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ABSTRACT: 

Parallel sequencing of a single cell’s genome and transcriptome provides a powerful tool to dissect 

genetic variation and its relationship to gene expression. Here we present a detailed protocol for G&T–

seq, a method for separating and sequencing genomic DNA and full-length polyA(+) mRNA from single 

cells in parallel. We describe step-by-step the isolation and lysis of single cells, the physical separation 

of polyA(+) mRNA from genomic DNA using a modified oligo–dT bead capture and the respective 

whole-transcriptome and whole-genome amplifications, and finally the library preparation and 

sequence analyses of these amplification products. The method allows the detection of thousands of 

transcripts in parallel with the genetic variants captured by the DNA-seq data of the same single cell. 

G&T-seq differs from other currently available methods for parallel DNA and RNA sequencing from 

single cells as it involves physical separation of the DNA and RNA and does not require bespoke 

microfluidics platforms. The process can be implemented manually or with automation. When 

performed manually, paired genome and transcriptome sequencing libraries from 8 cells can be 

produced in approximately 3 days by researchers experienced in molecular laboratory work. For users 

with experience in the programming and operation of liquid handling robots, paired DNA and RNA 

libraries from 96 single cells can be produced in the same time frame. Analysis and integration of single 

cell G&T-seq data requires a high level of bioinformatic ability and familiarity with a wide range of 

informatics tools.  

 

INTRODUCTION 

The study of the genomes or transcriptomes of single cells continues to highlight the extent, nature 

and role of the cellular heterogeneity that arises in organisms in health and disease 1-3. Advances in 

whole-genome amplification (WGA) have allowed diverse aspects of single-cell genomes to be 

analysed, including DNA copy number variants (CNV) 4,5, structural variants (SV) 6-8 and single 

nucleotide variants (SNV) 5,9-11. WGA is currently performed by Multiple Displacement Amplification 

(MDA), Polymerase Chain Reaction (PCR), or a combination of displacement pre-amplification and PCR 

(DA-PCR). Each WGA method has its characteristic amplification artefacts, offering different resolution 

across the whole spectrum of genetic variants.12-14 MDA is often the method of choice for genotyping 

or discovery of SNVs in single cells as it offers the widest breath of coverage across the whole genome 

with high fidelity stemming from the strong proof-reading capacity of phi29 polymerase 5,6,9-11,15,16. In 

contrast, PCR- and DA-PCR based WGA (e.g. PicoPLEX 17 or MALBAC 18) have less amplification bias and 

lower fidelity and therefore they are usually better suited for single-cell DNA copy number profiling 12-
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14. In parallel, there are a variety of methods capable of exploring a single cell transcriptome by 

sequencing. Using whole-transcriptome amplification (WTA) of reverse transcribed mRNA-molecules, 

an increasing diversity of methods are capable of exploring the single-cell transcriptome by 

sequencing1,2,19. These methods allow either high-throughput tag sequencing of the 3’ or 5’ ends of 

mRNA 20-22 or more medium-throughput sequencing of full-length transcripts 23-27. For instance, the 

Smart-seq2 method 24,25 uses template-switching to generate first strand cDNA molecules of full-

length transcripts  with adaptor sequences at both ends. These universal adaptor sequences are then 

used to prime PCR amplification of the transcriptome, and full-length cDNA PCR amplicons are used 

as input for sequence library preparation by tagmentation, enabling single cell mRNA-seq.  

However, in the methods described above only the genome or the transcriptome can be analysed, but 

not both from the same single cell. Hence, it was previously not possible to correlate changes in a 

cell’s genome with those in its transcriptome.  

We recently developed G&T-seq, a method that allows parallel sequencing of the genome and 

transcriptome of a single cell 17. We demonstrated that the method can robustly generate full-length 

transcriptome data and genomic DNA sequences of the same cell. Here we present a detailed protocol 

for the G&T-seq method, which can be implemented either manually or on automated liquid handling 

platforms depending on the desired throughput.  

Development and overview of the procedure 

The method (Fig. 1 and Suppl. Fig. 1) was developed as a means to analyse in parallel the genomes 

and transcriptomes of single cells. Nevertheless, we have also successfully applied G&T-seq to larger 

numbers of pooled cells (10-100) thereby allowing small populations of rare cells to be analysed as 

well. We specifically devised the G&T-seq method to be readily automatable on robotic liquid handling 

platforms which are readily available in the majority of genomics laboratories, and using off-the-shelf 

reagents to allow implementation without custom technical development. The adaptation and 

combination of existing protocols into the G&T-seq protocol has also allowed existing data analysis 

approaches for single cell DNA and RNA sequencing to be directly applied to G&T-seq data with little 

or no modification.   

Automation allows higher throughput processing (10s to 100s of single cells) and fluorescence 

activated cell sorting (FACS) is an efficient means by which single cells can be isolated in 96-well plates. 

Furthermore, FACS offers the capability of selecting very rare cells based on the expression of cell 

surface markers1,19. However, FACS is not suitable for all applications, and manual isolation is 
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preferable when only a small starting population of single cells is available for collection (e.g. if all 

individual blastomeres from an 8-cell cleavage stage embryo are to be collected)19,28.  

After deposition of the single cells into the lysis buffer, the 96-well plates should immediately be 

sealed, centrifuged and stored at –80°C until it is convenient to process them. We chose to use a 

guanidine isothiocyanate and detergent based lysis buffer, which lyses the isolated cell and its nucleus, 

to maximise availability of both RNA and genomic DNA (gDNA) into solution while still remaining 

compatible with the subsequent separation step. Magnetic beads coated with a modified version of 

the tailed oligo-dT primer from the Smart-seq2 protocol24,25 are then added to capture the polyA(+) 

mRNA-molecules from the lysis buffer. After mixing and magnetic precipitation of the beads in the 

lysate, the supernatant containing the gDNA is collected and transferred to a new plate. A key 

challenge when physically separating RNA and DNA from the same cell is the possibility of losing 

material during this process, and so to maximise transfer of all gDNA, the bead-bound polyA(+) mRNA 

is washed thoroughly but carefully. After each wash the supernatant wash buffer is collected and 

added to the gDNA-containing cell lysate present in the new plate. To further minimise loss of gDNA, 

the same tips are used for all transfer steps and the tips are washed after the last transfer; this final 

wash is added to the pool of wash buffer and gDNA-containing cell lysate.    

Following removal of the last wash buffer from the polyA(+) mRNA loaded beads, the reverse 

transcription (RT) mastermix is added. The RT reaction is similar to the Smart-seq2 protocol24,25, with 

the exceptions that no denaturing step is performed before RT and the RT reaction is performed with 

constant mixing to prevent sedimentation of the beads to which the polyA(+) mRNA molecules are 

bound. We observed that the transcriptome sequences obtained from single cells using G&T-seq were 

comparable to those generated by Smart-seq2 in terms of the numbers of transcripts detected, full-

length transcript coverage, GC content distribution of transcripts, and the detection of spike-in RNA 

molecules17.  These similarities indicate that no additional biases are introduced as a result of the 

physical separation of polyA(+) mRNA from the cell lysate.  

The gDNA in solution of the pool of polyA(+) mRNA-depleted cell lysate and all wash buffer is first 

concentrated to allow downstream WGA and library preparation. To this end, a Solid Phase Reversible 

Immobilization (SPRI) bead based concentration is performed, after which the purified single-cell 

genome is resuspended in a suitable buffer for WGA. The SPRI bead concentration of DNA is also 

undertaken with considerable care to minimise loss of material at this stage.  

The G&T-seq method is compatible with various WGA methods: we have successfully applied 

PicoPLEX, MDA and MALBAC protocols on G&T-seq isolated DNA. The choice of WGA method is 
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dependent on the desired readout of the experiment 12-14. In our hands, PicoPLEX is preferred when 

analysing the cell’s gDNA for copy number variants, whereas we use MDA for detecting SNVs or SVs 

6,17. 

Following parallel whole-genome and whole-transcriptome amplification, each original single cell will 

generate separated amplified gDNA and cDNA samples. Both are suitable as input for tagmentation 

based library preparation, such as Illumina’s Nextera XT protocol, which offers an efficient and 

convenient means to rapidly produce multiplexed library pools from 96 single cells 17,25. These allow 

sequencing of the polyA(+) mRNA-derived cDNA in parallel with the amplified gDNA for the study of 

gene expression and genetic variants, respectively. However, if whole-genome or targeted DNA-

sequencing is to be performed, conventional adaptor-ligation based library preparation approaches 

are most often used5,9-11,17, so as to preserve as much complexity as possible from the input material.  

We have previously shown that by sequencing the genome and transcriptome of a single cell in 

parallel, G&T-seq can readily distinguish the transcriptional consequences of chromosomal 

aneuploidies and interchromosomal fusions in a cell, and can as well detect coding SNVs at the single-

cell genome and transcriptome level 17. 

Comparison with other methods for DNA- and RNA-seq of the same single cell 

An alternative method for parallel DNA and RNA sequencing from a single cell (DR-seq) was recently 

described by Dey et al. 29 and has also successfully been applied to investigate the relationship 

between DNA copy number and gene expression dosage. DR-seq differs from G&T-seq in two respects.  

First, that there is no physical separation of gDNA and polyA(+) mRNA prior to amplification, which 

may have the potential to minimise losses which could occur in G&T-seq when the gDNA is transferred 

to a separate tube for processing, and second in its ability to perform the reaction in a single tube 

which may make the procedure more amenable to transfer into droplet-based microfluidic formats. 

However, DR-seq utilises a modification of the CEL-seq protocol for WTA 20,29, which selectively targets 

the 3’ ends of transcripts, meaning that the full length of the transcript cannot be sequenced, and thus 

splicing variants, fusion transcripts, and the majority of expressed SNVs cannot be detected. 

Additionally, the WGA component of the DR-seq protocol uses a modification of the MALBAC 

approach, whereas G&T-seq is a more open platform, allowing WGA to be performed using any 

available method and thus a choice of a WGA method that is optimal for addressing the research 

question 12,17. Furthermore, because DR-seq amplifies DNA and mRNA without physical separation, it 

requires in silico masking of the exons in the genome to determine DNA copy-number variation. In 

contrast, Li et al. 30 have also demonstrated the physical separation of DNA and RNA from a single cell, 
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and examined SNVs in both the exome and the transcriptome. While such observations can also be 

made using the G&T-seq protocol, they did not demonstrate the feasibility of detecting copy number 

variants and structural variants in the DNA with the respective gene dosage expression and fusion 

transcript in the RNA of the same cell. Finally, microfluidic separation and sequencing of DNA and RNA 

from the same single cell has also been demonstrated31. This method employs a custom-built 

microfluidics circuit to capture single cells, lyse their membranes and thus release cytoplasm 

(containing mRNA) and the nucleus (containing gDNA) for separate capture and amplification. While 

the method has thus far only been applied for targeted sequencing and PCR analysis of DNA and RNA 

from the same single cell, such microfluidic approaches offer the opportunity to image the captured 

cell, to miniaturise reaction volumes and potentially to operate at great scale. However, none of the 

above methods has been demonstrated to be amenable to automation for high throughput 

processing, which is an essential component of most single-cell based studies. A key aim in the 

development of the G&T-seq protocol was that it should be amenable to automation on platforms 

which are already routinely accessible in most genomics laboratories, enabling medium to high 

throughput on existing infrastructure. Single cell studies generally require analysis of 100s, if not 

1000s, of cells in parallel, and as such the ability to perform analyses in parallel at this scale is an 

essential part of the development of any new method.  

