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The Value of Stochastic Programming in Day-Ahead and Intra-day Generation Unit
Commitment

Tim Schulzea,∗, Ken McKinnona

aThe University of Edinburgh, School of Mathematics, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom

Abstract

The recent expansion of renewable energy supplies has prompted the development of a variety of efficient stochastic
optimization models and solution techniques for hydro-thermal scheduling. However, little has been published about the
added value of stochastic models over deterministic ones. In the context of day-ahead and intra-day unit commitment
under wind uncertainty, we compare two-stage and multi-stage stochastic models to deterministic ones and quantify
their added value. We present a modification of the WILMAR scenario generation technique designed to match the
properties of the errors in our wind forecasts, and show that this is needed to make the stochastic approach worthwhile.
Our evaluation is done in a rolling horizon fashion over the course of two years, using a 2020 central scheduling model
based on the British power system, with transmission constraints and a detailed model of pump storage operation and
system-wide reserve and response provision. We show that in day-ahead scheduling the stochastic approach saves 0.3%
of generation costs compared to the best deterministic approach, but the savings are less in intra-day scheduling.

Keywords: stochastic programming, unit commitment, hydro-thermal scheduling, wind forecast uncertainty
2010 MSC: 90B05, 90B90

1. Introduction

In recent years the deregulation of energy markets and
expansion of volatile renewable energy supplies have led
to a significant increase of uncertainty in optimal power
systems planning and operation. Several studies have dis-
cussed new sources of uncertainty which stem from un-
predictable renewable energy supplies: Weber et al [1]
developed WILMAR, a stochastic programming model to
assess the impact of increased wind power generation on
power systems, and Tuohy et al [2] apply this model to
test data of the Irish power system. Sturt and Strbac [3]
apply stochastic rolling horizon planning to a model of
the British power system with a significant amount of
wind power, and Constantinescu et al [4] use wind sce-
narios from a numerical weather prediction model in a
two-stage stochastic model. Similarly, Ji et al [5] use two-
stage stochastic programming to plan power systems op-
eration under uncertain wind power supply and Falsafi et
al [6] investigate the effects of demand response mecha-
nisms in this context. Other studies have identified an
increase in traditional uncertain parameters such as load:
Nowak and Römisch [7] and Carøe and Schultz [8] both
apply stochastic programming to a power system with un-
certain demand. These developments have increased inter-
est in stochastic optimization models for short-term power
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plant scheduling, that is, day-ahead and intra-day gener-
ation unit commitment (UC), and a variety of specialised
techniques have been developed to speed up the solution
of these computationally challenging problems.

Solution and Evaluation Techniques. Many popular algo-
rithms for stochastic unit commitment (SUC) problems
are based on decomposition techniques. They can be di-
vided into three groups: Benders decomposition [9], Pro-
gressive Hedging [10], and Lagrangian relaxation [11] or
Dantzig-Wolfe decomposition [12]. All three approaches
are applicable to two-stage or multi-stage models and can
be used to decompose the problem by stages, scenarios, or
generation units. The different ways of decomposing the
problem are reviewed in Römisch and Schultz [13]. Be-
sides the development of decomposition techniques, there
have been efforts to accelerate the solution of stochastic
problems by bound strengthening through cutting planes:
Rajan and Takriti [14] devised facets of the polytope de-
scribed by minimum up- and downtimes of the generation
units and Jiang et al [15] show that these are also facets
of the stochastic formulation.

Although substantial efforts have gone into improving
solution methods for mixed-integer SUC models, they re-
main computationally difficult problems. Despite that,
comparatively little has been published about the added
value of stochastic scheduling models over deterministic
ones. In the literature, there are two different approaches
to evaluate the expected cost of UC schedules:
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1. Evaluation via Monte-Carlo simulation: for the given
schedule, a dispatch solution is calculated on a large
number of day-long sample paths generated from a
simulator that is thought to represent reality. This
is typically done for a set of representative days, e.g.
one day per season of the year. The performance
of different schedules is measured by their expected
dispatch cost.

2. Rolling horizon evaluation: a rolling scheduling and
dispatch procedure is defined in which the system is
scheduled for a few hours and evaluated against a
historic trajectory by a dispatch model. Following
the evaluation, the next few hours are scheduled and
the process is repeated. Performance is measured
by the dispatch cost on the historic trajectory. This
is sometimes referred to as time domain scheduling
simulation.

A major disadvantage of the Monte-Carlo simulation ap-
proach is that it is not possible to be certain whether the
simulator is a correct representation of reality. Also, inter-
temporal constraints such as minimum up- and downtimes
cannot be considered beyond the end of the simulated day.
These shortcomings are avoided in the rolling horizon ap-
proach.

Previous Evaluations. The following studies use Monte-
Carlo simulation to evaluate UC schedules: Ruiz et al [16]
report on an evaluation of deterministic and two-stage
SUC under load and generator failure uncertainty, using
the IEEE reliability test system [17]. Papavasiliou and
Oren [18] apply Lagrangian relaxation and Benders de-
composition to solve two-stage stochastic problems with
uncertain wind production and security constrained prob-
lems with contingency scenarios. They compare different
formulations with respect to fuel cost and security of sup-
ply by evaluating a typical spring day in the California ISO
test system. Constantinescu et al [4] include wind scenar-
ios obtained from a numerical weather prediction model in
a two-stage stochastic model. They evaluate this against
a deterministic model, using three days of wind data from
Illinois and a ten generator test system.

Tuohy et al [2] apply the WILMAR model [1] to data
of the Irish electricity system and perform a one year
rolling evaluation of deterministic and multi-stage SUC.
They report savings between 0.25% and 0.9% when us-
ing a stochastic approach instead of a deterministic one,
depending on the length of the first stage. However, the
authors use perfect information on the first stage, which
biases the solutions to become better if the length of the
first stage is extended. Additionally, the problems are only
solved to an optimality tolerance of 1%. Sturt and Str-
bac [3] report on the difference between deterministic and
stochastic rolling planning in a thermal power system with
high wind penetration and a given level of storage capac-
ity, which represents the British power system in 2030.
However, mainly continuous relaxations of integer models

are used, and transmission network issues arising from the
geographical disparity of wind, storage and conventional
generation are not addressed.

Our Approach. In this paper we compare the performance
of stochastic and deterministic UC approaches in day-ahead
and intra-day planning under wind uncertainty, using a
two-stage stochastic model in the day-ahead context and
a multi-stage stochastic model in the intra-day context.
Our study is performed in a rolling horizon fashion over
an evaluation period of two years. We use a mixed-integer
scheduling model based on the British power system from
the perspective of a central scheduler. It includes transmis-
sion restrictions between network areas, a detailed pump
storage model, and a model of system-wide reserve and
response provision. Hence the model can be used to ef-
fectively evaluate strategies for dealing with wind forecast
errors against the backdrop of the system’s flexibility in
generation, storage and reserve provision under transmis-
sion restrictions. We investigate the fundamental inter-
actions between wind uncertainty, storage and scheduling
methods, and these issues are most clearly understood in
the setting of a centrally scheduled system. The centrally
scheduled situation can provide a reference model when
comparing different market structures, but these market
issues are not considered in this paper. The system data
we use correspond to National Grid’s figures for 2020 un-
der the Gone Green Scenario, with a wind penetration of
30% in terms of installed capacity.

While stochastic models are computationally challeng-
ing, the savings achieved with these techniques are typi-
cally a small percentage of the overall cost, implying the
necessity of small optimality tolerances. To solve the prob-
lems efficiently to a gap of 0.1%, we use a scenario de-
composition approach based on Dantzig-Wolfe decomposi-
tion. The method is described in detail in [19]. To gener-
ate our scenario trees, we use techniques published in the
WILMAR [20] study, however we demonstrate that they
need to be adapted to incorporate forecast level depen-
dency of wind forecast errors in order to make the stochas-
tic approach worthwhile.

