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Highlights
» Turkey MIF was identified and its biological funatis explored, including migration
inhibitory activities of macrophages, cell prold¢ive activity, and induction of pro-
inflammatory as well as Th1/Th2/Th17 cytokines ativaated immune cells.
* Turkey and chicken MIFs share high sequence homgofagctional similarities and

cross-reactivity.
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Abstract

Macrophage migration inhibitory factor (MIF) is algble protein that inhibits the random
migration of macrophages and plays a pivotal immegolatory function in innate and adaptive
immunity. The aim of this study was to clone thekeéy MIF (TKMIF) gene, express the active
protein, and characterize its basic function. ftllelength TkMIF gene was amplified from

total RNA extracted from turkey spleen, followedddgning into a prokaryotic (pET11a)
expression vector. Sequence analysis revealed kizMit- consists of 115 amino acids with 12.5
kDa molecular weight. Multiple sequence alignmevealed 100%, 65%, 95% and 92%
identity with chicken, duck, eagle and zebra filthrs, respectively. Recombinant TKMIF
(rTkMIF) was expressed iB. coli and purified through HPLC and endotoxin remov&DS-
PAGE analysis revealed an approximately 13.5 kD& kiMIF monomer containing T7 tag in
soluble form. Western blot analysis showed th&t@ncken MIF (ChMIF) polyclonal antisera
detected a monomer form of TKMIF at approximatedyblkDa size. Further functional analysis
revealed that rTKMIF inhibits migration of both nauclear cells and splenocytes in a dose-
dependent manner, but was abolished by the addifianti-ChMIF polyclonal antisera. gqRT-
PCR analysis revealed elevated transcripts of mitarnmatory cytokines by rTkMIF in LPS-
stimulated monocytes. rTkMIF also led to increaeeels of IFNy and IL-17F transcripts in
Con A-activated splenocytes, while IL-10 and ILtf@nscripts were decreased. Overall, the
sequences of both the turkey and chicken MIF haye $similarity and comparable biological
functions with respect to migration inhibitory agties of macrophages and enhancement of pro-
inflammatory cytokine expression, suggesting thetay and chicken MIFs would be
biologically cross-reactive.

Keywords: Macrophage migration inhibitory factor; turkey;echotaxis; cytokines
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1. Introduction

Macrophage migration inhibitory factor (MIF), anodwtionarily conserved multi-
functional protein, was originally identified agisated T cell-derived factor inhibiting random
migration of macrophages (David et al., 1966).Idwihg determination of complementary
DNA sequence of human MIF (Weiser et al., 198%arety of biological properties has been
reported and defined MIF as a cytokine, enzyme,cir@anokine-like function (CLF) chemokine.
MIF is constitutively expressed in a wide rangeissues and cells, and rapidly released after
stimulation with Gram-negative bacteria, bactegiadiotoxin (LPS), pro-inflammatory mediators
(Calandra et al., 1994), and low concentrationle€gcorticoids (Calandra et al., 1995). Due to
the absence of N-terminal consensus leader seqgudiiees swiftly secreted through non-
classical pathway that requires the activatiorhef@&olgi-associate protein pl15a (Flieger et al.,
2003).

As a pleiotropic inflammatory cytokine, MIF modwdatboth innate and adaptive immune
responses through the activation of macrophaged amtls (Calandra et al., 2003). MIF
upregulates the expression of TLR4 in responsértb and prompts induction of pro-
inflammatory cytokines and chemokine (TNFHFN-y, IL-18, IL-2, IL-6, IL-8), nitric oxide
(NO) (Calandra et al., 1994; 1995; Bacher et &96), and macrophage inflammatory protein 2
(MIP2) (Makita et al., 1998). In adaptive immuniMIF inhibits CD8 T lymphocytes (CTL)
cytotoxicity and regulates T cell trafficking (Ale¢ al., 2001). MIF reverses the anti-
inflammatory and immunosuppressive activities oicglcorticoids, and sustains inflammatory
response against them (Calandra et al., 1995)igi&ffinity interaction of MIF with CD74 is
responsible to induce cell proliferation by activatERK %2 family of mitogen-activated protein

in growth-promoting signaling pathway (Leng et 2D03). Induction of cyclooxygenase-2



66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

(COX-2) and products of the arachidonic acid path(RGE,) by MIF is required to suppress
apoptotic-inducing function of the tumor suppresstgin (p53), which promotes cell survival
(Mitchell et al., 2002). Structural analysis refeeBMIF exists as a homotrimer form, and two
adjacent sites between monomers possess enzyridites (Lubetsky et al., 1999), such as a
p-dopachrome tautomerase (Rosengren et al., 1998eraylpyruvate tautomerase (Rosengren
et al., 1997), and a thiol-protein oxidoreductdde€mann et al., 1998). Moreover, MIF is
classified into CLF chemokine based on the strattmd functional similarities with
chemokines. Comparison of crystal structure reacettiat MIF monomer resembles the dimer
form of CXCL8 (Weber et al., 2008). The non-cognateraction of MIF with chemokine
receptors, CXCR2, CXCR4 and CXCR7, promotes chertiotanigration and leukocytes arrest
(Bernhagen et al., 2007; Tarnowski et al., 2010).