Limitations 

We have successfully applied the G&T-seq protocol to multiple cell types of mouse or human origin. 

Nevertheless, there are a number of potential limitations to the method. The WTA component of the 

method is currently limited to amplification of polyA(+) mRNA and thus cannot amplify polyA(-) RNA 

molecules. Also, strand specificity of the mRNA is lost as a consequence of the WTA. The WGA 

component of G&T-seq, similar to all current single-cell WGA methods, suffers from amplification bias 

relating to %GC-content, allelic drop-outs, base mis-incorporations due to polymerase errors during 

amplification, and production of chimeric DNA molecules 12,17. The physical separation of polyA(+) 

mRNA and gDNA may contribute further to the problem of allelic dropout. However, we have not 

observed large Mb-scaled segments of chromosome(s) dropping out in our DNA copy number analyses 

of normal human and mouse single cells. Additionally, we demonstrated that genome sequencing 

read-outs of G&T-seq are comparable to those obtained from the corresponding single-cell WGA 

sequencing in isolation 17.  

APPLICATIONS OF THE METHOD: 
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Integrative single cell DNA and RNA analysis is required to reveal genotype–phenotype associations 

within single cells and to study the impact of genetic variation in a cell on transcript levels and isoforms 

of the same cell. Integrative single-cell DNA and RNA analyses also enable the reconstruction of cell 

lineage trees using the DNA sequences of the cells, and subsequently to annotate this cell lineage tree 

with the transcriptional phenotype of the same cells. As such, the method is broadly applicable in 

developing an understanding of the biology of cellular heterogeneity in normal development and 

disease processes including embryology, neurology and oncology. 

Furthermore, G&T-seq can act as a platform to support a variety of means by which the genomes and 

transcriptomes of single cells can be explored in parallel. Depending on the nature of the experimental 

question, the WGA and WTA products can be analysed in ways other than Illumina short read single- 

or paired-end sequencing. The WTA component of G&T-seq provides full-length cDNA, of which single 

molecules can be read from start to end on long-read sequencers such as the Pacific Biosciences RSII, 

providing valuable information about transcript splicing and expression of fusion transcripts in single 

cells. When investigating putative fusion transcripts arising from inter- or intra- chromosomal fusions, 

G&T-seq has the capacity of revealing the causative genomic rearrangement in the same single cell. 

Also, the WTA or WGA products can be screened with qPCR to confirm the presence of a transcript or 

genetic variant in individual cells, respectively. Furthermore, the WGA product within G&T-seq may 

be also subjected to exome or other forms of targeted sequencing. Lastly, the separated gDNA is 

amenable to other protocols such as single-cell bisulfite sequencing (scBS-seq)32. Indeed we have 

recently demonstrated that the G&T-seq plaform can be used as the basis for single cell Methylome 

and Transcriptome sequencing (scM&T-seq), which allows parallel exploration of the epigenome and 

gene expression in the same single cell33.  

Experimental Design 

We designed the G&T-seq method to support processing of samples in 96-well plates, as studies 

involving single-cell analyses will often need throughput of this and greater magnitude to reveal the 

heterogeneity inherent in cell populations. For the processing of these plates, access to liquid handling 

robots is strongly recommended, and it should in principle be possible to use any of the common 

commercially available platforms equipped with a 96-channel head. Nevertheless, the protocol can be 

performed manually if such high throughput is not required.  

When isolating single cells into 96-well plates for G&T-seq, we recommend including both multi-cell 

positive controls (where typically 10 to 50 cells are sorted into a single well) as well as empty-well 

negative controls. The multi-cell positive controls are particularly useful when new cell types are being 
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investigated and while FACS sorting conditions are being optimised. The empty-well controls are 

useful indicators of any contamination that may occur. Furthermore, the inclusion of spike-in RNA 

molecules, such as those developed by the ERCC 34, can be useful in assessing the performance of the 

single-cell WTA following sequencing. It is important to titrate the ERCC input carefully, depending on 

the cell type investigated, such that sequencing capacity is not overwhelmingly consumed by the 

spike-ins at the expense of measuring the cell’s endogenous RNA. We recommend performing test 

experiments using a cell line that is well characterised in your laboratory. 

Quality control (QC) of the process can be performed at various stages of the protocol. WGA and WTA 

products can be assessed for size distribution and yield using an Agilent Bioanalyser, and qPCR to 

detect the presence of genomic regions or the expression of housekeeping genes, allowing screening 

for successful amplification in advance of sequencing. After sequencing, further QC can be performed 

on both the DNA and RNA sequences to eliminate cells with lower quality data from any downstream 

analysis. 

Applying G&T-seq requires expertise in the handling and isolation of single cells, molecular biology 

and next-generation sequencing techniques. The support of core facilities with expertise in laboratory 

automation, FACS and sequencing would be extremely beneficial when implementing the method.  
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MATERIALS 

REAGENTS: 

 Cell or tissue source for single-cell isolation. We have successfully performed the G&T–seq 

protocol on mouse blastomeres, human HCC38 breast cancer and HCC38-BL lymphoblastoid 

cell lines, human iPSC-derived neurons as well as primary human and mouse cells.  

o CAUTION: The cell lines used in your research should be regularly checked to ensure 

they are authentic and are not infected with mycoplasma. 

 RNaseZap (Ambion, cat. no. AM9780) 

 DNA-OFF (Takara Bio, cat. no. 9036) 

 Nuclease free water (Ambion, cat. no. AM9937) 

 10 M NaOH (Sigma-Aldrich, cat. no. 72068) 

 5 M NaCl (Ambion, cat. no AM9760G) 

 0.5 M EDTA, pH 8.0 (Promega, cat. no V4231) 

 UltraPure 1 M Tris-HCI Buffer, pH 7.5 (Thermo, cat. no  15567027) 

 Trizma® Pre-set crystals, pH 8.3 (Sigma, cat. no T8943) 

 1 M MgCl2 (Ambion, cat. no. AM9530G) 

 2 M KCl (Ambion, cat. no. AM9640G) 

 DTT (Sigma 1M, cat. no. 646563) 

o ! CAUTION: DTT is toxic when ingested. Avoid inhaling fumes or contact with the skin. 

Handle it using appropriate safety equipment. 

 50% (vol/vol) Tween 20 (Invitrogen, cat. no. 003005) 

 Buffer RLT Plus (Qiagen, cat. no. 1053393) 

o ! CAUTION: Buffer RLT contains guanidine thiocyanate which is harmful and should be 

handled with appropriate safety equipment. 

 SUPERase In (Ambion, cat. no. AM2696) 

 ERCC RNA Spike-In Mix (Ambion, cat. no. 4456740) 

 Dynabeads MyOne Streptavidin C1 (Invitrogen, cat. no.  65001) 

 SuperScript II reverse transcriptase (Life technologies, cat. no. 18064071) 

 5X first-strand buffer (Life technologies, cat. no. 18064071) 

 DTT (Invitrogen, cat. no. 18064-014) 

! CAUTION: DTT is toxic when ingested. Avoid inhaling fumes or contact with the 

skin. Handle it using appropriate safety equipment. 

 Betaine solution 5M (Sigma, cat. no. B0300-1VL) 



 10 

 dNTP mix 10mM each (Life technologies, cat. no. 18427-013) 

 Kapa Hifi HotStart ReadyMix (Kapa, cat. no. KK2601) 

 Agencourt AMPure XP Beads (Beckman Coulter, cat. no. A63881) 

 Buffer EB (Qiagen, cat. no. 19086) 

 WGA kit: PicoPLEX WGA Kit (Rubicon Genomics, cat. no. R30050) or Genomiphi V2 DNA 

Amplification Kit (GE Healthcare, cat. no. GE25-6600-31) or alternative WGA kit, depending 

on expected read-out. To the best of our knowledge, we are unaware of a commercially 

available WGA kit that would be incompatible with G&T-seq.  

 Ethanol 95-97% (vol/vol) AnalaR Normapure analytical reagent (VWR, cat. no. 20823.327) 

o ! CAUTION: Ethanol is flammable and should be stored carefully and handled with 

appropriate safety equipment.  

 Nextera XT DNA sample preparation kit, 96 samples (Illumina, cat. no. FC-131-1096) 

 Nextera XT 96-index kit, 384 samples (Illumina, cat. no. FC-131-1002) 

 Agilent High-sensitivity DNA kit (Agilent Technologies, cat. no. 5067-4626) 

 Agilent 12000 DNA kit (Agilent Technologies, cat. no. 5067-1508) 

EQUIPMENT: 

 UV PCR Workstation (e.g. UVP UV PCR Workstation, 95-0367-02) and dedicated pre-

amplification pipettes. 

 Ultraviolet Crosslinker (e.g. UPV, CL-1000) 

 1.5 mL Microcentrifuge Safe-Lock tubes, polypropylene (Sigma-Aldrich, cat. no. T9661) 

 15 mL and 50 mL polypropylene Falcon tubes (BD, 352096 and 352070) 

 DynaMag Spin Magnet (Life Technologies, cat. no. 12320D) 

 Vortex Mixer (e.g. PV-1, Grant Instruments) 

 Microcentrifuge (e.g. N2631-0007, Starlab UK) 

 Fluorescence Activated Cell Sorter compatible with single cell deposition into 96-well plates; 

we routinely use an Influx (BD), FACSaria III (BD) or a MoFlo (Beckman Coulter) sorter.  