The remainder of this paper is organised as follows:
Section 2 has a formulation of our UC model; Section 3 has
details of the input data, scenario generation and scenario
tree construction techniques; Section 4 has a description
of the rolling horizon evaluation procedure; Section 5 has
the evaluation results; and Section 6 has the conclusions.

2. Stochastic Unit Commitment Model

The UC model used for our rolling horizon evaluation
includes an aggregated representation of the transmission
system with generation zones and transmission links be-
tween them. There are limits on the power flow under
normal operation. These are expressed in terms of indi-
vidual transmission links and additional boundaries, each
of which splits the network in two and imposes a real power
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flow limit on the sum of transmissions crossing it in each
direction. The limits are derived by the network operator,
using physical network feasibility criteria, N-1 security and
contingency analyses [21]. The model contains pump stor-
ages which can be used for providing ancillary services and
storing wind energy. Each pump storage scheme is mod-
elled as a closed reservoir system, connected to a single
plant which contains multiple pump-turbines. Wind power
availability is treated as uncertain and a scenario model is
used to approximate its possible realisations. Excess wind
power can be curtailed at no cost. Load shedding is also
permitted, but at a high cost.

In terms of thermal generation units we distinguish
fast-start units from slow units. Fast-start units are open-
cycle gas turbines (OCGT) which can be started within
the hour. All other thermal units are categorised as slow
and must be notified at least an hour before they can be-
come available to generate.

Following British practice, we distinguish between fre-
quency response and reserve. Response is fast-acting and
is used to stabilise the frequency within seconds, e.g. in
the immediate aftermath of a fault, for up to 15 minutes.
Reserve is used for two separate reasons: to deal with
errors in wind forecasts and to restore response capabil-
ity by freeing up used response after a failure. Reserve
is required to be available for at least an hour. While
dedicated variables are needed for frequency response pro-
vided by part-loaded generators, reserve can be modelled
without additional variables. To do this we formulate one
quantity for response, and another quantity for the sum
of response and reserve. For pump storage units we use
both, dedicated response variables and combined reserve
and response variables. Reserve and response are treated
as soft constraints, and we include piecewise linear (PWL)
functions to penalise for providing insufficient amounts of
them. Since the boundary limits were set under contin-
gency considerations, reserve and response are modelled
as system-wide services which are not affected by them,
i.e. we assume that the boundaries can be overloaded in
a post-contingency state where reserve and response are
required.

Our day-ahead planning model is a two-stage stochas-
tic model, while the intra-day model is a multi-stage stochas-
tic model. We present a single model here, which can be
adapted to represent both situations, depending on the
choice of non-anticipativity constraints. A single-scenario
version of the same model is used to perform deterministic
scheduling and to evaluate existing schedules by solving a
dispatch problem.

An overview of our notation is given below, followed
by an algebraic model statement. Sets are in calligraphic
font, parameters are Latin and Greek capitals, and vari-
ables are lower case Latin or Greek letters. Superscripts
are used to extend variable names, while subscripts are
indices. Reserve and response quantities are distinguished
by a hat: for any quantity associated with response, say
r, the corresponding quantity for response plus reserve is

denoted by r̂. The planning horizon is t = 1, . . . , T , and
where the statement shows or implies variables for t ≤ 0,
they are fixed input data rather than actual variables.

Sets.

B,B01: sets of scenario bundles. Bundles in B01 are for
binary commitment decisions of slow units.

D: set of transmission boundaries in the network
F : set of fast start units with F ⊂ G. Slow units in

G \ F require notification prior to startup.
G: set of generation units, Gn is the set of generators

at node n ∈ N
L: set of transmission lines
N : set of network nodes (transmission areas)
P: set of pump storage plants, Pn is the subset at

node n ∈ N
S: set of wind power scenarios, Sb is the subset of

scenarios associated with bundle b ∈ B
W: set of wind farms,Wn is the subset at node n ∈ N

Parameters.

Ψ: minimum proportion of response to be met by
part-loaded generators

Bld: line-boundary adjacency matrix. 1 if line l crosses
boundary d in one direction, -1 if it crosses in
the other direction, 0 otherwise

C(rtot): PWL penalty function for keeping too little re-
sponse rtot

Ĉ(r̂tot): PWL penalty function for keeping too little re-
serve plus response r̂tot

Cnl
g : no-load cost of generator g [$/h]

CH2O
q : end-of-day water value in the reservoir of pump

storage plant q [$/MWh]
Cm

g : marginal cost of generator g [$/MWh]
Cst

g : startup cost of generator g [$]
Cvoll: value of lost load [$/MWh]
Dt: time granularity of the model [h]
Dres: time for which a generator is required to serve

response if called upon [h], with Dres < Dt

Eq: pump-generator cycle efficiency at storage q ∈
P [proportion]

Hmax
q : reservoir capacity at pump storage plant q ∈ P

in MWh of dischargeable energy
Npum

q : number of (identical) pumps in pump storage
plant q ∈ P

Nst,end
l : start (end) nodes of line l

P cap
q : capacity of a single pump in pump storage plant

q ∈ P [MWh]
P dem
nt : real power demand at node n in period t [MW]
Pmin,max
g,q : minimum (maximum) generation limit of gen-

erator g ∈ G (pump storage q ∈ P) [MW]
P̄l,d: maximum power transmission on line l / across

boundary d [MW]
P rob
s : probability of scenario s
P ru,rd
g : operating ramp up (down) limits of generator

g [MW/Dt]
P su,sd
g : startup (shutdown) ramp limits of generator g

[MW/Dt]
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Pwin
wts : wind power available from wind farm w in pe-

riod t, scenario s [MW]
Rmax

g : max response available from generator g [MW]
T : last time period of the planning horizon
Tnt
g : startup notification time of generator g [h]

tst,endb : start (end) periods of scenario bundle b
Tu,d
g : minimum uptime (downtime) of generator g [h]

Variables.

αgts ∈ {0, 1}: 1 if thermal unit g is on in period t, sce-
nario s, and 0 if it is off

γgts ∈ {0, 1}: 1 if thermal unit g is started up in period
t, scenario s, and 0 otherwise

ηgts ∈ [0, 1]: 1 if thermal unit g is shut down in period
t, scenario s, and 0 otherwise

δqits ∈ {0, 1}: 1 if pump i of storage q is pumping in
period t, scenario s, 0 otherwise

ζqts ∈ {0, 1}: 1 if storage q is generating in period t,
scenario s, and 0 otherwise

hqts ∈ [0, Hmax
q ]: level of storage q after period t, scenario

s in MWh of dischargeable energy
pdisqts ∈ [0, Pmax

q ]: real power discharged from storage q in
period t, scenario s [MW]

pflolts ∈ [−P̄l, P̄l]: real power flow on line l in period t, sce-
nario s [MW]

pgengts ∈ [0, Pmax
g ]: real power output of generator g in pe-

riod t, scenario s [MW]
ppumqts ≥ 0: real power pumped into storage q in pe-

riod t, scenario s [MW]
pshednts ≥ 0: load shed at node n in period t, scenario

s [MW]
rgengts ∈ [0, Rmax

g ]: response provided by generator g in pe-
riod t, scenario s [MW]

rpumqts ≥ 0: response provided by pump storage q in
period t, scenario s [MW]

r̂pumqts ≥ 0: reserve plus response provided by pump
storage q in period t, scenario s [MW]

rtotts ≥ 0: total available response in period t, sce-
nario s [MW]

r̂totts ≥ 0: total available reserve plus response in
period t, scenario s [MW]

uwin
wts ∈ [0, Pwin

wts ]: used wind power from farm w in period
t, scenario s [MW]

Objective function.

∑
s∈S

P rob
s

 T∑
t=1

∑
g∈G

(
Cst

g γgts +DtCnl
g αgts +DtCm

g pgts
)

+
∑
q∈P

CH2O
q (hq0s − hqTs)

+

T∑
t=1

(∑
n∈N

DtCvollpshednts + C(rtotts ) + Ĉ(r̂totts )

)]
.