In birds, chicken MIF was identified as a markardellular differentiation in developing
chicken eye lens (Wistow et al., 1993) and upragdIMIF transcript was observedtimeria-
infected chickens, thus supporting involvement dFvh intestinal immune responses (Hong et
al., 2006). Molecular function of chicken MIF wetsaracterized by analysis of cell migration,
transcription of Th1/Th2-associated and pro-inflaatony cytokines, and cell proliferation after
LPS stimulation (Kim et al., 2010). Recently, é@swerified that ChMIF binds to macrophages
via the surface receptor CD74p41 (Kim et al., 2014)

Compatative analyses of the turkey and chicken mesaevealed high similarity
between the two sequences being relatively congeevand stable despite 40 million years of
species divergence (Dalloul et al., 2010). Howgtrezse two species showed lower similarity
(83%) at the protein level than at the genome 1€3@%6) (Arsenault et al., 2014). To elucidate

these distinctions at the protein level, furtheddgical characterization is required. To date,
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several cytokines have been biologically charaoterin turkeys, and also describing the cross-
reactivities of avian cytokines including IFN{L-2, IL-10, IL-13, and IL-18 (Lawson et al.,
2000; 2001; Kaiser et al., 2002; Powell et al.,201

Given that these cytokines are functionally crass:tive between two closely related
Galliformes (turkey and chicken), MIF may also havamilar role in both species. To describe
the biological function of MIF in turkeys that magve cross-reactivity with chicken MIF, we
cloned the full-length turkey MIF (TKMIF) gene, agaglplored its biological functions including
inhibitory effect of random cell migration, prolifgtive effect of splenic lymphocytes, and

expression of pro-inflammatory and Th1/Th2/Th1l7&ytes by activated immune cells.

2. Materials and Methods
2.1. Turkey, RNA sources for cloning

Tissue samples, including heart, liver, brain, thgnspleen, small intestine sections
(duodenum, jejunum, ileum), proventriculus, ceoalsil and bursa, were collected from 21-day-
old male and female commercial turkégeeagris gallopavo). A total of 30 mg tissue samples
was excised and homogenized in lysis buffer comtgifr-mercaptoethanoB¢Me) with stainless
steel beads using TissueLyser Il (Qiagen, CA) farid at 25 Hz. Total RNA was isolated from
homogenized tissues using the RNeasy Mini kit (@m@@ccording to the manufacturer’s

instructions.

2.2. Sequence analyses
Nucleotide and deduced amino acid sequences of Fki#re compared with other

sequences reported in NCBI's GenBank using Cl@itaéga program (Sievers and Higgins,
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2014). The phylogenetic tree was constructed fiteraligned sequences by the neighbor-
joining (NJ) method and evaluated with 1000 boafsteplicates using MEGA4 (Tamura et al.,
2007). The molecular weight (MW) and theoretisallectric point (pl) of MIF were computed
using the Translate software. The presence obkjggptide and potential N-glycosylation sites
were predicted using SignalP3.0 and NetNGlyc Efpectively. The protein secondary

structure of MIF was determined using SSpro 5.1giMe and Baldi, 2014).

2.3. Tissue distribution of TKMIF

In order to analyze TKMIF expression in variousuiss of male and female turkeys,
gRT-PCR was performed using 7500 Fast Real-Time &§GEm (Applied Biosystems, CA).
Specific primer sets were designed using Primer&g(Ver 3.0; Applied Biosystems) (Table
1). First-strand cDNA was synthesized with 2 pgotdl RNA from turkey tissues using High-
capacity cDNA Reverse Transcription kit (AppliecbBystems). Synthesized cDNA was diluted
to 1:25 with nuclease-free water and 1 pl of ddut®NA was used as template with 0.1 uM
primers and 5 pl of 2x Fast SYBR Green Master Migdlied Biosystems) in 10 pl volume of
final gRT-PCR reaction. The PCR reaction was peréal as follows: samples were initially
denatured at 95°C for 20 sec, followed by 40 cyofedenaturation at 95°C for 3 sec and
annealing/extension at 57°C for 30 sec. Reactimre prepared in triplicate and GAPDH was
used as reference gene. TKMIF expression was tiaeddo GAPDH and calculated relative to

that of the heart by the #*“ comparative method.

2.4. Construction of recombinant TKMIF (rTKMIF) ergsion plasmid
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The full-length TKMIF gene was amplified from toRNA extracted from turkey spleen
using primers designed by Kim et al. (2010) afedl: initial denaturation at 92°C for 2 min,
followed by 35 cycles of denaturation at 92°C férskc, annealing at 57°C for 15 sec, and
extension at 72°C for 30 sec with a final extensibid2°C for 7 min. The amplified PCR
product was purified using Wizard SV Gel and PCRa@tup system (Promega, WI), ligated
into pGEM-T vector, and followed by transformatioto E. coli Top10. Transformants
containing the target gene were selected by cortibmaf colony PCR screening and
endonuclease digestion wiltoR | (New England Biolabs, MA), confirmed by sequetgi
(Virginia Bioinformatics Institute at VT, VA). Faub-cloning into a prokaryotic expression
vector, TKMIF was digested with restriction enddeases\Nde | andNhe | (New England
Biolabs), and sub-cloned into the pET11a vectdre fiecombinant plasmid was transformed
into E. coli Top10 and positive clones including TKMIF wereesttd and confirmed by

sequencing.