 If manual isolation of cells is to be performed, we have successfully applied the STRIPPER 

Pipettor System (Origio, MXL3-STR-CGR) with 75 µL tips (Origio, MXL3- 75)  

 FrameStar 96 well skirted PCR plates (4titude, cat. no. 4ti-0960/C) 

 Multi-dispensing pipette (e.g. Multipette Xstream from Thermo. cat. no. 4986 000.025) 

 Refrigerated centrifuge and adaptors for 96-well plates (e.g. 5810 R, Eppendorf) 

 Rotator compatible with 1.5 mL microcentrifuge tubes (e.g. LD59, Labinco) 
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 Automated liquid handling platform. We have automated the indicated parts of the method 

on a BioMek FXP Laboratory Automation Workstation (Dual Arm system with multichannel 

pippeter and Span-8 pippeter; Beckman Coulter, cat. no. A31844). Other common robotic 

liquid handling platforms should be compatible with the protocol. The platform requires a 

station to keep reagents cooled to 4 °C (e.g. an on-deck Peltier cooled block) and an on-deck 

orbital shaker. 

 Low elution magnet plate (Alpaqua, cat. no. A000350)  

 ThermoMixer C (Eppendorf, cat. no.5382 000.015) 

 ThermoTop (Eppendorf, cat. no. 5308 000.003) 

 SmartBlock PCR 96 (Eppendorf, cat. no. 5306 000.006) 

 Thermal cycler (e.g. MJ Research Tetrad, cat. no. PTC-225) 

 Automated liquid handling platform in the post-PCR room. We apply a Zephyr Compact Liquid 

Handling Workstation (Perkin Elmer, cat. no. 125550) for the bead-based purification steps of 

amplification products. 

 Agilent 2100 Bioanalyser (Agilent Technologies, cat. no. G2938C) 

 Nanodrop 2000c (or similar apparatus) for DNA quantification (Thermo Scientific) 

 An Illumina next-generation sequencing platform (MiSeq, NextSeq or HiSeq platform). 

 Suitable computing infrastructure for NGS sequence analysis and the following software 

packages: 

o BWA (http://bio-bwa.sourceforge.net/)35,36 

o Cutadapt (https://cutadapt.readthedocs.org/en/stable/)37 

o Trim Galore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) 

o Samtools (http://www.htslib.org/)38  

o Picard (https://broadinstitute.github.io/picard/index.html) 

o Ginko (http://qb.cshl.edu/ginkgo/?q=/9duLgmqFJvmE93gLpo80)39 

o GATK (https://www.broadinstitute.org/gatk/) 

o R (https://www.r-project.org/) 

o Circos (http://circos.ca/)40 

o HTSeq (http://www-huber.embl.de/HTSeq/doc/overview.html)41 

o Tophat2 (https://ccb.jhu.edu/software/tophat/index.shtml)42 

o Deseq2 (https://bioconductor.org/packages/release/bioc/html/DESeq2.html)43 
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REAGENT SETUP: 

Cell lysis buffer 

To prepare lysis buffer for one 96-well plate, transfer 2.5 µL of Buffer RLT to each well of the plate. It 

is not necessary to include RNAse inhibitor as the guanidine isothiocyanate in the lysis buffer should 

effectively inactivate RNAses. Perform these steps in a clean pre-amplification PCR/laminar flow 

cabinet, then seal and centrifuge the plate (2,000 g for 1 minute). Although Buffer RLT is stable at 

room temperature, we typically prepare plates immediately before preparation of single-cell samples.  

ERCC spike-ins 

Prepare 10 µL aliquots of a 1:100 dilution of the ERCC standards in nuclease free water, and store at -

80 °C. For each day/experiment, thaw a fresh aliquot on ice and (serially) dilute to the desired final 

concentration in nuclease free water. Typically 1:1,000,000 is a good starting dilution to use, of which 

1 µL is added to each cell lysate. However, we recommend that the ERCC concentration is first 

optimised for different cell types and sizes. Prepare these dilutions on ice in a clean pre-amplification 

PCR/laminar flow cabinet. Once thawed, the unused portion of the ERRC aliquot should be discarded.   

Dynabeads Solution A 

NaOH (0.1 M) and NaCl (0.05 M) in nuclease free water. To prepare 50 mL of this buffer add 500 µL of 

10 M NaOH and 500 µL of 5 M NaCl to 49 mL of nuclease free water. This buffer can be prepared in 

bulk and stored at 4° C for up to one month. Prepare this solution at room temperature in a clean pre-

amplification PCR/laminar flow cabinet. 

Dynabeads Solution B 

NaCl (0.1 M) in nuclease free water. To prepare 50 mL of this buffer add 1 mL of 5 M NaCl to 49 mL of 

nuclease free water. This buffer can be prepared in bulk at room temperature and stored at 4° C for 

up to one month. Prepare this solution in a clean pre-amplification PCR/laminar flow cabinet. 

Dynabeads 2x ‘Binding and Wash’ (B&W) buffer 

10 mM Tris-HCl (pH 7.5), 1 mM EDTA and 2 M NaCl in nuclease free water. To prepare 50 mL of this 

buffer, add 0.5 mL of 1M Tris-HCL (pH 7.5), 100 uL of 0.5 M EDTA and 20 mL of 5 M NaCl to 29.4 mL of 

nuclease free water.  This buffer can be prepared in bulk at room temperature and stored at 4 °C for 

up to one month. Prepare this buffer in a clean pre-amplification PCR/laminar flow cabinet. 

G&T-seq wash buffer 
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50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM DTT, 0.5% (vol/vol) Tween-20. Prepare this 

buffer in a clean pre-amplification PCR/laminar flow cabinet. To prepare 50 mL of G&T-seq wash 

buffer, combine 25 mL of 0.1 M Tris-HCl (pH 8.3), 1.875 mL of 2 M KCl, 30 µL 0.5 M MgCl2, 50 µL 1M 

DTT, 50 µL 50% (vol/vol) Tween and 22 mL of nuclease free water.  Mix by vortexing.  This buffer can 

be prepared in bulk at room temperature  and stored at 4 °C for up to one month, but should be 

supplemented with 0.05x RNAse Inhibitor (SUPERase In) immediately before use.  

Biotinylated Oligo-dT30VN 

(5’-Biotin-TEG-AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN-3’) This 

primer should be ordered RNAse free and HPLC purified. Resuspend at 100 µM in nuclease-free water. 

Perform these steps in a clean pre-amplification PCR/laminar flow cabinet. Once resuspended, this 

oligo should be stored at -20 °C and in our hands has been stable for >6 months.   

Template Switching Oligo (TSO) 

(5’-AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3’) (Exiqon) resuspend at 100 µM in nuclease-free 

water. Perform these steps in a clean pre-amplification PCR/laminar flow cabinet. Once resuspended, 

this oligo should be store at -80 °C and in our hands has been stable for > 6 months. Repeated freeze-

thaw cycles should be avoided and we recommend preparing single use 10 µL aliquots.  

ISPCR oligo (5’-AAGCAGTGGTATCAACGCAGAGT-3’) resuspend at 100 µM in nuclease-free water or TE 

buffer. Perform these steps in a clean pre-amplification PCR/laminar flow cabinet. Once resuspended, 

this oligo should be storedat -20 °C and in our hands has been stable for >6 months.  

EQUIPMENT SETUP: 

The protocol can be performed manually on small numbers of samples, however if numerous single 

cells are to be analysed, we strongly advise the use of automated liquid handling platforms. 

Pre-Amplification Setup 

In a clean pre-PCR room, we use a BioMek FXP Laboratory Automation Workstation for steps 19-27 

and steps 49-54 of the G&T-seq protocol. Images of the deck layout for running the G&T-seq protocol 

on our robot are shown in Supplementary Figures 1 and 2. Alternative liquid handling platforms may 

be used, but require a cooling station, orbital shaker and a low elution magnet plate. It is important 

to carefully programme the liquid handling platform for optimal mixing and minimising bubble 

formation during pipetting. Other essential equipment in the pre-PCR room includes a UV PCR 

workstation with conventional P2, P20, P200 and P1000 pipettes, a UV cross-linker, a digital multi-
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dispensing pipette, 1.5 mL microcentrifuge tubes, 15 mL and 50 mL falcon tubes, a magnet for 1.5 mL 

microcentrifuge tubes, a vortex mixer, a microcentrifuge, a refrigerated centrifuge and adaptors for 

96-well plates, a thermomixer for 96-well plates and a thermal cycler for 96-well plates. 

Post-Amplification Setup 

In the post-PCR room, we use a Zephyr Compact Liquid Handling Workstation for steps 36-45, 56, 74 

of the G&T-seq protocol. Other essential equipment in the post-PCR room includes P2, P20, P200 and 

P1000 pipettes, a P20 multichannel pipette, vortex, centrifuges for 1.5mL microcentrifuge tubes and 

96-well plates, apparatus for DNA quantification and an Agilent 2100 Bioanalyser. 
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PROCEDURE: 

Preparation of single-cell samples (Timing: 30 mins - 1 hour) 

! Critical step: single-cell work is extremely sensitive to contamination; all experiments should be 

performed using a PCR or laminar flow hood with UV-sterilisation as dedicated “pre-amplification” 

workspace. Sets of pipettes and all reagents should be reserved for single-cell pre-amp protocols and 

the amplified cDNA and gDNA should be handled only in a physically separated working environment. 

Traffic between these pre- and post-amplification areas should be kept to a minimum, and separate 

lab coats and other Personal Protective Equipment (PPE) should be used in each work area. Pre-

amplification areas should be cleaned with DNA-OFF and RNAZap before and after each experiment.  

1) In the pre-amplification work area, prepare 96-well plates containing 2.5 µL of lysis buffer per well. 

2) Seal and centrifuge the plates (2,000 g for 1 minute at 4°C) to remove bubbles and to ensure lysis 

buffer is at the bottom of each well.  

3) Following preparation of a single-cell suspension, single cells can be deposited directly into the 

lysis buffer contained in each well by FACS, or by manual isolation and transfer. If cells are isolated 

manually, e.g. using micropipetters, transfer them in the smallest possible volume (0.5 µL or less). 

We recommend including a multi-cell control (typically 10-50 cells) as a positive control as well as 

at least 1 empty well per plate as a negative control. 

! Critical step:  Regardless of the cell type being analysed and the means by which single cells are 

isolated, processing time should be kept minimal. Long processing times may result in cell death 

or aberrations in the cells’ transcriptomes. 

! Critical step: When using FACS for single cell deposition, considerable care must be taken to 

ensure accurate deposition of the single cells into the 96-well plates. This can be optimised by (i) 

FACS sorting beads onto a sealed 96-well plate to calibrate the site of deposition in a well of a 

plate, and (ii) sorting calcein AM stained single cells into clear-bottomed 96 well plates followed 

by visual inspection under a fluorescence microscope to determine whether indeed single cells 

are being deposited. 

4) Centrifuge the plate containing cells in lysis buffer (2,000 g for 1 minute at 4°C) before transferring 

the plate to -80° C for storage. The cells immediately lyse within the lysis buffer.  