(1)

The objective is to minimise the expected cost of supply-
ing electricity to the economy, including expected losses

due to underserved reserve and response and a penalty for
lost load. The generation cost consists of startup, no-load
and marginal cost terms. These contain fuel and carbon
emission costs and a levelised contribution from capital
cost, operation and maintenance cost and decommission-
ing cost [22]. The water level after the last period is treated
as variable, and we apply a linear water value to the reser-
voir level difference created over the course of the planning
horizon.

We use penalty functions to model the cost of under-
served reserve to the economy. The penalties represent
the expected cost of lost load due to generator failure(s)
at times where the system lacks sufficient response and
reserve to deal with them. The penalty function C(rtotts )
models the expected cost of single generator failures at a
response level of rtotts , while Ĉ(r̂totts ) models the additional
expected cost of double generator failures at a level r̂totts of
response plus reserve. To obtain the correct penalty for
single and double generator failures, both are applied.

The penalty function for underserved response is calcu-
lated as follows. In any time period, consider generator g
which is operating at its full capacity, while the amount of
available response in the system is x. In case of a failure
of this generator, we assume that Dt max{0, Pmax

g − x}
MWh of demand are lost and the system can recover after
a time period Dt. If the failure probability in any period
is pg and the value of one unit of lost load is Cvoll, then
the expected total failure cost is

C(x) := CvollDt
∑
g∈G

pg max{0, Pmax
g − x}. (2)

The resulting penalty function is shown in Figure (3a).
In our implementation, we approximate the function with
seven PWL pieces.

After the failure of a single generator, reserve is used to
restore the response level. A subsequent failure in the same
period Dt will lead to a loss of load unless the combined
amount of response and reserve cover the loss of both gen-
erators. Using the same approach as above, we derive an
additional penalty function Ĉ(y) for insufficient levels y of
response plus reserve. The cost of lost load due to the fail-
ure of a generator tuple (g1, g2) is CvollDt max{0, Pmax

g1 +
Pmax
g2 − y} if both generators fail in the same period, and

zero otherwise. Let Ĝ denote the set of all combinations
of generators. Under the assumption that generators fail
independently, the expected total cost of double failures
while operating at a response plus reserve level y is given
by

Ĉ(y) := CvollDt
∑

(g1,g2)∈Ĝ

pg1pg2 max{0, Pmax
g1 +Pmax

g2 −y}.

(3)
This is used as additional penalty function for underserved
response plus reserve and is shown in Figure (3b). In our
implementation, we approximate this function with five
PWL pieces.
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We assume that all generators fail with equal probabil-
ity, pg = p ∀g ∈ G. Further, the formulae assume that all
generators are operating at their maximum output level,
so the penalties tend to overestimate the expected cost of
lost load due to failures. Additional losses due to quick
successive failures (before response can be restored) and
failures of more than two generators within one hour are
not taken into account. However, the cost of single fail-
ures is a small percentage of overall cost (cf. Figure 8),
and the cost of double failures is an order of magnitude
smaller than that (cf. Figure 3). Thus the approximation
error can be expected to be small. The minimisation of
objective (1) is subject to the following constraints:

Load balance equations. For all n ∈ N , s ∈ S, t = 1, . . . , T :∑
g∈Gn

pgts +
∑

w∈Wn

uwin
wts +

∑
l∈L:Nend

l =n

pflolts +
∑
q∈Pn

pdisqts

+pshednts − P dem
nt −

∑
l∈L:Nst

l =n

pflolts −
∑
q∈Pn

ppumqts = 0.
(4)

These ensure that power input and output are equal at all
times at all network nodes.

Transmission boundary limits. For all t = 1, . . . , T, d ∈
D, s ∈ S:

− P̄d ≤
∑
l∈L

Bldp
flo
lts ≤ P̄d. (5)

These inequalities impose restrictions on the transmission
across predefined boundaries, by limiting the sum of power
flows on lines crossing the boundary in each direction.
They are used in addition to the limits on individual power
flow variables to model network congestion.

Generator bounds. For all s ∈ S, t = 1, . . . , T, g ∈ G:

pgengts ≥ Pmin
g αgts (6)

pgengts + rgengts ≤ Pmax
g αgts. (7)

Constraints (6) and (7) establish the connection between
power output, response and on-off variables. When a gen-
erator is on (αgts = 1), it must generate between the min-
imum and maximum stable limits, and the response it can
provide is limited by its spare headroom (beside the upper
limit Rmax

g ). When it is off (αgts = 0), the generator’s
generation and response levels are at zero.

Ramp rate constraints. For all g ∈ G, s ∈ S, t = 1, . . . , T :

pgengts − p
gen
g(t−1)s ≤ P

ru
g αg(t−1)s + P su

g γgts (8)

pgeng(t−1)s − p
gen
gts ≤ P rd

g αgts + P sd
g ηgts. (9)

Ramp rate constraints (8) limit the increase in generation
level between two successive periods t − 1 and t in the
case where a generator is on in both periods (αg(t−1)s = 1,
γgts = 0), and in the case where it is started up in the

second period (αg(t−1)s = 0, γgts = 1). Similarly, con-
straints (9) limit the decrease in two successive periods
during continuous operation (αgts = 1, ηgts = 0) and shut-
down (αgts = 0, ηgts = 1).

Switching constraints. For all s ∈ S, t = 1, . . . , T, g ∈ G:

αgts − αg(t−1)s = γgts − ηgts (10)

1 ≥ γgts + ηgts. (11)

These establish the relationship between on-off, startup
and shutdown variables. During startup and shutdown
procedures they impose a unique solution, however when
a generator is continuously on or off for two successive peri-
ods, the startup and shutdown variables on the right-hand
side may either both be one or both be zero. In the case
where a generator is off for successive periods it is always
optimal for both, startup and shutdown variables to be
zero, as the startup variables have positive cost coefficients
in the objective. However, when a generator is on for suc-
cessive periods, the objective can sometimes be decreased
by setting startup and shutdown variables to one, since
that relaxes the right-hand side of the ramp constraints
(8) and (9). To eliminate solutions where startup and
shutdown variables are both one, we include constraints
(11). The model with all variables (α, γ, η) is what Os-
trowski et al [23] call the 3- Binary Variable Formulation.
The integrality restriction of either startup or shutdown
variables can be relaxed and it follows from (10) that the
relaxed variables must take integer values. We relax shut-
down variables, since this gives the best performance with
our dataset and solver.

Minimum up- and downtime constraints. For all s ∈ S, g ∈
G, t = 1, . . . , T :

t∑
i=t−Tu

g +1

γgis ≤ αgts (12)

t∑
i=t−Td

g +1

ηgis ≤ 1− αgts. (13)

To model minimum up- and downtimes, we use the facet-
defining minimum up-down cuts (12) and (13) by Rajan
and Takriti [14].

Pump storage operation constraints. For all q ∈ P, t =
1, . . . , T, s ∈ S:

δq1ts ≤ 1− ζqts (14)

δq(i+1)ts ≤ δqits ∀i = 1, . . . , Npum
q − 1 (15)

ppumqts =

Npum
q∑
i=1

δqitsP
cap
q (16)

ζqtsP
min
q ≤ pdisqts ≤ ζqtsPmax

q . (17)
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Pump storage plants are useful for providing reserve and
response, meeting peak demand and storing excess wind
power. Binary variables ζqts determine whether a plant is
discharging or not, and constraints (17) link them to con-
tinuous discharge variables with lower and upper limits.
Within one plant, the pumps all have identical capacities,
and they can only be pumping when the plant is not dis-
charging (14). After switching on the first pump, the oth-
ers are switched on in order from lowest to highest (15) to
avoid symmetric solutions. The pumping level is decided
by the number of active pumps, since they can only run
at full capacity (16). The binaries for each pump, δqits,
could be replaced by a single integer variable δ̄qts indicat-
ing the number of active pumps. However, we use binaries
because then δq1ts can be used in constraints (14), (24)
and (25) to indicate whether a plant is pumping or not.