2.5. Expression and purification of rTkMIF by SEGHC

The TKMIF in pET11a plasmid was transformed iBtaoli BL21 (DE3) and cultured at
30°C overnight and the production of recombinan¥lfik was induced by shake-incubating for
5 hrin the presence of 1 mM IPTG. The cells wexevested and lysed by rapid sonication-
freeze-thaw cycles in 20 mM NaPIO;, 500 mM NaCl (pH 7.8), followed by treatment of &3¢
A (10 pg/ml) and DNase | (10 pg/ml) on ice for 1limBYy centrifugation, the supernatant
including rTKMIF was collected. For endotoxin rembprior to purification, TX-114 (Sigma,
MO) was added to the bacterial lysate containindWiF to a final concentration of 1%. The

mixture was shortly vortexed and incubated at 4fb¥G min, followed by centrifugation to
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collect the upper agueous phase containing rTkMIkis procedure was repeated three times.
Subsequently, size exclusion high performancedighromatography (SEC-HPLC) was used to
purify rTKkMIF. In SEC-HPLC, a mobile phase contagpn50 mM KHPQ,, 150 mM NaCl (pH
6.8) was passed through two size exclusion columasnmx=300mm, Biosuite 5 um HR;
Waters, MA) at a rate of 0.5 ml/min and the absoceavas monitored with a photo diode array
detector (Model 997; Waters, MA) at 214 nm and 280 Following injection of lysates,
fractions were collected, analyzed by SDS-PAGE,taedoncentration of proteins determined
by BCA assay (Thermo Scientific, IL). The levelesfdotoxin in purified protein sample was
measured using Limulus Amebocyte Lysate (LAL) chogemic endotoxin quantitation kit

(Rockfold, IL).

2.6. Western blot analysis

Western blotting was performed to examine whethabdait anti-ChMIF polyclonal
antisera (Kim et al., 2010) would recognize TkMH-itashares high identity with ChMIF.
Briefly, 1 ng of purified TKMIF was resolved on SIPAGE gel under reduced conditions,
transferred to a PVDF membrane (Millipore, MA) andubated with anti-ChMIF polyclonal
antisera in a 1:1000 dilution as the primary ardipoGoat anti-rabbit IgG conjugated with HRP
(Thermo Scientific, IL) was applied as the secogpaantibody and the blot was incubated in the
SuperSignal® West Pico Chemiluminescent SubstRaekford, IL), and exposed to X-ray film

(Genesee Scientific, CA).

2.7. Isolation of peripheral blood mononuclearc@BMCs) and splenocytes
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In order to perform cellular assay, turkey PBMCgsenigolated from freshly drawn blood
by density-gradient centrifugation. Briefly, 20 oflblood were collected from the heart
(immediately following euthanasia) and diluted watlual volume of Hank’s Buffered Salt
Solution without magnesium and calcium (HBSS; Hy@loUT). Following centrifugation at 50
x g for 10 min, the supernatant and buffy coat wetkected and then carefully overlaid on
Histopaque-1077 (Sigma, MO). After centrifugatadrd00 xg for 30 min at room temperature,
mononuclear cells from the interphase were coltebiePasteur pipette and mixed with PBS for
washing. After centrifugation at 250p¢or 10 min, the collected cells were washed with
Dulbecco’s Modified Eagle Medium (DMEM; Mediatedh), counted using a hemocytometer
and cultured at 1.0xf@ells/well in a 24-well plate for 3 hr at 39°C WwH% CQ humidified air.
By gently washing with DMEM, non-adherent cells eveemoved leaving adherent
monocytes/macrophages on the plate.

For turkey splenocytes isolation, spleens wererntatsmall pieces and smashed through
a 0.22um cell strainer (BD, CA). Cell suspension was veakthree times with HBSS to remove
cell debris and overlaid onto Histopaque-1077 pfw#d by isolation of splenocytes as described
above. Isolated splenocytes were resuspendedRIMI-1640 (Mediatech, VA) supplemented
with 20% fetal calf serum (FCS) and 1% penicillirdptomycin and cultured for 24 hr at 39°C
with 5% CQ humidified air. After overnight incubation, nodfeerent cells were collected and

adjusted to a cell density of 2>¢1€ells/ml.

2.8. Chemotaxis assay
To measure the ability of TKMIF in inhibiting tharrdom migration of immune cells,

serially diluted rTkMIF (0.01, 0.1, 1.£g/ml) with DMEM supplemented with 10% FCS and 1%
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penicillin/streptomycin were freshly prepared. uddd rTkMIF (25ul) was loaded to the bottom
wells of the Boyden chemotaxis chamber in absengeasence of anti-rChMIF polyclonal
antisera along with the medium supplemented with HCS and serum-free medium as positive
and negative controls, respectively. Polycarbofitee membrane (Neuro Probe, MD) was
placed with forceps and then pDof prepared PBMCs or splenocytes (1.0xaélls/ml) were
loaded on the top well above the membrane. Afteubation at 39°C with 5% GQor 4 hr,

cells that migrated to the bottom side of the membrwere fixed, stained using Diff-Quick
Staining (Fisher Scientific, NJ) and counted. Pkecentage of migration inhibition was

calculated as previously described (Kotkes etl8l79).