 

PAUSE POINT: once single cells have been deposited into RLT buffer and stored at -80° C, the 

samples are stable for >1 month, and we have successfully processed plates after >6 months in 

storage.   
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Preparation of oligo-dT30VN labelled beads (Timing: 1 hour) 

! Critical step: steps 5-13 should be performed in a dedicated pre-amplification laboratory, with steps 

5-9 and 11-13 in a pre-amplification PCR hood/laminar flow cabinet. 

5) Add 50 µL of Dynabeads in a 1.5 mL Eppendorf tube and place on a magnet designed for handling 

Eppendorf tubes (e.g. DynaMag Spin Magnet from Invitrogen) for 30 seconds (or until a clear solution 

is obtained), then completely remove the supernatant whilst keeping the tube on the magnet. 

6) Remove the tube from the magnet and resuspend the beads in 200 µL of Dynabead solution A. 

Return the tube to the magnet for 30 seconds (or until a clear solution is obtained) and remove the 

supernatant whilst keeping the tube on the magnet. Repeat once.  

7) Remove the tube from the magnet and resuspend the beads in 200 µL of Dynabead solution B. 

Return the tube to the magnet for 30 seconds (or until a clear solution is obtained) and remove 

supernatant completely whilst keeping the tube on the magnet. 

8) Remove the tube from the magnet and resuspend the beads in 50 µL of 2x B&W buffer. 

9) Add 50 µL of 100 µM Biotinylated Oligo-dT30VN to the beads. 

10) Incubate for 20 min with gentle rotation on the rotator. In those 20 min, steps 14 to 18 may be 

performed; afterwards return immediately to step 11. 

11) Place the Eppendorf containing the Oligo-dT30VN conjugated beads on the magnet for 30 seconds 

(or until a clear solution is obtained) and discard the supernatant whilst keeping the tube on the 

magnet. 

12) Wash the beads four times in 200 µL 1 x B&W buffer. For each wash, remove the tube containing 

the beads from the magnet, resuspend the beads in 200 µL 1 x B&W buffer, then return the tube to 

the magnet and remove –whilst keeping the tube on the magnet– the supernatant once the bead 

suspension has cleared.  

13) Prepare 1 mL of bead resuspension buffer by combining and mixing the reagents as indicated in 

the table below, then add 1 mL of bead resuspension buffer to the beads and mix the beads by 

vortexing until completely resuspended.  

! Critical step: Once the RNAse inhibitor is added, the beads should be used immediately. If steps 14 

to 18 are already performed; immediately continue with step 19. 
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Component Amount (µL) Final Concentration 

Superscript II first strand buffer (5x) 200 1x 

RNAse inhibitor (20 U/µL) 50 1 U/µL 

Nuclease Free Water 750  

 

Addition of ERCC spike-ins (Timing: 10 mins) 

! Critical step: During protocol optimisation we recommend adding the ERCC spike-ins after cell 

collection to allow for easier titration of ERCC amounts, however ERCC spike-ins can also be added 

directly to the lysis buffer when preparing plates for cell collection.  

14) Remove the plate that contains the single cells in lysis buffer from the -80 °C freezer on ice. When 

thawed, centrifuge at 1,000 g for 1 min at 4°C.    

15) In the pre-amplification laminar flow cabinet, add 1 µL of a suitable dilution of ERCC spike-in to 

each well using a digital multi-dispensing pipette (e.g. Multipette Xstream from Thermo), dispensing 

the droplet onto the side of the well. Seal the plate. 

16) Centrifuge at 1,000 g for 1 min at 4°C to collect the ERCC droplets at the bottom of the well with 

the single-cell lysate.    

Physical separation of polyadenylated mRNA and gDNA (Timing: 1.5 hours) 

17) In the pre-amplification laminar flow cabinet, prepare 500 µL of reverse transcription (RT) 

mastermix per 96-well plate (100 reactions) by combining and mixing the reagents in the table below 

in the indicated order (starting at the top) on ice. Store this RT mastermix on ice until use.   

Component Amount (µL) Final Concentration 

Nuclease-free water 179.5  

dNTP mix (10 mM each) 50 1 mM each 

TSO (100 µM) 5 1 µM 

MgCl2 (1 M) 3 6 mM 

Betaine (5 M) 100 1 M 

Superscript II first strand buffer (5x) 100 1x 

DTT (100 mM) 25 5 mM 

Superscript II reverse transcriptase (200 U/µL) 25 10 U/µL 
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RNAse inhibitor (20 U/µL) 12.5 0.5 U/µL 

Total Volume 500  

 

18) In the pre-amplification laminar flow cabinet, prepare wash buffer. Mix 2475 µL of G&T-seq wash 

buffer with 25 µL of RNAse inhibitor at room temperature. Dispense 25 µL of this wash buffer mix into 

each well of a new 96-well plate labelled ‘G&T-seq wash buffer plate’. Seal the plate, centrifuge at 

1,000 g for 1 min at 4°C and store at room temperature until use.   

! Critical step: In our laboratories, steps 19 to 27 are performed on deck of a liquid handling robot, but 

may also be performed manually. The volumes indicated in those steps are per well –i.e. per sample– 

and are thus valid for both the automated and manual version of the G&T-seq protocol. When 

performed manually, keep working in a clean pre-amplification laminar flow cabinet. When 

performing the automated G&T-seq protocol, set up your liquid handling robot as described in 

Supplementary Figure 1. We describe the protocol for single cells (plus positive and negative controls) 

that have been deposited in a 96-well plate. 

19) Add 10 µL of Oligo-dT30VN beads of step 13 to each well of the 96-well plate containing the lysed 

single-cell samples of step 16. 

20) Incubate with mixing (2,000 rpm using an on-deck mixer or thermomixer) for 20 min at room 

temperature; if the plate is removed from the robot deck for this step then the plate should be sealed.   

21) Place the plate on a low-elution magnet for 96-well plates for 1 min and remove supernatant. 

Carefully transfer the supernatant –which contains the gDNA of the cell– to a new 96-well plate in the 

same orientation and keeping track of the address of each cell. This is the ‘gDNA collection’ 96-well 

plate. 

! Critical step: Use the same tip for all subsequent washes and transfers of supernatant (steps 22 – 

25). This can help to minimise the loss of gDNA during these steps.  

22) Wash beads with 10 µL G&T-seq wash buffer. Resuspend the beads off the magnet in G&T-seq 

wash buffer and mix for 5 minutes using the on-deck orbital shaker or a thermomixer at room 

temperature. If the plate is removed from the robot deck for this step then the plate should be sealed.   

23) Return the bead-resuspended 96-well plate to the low-elution magnet and allow the beads to 

precipitate for 1 min. Carefully transfer all supernatant to the corresponding well in the ‘gDNA 

collection’ 96-well plate. 
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24) Repeat steps 22 and 23 to wash the beads a second time.  

25) Wash the pipetting tips with G&T-seq wash buffer. Aspirate the remaining 5 µL of G&T-seq wash 

buffer into the tips and transfer this to the corresponding well in the ‘gDNA collection’ 96-well plate. 

The entire 25 µL of the G&T-seq wash buffer should now have been transferred to the corresponding 

well on the gDNA collection 96 well plate.  

26) Dispense 5 µL of RT mastermix into each well of the bead-containing 96-well plate. This plate is 

now referred to the ‘polyA(+) mRNA 96-well plate’. 

27) Collect the polyA(+) mRNA 96-well plate from the liquid handling robot, seal it and centrifuge 

(1,000 g for 1 min at 4°C) to collect both the RT mix and bead-captured mRNA at the bottom of the 

well. 

! Critical step: immediately continue with the processing of the polyA(+) mRNA, i.e. immediately 

perform step 29 then return to step 28. 

28) Collect the ‘gDNA collection’ 96-well plate from the liquid handling robot, seal and centrifuge 

(1,000 g for 1 min at 4°C) to collect all liquid at the bottom of the well. The DNA can now be stored at 

-80 °C until required for further processing (step 47 and following). 

Reverse Transcription (Timing: 2 hours) 

29) Place the polyA(+) mRNA 96-well plate on an Eppendorf Thermomixer C equipped with a 

ThermoTop to prevent evaporation and perform the thermal and mixing steps outlined below. This 

RT reaction will convert the polyA(+) mRNA to PCR-amplifiable cDNA molecules. Once the 

thermomixing has been initiated return to step 28. 

Cycle Temperature (°C) Time Mixing 

(rpm) 

Purpose 

1 42 2 min 2000 Resuspension of the beads, RT and 

Template switching 

2 42 60 min 1500 RT and Template switching 

3 50 30 min 1500 RT and Template switching 

4 60 10 min 1500 Enzyme inactivation 
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30) Once RT is complete, centrifuge the plate (1,000 g for 30 seconds at room temperature) to collect 

liquid at the bottom of the wells.  

PCR amplification of cDNA (Timing: 3 hours) 

31) Prepare the PCR reaction mastermix fresh as described in the table below. 

Component Amount (µL) Final Concentration 

Kapa HiFi HotStart ReadyMix (2x) 625  1x 

IS PCR primers (10 µM) 12.5 0.1667 µM 

Nuclease-free water 112.5  

Total Volume 750  

 

32) Add 7.5 µL of the PCR reaction mastermix directly to the side of each well of the 96-well plate 

containing PCR-amplifiable cDNA molecules from step 30, resulting in a total volume of 12.5 µL. Seal 

the plate and centrifuge (1,000 g for 30 s at room temperature) to collect the liquid at the bottom of 

the wells. 

33) Mix the beads and reaction mixture briefly on the Eppendorf Thermomixer C (60 s at 2,000 rpm, 

room temperature) to ensure suspension of the beads.  

34) Perform cDNA amplification on a thermal cycler equipped with a heated lid set to 105 °C.   

Cycle Number Denature Anneal Extend Final 

1 98 °C, 3 min    

2-19 98 °C, 20 s 67 °C, 15 s 72 °C, 6 min  

20   72 °C, 5 min  

21    4 °C, Hold 

 

! Critical step:  The cycle number may need to be optimised for different cell types depending on the 

mRNA content of the cell. 

PAUSE POINT: Remove the plate containing the amplified cDNA from each single cell from the thermal 

cycler, and centrifuge it at 1,000 g for 1 min at 4°C. Subsequently, the cDNA product can be stored at 

-20 °C for several months before purification.  

Purification of the Amplified cDNA (Timing: 1 hour)  
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! Critical step: steps 35-46 should be performed in a dedicated post-amplification room separate from 

the location of pre-amplification and cell isolation. We perform this process using the Zephyr 

automated liquid handling robot, however alternative liquid handling platforms or manual processing 

are also possible.  