Reservoir constraints. For all q ∈ P, s ∈ S, t = 1, . . . , T :

hqts = hq(t−1)s +DtEqp
pum
qts −Dtpdisqts. (18)

Reservoir levels are tracked by constraints (18). They are
expressed in terms of MWh of electrical energy that would
be generated using the contained water. A constant cycle
efficiency is applied to incoming energy, thus keeping the
model linear by neglecting the head effect which is small.
The plants are located at separate sites with no hydro-
logical connection. Also, exogenous inflows are small and
lower reservoirs are large, so the water cycle of each pump
storage plant is modelled as a single reservoir system with
a given storage capacity. This is a good approximation for
GB pump storage schemes.

Reserve and response definitions. For t = 1, . . . , T, s ∈ S:∑
g∈G

(
αgtsP

max
g − pgts

)
+
∑
q∈P

r̂pumqts = r̂totts (19)

∑
g∈G

rgengts +
∑
q∈P

rpumqts = rtotts (20)

∑
g∈G

rgengts ≥ Ψrtotts . (21)

Equations (20) and (19) define system-wide levels of re-
sponse and reserve plus response, respectively. Part-loaded
generators contribute all spare headroom Pmax

g − pgts to
the slow-acting reserve plus response quantity (19), while,
due to ramp limits, they can only contribute a limited
amount of their headroom rgengts ≤ min{Rmax

g , Pmax
g −pgts}

to the fast-acting response quantity (20). The contribu-
tions from pump storages are defined in the next para-
graph. Constraints (21) require a minimum amount of
response to be met by part-loaded generators to avoid re-
lying too much on pump storage units.

Pump storage reserve constraints. For all q ∈ P, t =
1, . . . , T, s ∈ S:

r̂pumqts + pdisqts ≤ Pmax
q + ppumqts (22)

Dtr̂pumqts +Dtpdisqts ≤ hq(t−1)s +Dtppumqts (23)

rpumqts + pdisqts ≤ p
pum
qts + Pmax

q (1− δq1ts) (24)

Dresrpumqts +Dtpdisqts ≤ hq(t−1)s +DtPmax
q δq1ts. (25)

Pump storage plants can provide different levels of reserve
and response, depending on whether they are currently
discharging, pumping or spinning in air. Constraints (22)
and (23) impose limits on the sum of response and reserve
r̂pumqts , and constraints (24) and (25) limit the available
response rpumqts .

When the plant is in discharge mode (ζqts = 1,
δq1ts = 0), pump variables ppumqts are all zero. Then con-
straints (22) and (23) state that the current discharge plus
reserve and response can exceed neither the maximum dis-
charge nor the remaining energy level in the storage. Con-
straint (24) states that the response provided during dis-
charge is limited by the headroom available in the turbine,
and constraint (25) makes sure that there is sufficient en-
ergy stored in the reservoir to meet the discharge during
the hour and provide response over a fraction of Dres of
an hour.

In pump mode (ζqts = 0, δq1ts = 1) a plant can
provide reserve by turning off the pumps and starting to
discharge. The demand reduction through turning off the
pumps is fast enough to meet response standards, while
subsequent discharge only qualifies as reserve. The dis-
charge level pdisqts is zero, and constraint (22) limits the
provided reserve plus response to be at most the current
pumping level plus maximum discharge. Now constraint
(23) states that the reserve plus response is bounded above
by the amount of energy left in the reservoir plus the cur-
rent pumping level. Equation (24) says that the available
response is upper bounded by the pumping level, while
(25) is removed by increasing the right-hand side term by
Pmax
q .

Finally, if the plant has its turbines spinning in air
(ζqts = 0, δq1ts = 0), pump and discharge variables ppumqts

and pdisqts are both zero, and reserve plus response is sim-
ply bounded above by the maximum discharge (22) and
the available energy level (23). The same is true for re-
sponse and is achieved by equations (24) and (25), only
here the energy level contained in the reservoir need only
be sufficient to maintain response for a fraction Dres of an
hour. The energy consumption required to keep the tur-
bines spinning in air is small, so we assume that the plant
is always spinning in air when it is not either pumping or
discharging.

Non-anticipativity constraints. These determine the struc-
ture of the decision tree underlying our optimization model.
For binary decisions of slow units we use a specific set of
bundles, denoted by B01. The following constraints are
included for all b ∈ B01, j, k ∈ Sb : k = j + 1:

αgtj = αgtk ∀g ∈ G \ F , t = tstb , . . . , t
end
b (26)
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Figure 1: Right: two-stage decision tree with 6 scenarios. First stage commitment decisions are made at time t′0 and are unique for the whole
planning horizon {t1, . . . , T}. From t1 onwards, recourse decisions in every scenario are made under perfect information. The bundles are
B = ∅, B01 = {b0} with Sb0 = S and tstb0 = 1, tend

b0
= T . Constraints (27) are dropped. Left: multi-stage decision tree with two scenarios on

the second stage and 6 leaves. The bundles are B = {b1, . . . , b4}, B01 = {b0, b3, b4}. On the first stage we have bundle b0 with Sb0 = S and

tstb0 = t1, tend
b0

= t2. Like the first stage, the second stage also covers periods {t1, . . . , t2}, with bundles b1 and b2 containing Sb1 = {s1, s2, s3}
and Sb2 = {s4, s5, s6}. There is a third stage with bundles b3, covering Sb3 = {s1, s2} and b4, covering Sb3 = {s5, s6}, and a fourth stage
with no bundles.

γgtj = γgtk ∀g ∈ G \ F , t = tendb + 1, . . . , tendb + Tnt
g .

(27)

Constraints (26) make commitment decisions of slow units
unique across all bundled scenarios. They are required for
both, two-stage and multi-stage stochastic problems.

Constraints (27) are non-standard and are included in
multi-stage problems to model startup notification times.
When scheduling generators with a deterministic model
or a day-ahead stochastic model, a sufficient notification
period for generator startups is implicit. However, if com-
mitments are updated in the course of the day, as is done
in the multi-stage model, then after a scenario split and
decision update we must allow for a minimum notification
period to pass before additional startups can become ef-
fective. To achieve this, non-anticipativity of startup vari-
ables is extended for a notification time after the split of a
bundle. During time periods tstb , . . . , t

end
b , constraints (27)

are implied by (26) together with (10). Thus, to avoid
redundancy we only include them for the time periods
tendb + 1, . . . , tendb + Tnt

g . Further, we use the following
additional non-anticipativity constraints for recourse vari-
ables of the multi-stage problem. They are included for all
b ∈ B, j, k ∈ Sb : k = j + 1 and t = tstb , . . . , t

end
b :

αgtj = αgtk ∀g ∈ F (28)

δqitj = δqitk ∀q ∈ P, i = 1, . . . , Npum
q (29)

ζqtj = ζqtk ∀q ∈ P (30)

pgengtj = pgengtk ∀g ∈ G (31)

pdisqtj = pdisqtk ∀q ∈ P. (32)

In the rolling horizon evaluation we use deterministic, two-
stage stochastic and multi-stage stochastic problems, and
with slight data modifications this model represents all
of them. Figure 1 shows how we use the data structures
to shape two-stage and multi-stage decision trees. The
simplest model is a deterministic one with a single wind

power scenario and no non-anticipativity constraints. It is
used for deterministic scheduling and dispatch:

1. In the scheduling model the wind scenario is equal to
a central forecast and we use a fixed margin for re-
serve plus response, i.e. we ask for r̂totts to be greater
than or equal to some fixed margin.

2. In the dispatch model we fix a given schedule for
the slow units and evaluate it against the actual
wind outcome. The dispatch model decides optimal
output levels of committed generators, operation of
fast-start units and pump storage plants, available
response and reserve, and the amount of shed load.
Thus it compensates for the error in the wind fore-
cast that was used to create the schedule.

The interaction between scheduling and dispatch models in
the rolling horizon context is further described in Section 4.

For day-ahead scheduling we use a two-stage stochas-
tic model with multiple wind power scenarios as shown in
Figure 1 (right). In this setting, the first stage decisions
are day-ahead commitments of slow units for the whole
24h planning period. All remaining variables are recourse
variables. The two-stage model has non-anticipativity con-
straints (26), while (27) to (32) are dropped.