2.9. Cell proliferation assay

Cell proliferation was determined with CellTiter"098lon-Radioactive Cell Proliferation
Assay Kit (Promega, WI). For this assay, isolatplénocytes (1.0x2@ells/ml) were treated
with medium alone, Concanavalin A (Con A) alone (&0ml), rTkMIF (0.01 and 0.1g/ml) or
rTkMIF (0.01 and O.kg/ml) with Con A (10ug/ml) in the presence or absence of anti-ChMIF
polyclonal antibody at 39°C with 5% G@br 24 hr. After incubation, the Dye solution was
added and the mixture incubated at 39°C with 5% fo©4 hr. The Solubilization solution/Stop
mix were added followed by incubation at 39°C wa#t CQ for 1 hr, after which absorbance
was measured at 595 nm and 630 nm using a miceogdater. The results were analyzed after

subtraction of the 630 nm value as a background.

2.10. Cell stimulation assay and cytokine trangsrgmalysis
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PBMCs were cultured at 2.0x%6ells/well in a 24-well plate and treated with riued
alone, LPS alone (bg/ml), rTkMIF (0.01 and 0.Lg/ml) or rTKMIF (0.01 and 0.1g/ml) with
LPS (5ug/ml) at 39°C with 5% Cofor 6 hr. The supernatants were collected ford¢€ay
using Griess Reagent System (Promega, WI). Thewele lysed with Buffer RLT (Qiagen)
containingp-Me followed by RNA extraction using RNeasy MinitKQiagen). After cDNA
synthesis using jig of RNA, expression levels of pro-inflammatoryakines were analyzed.

Isolated splenocytes were cultured at 2.0>ciis/well in a 24-well plate and treated
with medium alone, Con A alone (1@/ml), rTkMIF (0.01 and 04g/ml) or rTKMIF (0.01 and
0.1 ug/ml) with Con A (10ug/ml) at 39°C with 5% Cefor 6, 12, or 24 hr. After incubation,
NO assay was performed using the supernatant #sldRNA was extracted. After cDNA

synthesis, the transcripts of Th1/Th2/Th17 cytokinere analyzed.

2.11. Statistical analysis
All data were analyzed by Student:test or one-way analysis of variance (ANOVA)
using JMP software (Ver 11) and significant diffezes between groups were considered

significant by Tukey-Kramer multiple comparisonttesP < 0.05.

3. Results
3.1. Sequence and phylogenetic analyses of TKMIF

The full-length TkKMIF amplified from turkey sple@ontained 348 bp nucleotides
encoding a 115-amino acid protein, which had 97%entide and 100% amino acid identities
with Chicken MIF (Figure S1 and Figure S2A). Mplé sequence alignment and phylogenetic

analysis revealed that TKMIF shares 71% identitynmuman and mouse MIFs, and over 61%
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identity among bird species with the highest idgniiith eagle (95%) and zebra finch (92%)
MIFs (Figure S2). The phylogenetic tree shows thikey MIF is closest to the chicken MIF as
well as clusters together with eagle and zebranfMt~s. Similar to mammalian MIF and

ChMIF, TKMIF retained conserved amino acid residies’, Lys*, 11e®, Tyr’®, Asr®, which

are essential for enzymatic activities. The puealikMIF showed a calculated MW of 12.5 kDa
and theoretical isoelectric point of 7.82. Comgotal analysis revealed two possible N-
glycosylations CAsn-Lys-Thr>, *'°Asn-Gly-Set'? and four cysteine residues (¢Y<Cys”’,

Cy<®, Cy#Y) in the amino acid sequence. €yis only conserved among the chicken, eagle, and
zebra finch MIFs that are highly similar to TkMi&d Cys’and Cy&° formed conserved Cys-
X-X-Cys motif mediated by enzymatic oxidoreductastvity. Secondary structure of TkMIF

exhibits twoa-helices and sig-strands (Figure S1), similar to that of human MiBnomer.

3.2. TKMIF expression in tissues

The expression patterns of TKMIF gene was measuarearious tissues of male and
female turkeys including heart, liver, brain, thygnapleen, proventriculus, cecal tonsils, bursa,
and intestinal sections using gRT-PCR (FigureThe expression level was normalized to
GAPDH expression as an endogenous reference gdrtbemfold changes were calculated
relative to the lowest expression level of hedite results demonstrated that TKMIF is
ubiquitously expressed in all tested tissues, Wiehlowest level in the heart and relatively
highest levels in the spleen and thymus in botlemahd females. Slightly different expression
levels were observed between males and femaleshgthlevels in ileum of females, but not in

that of males.
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3.3. Expression and Western analysis of TKMIF

rTKMIF was expressed iB. coli BL21 (DE3) as a soluble form and 20% of proteamir
bacterial lysates was detected in predicted MWI&MIF on a gel after endotoxin removal by
TX-114 extraction. rTkMIF was purified and colledtfrom fractions 19 and 20 by SEC-HPLC
with 80% purity. Purified rTKMIF was observed anoul3.5 kDa by SDS-PAGE (Figure 2B,
left), which is slightly higher molecular weightath that of only rTKMIF, 12.5 kDa due to the
presence of T7 tag (approximately 1.3 kDa) in #@mbinant protein that was encoded by the
plasmid vector. Endotoxin concentration of pudfi@kMIF was 0.04 EU (endotoxin units) per
ug protein. Since turkey and chicken MIFs showegh hdentify, we examined whether anti-
ChMIF polyclonal antisera (Kim et al., 2010) candrTKMIF molecule (Figure 2B). The anti-
ChMIF polyclonal antisera recognized 13.5 kDa d{MIF along with rChMIF, which was used
as a positive control. Based on the Western elatlts, anti-ChMIF polyclonal antisera were

used to neutralize rTKMIF in further assays.