35) Allow Agencourt AMPure beads to warm up to room temperature for 15 min before use, gently 

mixing to ensure the beads are evenly resuspended. Meanwhile, also spin the plate containing the 

amplified cDNA of each single cell (from step 34) at 1,000 g for 1 min at 4°C. 

36) Add 12.5 µL of the Agencourt AMPure beads to each well of the 96-well plate containing the PCR-

amplified cDNA molecules (1:1 ratio) at room temperature, and mix thoroughly by pipetting up and 

down. Allow the mixture to stand for 5 min at room temperature.  

37) Transfer the plate to a low-elution magnet and allow the beads to settle for 2 min or until the 

solution is clear. 

38) Once the Agencourt AMPure beads have settled, carefully remove the supernatant without 

disturbing the beads. 

39) Keeping the 96-well plate on the magnet, wash the Agencourt AMPure beads with 100 µL of freshly 

prepared 80% (vol/vol) ethanol for 30 s, then remove the ethanol wash. This should be done without 

disturbing the beads. 

40) Repeat step 39 once. 

41) Remove any remaining ethanol solution from the well without disturbing the beads and then allow 

the Agencourt AMPure beads to dry for approximately 5 min.  

42) Add 25 µL of nuclease free water to the Agencourt AMPure beads, remove the plate from the 

magnet and resuspend by pipetting up and down at room temperature.  

43) Incubate this 96-well plate for 2 min off the magnet at room temperature. 

44) Return the 96-well plate to the magnet and allow the Agencourt AMPure beads to settle for 5 min 

or until the solution is clear.  

45) Carefully remove the supernatant, which contains the purified cDNA, without disturbing the beads 

and transfer it to a new 96-well plate at room temperature.  

PAUSE POINT: The amplified cDNA can be stored at -20 °C for >6 months before library preparation.  
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Quality Control of Amplified cDNA (Timing: 1 hour) 

46) Check the quality of the cDNA using a High Sensitivity Chip on an Agilent Bioanalyser. A successful 

reaction should generate cDNA between 0.5 and 2 kb reaching a maximum at about 1-1.5 kb (Fig. 2A). 

At this point, the most abundant ERCC spike-ins (at ~0.5 and 1 kb) may also be visible. We have also 

found qPCR for housekeeping genes to be a useful means to assess the number of failed 

amplifications, when it is not practical to analyse each well on the Bioanalyser. Failed amplifications 

are mostly due to cells with degraded RNA (Fig. 2B) or ‘empty’ wells in which no cell was deposited 

during flow-sorting or manual isolation (Fig. 2C). 

Purification of gDNA (Timing: 1 hour)  

! Critical step: perform all steps in this process in a dedicated pre-amplification laboratory. We 

perform steps 49-54 on deck of a liquid handling robot placed in the pre-amplification laboratory –a 

BioMek FXP Laboratory Automation Workstation– but may also be performed on alternative liquid 

handlers or manually. All manual steps in this process must be performed in a pre-amplification PCR 

hood/laminar flow cabinet. 

47) Allow Agencourt AMPure beads to warm up to room temperature for 15 min before use, gently 

mixing to ensure the beads are evenly resuspended.  

48) If the ‘gDNA collection’ 96-well plate from step 28 has been frozen; first thaw it on ice, ensure that 

it is completely thawed, then centrifuge for 1 min at 1,000 g at 4 °C to collect the liquid at the bottom 

of the well. The plate should contain 38.5 µL of liquid in total.  

49) Add 25 µL of Agencourt AMPure beads to each well of the plate (0.75:1 ratio) at room temperature 

and mix thoroughly by pipetting up and down. Allow the mixture to stand for 20 min at room 

temperature. 

50) Transfer the ‘gDNA collection’ 96-well plate containing the Agencourt AMPure beads to a Low 

Eution magnet and allow the beads to settle for 20 min at room temperature. 

51) Once the Agencourt AMPure beads have settled, carefully remove the supernatant without 

disturbing the beads. 

52) Keeping the plate on the magnet, wash the Agencourt AMPure beads with 100 µL of freshly 

prepared 80% (vol/vol) ethanol for 30 s at room temperature, then remove the ethanol wash. This 

should be done without disturbing the beads. 

53) Repeat step 52 once. 
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54) Remove any remaining ethanol solution from the well and then allow the Agencourt AMPure 

beads to dry for approximately 5 min at room temperature.  

55) Depending on the desired downstream application, chose to perform PicoPLEX or MDA WGA on 

the purified gDNA.  

! Critical step: The choice of WGA protocol is largely depending on the desired readout. In general, 

MDA-based WGA methods are often preferred for SNV or SV detection, but can be suboptimal for the 

assessment of DNA copy number changes in the genome 6,12-14. In contrast, we and others have found 

that PicoPLEX generally outperforms MDA for DNA copy number profiling of single cells following low 

coverage sequencing, however it lacks the breadth of coverage and base-level fidelity of MDA-based 

methods 6,12,14. At this stage in the protocol one can either follow path A for PicoPLEX-based WGA or 

path B for MDA-based WGA of the single-cell DNA. 

A) WGA using PicoPLEX from Rubicon Genomics / New England Biolabs (Timing: 3 hours) 

! Critical step: perform all steps in this process in a pre-amplification PCR hood/laminar flow cabinet 

in a dedicated pre-amplification laboratory. 

i) Prepare the PicoPLEX Sample/Extraction mix as described in the table below, which is sufficient 

mastermix for one 96-well plate. Mix well and keep on ice. 

Component Volume (µL) 

PicoPLEX Cell Extraction Buffer 250 

PicoPLEX Extraction Enzyme Dilution Buffer 240 

PicoPLEX Cell Extraction Enzyme 10 

  

ii) Using a digital multi-dispensing pipette dispense on ice 5 µL of the PicoPLEX Sample/Extraction mix 

to each well of the 96-well plate containing the dried Agencourt AMPure beads, then seal the plate. 

iii) Centrifuge the plate (1,000 g for 1 min, 4 °C) to collect the liquid and the Agencourt AMPure beads 

at the bottom of the plate. 

iv) Resuspend the Agencourt AMPure beads by placing the plate on an orbital shaker, or using the 

Eppendorf Thermomixer C, and mixing vigorously (2,000 rpm) for 1 min at room temperature. 

v) Place the plate in a thermal cycler with a heated lid and perform the following steps: 
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Cycle Temperature (°C) Time 

1 75 10 min 

2 95 4 min 

3 4 hold 

 

vi) Centrifuge the plate (1,000 g for 1 min at 4 °C) to collect the liquid and the Agencourt AMPure 

beads at the bottom of the plate. 

vii) Prepare on ice the Pre-Amp mastermix as described in the table below, which is sufficient 

mastermix for one 96-well plate.  

Component Volume (µL) 

PicoPLEX Pre-Amp Buffer 240 

PicoPLEX Pre-Amp Enzyme 10 

 

viii) Using a digital multi-dispensing pipette, add 2.5 µL of Pre-Amp mix to each well of the 96-well 

plate on ice, then seal the plate.  

ix) Centrifuge the plate (1,000 g for 1 min at 4 °C) to collect the liquid and the Agencourt AMPure 

beads at the bottom of the plate. 

x) Resuspend the Agencourt AMPure beads by placing the plate on an orbital shaker, or using the 

Eppendorf thermomixer C, and mixing vigorously (2,000 rpm) at room temperature for 1 min. 

xi) Return the plate to the thermal cycler and perform the following steps: 

 

Cycle Number Denature Anneal & Extend Final 

1 95 °C, 2 min   

2-13 95 °C, 15 s 15°C, 50 s 

25°C, 40 s 

35°C, 30 s 

65°C, 40 s  

75°C, 40 s 
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14   4 °C, Hold 

 

xii) Centrifuge the plate (1,000 g for 1 min at 4 °C) to collect liquid and Agencourt AMPure beads at 

the bottom of the plate. 

xiii) Prepare the Amplification mastermix as described in the table below on ice, which is sufficient 

mastermix for one 96-well plate. Mix well and keep on ice.  

Component Volume (µL) 

PicoPLEX Amplification Buffer 1250  

PicoPLEX Amplification Enzyme 40 

PicoPLEX Nuclease Free Water 1710 

 

xiv) On ice, add 30 µL of Amplification mastermix to each well of the 96-well plate using a digital multi-

dispensing pipette.  

xv) Seal the plate and centrifuge (1,000 g for 1 min at 4 °C) to collect the liquid and the Agencourt 

AMPure beads at the bottom of the plate. 

xvi) Resuspend the Agencourt AMPure beads by placing the plate on an orbital shaker, or using the 

Eppendorf thermomixer C, and mixing vigorously (2,000 rpm) at room temperature for 1 min. 

xvi) Return the plate to the thermal cycler and perform the following steps to generate the amplified 

gDNA product.  

 

 

Cycle Number Denature Anneal Extend Final 

1 95 °C, 2 min    

2-15 95 °C, 15 s 65 °C, 1 min 75 °C, 1 min  

16    4 °C, Hold 

 

PAUSE POINT: The PicoPLEX amplified cDNA product can be stored at -20 °C for several months before 

purification.  
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B) WGA by MDA using GenomiPhi V2 from GE healthcare (Timing: 3 hours) 

! Critical step: perform all steps in this process in a pre-amplification PCR hood/laminar flow cabinet 

in a dedicated pre-amplification laboratory. 

i) Mix the GenomiPhi V2 Sample Buffer with nuclease-free water as described in the table below, 

which is sufficient mix for one 96-well plate. Mix well and keep on ice. 

Component Volume (µL) 

GenomiPhi V2 Sample Buffer 900 

Nuclease free water 100 

 

ii) On ice, add 10 µL of this mixture to each well of the 96-well plate containing the dried Agencourt 

AMPure beads from step 54, then seal the plate.  

iii) Centrifuge the plate (1,000 g for 1 min at 4 °C) to collect the liquid and the Agencourt AMPure 

beads at the bottom of the plate. 

iv) Resuspend the Agencourt AMPure beads by placing the plate on an orbital shaker, or using the 

Eppendorf thermomixer C, and mixing vigorously (2,000 rpm) for 1 min at room temperature. 

v) Denature the template DNA by heating the sample to 95 °C for 3 minutes then immediately cool to 

4 °C. Once cool, centrifuge the plate (1,000 g for 1 min at 4 °C) to collect the liquid and the Agencourt 

AMPure beads at the bottom of the wells. 

vi) Prepare the MDA mastermix as described in the table below on ice, which is sufficient mastermix 

for one 96-well plate. Mix well and keep on ice. 