For intra-day scheduling we use a multi-stage stochas-
tic model as shown in Figure 1 (left). In this model, one
stage covers either 3 or 6 hours of the 24-hour planning
horizon, depending on how often commitments of slow
units can be updated. The first stage decisions are com-
mitments of these units between t1 and t2 and startup
decisions for a notification time thereafter, which are non-
anticipative due to (26) and (27). We use multiple wind
power scenarios between times t1 and t2 to make the com-
mitment decisions robust. This is not standard in the UC
literature, where multi-stage trees are typically restricted
to a single scenario for the first few hours. Within each of
the bundles B = {b1, . . . , b4}, we seek a non-anticipative
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solution by including all constraints (28) to (32). For
bundles b3 and b4 we also require constraints (26) and
(27), while for bundles b1 and b2 those constraints are not
required because between t1 and t2 they are already in-
cluded for all scenarios, due to bundle b0. Hence the choice
B01 = {b0, b3, b4}.

We call a schedule non-anticipative when all variables
appearing in constraints (8) to (13) and (18) have identi-
cal solutions across all subsets of scenarios that are iden-
tical at any given time t. Constraints (8) to (13) and (18)
are the only constraints which introduce variable interde-
pendence between subsequent time steps, and all variables
not appearing therein can be re-evaluated independently
at each time step. However, not all variables appearing in
these constraints require explicit non-anticipativity con-
straints if that property can be deduced from other vari-
ables linked with them. For pump level variables ppumqts ,
non-anticipativity follows directly from constraints (16)
and (29). Then for reservoir levels it follows from con-
straints (18), (32) and the fact that initial reservoir levels
are fixed. Finally, for startup and shutdown variables it
follows from constraints (10) and (11), together with (26)
or (28). To avoid unnecessary redundancy, we omit non-
anticipativity constraints for those variables for which this
property can be deduced from sets of other constraints.

3. Input Data and Scenario Generation

In this section we briefly describe how we obtained data
for our model or estimated it where necessary. A graph of
the system topology is shown in Figure 2, and the sources
of technical system data are described there as well. We
outline how historic wind speed forecasts were synthesised,
and how forecast error scenarios were generated from a
time series model to obtain suitable inputs for the SUC
models. Scenario reduction and tree construction meth-
ods are also described below. The model uses an hourly
resolution, Dt = 1h, and we assume that response has to
be provided for 15 minutes, Dres = 1

4h.

Lost Load and Unserved Reserve. The GB value of lost
load (VOLL) was estimated to be $27,104 (£16,940) per
MWh in a publication by London Economics, the Depart-
ment of Energy and Climate Change (DECC) and the Of-
fice of Gas and Electricity Markets (Ofgem) [30]. We use
this to model the cost of lost load to the economy and to
estimate the penalty functions C(rtotts ) and Ĉ(r̂totts ) for the
expected cost of lost load in the case of generator failures.
To calculate the cost functions we assume a generator fail-
ure probability p which is equivalent to an average of one
failure per generator in 150 days. The cost curves are
shown in Figure 3.

Synthesising wind power forecasts. Historic wind speed
forecasts are not available to us, so for the purpose of this
evaluation we synthesise them. Our synthetic forecasts are
a weighted average of historic wind and a forecast made
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Figure 2: Aggregated GB system with 17 areas and 27 links be-
tween them. There are transmission limits on individual links and
on boundaries. The 17 boundaries (blue) restrict the sum of trans-
missions on all lines they cross. There are pump storage plants in
zones Z1, Z4 and Z9. Interconnectors to Ireland, France and the
Netherlands operate on historic profiles: demand in the affected
zones is treated net of interconnector exchange. The data on de-
mand, thermal units, pump storage, wind farms and transmission
topology and capacity are from National Grid’s 2013 Electricity Ten
Year statement [21]. Demand curves are scaled to meet National
Grid’s 2020 demand expectation. Unit ramp rates and up/down
times were obtained through the Balancing Mechanism Report Sys-
tem [24]. Startup notification times are from [25] and [26]. Gen-
eration costs were estimated by DECC [22]. They contain carbon
cost, fossil fuel cost and a levelised contribution from capital cost
and decommissioning cost. Historic response and the proportion Ψ
of minimum response from thermal units are calculated from the
monthly Balancing Services Summaries, using data for Mandatory
Frequency Response and Firm Frequency Response [27]. Historic re-
gional wind speeds are taken from a mesoscale reanalysis [28]. They
are translated to load factors with power curves from [29], which are
then applied to the wind farms.
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Figure 3: Response (a) and reserve plus response (b) penalty functions, based on expected loss due to single and double generator failures. The
superimposed bar charts in (a) and (b) show the total cost of operating at different levels of response and reserve plus response, respectively.
Discretised in ten bins, the charts show the average daily penalty cost of operating at the given levels of response and reserve. The values
are taken from the most successful two-year evaluation of 6-hour deterministic scheduling reported in Section 5.

by pattern matching, in which weights were adapted so as
to achieve a root mean square error (RMSE) of 10% of
installed capacity at the 24 hour ahead mark. The RMSE
matches the shape of typical forecast error curves as shown
in Giebel et al [31] and Kariniotakis et al [32]. The graph in
Figure (4) shows it as a function of the forecast horizon,
along with the RMSE of persistence forecasts and fore-
casts made by pure pattern matching. Persistence fore-
casts assume that the current wind conditions will remain
unchanged, i.e. persist, and their RMSE is included for
reference only. Note that the errors shown here are aggre-
gated over the whole country, which leads to significantly
smaller errors than in small regions or single sites [31].
We synthesise forecasts in terms of wind speed and then
translate them to regional load factors using power curves
from [29]. For the synthesis, we use historic wind speed
patterns previous to the year the forecasts are required for.
In this context, a pattern is the average of hourly, regional
wind speed progressions which satisfy initial criteria for
the first two periods. To generate an n hour-ahead fore-
cast, we collect patterns of length n + 2. Details of the
procedure are outlined below.

1. Discretise the domain of observed wind speeds into
k = 1, . . . ,K equidistant intervals. Create 3K bins
bki, i ∈ {u, l, d} to hold historic wind progressions
wj , j = 1, . . . , n+ 2. A wind progression is assigned
to bku if the wind in the first hour, w1 is in interval
k and the wind is picking up, i.e. w2 ≥ w1 + ε with a
fixed ε. Analogously, bins bkl and bkd hold wind pro-
gressions that stay level, that is, w2 ∈ (w1−ε, w1+ε)
or point down, so that w2 ≤ w1 − ε, respectively.

2. Iterate over historic wind data. Extract wind pro-

gressions of length n + 2 starting in every hour and
assign them to the bins. Find a representative wind
pattern ŵjki for every bin bki, with j = 1, . . . , n+ 2,
by averaging all progressions in the bin.

3. Construct a forecast starting in any hour t with wind
history wt−1 ≥ wt−2 + ε. If wt−2 lies in interval k
then the forecast for hours t, . . . , t+n−1 is given by
ŵjku with j = 3, . . . , n+2. If the actual wind stayed
level or decreased, use forecasts ŵjkl or ŵjkd, respec-
tively. Shift the entire forecast ŵjk∗, j = 3, . . . , n+2
by wt−1 − ŵ2k∗, so that real wind and forecast are
equal in hour t− 1.

The forecasts are wind patterns which had similar wind
speeds in hour t− 2 and developed similarly in hour t− 1.
They are shifted to match the real wind in hour t−1. These
pattern forecasts are better than persistence forecasts, but
for 6 or more hours ahead they are significantly worse than
numerical weather prediction models. Thus, from 6 hours
ahead we use a weighted combination of pattern forecasts
and actual wind to adapt the RMSE to the level shown in
Figure (4).