3.4. Chemotactic activity of rTKMIF

In order to evaluate the regulation of PBMCs arldrspcytes migration by rTkMIF,
chemotaxis assay was performed. Migration of PBM@s inhibited by rTKMIF in a dose-
dependent manner, with 90% and 60% migration itibibiat high (1 pg/ml) and low (0.01
pag/ml) concentration of rTkKMIF, respectively (FiguBA). Although the inhibition level of cell
migration is slightly lower than in PBMCs, rTkMIfsa inhibited migration by approximately
80% (1 pg/ml) and 10% (0.01 pg/ml) of splenic lyropytes (Figure 3B). The results show that
rTKMIF has appreciable inhibition activity of migian on PBMCs as well as on splenocytes,

revealing different inhibitory pattern between théso cell types. Since 0.01 and 0.1 pg/ml of



293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

rTkMIF showed noticeable reduction of both PBMCd aplenocytes migration, these two
concentrations were used in subsequent assays.

To substantiate its biological specificity, rTkMiW¥as neutralized using anti-ChMIF
polyclonal antisera to examine whether MIF-induc#gdbition of cell migration can be
abolished. Pre-incubation of rTkMIF (Qu@y/ml) with anti-ChMIF polyclonal antisera blocked
approximately 70% and 30% migration inhibition &NMCs and splenocytes, respectively
(Figure 4). Anti-ChMIF antisera alone had no eff@e migration of both PBMCs and

splenocytes.

3.5. The effect of rTKMIF on proliferation of spiedymphocytes

To determine the effect of rTKMIF on cell proliféien, isolated splenocytes were
cultured with rTKMIF in the presence or absenc€oh A (Figure 5). We did not observe any
significant changes in cell proliferation when treg with 0.01 pg/ml rTKMIF both in the
presence and absence of Con A. However, treatwitm0.1ug/ml of rTKMIF slightly induced
splenocytes proliferation. Additionally, 0.1 ug/oflrTkMIF enhanced proliferation of Con A
co-stimulated splenocytes. As percentages, 15%d 2%dsplenocyte proliferation were induced
by 0.1 pg/ml of rTKMIF both in the presence andeslge of Con A, respectively. This rTkMIF-
induced splenocyte proliferation was abolished t&yipcubation with anti-ChMIF antisera,

further substantiated its biological activity orl geoliferation.

3.6. Expression of pro-inflammatory cytokines ahdrookine by TkMIF in PBMCs
The administration of rTKMIF alone did not affegtakine expression (data not shown),

but overall treatment of rTKMIF with LPS enhanceBNA level of pro-inflammatory cytokines
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(IL-1B, IL-6) and chemokine (IL-8) compared to those B alone-treated cells (Figure 7).
Transcripts of IL-B and iINOS were enhanced approximately 14-fold &xébld, respectively,

by incubation with 0.0Lug/ml rTKMIF but not with 0.1 pg/ml. IL{transcript was enhanced by
13-fold following 12 hr incubation (data not showrjhe addition of rTkMIF induced mRNA
levels of IL-6 and IL-8 regardless of concentratiand markedly enhanced IL-8 transcript
shown for 6 hr as well as 12 hr incubation. LASwtated PBMCs exhibited no significant
induction of IL-13 (p40) and had reduced IL-18 transcript after Bibubation with rTKMIF.
However, enhanced IL-B2and IL-18 transcripts by 2-fold were shown at 1 Znlsubation with
0.01pg/ml rTKMIF (data not shown). In addition, the guztion of NO by PBMCs was
observed after rTKMIF (0.01pg/ml) stimulation imtoination with LPS, but not after treatment

with rTkMIF alone (Figure 6).

3.7. Expression of Th1/Th2/Th17 cytokines by TkNHFsplenocytes

Splenocytes were treated with rTKMIF (0.01 and@/ml) in the presence of Con A for
6, 12, and 24 hr (Figure 8). Transcript of IFNa Th1l cytokine, was induced by Con A
treatment, but no effect was observed by rTkMIB ht point; however, rTkMIF enhanced IFN-
y transcript in a dose-dependent manner at 12 hrgpiosulation. No difference in mRNA level
was observed by Con A and/or rTKMIF at 24 hr paistigation. On the other hand, rTKMIF
reduced transcripts of Th2 cytokines (IL-10 andLR)-after 24 hr stimulation; however, IL-10
transcript was enhanced when the Con A-activateshepytes were incubated with 0.1 pg/ml of
rTKMIF at 6 hr. rTKMIF significantly enhanced mRN@&vel of IL-17F over the tested
incubation periods, especially 24 hr post-stimolati MIF transcript was not changed with

either Con A treatment alone or Con A and rTkMEatment.
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4. Discussion