Component Volume (µL) 

GenomiPhi V2 Reaction Buffer 900 

GenomiPhi V2 Enzyme Mix 100 

 

vii) On ice, add 10 µL of this mixture to each well of the plate and seal the plate. Centrifuge the plate 

(1,000 g for 1 min at 4 °C) to collect the liquid and the Agencourt AMPure beads at the bottom of the 

wells.  

viii) Transfer the plate to the Eppendorf Thermomixer C and perform the following incubation: 
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Cycle Temperature (°C) Time Mixing 

(rpm) 

Purpose 

1 30 2 min 2000 Resuspension of the beads, amplification 

2 30 90 min 1500 Amplification 

3 65 10 min 1500 Enzyme inactivation 

 

ix) Centrifuge the plate (1,000 g for 1 min at 4 °C) to collect the liquid and the Agencourt AMPure 

beads at the bottom of the well. 

PAUSE POINT: The MDA amplified cDNA product can be stored at -20 °C for several months before 

purification.  

Purification and QC of Amplified gDNA (Timing: 1 hour)  

! Critical step: perform steps 56-76 in a dedicated post-amplification room  

56) Perform an AMPure bead clean-up of the single-cell WGA product generated in step 55 A or B as 

performed in steps 35-45 with two minor modifications. In step 36, adjust the volume of Agencourt 

AMPure beads added to the sample respecting a 1:1 ratio (i.e. 37.5 µL of the Agencourt AMPure bead 

suspension if continuing from step 55A-xvi and 20 µL of the Agencourt AMPure bead suspension if 

continuing from step 55B-x) and, in step 42, eluting in 100 µL of nuclease free water. 

57) Measure the DNA concentration of the purified single-cell WGA product using a nanodrop. Both 

MDA and PicoPLEX WGA protocols typically generate more than 0.5 µg of DNA.   

58) Check the quality of the amplified gDNA using an  Agilent Bioanalyser. Purified PicoPLEX WGA 

product should be analysed on a High sensitivity chip and generate a peak between 300 and 2,000 bp 

(Fig. 2D). MDA WGA products are much longer (1-20kb) and should be analysed using the 12000 DNA 

kit from Agilent or by gel electrophoresis.  

PAUSE POINT: The amplified gDNA can be stored at -20 °C for >6 months before library preparation.  

Tagmentation-based library preparation using the Nextera XT Sample Preparation kit (Illumina) 

(Timing: 2 hours)  

! Critical step: for the preparation of sequencing libraries from single-cell PicoPLEX WGA product, the 

Nextera XT DNA Library Prep Kit (Illumina) generates libraries of sufficient complexity for genome-

wide DNA copy number profiling using low coverage sequencing (see below). However, when the 
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experimental aim requires the detection of single nucleotide variant changes, or structural 

rearrangements, we recommend conventional adaptor ligation based method (e.g. Illumina TruSeq, 

or Kapa HyperPlus) following the manufacturer’s instructions on single-cell MDA WGA product. We 

have successfully analysed MDA-amplified gDNA from the G&T-seq protocol on the Illumina HiSeq X 

platform using the manufacturer’s specified protocol 17. For sequencing the amplified cDNA of single 

cells, we use the Nextera XT DNA Library Prep Kit (Illumina) as in the Smart-seq2 protocol 25 with minor 

modifications.  

Below we describe our approach of tagmentation using the Nextera XT DNA Library Prep Kit (Illumina). 

For conventional adaptor ligation based methods for library preparation, we recommend following 

the manufacturer’s instructions of the applied kit. 

59) Dilute purified WTA product (i.e. amplified and purified single-cell cDNA from step 45) or purified 

WGA product (i.e. amplified and purified single-cell gDNA from step 56) to 0.2 ng/µL.  

60) Prepare the tagmentation mastermix for one 96-well plate of purified WTA or WGA product as 

described in the table below using the reagents provided with the Nextera XT DNA Library Prep Kit, 

mix the solution carefully with a pipette and keep on ice. 

Component Volume (µL) 

Tagment DNA Buffer 300 

Amplicon Tagment Mix 150 

Total Volume 450 

 

61) Dispense 3.75 µL of tagmentation mastermix to each well of a new 96-well plate on ice. 

62) Transfer 1.25 µL of the diluted WTA or WGA product to each well of the ‘tagmentation mastermix’ 

plate, keeping the plates in the same orientation and mixing gently with each addition. Perform this 

step on ice. 

63) Seal the ‘tagmentation reaction’ plate, mix gently using an Eppendorf thermomixer C or similar 

(1,000 rpm for 1 min at room temperature), and centrifuge (1,000 g for 1 min at 4 °C) to collect the 

mixture at the bottom of the wells.  

64) Perform the tagmentation reaction on the thermal cycler using the following settings. 

Cycle Temperature (°C) Time 
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1 55 10 min 

2 10 Hold 

 

65) Centrifuge (1,000 g for 1 min at 4 °C) to collect the mixture at the bottom of the wells. 

66) Add 1.25 µL of Buffer NT to each well of the 96-well ‘tagmentation reaction’ plate on ice, mixing 

gently with each addition. 

67) Centrifuge (1,000 g for 1 min at 4 °C) to collect the mixture at the bottom of the wells. 

68) Add 3.75 µL of Nextera PCR Mastermix (NPM) to each well of the 96-well ‘tagmentation reaction’ 

plate on ice, mixing gently with the pipette with each addition. Discard the tips after each addition.  

69) Add 1.25 µL of the appropriate Index 1 (N7xx) primer to each well of the 96-well ‘tagmentation 

reaction’ plate on ice, mixing gently with the pipette with each addition. Discard the tips after each 

addition. 

70)  Add 1.25 µL of the appropriate Index 2 (N5xx) primer to each well of the 96-well ‘tagmentation 

reaction’ plate on ice, mixing gently with the pipette with each addition. Discard the tips after each 

addition. 

71) Once NPM and both indexes have been added to each well, seal the plate and centrifuge (1,000 g 

for 1 min at 4 °C) to collect the reaction mix at the bottoms of the wells. 

72) Perform the amplification of the tagmented DNA fragments on a thermal cycler using the following 

program. 

 

 

 

Cycle Number Denature Anneal & Extend Final 

1 72 °C, 3 min   

2 95 °C, 30 s   

3-14 95 °C, 15 s 55 °C, 10 s  

15   72 °C, 5 min 

16   4 °C, Hold 
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Pooling and quantification of libraries (Timing: 3 hours)  

73) Pool the amplified libraries by transferring 5 µL from each well to a clean microcentrifuge tube. 

The remaining library can be kept for deeper sequencing (i.e. less multiplexing) should this be 

required.  

! Critical step:  If preparing libraries from a whole 96-well plate of single-cell WGA or WTA products, 

we often pool the 96 libraries without quantification of each individual library. This can lead to skewing 

of library representation within the multiplex sequencing reaction, however, if the input material is of 

similar quality and quantity, we rarely see severe over- or under-representation of specific libraries. If 

sequencing depth needs to be matched exactly between samples, we recommend quantification and 

normalisation of the individual libraries before pooling according to standard methods for Illumina 

sequencing libraries (e.g. using the KAPA Library Quantification Kit for Illumina platforms from Kapa 

Biosystems).   

74) Perform an Agencourt AMPure bead clean-up of the pooled library products as described in steps 

35-45, adjusting the volume of the beads in step 36 to have a 1:0.6 ratio between the library pool and 

the Agencourt AMPure beads (e.g. for a whole plate, 480 µL of library pool will be collected, to which 

288 µL of Agencourt AMPure beads should be added and mixed).  

75) Check the quality of the purified library pool using a High Sensitivity Chip on an Agilent Bioanalyser. 

A successful Nextera library preparation reaction, and hence also the library pool, should consist 

primarily of DNA fragments between 300 and 800 bases (Fig. 2E).  

76) Quantify the Nextera library pool derived from the single cells’ WTA or WGA product. We routinely 

quantify our libraries using the KAPA Library Quantification Kit for Illumina platforms. After 

quantification dilute the library if required (we typically dilute to 4 nM).  

Library sequencing 

! Critical Step: The depth of sequencing required for single cell genomes and transcriptomes can vary 

widely based on the experimental application. We typically sequence 96 libraries over 2 lanes on a 

HiSeq2500 (paired-end, 100 bp) running in rapid mode for cDNA sequencing (generating 

approximately 4-6 million reads per cell). This generally gives a sufficiently detailed overview of the 

cell’s transcriptome to allow differences in cell type or state to be observed. If more detailed analysis 

is preferred, for example if expressed SNVs or splice junctions are to be detected, it is possible to pool 

fewer single-cell samples per lane. 
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It is also possible to perform a higher degree of multiplexing for single cell transcriptomes if less detail 

is required per cell and suitable indexing primers are available, which can significantly reduce costs. 

We do not recommend shallower sequencing for single cell genomes unless very large (whole 

chromosome) copy number changes are anticipated. Where MDA based WGA has been performed, 

and full genome characterization of single cells is required, we recommend using the Illumina HiSeq X 

platform to achieve the depth required to observe genome wide SNVs in single cells.  

77) Perform single- or paired-end sequencing as required on the single-cell cDNA or gDNA derived 

libraries, in accordance with the manufacturer’s protocols. 

Data analysis 

! Critical step: the G&T-seq method can address a diverse range of biological questions, and as such, 

the analytical approaches required can vary significantly. Here, we provide details on how to process 

and perform QC the genome and transcriptome data generated, and indicate how the genomic and 

transcriptomic data from each single cell can be integrated to explore the relationship between 

chromosomal copy number and gene expression. Of course, a diverse range of analyses is possible 

with such data, and bespoke informatics tools may be required to explore particular questions of 

interest.   

Genome Data Analysis - Pre-processing and mapping of whole genome paired-end sequencing 

data 

78) The single-cell genome sequencing reads prepared with the Nextera XT kit are first trimmed for 

23 bases to remove adapter sequences. This can be done with Cutadapt (1).  

cutadapt -u 23 -o trimmed.single_cell_R1.fastq single_cell_R1.fastq 

79) For each single cell, align the trimmed sequences onto the appropriate reference genome (e.g. 