Generating Scenarios. To generate scenarios, we set up
a stochastic model for the time series of the forecast er-
ror. The model is fitted to wind forecast errors in the year
previous to the evaluation. For instance, to evaluate the
scheduling model on 2010 wind data, we collect patterns
from 2008 and synthesise forecasts for 2009. Then we use
2009 wind data to calculate forecast errors to which we fit
the time series model. The evaluation is then performed
on out-of-sample 2010 wind data, with new forecasts gen-
erated from 2009 patterns. We evaluate the model on wind
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Figure 4: Normalised root mean square error (NRMSE) of wind
power persistence forecasts, forecasts made by pattern matching, and
our final synthesised forecasts which are a weighted average of pat-
tern forecasts and real wind. Forecast error curves are shown in %
of installed capacity and up to 32 hours ahead.

speeds from 2009 and 2010, so the wind data used for this
is from 2007 to 2010. The scenario generation technique
we use is by Söder [33], and is based on Auto-Regressive
Moving Average (ARMA) time series models which are
fitted to regional forecast error statistics. The ARMA se-
ries contain auto-regressive and moving average terms of
lag one, and additional connection parameters are fitted
to model the correlation of forecast errors between the re-
gions. In [34] we describe in more detail how we use Söder’s
approach.

Constructing Scenario Trees. We require multi-stage sce-
nario trees for the intra-day problems and scenario fans for
the two-stage day-ahead problems. To generate them, we
draw 600 forecast error scenarios from the ARMA model
and add them to a synthesised forecast. To keep the
stochastic problems tractable, the number of scenarios is
reduced with a technique described in Gröwe-Kuska et
al [35] and Dupačová et al [36]. Their method finds a sub-
set of the generated scenarios, such that the Kantorovich
distance between probability measures of the remaining
and initial scenario sets is minimal. This requires a norm
that measures the distance between a scenario pair i and
j up to time t, for which we use

dt (i, j) :=
∑
w∈W

t∑
k=1

|Pwin
wki − Pwin

wkj |, (33)

where Pwin
wts is the wind power from wind farm w at time

t in scenario s. We use the selection heuristics described
in Römisch et al [35] to find a reduced scenario set which
is approximately optimal in the sense of minimal Kan-
torovich distance and then merge these scenarios into a
tree. For the problems in our evaluation we reduce the
600 original scenarios to 12.

Level-Dependent Forecast Errors. The scenario generation
methodology described above is based on techniques used
in the WILMAR study [20]. The resulting scenarios rep-
resent the correlation of wind forecast errors in different
regions, but are independent of the forecast wind level.
Mauch et al [37] point out that wind power forecast errors
are strongly dependent on the forecast levels, so efficient
scheduling strategies require wind dependent reserve mar-
gins. In order to make stochastic strategies dependent
on the forecast level, the variance of the scenario gener-
ator must vary with it. Since this is not reflected in the
WILMAR scenario generation method, we use a simple
scaling approach to adapt the trees used in this study. In
each scenario s we replace the original wind at all times t,
Pwin
wts , by (βtP

win
wts + (1 − βt)P̄win

wt ) with βt ∈ [0, 1]. Here
P̄win
wt is the average wind under all scenarios and βt de-

pends linearly on P̄win
wt . The resulting variance is shown

in Figure 5, alongside the root mean square of errors where
the forecast overestimated the actual wind. We choose βt
so that the variance of the scenarios matches the RMSE
of situations where the actual wind was overestimated be-
cause those cases can result in significantly increased cost,
due to lost load or the use of expensive fast-start units. On
the other hand, cases where the wind was underestimated
can be dealt with by curtailing it at no extra cost. The re-
sults described in Section 5 show that the scaling leads to
a significant cost reduction ($100k per day) in comparison
to scheduling with scenario trees which are independent of
the forecast level.

4. Rolling Horizon Evaluation

We compare multi-stage stochastic and deterministic
scheduling in the intra-day setting, and two-stage stochas-
tic and deterministic scheduling in the day-ahead setting.
The evaluation is done in a rolling horizon manner, where
24-hour schedules are made for a central wind forecast or
a set of wind scenarios, and then evaluated against the ac-
tual wind by solving a set of dispatch problems. After the
evaluation step, the planning horizon is moved forward to
decide the next schedule. We repeat the procedure until
a period of two years is covered and compare the average
cost of the different planning techniques. Intra-day UC is
performed with 3-hour and 6-hour steps, i.e. the binary
decisions for large generators can either be updated every
3 hours or every 6 hours. Day-ahead commitments can
only be updated once per day. Other than the update fre-
quency, there are no fundamental differences between the
rolling horizon procedures for 3-hour, 6-hour and 24-hour
scheduling. In the following, we describe a generic pro-
cedure which is applicable to all of them. The process is
visualised in Figure 6. The scheduling and dispatch steps
are shown separately on the graphic, but are interlaced in
the implementation where the rolling procedure alternates
between them.
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Figure 5: Left: NRMSE of synthesised forecasts, as function of forecast horizon (hours ahead) and forecast wind level (FC level). Only wind
power overestimates were included in the error calculation. Right: NRMSE of the generated scenario trees. The error is scaled in the forecast
wind level: for a fixed forecast level above 15GW, any one-dimensional slice through the surface is equal to the NRMSE function shown in
Figure 4, while for lower levels the same function is scaled by a linear factor.

Scheduling Steps. Calculating a schedule in practice is not
instantaneous and must be done a few hours in advance
of its implementation. In Figure 6 (left) we show how a
schedule is calculated, using the current system state and
a wind forecast. The current state is required to estimate
the system state immediately before the implementation
of the schedule. After calculating the schedule, it is re-
ported to the dispatch procedure and becomes active a
few hours later. We assume that the time between calcu-
lating and implementing a schedule is 3, 6 and 8 hours in
3-hour, 6-hour and 24-hour planning, respectively. When
implemented, the schedule is active for 3, 6 or 24 hours,
and the next one is made in time to become active as soon
as its predecessor expires.

Dispatch Steps. The dispatch steps are used to estimate
operational costs of implementing a schedule. The dis-
patch model uses the same hourly granularity as the schedul-
ing model. It is formulated as a 24h problem, but only the
first 3 hours are used to estimate the costs. The dispatch
model has a single wind scenario with 3 hours correspond-
ing to the actual wind and a forecast for the remainder.
Inside the model, the active schedule is fixed, and all re-
course decisions are made cost-minimally, that is, the use
of OCGT, levels of reserve and response, pump storage
operation and shed load. We record the resulting opera-
tional cost for a 3-hour period, including penalties for un-
derserved reserve and response and lost load. Additional
time periods after the first 3 hours are included to avoid
reservoirs being emptied towards the end of 3 hours. The
calculated system state is used as initial state for the next
dispatch problem. The rolling horizon procedure alter-
nates between scheduling steps and dispatch steps. While
schedules are made for 3, 6 or 24 hours at a time, the dis-

patch model always evaluates 3 hours to keep the results
consistent and comparable. Thus, multiple dispatch steps
are required after a single scheduling step if the schedule
is valid for more than 3 hours. For the dispatch we chose
3-hour steps instead of one-hour steps to save computing
time.

Overview of Test Runs. We evaluate seven different types
of scheduling: for each of the three approaches with up-
dates every 3, 6 or 24 hours, we run a stochastic and a
deterministic version. For reference, we also perform one
additional run with perfect foresight, by solving a single-
scenario combined scheduling and dispatch model in which
future wind power is known in advance. The amount of
reserve plus response (19) in this is treated as a soft con-
straint, unlike in the other deterministic scheduling models
which use a fixed margin for reserve plus response.

The stochastic models have the following structure: for
3-hour scheduling we use a multi-stage scenario tree with
3 stages of 3 hours each and a final stage that covers the
remainder of the day. There are 3 scenarios on the first
stage, then 6, 9 and 12 on subsequent stages. For 6-hour
scheduling we use trees which have 4 stages of 6 hours each,
with 4 scenarios on the first stage, and then 8, 10, and 12
scenarios on subsequent stages. The two-stage day-ahead
model has 12 scenarios on the second stage.