Previously, the molecular cloning and biologicahictterization of ChMIF have been
described (Kim et al., 2010). Interestingly, Miénhologue from turkey has high sequence
identity with the corresponding gene of its siskalliformes bird, the domesticated chicken.
This finding led us to characterize the biologiaelivities of TKMIF in order to compare this
cytokine functions between two closely related Balines species (Kim et al., 2010). In this
study, we cloned the full-length MIF from domestezhturkey spleen and characterized its
biological functions ex vivo. Sequence analysieated that TKMIF contains conserved
residues including CXXC motif mediating enzymatatity, similar to human and mouse. In
addition, secondary structure analysis revealedTikislIF possesses two-helices and sig-
strands in the same order as mammalian MIF (Sah,&t996; Suzuki et al., 1996), implying a
similar tertiary structure and function betweerkéyand mammalian MIFs. The conserved
sequences mediating enzymatic activities suggegpdkential similar activities of TkKMIF.
However, catalytic activities were not exhibitedlikMIF in contrast to mammalian MIFs
(Sugimoto et al., 1999). Interestingly, a laclcafalytic properties also was exhibited in chicken
MIF (Kim et al., 2010). Also, TKMIF shares highrhology with variant-1 of zebra finch among
its two isoforms. MIF is highly conserved amongdbiand mammals, indicating this molecule
is evolutionary conserved across species and hempdging its significant function.

MIF is ubiquitously expressed not only by immun#scas macrophages and activated T
lymphocytes, but also by non-immune cells suchnaletielial, epithelial and parenchymal cells
(Lue et al., 2002; Calandra et al., 2003). Coasistvith the distribution patterns of MIF in

various species, TKMIF was ubiquitously expressedllitissues examined, and highly expressed



362 in the primary and secondary lymphoid tissues (iinynd spleen), in contrast to abundant
363 ChMIF transcript in stomach (Kim et al., 2010). faite, only subtle differences were observed
364 in TKMIF expression between male and female tissid@mmalian MIF is more expressed by
365 monocytes and T lymphocytes, and up-regulatedibytion with bacterial LPS and certain
366 cytokines like IFNy and TNFe (Calandra et al., 1994). Although TKMIF is cohsively

367 expressed, it is not significantly induced by stiated monocytes and lymphocytes, similar to
368 ChMIF (Kim et al., 2010).

369 Like mammalian MIFs, TKMIF lacks an N-terminal s@jisequence, indicating it is

370 easily released from its intracellular stores aelable form via a hon-conventional mechanism
371 (Weiser et al., 1989). As expected from high saeqaedentity between turkey and chicken
372  MIFs, the ability of anti-ChMIF antisera to bind Wk~ was substantiated by performing

373 Western blotting, which shows the cross reactigftghicken MIF antibody against TKMIF.

374 In the mouse, MIF regulated the recruitment of noytes, T lymphocytes, and

375 neutrophils like a CLF chemokine (Bernhagen et2flQ7). The migration inhibitory properties
376  of MIF on monocytes and lymphocytes were examindtié fish and further confirmed by

377 neutralizing antibody (Qiu et al., 2013). Consisteith previous reports, rTKMIF inhibited

378 random migration of both monocytes and splenic lyogytes in a dose-dependent manner.
379 This inhibitory effect was abolished in the presentanti-ChMIF polyclonal antisera,

380 demonstrating that the observed inhibitory effettiee migration of immune cells was

381 specifically associated with rTKMIF. The rTkMIFahkited similar pattern of chemotactic

382 activity with ChMIF, suggesting that chemokine-liperties of MIF is conserved in both

383 mammalian and avian species.
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Based on the finding that MIF was abundantly exgedsn the epithelial cells of chicken
embryonic lens (Wistow et al., 1993), MIF has beensidered an important factor for cell
growth and differentiation. Mammalian MIF inducadurvival cascade via interaction with
CD74, resulting in B cell proliferation and sunvi&tarlets et al., 2006). Immuno-
neutralization of MIF indicated its proliferativéfect on splenocytes and T lymphocytes (Bacher
et al., 1996; Calandra et al., 1998). AdditionaliF is secreted by murine dendritic cells (DCs)
and neural stem/progenitor cells (NSPCs) that oppart the proliferation and survival of
NSPCs (Ohta et al., 2012). In chickens, MIF indupeoliferation of lymphocytes primed by
Con A, although MIF alone did not impact cell pfedation. In the present study, enhancement
of cell proliferation was detected by addition &MIF on splenic lymphocytes both in the
presence and absence of Con A stimulation. Thiderative effect of TKMIF was suppressed
by anti-ChMIF antisera. These small but statiflifcsignificant effects support its ability to
promote cell proliferation.