GRCh37 for human cells, mm10 for mouse cells) to generate separate SAI files for the first and 

second reads of the single-cell paired-end sequences using BWA (version 0.6.2) (2, 3). 

bwa aln -l 32 GRCh37.fa singlecell_R1.fastq.gz >singlecell_R1.sai 

bwa aln -l 32 GRCh37.fa singlecell_R2.fastq.gz >singlecell_R2.sai 

80) For each single cell, create the alignments in SAM format from the SAI files by applying sampe 

from BWA. 
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bwa sampe -P -s GRCh37.fa singlecell_R1.sai  singlecell_R2.sai singlecell_R1.fastq.gz  

singlecell_R2.fastq.gz >singlecell.sam 

81) Finally, convert the SAM file of a single cell to a BAM file and sort the alignments per 

chromosome using samtools (4). 

samtools view -hbS -o singlecell.bam singlecell.sam 

samtools sort singlecell.bam singlecell.sorted.bam 

82) Use Picard (http://broadinstitute.github.io/picard/) to mark PCR-duplicate reads in the single-cell 

BAM file, enabling their exclusion from downstream analyses. 

java –jar picard/MarkDuplicates.jar I=singlecell.sorted.bam O=singlecell.sorted_dedup.bam 

M=singlecell.txt REMOVE_DUPLICATES=true AS=true 

Genome Data Analysis - Read mapping performance 

83) The read mapping statistics can be explored using Samtools. Cells having a low fraction of the 

sequenced reads mapped (e.g. 2% or less) should be excluded from downstream analyses. 

samtools flagstat singlecell.sorted_dedup.bam 

Genome Data Analysis - Calculating the genome coverage 

84) The breadth of genome coverage for each single cell can be calculated using 

genomeCoverageBed from bedtools (5). 

samtools view -b singlecell.sorted_dedup.bam | bedtools/genomeCoverageBed -ibam stdin -

g GRCh37.chromosome.sizes >coverage_singlecell.txt 

Genome Data Analysis - DNA copy number profiling 

! Critical step: For DNA copy number profiling of single cells different tools are available, as Ginkgo 

(6) and SNS (7), which are directly compatible with the G&T-seq protocol. Step-by-step protocols of 

these tools are available: Ginkgo (http://qb.cshl.edu/ginkgo/?q=/fYIPzxxLZbaMO4NpMOrU), and SNS 

in the publication of Baslan et al. (7). These can be applied without modification. Ginko requires a 

BED file per single cell as an input to determine the DNA copy number. This can be done using 

Bedtools (5). 

bedtools/bamToBed -i singlecell.sorted_dedup.bam >singlecell.sorted_dedup.bed 
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For SNS, follow steps 66 to 86 in the protocol by Baslan et al. (7) 

85) We apply a similar protocol as Baslan et al (7) containing minor modifications. We apply BWA as 

a mapping algorithm, and retain uniquely mapping reads having the flag XT:A:U of BWA. Using 

flexible bins of 500,000 unique mappable positions, calculate the logR-values for each bin genome 

wide as 

logR= log2(#uniquely mapping reads in a specific bin/median of uniquely mapping reads 

across all genomic bins) 

and correct these logR-values per single cell for %GC-bias using a loess fit in R and further normalize 

the values to the median of the genome-wide logR values. The corrected logR values are segmented 

using piecewise constant fitting (8) (penalty gamma 15) and subsequently converted to DNA copy 

number using the statistical programming language, R (http://cran.r-project.org). 

CN = 2logR. Ψ 

(where Ψ is the average ploidy of the cell) 

86) The DNA copy number of each cell can be visualized in genome-wide plots (Fig. 3) and also 

heatmaps by using the heatmap.2 package in R or the Circos software (9). 

Genome Data Analysis - Quality control of the single-cell DNA copy number profiles 

87) For quality control, calculate the Median Absolute Pairwise Difference (MAPD) (10) of the 

genome-wide logR values per single cell. The higher the MAPD value the higher the overall noise in 

the copy number data. We usually discard single cells having a MAPD score higher than 0.6 or 2 

when the cell’s DNA was amplified with PicoPLEX or MDA, respectively.  

MAPD = median (| logR of bink+1 – logR of bink |) 

Genome Data Analysis - Detection of genomic single nucleotide variations (SNVs) 

! Critical step: The quality of sequencing reads and the aligned bases can vastly influence the 

accurate detection of SNVs. We use GATK (11) to first recalibrate base quality scores of sequencing-

by-synthesis reads in an aligned BAM file, and then call SNVs.  

88) Correct mapping-associated artifacts by re-aligning the reads around indels for each single cell 

using GATK software (11, 12). Using the publically available list of known indel regions of the 

reference genome like GRCh37, create a table of the intervals around which realignment has to be 

performed.  



 34 

java GenomeAnalysisTK.jar -T RealignerTargetCreator -R GRCH37.fa -o singlecell.bam.table -I 

singlecell.bam –known gold_indels.GRCh37.vcf 

89) Perform read realignment per single cell around the generated table of intervals in the previous 

step. 

java GenomeAnalysisTK.jar -T IndelRealigner -R GRCH37.fa -o singlecell.realigned.bam -I 

singlecell.bam -targetIntervals singlecell.bam.table –known gold_indels.GRCh37.vcf 

90) The BAM files with realigned sequences are further recalibrated to correct for the base quality 

scores.  

java GenomeAnalysisTK.jar -R GRCH37.fa -T BaseRecalibrator -I singlecell.realigned.bam --

knownSites latest_dbsnp.vcf -o singlecell.Realigned.basetable 

java GenomeAnalysisTK.jar -R GRCH37.fa -T PrintReads -I singlecell.realigned.bam -BQSR 

singlecell.Realigned.basetable -o singlecell.recalibrated.bam 

91) For each single cell, remove the PCR duplicates from recalibrated BAM file using Picard, see step 

82. 

Genome Data Analysis - Detection of SNVs using GATK 

92) Deduce the genotypes and calculate the allelic frequencies to detect genomic variant sites in an 

individual cell or multiple single cells together with minimum coverage of 2. 

java GenomeAnalysisTK.jar -R GRCH37.fa -T UnifiedGenotyper –I singlecell.recalibrated.bam 

-o singlecell.recalibrated.vcf -metrics singlecell.recalibrated.metrics -stand_call_conf 20.0 -

stand_emit_conf 10.0 -dcov 200 -glm SNP 

93) Using VariantRecalibrator from GATK, build the recalibration model based on resource sets like 

the hapmap and 1000 genomes project and assign the probabilities for each variant detected to 

filter the low-quality variants and retain only the high-quality variant sites. 

java GenomeAnalysisTK.jar -R GRCH37.fa -T VariantRecalibrator -input 

singlecell.recalibrated.vcf -resource:hapmap hapmap.vcf -an QD -an FS -an MQRankSum -an 

ReadPosRankSum -mode SNP -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 -

recalFile singlecell.recalibrated.recal -tranchesFile singlecell.recalibrated.tranches -rf 

BadCigar -an DP  
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java GenomeAnalysisTK.jar -R GRCH37.fa -T ApplyRecalibration -input 

singlecell.recalibrated.vcf -mode SNP --ts_filter_level 99.0 -recalFile 

singlecell.recalibrated.recal -tranchesFile singlecell.recalibrated.tranches -o 

singlecell.recalibrated.vcf 

Transcriptome Data Analysis  

94) From the single-cell WTA reads, remove library adapter sequences and quality trim (minimum 

score 20 “-q 20”) the reads using software as Cutadapt and TrimGalore! 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), with “-a” and “-a2” (adapter 

sequences), --paired, --retain_unpaired (to keep unpaired reads passing QC) and default values for 

the minimum read length (20 nt). 

trim_galore --a adaptor_5’ --a2 adaptor_3’ --paired --retain_unpaired singlecell_R1.fastq.gz 

singlecell_R2.fastq.gz 

95) Align the trimmed reads to the reference transcriptome/genome of the correct species and ERCC 

sequences using programs designed for mapping RNA-seq data such as TopHat2 (ref), -G (providing 

an annotation file - gtf format).  

tophat -G annotation.gtf singlecell_1_val_1.fq.gz singlecell_2_val_2.fq.gz 

96) Using the most recent genome annotation, quantify uniquely mapping reads and normalize read 

counts to take into account library size variation and RNA composition bias using HTSeq (ref) (--

mode=intersection-strict --stranded=no --type=exon --idattr=gene_id) and DESeq2 (ref), for instance.  

samtools view -q MAPPING_QUALITY accepted_hits.bam | python -m HTSeq.scripts.count --

mode=intersection-strict --stranded=no --type=exon --idattr=gene_id – annotation.gtf > 

htseq_counts.out 

97) Using genes whose transcripts are longer than 2kb, 10kb and 15kb estimate the nucleotide read 

coverage over concatenated exons, introns, 3’UTRs and 5’UTRs to quantify sequencing bias. 

98) To highlight libraries with potential issues and the impact of sequencing depth on gene 

expression calling, for each cell build the distribution of the number of expressed genes as a factor of 

increasing expression cutoffs (Transcript Per Million –TPM, for instance from 0.5 TPM to 1000 TPM), 

Figure 4. This provides a good overview of the number of transcripts detected per cell at the 

selected cutoff and for the exclusion of failed cells.  
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99) Based on the number of uniquely mapped reads and these distributions, filter the single-cell 

transcriptome data based on the number of mapped reads and the number of genes expressed 

above a set threshold. Based on the analysis of the distribution of the number of genes identified 

across We previously applied a threshold of at least 3,500 genes with a Transcript Per Million (TPM) 

≥ 1; i.e. single cells demonstrating less than 3,500 genes expressed at a TPM ≥ 1 were excluded from 

further analyses (Figure 4).  

100) Of single cells that pass these quality criteria, the normalized read counts can be analysed 

further, for example for differential gene expression analysis using DESeq2.  

Integrating Whole Chromosome aneuploidy copy number and expression data 

101) Using the most recent genome annotation, concatenate gene models within a same 

chromosome or chromosomal arm 

102) For each library, count reads mapping uniquely over these new annotations and estimate the 

expression (RPKM: Read per Kilobase of transcript per Million mapped reads) 

103) Median-center the chromosomal expression values of each cell using chromosome expression 

values computed in a controlled cell line with the same genetic background. Cells with chromosomal 

copy number will appear as outliers having, relative to control cells, either increased overall 

chromosomal expression in case of chromosome gain or decreased expression associated with 

chromosome loss. 

104) To investigate the relationship between chromosomal copy number and gene expression, the 

values for each chromosome, or chromosome arm generated in step 102 can be compared with the 

observations of chromosomal copy number from step 85. 
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TROUBLESHOOTING 

Step Problem Possible Reason Solution 

46 No cDNA after amplification – 

no WTA product visible during 

QC with the Agilent 

Bioanalyser 

Cell not sorted into 

well 

Check for presence of ERCC 

transcripts on the Bioanalyser 

electropherogram – if present, 

the amplification has most likely 

worked, but no cell was 

originally deposited into the 

lysis buffer. Optimise sorting 

conditions to maximise accurate 

deposition of single cells.  

