
in cranial size. Most strikingly, however, is that the foxes
began to exhibit sensitivity to human communicative in-
tent—a trait previously only found in dogs (Hare et al.,
2005). Specifically, fox kits were able to perform as well
as dog puppies in using point-and-gaze cues to find hid-
den food. The evidence for this kind of sensitivity in
nonhuman primates is equivocal at best, and yet it is
surely a prerequisite for the kind of cultural transmission
required for the emergence of linguistic structure.

Second is the case of the Bengalese finch (Okanoya, 2002,
2004, 2015). These domesticated birds were bred for their
plumage over the past 250 years. When compared to their
wild-type predecessor, the white rumped munia, they exhibit
a markedly richer song with a finite state syntax that is shaped
significantly by exposure to the song of conspecifics.
Crucially, the Bengalese finch song is less constrained than
the munia song: Whereas munia will only acquire a very nar-
row range of species–specific songs, the domesticated bird’s
capacity for learning is broader. It seems that here, too, a key
underpinning trait required for iterated learning of language—
learning signals—can be significantly shaped by domestica-
tion without specific selection on that trait itself.

Domestication appears to lift certain selection pressures off
a species, triggering the evolution of analogs of the traits re-
quired for language to emerge (Deacon, 2003, 2009, 2010;
Thomas, 2014). If domestication can lead to analogs of the
predispositions to share and copy meaningful signals in other
species, the obvious question is whether it played a role in
human evolution as well. Are we a domesticated species,
and did this lay the foundations for iterated learning?
Thomas (2014) sets out a lengthy argument to suggest that
this is indeed the case. Certainly, humans show many of the
identifying features of the domesticated phenotype, marking
us out as a very unusual ape. For example, reduced teeth size,
decreased skeletal robustness, and cranio-facial shortening are
all features of humans, and all typical of domesticated species.
It is possible that changes in our environment—for example,
in our feeding ecology (Hare,Wobber, &Wrangham, 2012)—
led to selection for lack of aggression. This change in selective
pressures on our temperament could have created in us the
various features of the domestic phenotype, which we have
seen elsewhere can produce the two pillars needed for the
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cultural evolution of communicative behaviours: learning of
complex signals and sharing of communicative intentions.7

Once we are transmitting sets of these behaviours through
iterated learning, two pressures are brought to bear on the
culturally evolving system. From learning in the presence of
a bottleneck comes the pressure for compressible behaviours.
From the fact that the behaviours are used for discriminating
meanings comes the pressure for expressivity. The languages
that emerge are the product of the joint optimisation process of
cultural evolution, with key structural design features of lan-
guage being the inevitable outcome. The bulk of the explan-
atory load for this account is on cultural evolution operating
with a very general simplicity bias in learning. This stands in
contrast to an account that suggests many features of language
arise from innate constraints on learning and are the result of
natural selection for communication. Our models of gene-
culture coevolution suggest that this is the least plausible ex-
planation. We expect the language faculty to contain strong
constraints only if they are domain general (e.g. arising from
general principles of simplicity) and that any domain-specific
constraints will be weak.

Conclusion

Iterated learning of sets of behaviours involves repeated trans-
mission of mental representations of those sets of behaviours
through an informational bottleneck.8 Behaviours adapt to
better pass through this bottleneck. The actual structure of
the behaviours that emerges through iterated learning depends
on a number of factors, not least of which is what the behav-
iour is used for. However, an overarching universal arising
from this cultural process is that compressible sets of behav-
iours pass through the bottleneck more easily. If behaviours
also need to be expressive then rich systematic structure ap-
pears to be the inevitable result.

This argument applies to language. The mental representa-
tions in this case are grammars, and the behaviours are

utterances. The informational bottleneck is the limited data
available to the child language learner. Universal properties
of language emerge from simple grammars (that arise from
sets of utterances evolving that are compressible) that are nev-
ertheless expressive.

The same kind of argument could be made for other kinds
of behaviours, with appropriate changes to the nature of the
expressivity pressure. For example, music and dance involve
sets of behaviours being transmitted culturally, with a pressure
for those behaviours to be kept expressive—in the sense that
there is some pressure for diversity among the set. It should be
no surprise therefore that music and dance also exhibit sys-
tematic structure (Ravignani et al., 2016). We have already
argued that birdsong provides a natural example of systemat-
ically structured behaviour that is shaped by iterated learning.
Note again, however, that the expressivity pressure is quite
different. Song does not carry semantic information and the
diversity we see in song repertoires may fulfil a quite different
function (e.g. signalling singer quality or good development;
Nowicki, Peters, & Podos, 1998; Ritchie, Kirby, & Hawkey,
2008). As a result, it is perhaps no surprise that bird song
syntax does not exhibit the kind of syntactic complexity typ-
ical of language (Berwick et al., 2011).

In this article I have given numerous examples of the
way in which cultural evolution leads naturally to an
increase in systematicity through cumulative evolution
of compressible behaviours. The coevolutionary
Bayesian models further demonstrate that the existence
of cultural evolution can reduce the selection pressure
on the maintenance of strong constraints on the form
languages can take. Taken together, these results suggest
that taking cultural evolution seriously shifts the explan-
atory burden for structural design features of language
away from biological evolution and consequently re-
shapes our expectations for the nature of the language
faculty.

Finally, this work suggests an approach to language
evolution that takes a broad view of both the term
language and the term evolution. I have argued that the
unique features of language that mark it out as Nature’s
most extraordinary phenotype arise from the fact that it can
only persist through perpetual transformation, from internal
representation (as grammars) to external manifestation (as
sets of utterances) and back again, a process mediated by
our language faculty. In this view it is these transforma-
tions that language goes through that matter for explaining
why it is the way it is, and we do not need to take either
the internal or external form to be primary. Equally, I have
emphasised that Bevolution^ is not a process that is limited
to one form of inheritance. With a trait like language,
biological evolution takes place alongside individual learn-
ing and cultural transmission. We are only now beginning
to understand the respective roles of these complex

7 We can speculate whether there could have been an intermediate stage
where one, but not the other trait was in place. If learning complex signals
came first, then we could imagine something akin to Darwin’s (1871)
theory of a protomusical ape, producing learned vocal behaviours that
were not yet semantic (Fitch, 2006). If sharing of communicative inten-
tions came first, then we may have been an ape that could improvise
ostensive/inferential communication as needs demanded it, but without
that communication forming a culturally transmitted conventional system
(Scott-Phillips, 2014).
8 In the simulations and many of the experiments I described the bottle-
neck involves withholding items, forcing learners to generalise on test.
However, in some experiment, such as the immediate imitation iterated
learning experiments described in Section 7, the bottleneck is more indi-
rect, arising from the limited memory of the participants in the
experiment.
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adaptive systems in shaping language, and the various
ways they interact in doing so.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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