Furthermore, MIF activated macrophages and indsagdficant production of pro-
inflammatory cytokines and NO in stimulated macragés/monocytes (Bernhagen et al., 1994;
Calandra et al., 1995). In chickens, upregulatgntession of pro-inflammatory cytokines and
INOS was shown in response to 0.01 pg/ml of rChMEPS-primed monocytes/macrophages.
The current findings that addition of TkMIF sige#intly augmented pro-inflammatory cytokines
and chemokine (IL{3, IL-6, IL-8) transcription and NO release by LP8rsilated monocytes
are consistent with previous reports. TKMIF stiatign induced IL-1 and IL-18 at later time-
points when compared with other pro-inflammatoriokines and chemokine. These inductions
may consequently result in synergistic action ofLB3 and IL-18 that would lead to IFIX-

production and stimulation of a Thl response (Taketdal., 1998). Taken together, these data
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support the pro-inflammatory roles of avian MIFstmulated immune cells. Given that avian
MIF promotes pro-inflammatory responses of innateune cells, these findings suggest its
potential role in host innate immune defenses fefcited birds.

In regards to MIF involvement in T cell immunityunme MIF promoted Th1 cytokine
production, typically IL-2 and IFNs; in activated T cells (Bacher et al., 1996). hickens, the
production of Thl and Th2 cytokines was regulatged/ibF levels in Con A-stimulated
lymphocytes (Kim et al., 2010). In the presentigiuhe addition of rTkKMIF induced the
expression of IFN+at 12 hr, and reduced transcripts of the Th2 agteskIL-10 and IL-13 at 24
hr. The expression of IL-10 was briefly reduced atevated after stimulation with low (0.01
ug/ml) and high (0.1ig/ml) concentrations of TKMIF at 6 hr, and thendyrally decreased over
24 hr. Given the ability of avian IL-10 to inhidEN-y expression by stimulated splenocytes
(Rothwell et al., 2004; Powell et al., 2012), latdhhancement of IFN-may be caused by gradual
decline in IL-10 transcript combined with synergisictivity of IL-128 and IL-18. As to the
expression patterns of Thl and Th2 cytokines in-stifulated lymphocytes, TkMIF promoted
Th1 transcript whereas suppressed Th2 transcapigrast to ChMIF that enhanced the
transcript of both Th1l and Th2 cytokines. Thesdifigs indicate different expression profiles
of Thl and Th2 between two species that may methatdifferent susceptibilities to host-
specific pathogens; turkeys were extremely sudgleptib Histomonas meleagridis exhibiting
high mortality, while chickens were resistant te frarasite (Powell et al., 2009). In this regard,
it would be interesting to investigate whether NBRassociated with the susceptibility of turkeys
to protozoan pathogens. The stimulatory effedfitf on IL-17 production was observed in
activated murine lymphocytes (Stojanovic et alQ@0 Similarly, rTKMIF continuously

stimulated IL-17F production over the 24 hr inciudrafperiod, suggesting the possibility that
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avian MIF might be involved in differentiation ohT7 cells. Abundant MIF transcript by
stimulation with PMA/ION was observed in mice (Baclet al., 1996), whereas TKMIF was not
significantly induced by LPS-stimulated splenic [yinocytes as well as monocytes from turkeys
similar to chicken MIF, indicating that avian MIBse constitutively expressed in immune cells
regardless of stimulation. These findings indi¢hteunique expression pattern of avian MIF
contrast to most cytokines and chemokines thag@peessed by activated cells. TKMIF alone is
not sufficient to induce cytokine expression inespt lymphocytes as well as in monocytes,
similar to results by ChMIF alone. Overall, thelsga suggest that MIF can be directly involved
in the modulation of Th1/Th2/Th17 cytokines in teyk, further revealing different innate
immune responses in stimulated cells between tsrkag chickens.

In summary, Turkey MIF was cloned and its biologfcactions characterized including
migration inhibitory effect, proliferative effecnd the ability to modulate production of pro-
inflammatory mediators as well as Th1/Th2/Th17 kytes. These results help us to better
understand the biological roles of evolutionaribnserved avian MIFs in the birds’ immune

system, and predict functional cross-reactivitynssn turkey and chicken MIFs.
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Table 1. Primers sequences used for gene cloning and R dhalysis.

Name Sequence (--3") GenBank accessiol Application
No.

TKMIF_F  GATCATATGAGATCTATGCCCATGTTCACCATCCACACC From turkey genorr  Gene clonin

TKMIF_ R  GATGCTAGCCTATGCAAAGGTGGAACCGTTCC:

MIF_F CGGATCCCTGCGCTCTC XM_42582¢ gRT-PCF

MIF_R TGTTCTGCTGCCCTCCGAT

IFN- y F CAAAGCCGCACATCAAACAC AJ000725.

IFN- y R GCCATCAGGAAGGTTGTTTTTC

IL-1b_F CCGACACGCAGGGACTT DQ393271.

IL-1b_R GAAGGTGACGGGCTCAAAAA

IL-2_F GAGCATCGCTATCACCAGAAAA AF209705..

IL-2 R TTGTTCTTGCTTTCTTCCAGTATTTCT#

IL-6_F ACTCAGCCACCCAGAAATCC XM_003207130.

IL-6_R TCTCTATCCACGCCTTATCTGAC”

IL-8_F GGTTTCAGCAGCTCTGTCAC/ DQ393276.

IL-8_R TGGCACCGCAGCTCGT

IL-10_F CCAGCCACCAGGAGAGCA™ AM493432.:

IL-10_R GCGCTTCATTGTCATCTTCAC

IL-12B F ACTACTGTCCATTTGCCGAAGA XM_003210283.