46 Poor cDNA yield – low level of 

product visible during QC with 

the Agilent Bioanalyser 

Oligo-dT30VN beads 

not sufficiently 

mixed during 

DNA/RNA separation 

Ensure that Oligo-dT30VN beads 

and cell lysate are well mixed 

during incubation (step 20) 

46 Poor cDNA yield – low level of 

product visible during QC with 

the Agilent Bioanalyser 

Loss of mRNA or 

Oligo-dT30VN beads 

on tips used for 

mixing 

Ensure Oligo-dT30VN beads are 

fully captured on the magnet 

before eluting the supernatant  

46 Poor cDNA yield – low level of 

product visible during QC with 

the Agilent Bioanalyser 

Insufficient 

amplification - 

Different cell types 

can vary in terms of 

their cDNA yield. 

Smaller cells 

occasionally require 

more amplification 

to generate similar 

amounts of product 

Increase the number of PCR 

cycles in step 34.  

46 Poor cDNA yield – low level of 

product visible during QC with 

the Agilent Bioanalyser 

Poor sample quality 

– cells may be dying 

during isolation and 

FACS 

Perform live/dead staining on 

the cells, and gate for living cells 

in the FACS sort. 
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Optimise the cell isolation 

protocol for your tissue of 

interest to minimise cell death 

during processing. 

46 Poor cDNA yield – low level of 

product visible during QC with 

the Agilent Bioanalyser 

Oligo-dT30VN beads 

settling during RT 

Ensure Oligo-dT30VN beads are 

mixing during the reverse 

transcription reaction (step 29) 

46 “Noisy” amplification – short 

products detected during QC 

with the Agilent Bioanalyser 

Primer 

contamination or 

TSO 

concatamerisation 

Reduce the amount of TSO 

added to the reverse 

transcription reaction. We have 

found that 1:10 – 1:50 dilutions 

of the working stock described 

here maintain good 

performance while minimising 

the amount of primer 

concatamerisation  

46 and 

57 

No WGA product and no WTA 

product 

If a well generates no 

detectable WTA and 

no WGA product, it is 

likely the cell was not 

sorted into the well  

Consider optimisation of the 

sorting conditions to maximise 

accurate deposition of single 

cells in individual wells.  

57 and 

58 

WGA product from empty 

well controls 

Contamination 

during plate set up 

Ensure pre-amplification steps 

are carried out in dedicated 

“clean” areas with dedicated 

reagents.  

75 Nextera Library prep 

generates longer or shorter 

fragments than expected  

Under (longer 

fragments) or over 

(shorter fragments) 

fragmentation of the 

input DNA by the Tn5 

transposase. 

The input amount of WTA or 

WGA product for Nextera library 

preparation should be 

approximately 0.2-1 ng/µL; 

normalise the DNA 

concentration to this range 

before performing library prep.  

86 The single-cell DNA copy 

number profile is overly noisy 

Use of a WGA 

method that is 

Consider changing to another 

commercially available WGA 
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suboptimal for 

single-cell DNA copy 

number profiling 

method that is optimal for DNA 

copy number profiling (e.g. 

PicoPLEX, GenomePlex, 

MALBAC, Ampli1). 

As a control process at least 10 

single cells (of the same cell type 

or tissue) according to the 

manufacturer’s instructions for 

the WGA method in parallel. 

86 The single-cell DNA copy 

number profile is overly noisy 

Incomplete transfer 

of the cell’s gDNA 

during the 

separation and 

Oligo-dT30VN bead 

washing steps 21-25 

Optimise liquid handling by 

carefully monitoring whether all 

cell lysate and wash buffer is 

transferred to the ‘gDNA 

collection’ 96-well plate 

86 The single-cell DNA copy 

number profile is overly noisy 

Dying cells or cells in 

S-phase of cell cycle 

can give unusually 

uneven copy number 

profiles 

Include live/dead staining in any 

sorting to minimise the capture 

of dead or dying cells. DNA 

binding dyes can be employed 

to exclude cells which are in S-

phase from further analysis 
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TIMING: 

Day 1: 

Steps 1-4: Preparation of single-cell samples (Timing: 30 mins - 1 hour) 

Steps 5-13: Preparation of oligo-dT30VN labelled beads (Timing: 1 hour) 

Steps 14-16: Addition of ERCC spike-ins (Timing: 10 mins) 

Steps 17-28: Physical separation of mRNA and gDNA (Timing: 1.5 hours) 

Steps 29-30: Reverse Transcription (Timing: 2 hours) 

Steps 31-34: PCR amplification of cDNA (Timing: 3 hours) 

Day 2: 

Steps 35-45: Purification of Amplified cDNA (Timing: 1 hour) 

Step 46: Quality Control of Amplified cDNA (Timing: 1 hour) 

Steps 47-54: Purification of gDNA (Timing: 1 hour) 

Step 55 (A or B): WGA (Timing: 3 hours) 

Steps 56-58:  Purification and QC of Amplified gDNA (Timing: 1 hour) 

Day 3: 

Steps 59-72: Tagmentation-based library preparation using the Nextera XT Sample Preparation kit 

(Illumina) (Timing: 2 hours) 

Steps 73-76: Pooling and quantification of libraries (Timing: 3 hours) 

Day 4-7: 

Step 77: Library sequencing ~2 days (depending on sequencing technology) 

Steps 78-104: Data analysis 2 days-2 weeks (depending on analysis strategy) 
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ANTICIPATED RESULTS 

Step 46 

The first QC we generally perform during the G&T-seq protocol is assessing the quality of the cDNA 

generated from the modified Smart-seq2 reaction using an Agilent Bioanalyser. The reaction should 

behave very similarly to the Smart-seq2 reaction, and thus generate cDNA between 0.5 and 2 kb 

reaching a maximum at about 1-1.5 kb (Fig. 2A). In some cases, the cDNA can have a broader size 

distribution, which is predominantly made up of shorter fragments, indicating that the original RNA 

has been degraded (Fig. 2B). A common cause of failure at this stage is the failure to deposit a cell into 

the lysis buffer: in this case no DNA or RNA amplification is seen (Fig. 2C).  

Step 57  

Both PicoPLEX and MDA WGA protocols generate usually 0.5 up to 2 µg of amplified DNA per single 

cell.  

Step 58 

WGA products can also be analysed using the Agilent bioanalyser. For PicoPLEX WGA products, we 

expect fragment sizes between 300 and 2,000 bp in length (Fig. 2D). MDA WGA products are generally 

longer (1-20 kb).  

Step 75 

Nextera XT library preparation generates sequencing ready fragments between 300 and 800 bp in 

length (Fig. 2E). These fragments should then be quantified and diluted to a concentration suitable for 

sequencing.  

Step 82 (end result) 

We typically paired-end sequence both DNA and RNA libraries from 96 samples over 2 lanes each on 

a HiSeq 2500 running in rapid mode. This generates about 4-6 million reads per cell for both the 

genome and the transcriptome. Representative data and sequencing statistics from a variety of cell 

types (human cancer and transformed cell lines, iPSC derived neurons and mouse blastomeres) have 

been published17.  
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Step 86 (end result) 

Fig. 3 demonstrates the anticipated and potential outputs of genome wide copy number analysis of 

single cells. MDA products (Fig 3, A-C) generate noisy copy number profiles, but when QC criteria are 

met – in this case, the data has a MAPD score < 2 - the data can still demonstrate copy number changes 

between a HCC38 cancer cell (Fig 3A) and a matched normal HCC38-BL control (Fig 3B). Figure 3C 

shows a cell which has failed to meet this QC cut-off, and its data is too noisy to use for downstream 

analysis. In general, PicoPLEX genome wide copy number profiles (Fig. 3, D-F) display significantly less 

noisy copy number data than MDA and thus give more accurate copy number estimates. We use a 

more stringent MAPD cut-off for PicoPLEX data. Results are shown for a HCC38 cancer cell (Fig. 3D) 

and a matched normal HCC38-BL control (Fig 3E) which both passed QC (MAPD < 0.6). A failed 

PicoPLEX cell (MAPD > 0.6, Fig, 3F) lacks broad coverage of the genome and is also too noisy to provide 

accurate copy number estimates.  

 

Step 99 (end result) 

Typically, we detect many thousands of transcripts per cell, depending on the cell type, size and state. 

Fig. 4 shows the distribution of genes detected at different TPM cut-offs. We use TPM ≥ 1 as an 

expression cut-off, then use this as a means to calculate the number of genes expressed per cell. From 

our analysis of HCC38 and HCC38-BL cells, we have excluded cells which have less than 3,500 

transcripts expressed at this level, however both of these cut-offs can be varied depending on 

application.  
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Figure Legends: 

Figure 1:  

Stepwise overview of the G&T-seq method. DNA and RNA from a single cell are physically separated 

using a modified oligo-dT bead based strategy. Subsequently both DNA and RNA are amplified and 

sequencing libraries are prepared. DNA amplification can be performed using either MDA or PicoPLEX, 

depending on the desired experimental outcome.  

Figure 2:  

Representative Agilent Bioanalyser electropherogram plots from various stages of single-cell RNA and 

DNA amplification and library preparation. (A) A representative successful cDNA amplification, with a 

fragment distribution of between 500 and 2,500 bp, with an average size of 1.5-2 kb. (B) A failed 

reaction, most likely due to cell death or incomplete lysis. The cDNA is shorter and has a wider size 

distribution. (C) A failed reaction, most likely due to the absence of a cell in the original well. (D) A 

typical PicoPLEX WGA product from G&T-seq having a size range of 400 to 2,000 bp. (E) A typical 

Nextera XT library pool with a size distribution of 200 to 800 bp in length.    

Figure 3: 

Example genome-wide copy number plots. The grey bars represent the estimated relative copy 

number at each of 500,000 bins across the human genome, while the calculated copy number is shown 

by the horizontal red lines. Broad variation in copy number between bins indicated noisier data, and 

as such indicate the lower reliability of the data and a reduced ability to estimate true copy number. 

Panels A-C show MDA derived DNA from (A) an MDA product from a single HCC38 cancer cell which 

passed QC (MAPD score < 2), (B) a matched normal cell from the HCC38-BL cell line which passed QC 

(MAPD score < 2) and (C) a HCC38-BL cell which failed QC (MAPD score > 2). D-F show the same but 

from PicoPLEX generated libraries (D) from a HCC38 cell which passed QC (MAPD score < 0.6), (E) from 

a HCC38-BL which passed QC (MAPD score < 0.6), and (F) a HCC38-BL cell which failed QC (MAPD score 

> 0.6).  

Figure 4: 

Transcript detection in G&T-seq data from HCC38 and HCC38-BL cell lines. This plot shows the number 

of transcripts detected at a distribution of TPM ranges. Failed cells will often have low transcriptional 

complexity – i.e. very few transcripts are detected even at low levels. Here, a gene expression cut-off 

of TPM ≥ 1 has been applied, and subsequently cells with less than 3,500 transcripts expressed at this 

level have been excluded.  
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