5. Evaluation Results

The results of our two-year evaluation are shown in the
graphs in Figure 7. Reserve and response margins for de-
terministic scheduling strategies were set by the formula
‘capacity of the largest generator plus r% of the forecast
wind’. A range of cases were evaluated with r taking values
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Figure 6: Rolling horizon evaluation procedure. The scheduling steps (left) obtain the current system state (state) and a wind forecast (wf)
and calculate (C) a new schedule which becomes active a few hours later (dotted lines) and is valid for 3, 6 or 24 hours (solid part of box). The
dispatch steps (right) obtain the current state and the schedule, and evaluate it against the actual wind 3 hours at a time. A wind forecast
(wf) is used for the additional 21 hours. The rolling procedure alternates between a scheduling step and (potentially multiple) dispatch steps.

between 0% and 50%, and the resulting average margin is
what is shown on the x-axes in Figures 7 and 8. Due to
the scenario scaling approach discussed in Section 3, the
stochastic strategies also depend on wind forecast levels.
Stochastic models allocate reserve for forecast errors based
on their scenarios, while being aware of the recourse cost
of keeping too little additional reserve and response for po-
tential failures. Hence they determine optimal reserve and
response levels internally and only need to be evaluated
once, unlike the deterministic cases which we evaluated
for multiple values of r. On the graphs in Figure 7, the
horizontal dotted lines show the values achieved by the
stochastic cases with 3-hour, 6-hour and 24-hour schedule
updates.

Average Cost. The total cost consists of no-load, startup
and marginal generation costs, and various recourse costs.
It comes to roughly $134 per MWh. Recourse costs include
the cost of lost load, underserved reserve and response,
and OCGT usage. For the 6-hour deterministic cases, the
graph in Figure 8 shows a detailed breakdown of these
costs. Marginal generation costs of slow units are deter-
mined by the demand and the average marginal cost of the
committed generators: in Figure 8 they increase from left
to right as the amount of OCGT usage decreases and more
demand is satisfied from cheaper, slow units. No-load and
startup costs of slow units also increase from left to right,
while recourse costs decrease from left to right, resulting in
cost minima between average reserve and response (R&R)
margins of 2.7GW and 3.1GW.

The top left graph in Figure 7 shows an overview of
the average daily cost achieved with all scheduling strate-
gies. The deterministic procedures all have cost minima
between average R&R margins of 2.5GW and 3GW, where
very little or no load is shed and the gradients of increasing
no-load, startup and generation costs cancel out with de-
creasing OCGT and R&R costs. In an area around these

minima the cost curve is flat: evaluations with different re-
serve margins give similar cost. The total cost decreases if
commitments of slow units can be revised more regularly:
24-hour scheduling is more expensive than 6-hour schedul-
ing, which in turn is more expensive than 3-hour schedul-
ing. The maximum room for improvement through better
forecasts or better (e.g. stochastic) scheduling methods
is indicated by the cost under perfect foresight. The av-
erage costs with stochastic scheduling models are lower
than the minimum costs achieved with the corresponding
deterministic models: the gaps are $100k (≈ 0.1%) per day
in the 3-hour and 6-hour cases, and $300k (≈ 0.3%) per
day in the 24-hour case. While the stochastic cases have
higher no-load costs than the best deterministic cases, the
recourse costs are lower (cf. example in Figure 8).

The cost in the 3-hour stochastic case is $350k (≈
0.35%) per day higher than in the perfect foresight case.
The gap between these is the value of perfect informa-
tion. To see if it can be reduced by including more than
12 scenarios in the stochastic model, we performed the
same evaluation again with 20 Scenarios. However, the
resulting cost did not change significantly (< 0.01%). The
stochastic evaluations were also performed without the
scenario scaling approach that makes the scenario spread
dependent on the forecast level: due to higher no-load
and startup cost this led to a worse overall performance of
stochastic scheduling, which eliminated the gap between
the stochastic procedure and the best deterministic proce-
dure. Achieving minimal operational cost requires a care-
ful balance of committed spare capacity and the use of
costly recourse actions, and if the correlation between wind
speed and forecast error is not taken into account stochas-
tic models tend to over-commit conventional capacity in
situations with low wind.

Load Shedding. The bottom left graph in Figure 7 shows
the average annual load shed over the two years. While
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Figure 7: Results of a two-year evaluation of deterministic and stochastic 3-hour, 6-hour and 24-hour scheduling. For reference, the performance
of perfect foresight scheduling is also included. The value on the x-axes is the average set margin for reserve plus response (R&R) in
deterministic scheduling problems. Stochastic scheduling results are indicated as dotted lines because they are independent of the margin
used for deterministic scheduling. The top left graph shows the average daily cost of the different scheduling strategies, including penalties
for load shedding and not keeping enough response. The bottom left graph shows the average annual load shed over the two years. The
top right graph shows the average conventional generation capacity scheduled by the various approaches. The bottom right graph shows the
average amount of response available at the time of dispatch. Here, the ‘Adequate’ level indicates the level below which a penalty is incurred
for not keeping enough response.
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Figure 8: Breakdown of average daily cost into startup, no-load and
generation costs of slow units (Gen), and recourse costs. The re-
course costs are for OCGT usage (OCGT), underserved reserve and
response (R&R) and shed load (Load). The generation cost portion
of (Gen) increases from $91.5M in the leftmost case to $91.9M in the
rightmost case (+$0.4M). The remaining increase in (Gen) is due
to startup and no-load costs which increase from $3.1M to $3.34M
(+$0.24M). The graph shows the deterministic 6-hour rolling cases
with various fixed reserve and response margins. For the case with
average set margin of 2.7GW, Figure 3 shows how the R&R penalty
cost is accrued at different levels of underserved reserve and response.
For comparison, the average daily costs in the corresponding stochas-
tic case are shown on the bar to the right of the graph.

all stochastic models avoid shedding any load, determin-
istic models shed load if the set R&R margin is not high
enough. The cost of load shedding dominates the shape
of the deterministic cost curves in the top left graph of
Figure 7. Increasing the deterministic R&R margin does
not always lead to a reduction in shed load. In the deter-
ministic model, spare capacity is allocated based on cost
only, ignoring potential network congestion, which some-
times leads to situations where it is lumped behind a trans-
mission constraint and unavailable elsewhere. Stochastic
models, on the other hand, allocate generation capacity
based on correlated wind scenarios and are aware of the
network restrictions in the potential operational states.
Hence spare capacity is allocated where it is needed to
deal with critical wind situations.

Scheduled Capacity. The top right graph in Figure 7 shows
the average committed conventional generation capacity.
For deterministic cases, this capacity is a consequence of
the average wind power level in the forecasts and the set
R&R margin. The capacity curves for 3-hour, 6-hour and
24-hour scheduling are all relatively close together. The
committed capacity increases with the R&R margin, and
this drives the cost increase to the right-hand side of the
cost minima in the top left graph.

In stochastic problems, the scheduled capacity is mainly
a consequence of the average wind power forecast level and
the scenario variation at times for which scheduling deci-

sions are implemented. The relevant forecast horizon is 4
to 6 hours, 7 to 12 hours, and 8 to 32 hours ahead in 3, 6
and 24-hour scheduling, respectively. Figure 5b shows the
variation of generated scenarios for these varying forecast
horizons: while there is only a small difference between the
average errors relevant for 6 and 24-hour scheduling, those
relevant for 3-hour scheduling are notably lower. Conse-
quently the 6 and 24-hour rolling procedures committed
similar capacity levels, while 3-hour rolling committed a
lower level.

System-Wide Response Levels. The bottom right graph in
Figure 7 shows the average amount of response in the dis-
patch. The ‘adequate’ level indicates where the response
penalty curve is first different from zero, and levels be-
low that incur the corresponding penalty. On average,
perfect foresight scheduling chooses a level where a small
penalty applies, and the stochastic scheduling strategies
lead to similar levels. Deterministic procedures lead to
lower response levels than their stochastic counterparts,
but their level increases with the R&R margin. If we take
low response levels as an indicator that the power sys-
tem is exposed to high stress due to forecast uncertainty,
then this shows the stress reduction through stochastic
scheduling. The gaps between the deterministic curves
and their stochastic counterparts differ systematically: in
3-hour scheduling the curves are at a similar level, while
in 6-hour and 24-hour scheduling they are further apart.
The higher the forecast uncertainty, the larger the stress
reduction through stochastic scheduling. The forecast un-
certainty also explains the difference between the top and
bottom right graphs: the 6-hour and 24-hour scheduling
procedures commit a higher capacity level than the 3-hour
procedure, but result in less response at the dispatch stage,
as the remaining headroom is used towards dealing with
the higher forecast uncertainty.