IL-12B_ R CATCAATGACCTCCAGGAACA

IL-13_F CGAGCTCCATGCCCAAGAT AM493431..

IL-13_R TGTTGAGCTGCTGGATGCT

IL-17F F  GTCTCCAATCCCTTGTTCTCCT XM_003204633.

IL-17F R GACAGCACGGCCAGCA/

IL-18 F TGCCCGTCGCATTCAC AJ312000.

IL-18_R CCATGCTCTTTCTCACAACACA

iINOS_F TTGGGTGGAAGCCGAAAT XM_003211871.

iINOS_R TTGCTTGGAGAATGAGTGGAACT

GAPDH_F GCTGAGAATGGGAAACTTGTGAT NM_001303179.

GAPDH_R GGGTTACGCTCCTGGAAGATAC
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Figure 1. Tissue-specific mMRNA expression of TKkMIF. Th&atee TKkMIF transcription in

each tissue of male and female turkeys was catmilayg the 2““* methods using GAPDH as a
reference gene, and the relative expression leasloempared with the expression level in heart
(arbitrarily set at 1.0). Error bars represent SEM
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Figure 2. Purification and Western blot analysis of rTKMIE) rTkMIF was purified from
bacterial lysate by SEC-HPLC and scanned the Dieé fractions containing rTKMIF proteins
are indicated by arrows. (B) Purified rTKkMIF wasalyzed by SDS-PAGE analysis (left).
Western blot analysis of rTKMIF was performed wvatiti-chicken MIF polyclonal antisera
(1:2000) (right), MW, protein molecular weight marklane 1, rChMIF (1 ng); lane 2, rTKMIF

(1 ng).
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Figure 3. Inhibition the random migration of PBMCs and syleytes by rTKkMIF. Migration of
turkey PBMCs-derived monocytes (A) and splenic Iogytes (B) was observed in the
presence of serially diluted rTkMIF (0.01, 0.1, dn@ug/ml). Experimental wells were set up
in triplicate and values represent mean of two fpretelent experiments. Error bars represent
SEM. Asterisks (*) indicate statistically sign#ict differences (*, ** = P < 0.05, 0.01,

respectively).
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Figure 4. Blocking of MIF-induced inhibition of cell migrian. Migration of PBMC-derived

monocytes and splenic lymphocytes were examinéoeirombination of rTkMIF (0.fug/ml) in
the absence or presence of anti-ChMIF antiser®QD: tilution). The experiment was set up in
triplicate and data represent mean of two indepeinebgperiments. Error bars represent SEM.
Statistically significant differences indicated &sterisks (*, ** = P < 0.05, 0.01, respectively).
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Figure 5. The proliferative effect of rTkMIF on splenic lyhocytes. 1x10cells were treated
with media alone, Con A (10 pg/ml) alone, rTkMIFQD and 0.1 pg/ml) alone, Con A with
rTkMIF (0.01 and 0.1 pg/ml), rTKMIF (0.01, 0.1 pdjrwith anti-rChMIF polyclonal antibody
(1:2000 dilution) and Con A with anti-rChMIF polyrial antisera in the absence or presence of
rTKMIF (0.01 and 0.1 pg/ml) for 24 hr. The celbpferation assay was performed in triplicate
per manufacturer’s instruction. Data representtkean of two independent experiments and

significant differences are indicated by asterigks 0.05). Error bars represent SEM.
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619 Figure 6. Nitric oxide release of rTkMIF-treated PBMC deri’monocytes. Monocytes (110
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624  bars represent SEM.
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Figure 7. mRNA expression of pro-inflammatory cytokines ameémokine on rTkMIF treated
monocytes. PBMCs derived monocytes (délis/well) were treated with media alone, LPS
(5 ng/ml) alone, rTKMIF (0.01 and 0.1 pg/ml) witRP& (5 pg/ml) for 6 hr and the expression of
pro-inflammatory cytokines was examined by qRT-PARanscript levels were standardized to
GAPDH and compared to media alone. Data showresept the mean of three different
experiments with significant differences indicabgdasterisks (*, ** = P < 0.05, 0.01,

respectively). Error bars represent SEM.
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Figure 8. mRNA expression of Th1/Th2/Th17 cytokines on rTkNreated splenocytes.
Splenic lymphocytes (1xf@ells/well) were treated with media alone, ConlAj¢g/ml) alone,
rTkMIF (0.01and 0.Jug/ml) with Con A (1Qug/ml) for 6, 12, 24 hr and the expression of
cytokines was examined by qRT-PCR. Transcriptieewere standardized to GAPDH and
compared to media alone. Data shown represemhdla® of two independent experiments with

significant difference of transcription comparedhat of Con A alone indicated by asterisks (*,
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Functional characterization of the turkey macrophage migration inhibitory factor
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Highlights
» Turkey MIF wasidentified and its biological functions explored, including migration
inhibitory activities of macrophages, cell proliferative activity, and induction of pro-
inflammatory as well as Th1/Th2/Th17 cytokines in activated immune cells.
» Turkey and chicken MIFs share high sequence homology, functional similarities and

cross-reactivity.