Network Congestion.. Table 1 shows differences in loca-
tional marginal prices (LMPs) between selected zones, av-
eraged over the two-year planning horizon. The LMP val-
ues shown here are the dual solutions of constraints (4)
for each network zone, taken from the dispatch model. In
the presence of transmission restrictions, stochastic mod-
els have better awareness of the location where spare ca-
pacity is required to deal with forecast uncertainty. The
deterministic models are not aware of the spatial corre-
lation of wind forecast errors, which leads to congested
situations where neighbouring zones have different LMPs
more frequently than with stochastic scheduling. Conse-
quently, the average LMP differences in Table 1 are higher
in the deterministic cases. Most cases of congestion ap-
pear in Scotland (Z1-Z5), while some also appear in the
greater London area and in central England. However,
these are less frequent and the average LMP differences
are two orders of magnitude lower, so we exclude them
from the table. The cases shown in Table 1 include the
stochastic case and one selected deterministic case for 3-

14



Case Z1–Z2 Z1–Z4 Z2–Z4 Z2–Z5

3hStoch 130.00 156.44 26.46 26.46
3hDet-15 132.57 395.51 262.93 262.93
24hStoch 117.20 132.67 15.47 15.47
24hDet-30 127.31 146.94 19.63 19.63

Table 1: LMP differences between selected zones, averaged over the
two-year planning horizon. The LMP values show the average saving
per day in $ that can be expected from increasing the transmission
capacity between the zones by 1 MW. The shown cases are: stochas-
tic 3-hour scheduling, deterministic 3-hour scheduling with variable
R&R margin r=15% of forecast wind (= 2.2GW margin on av.),
stochastic 24-hour scheduling, and deterministic 24-hour scheduling
with variable R&R margin of r=30% of forecast wind (= 3GW mar-
gin on av.).

hour and 24-hour scheduling. As deterministic cases we
chose the cost-optimal 24-hour case which incurs no load
shedding, and a slightly suboptimal 3-hour case with some
load shedding. When load shedding occurs, it drives the
LMPs up significantly, resulting in very large LMP differ-
ences between zones.

Pump Storage and Congestion Cost. We explore the cost
of various model alterations concerning the transmission
network and pump storage schemes, by performing eval-
uations with 3-hour deterministic, stochastic and perfect
foresight scheduling. The results are summarised in Fig-
ure 9. We show the cost-optimal deterministic strategy,
i.e. the case for which the evaluation showed a posteriori
that it had the best variable R&R margin. The Z4 case
explores the effect of doubling the pump-turbine capability
from 440MW to 880MW at the Cruachan storage scheme
in zone Z4; the Z1 case explores the effect of adding two
storage schemes identical to Foyers in zone Z1 which has
300MW pump-turbine capability and 6.3GWh storage ca-
pacity; the NoN case removes all network restrictions; and
the NoS case removes all existing pump storage capability
from the system.

Taking the stochastic results as the base, the gap be-
tween stochastic and perfect foresight solutions is between
0.35% and 0.37% ($350k to $370k daily) in all considered
cases. The gap between the deterministic and stochas-
tic solutions is 0.11%, 0.08%, 0.06%, 0.08% and 0.14% in
the Norm, Z4, Z1, NoN and NoS cases, respectively (left
to right in Figure 9). The additional storage capabilities
in the Z4 and Z1 cases reduce the gap between stochas-
tic and deterministic planning from the Norm case, while
removing storage capacity in the NoS case increases the
gap. Storage provides a way of compensating for wind fore-
cast uncertainty, so it reduces the advantage of stochastic
scheduling over deterministic scheduling.

With the best implementable (stochastic) policy, the
cost savings achieved by storage expansion Z4 in compar-
ison to the Norm case is 0.05% ($50k), while storage ex-
pansion Z1 gives a 0.08% ($80k) improvement. Removing
network congestion (NoN) has a value of 0.05% ($50k),
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Figure 9: A comparison of operational costs in various cases. The
graph shows the average daily cost of 3-hour scheduling with the best
(a posteriori) deterministic strategy, stochastic strategy, and perfect
foresight. In order from left to right the cases are: the ‘normal’
reference case (Norm, same as Figure 7), a case with doubled pump-
turbine capability but unchanged storage capacity in zone 4 (Z4), a
case with two additional pump storage schemes identical to Foyers in
zone 1 (Z1) (increased pump, discharge and storage capacity), a case
without transmission network restrictions (NoN) and a case without
any pump storages (NoS).

while removing storage capabilities entirely (NoS) leads to
a major cost increase of 0.6% ($600k). The different cost
in the studied cases can be explained with the system’s
ability to use more wind and commit less thermal genera-
tion: in the Norm case 0.36% of available wind power are
curtailed, while in the Z1 and NoN cases only 0.05% are
curtailed, and in the NoS case 0.7% need to be curtailed.
In the Z1 and NoN cases the total capacity of committed
thermal generators is on average 0.1% lower than in the
Norm case, while in the NoS case it is 2.5% higher. Pump
storages provide a major share of system-wide reserve and
response, and without them more thermal generators must
be switched on and kept off their upper limits to provide
reserve and response. The Z4 case does not differ much
from the Norm case in terms of wind curtailment, but has
0.06% lower thermal commitment.

6. Conclusion

We have performed a two-year rolling horizon evalua-
tion of stochastic and deterministic unit commitment ap-
proaches under wind uncertainty, with periods of varying
length between times when the schedules of slow gener-
ators can be revised. For the evaluation we use a cen-
tral scheduling and dispatch model based on the British
power system under National Grid’s Gone Green scenario
for 2020, including a pump storage model and transmission
restrictions between network areas. The focus of our study
is on the performance comparison of deterministic and
stochastic generator scheduling at different time scales.
We quantify the monetary value of stochastic scheduling
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models over deterministic ones under a central scheduling
hypothesis, and pinpoint other advantages of stochastic
schedules. We find that

• There are significant cost differences between op-
erating systems that allow major generators to be
rescheduled every 3, 6 or 24 hours (all subject to
notification times).

• Stochastic models result in minimum operational costs
without having to tune reserve margins in advance.
In all cases there is a gap between the lowest deter-
ministic cost and the cost of stochastic scheduling.
This is despite the fact that we compare their per-
formance with the best (a posteriori) setting for de-
terministic reserve and response which is not known
a priori an can be different from one year to another.
The superiority of stochastic scheduling grows with
the amount of uncertainty in the relevant wind fore-
casts, but is reduced if additional pump storage ca-
pacity is installed.

• We use a simple scaling approach to make wind power
scenario trees dependent on the forecast level and
show that this leads to a better balance of committed
spare capacity and the use of costly recourse actions.
This indicates that it may be worthwhile exploring
other forecast level dependent scenario generation
techniques, e.g. the logit transformation approach
by Mauch et al [37].

• Penalties for keeping too little response and reserve
are modelled, and they account for $50k to $350k
(≈0.05% to 0.15%) of the total daily cost. The main
cost drivers are generation costs and the recourse
cost for shed load and OCGT usage. Stochastic mod-
els tune committed capacity levels internally, and
the resulting response levels under wind uncertainty
are similar to those achieved with a perfect foresight
model.

• In the presence of transmission restrictions, stochas-
tic models have a better awareness of spatial wind
forecast error correlation, so they place reserve where
it is required. Network congestion is measured by
differences in LMPs, and it is shown that these are
less with stochastic scheduling models. The aver-
age cost of network congestion is $40k per day lower
with stochastic scheduling than with deterministic
scheduling.
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