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We consider the step Riemann problem for the
system of equations describing the propagation of
a coherent light beam in nematic liquid crystals,
which is a general system describing nonlinear
wave propagation in a number of different physical
applications. While the equation governing the light
beam is of defocusing nonlinear Schrödinger equation
type, the dispersive shock wave (DSW) generated
from this initial condition has major differences
from the standard DSW solution of the defocusing
nonlinear Schrödinger equation. In particular, it is
found that the DSW has positive polarity and
generates resonant radiation which propagates ahead
of it. Remarkably, the velocity of the lead soliton of
the DSW is determined by the classical shock velocity.
The solution for the radiative wavetrain is obtained
using the WKB approximation. It is shown that for
sufficiently small initial jumps the nematic DSW
is asymptotically governed by a Korteweg-de Vries
equation with fifth order dispersion, which explicitly
shows the resonance generating the radiation ahead of
the DSW. The constructed asymptotic theory is shown
to be in good agreement with the results of direct
numerical simulations.
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1. Introduction
Dispersive shock waves (DSWs), also termed undular bores in fluid mechanics, are generic
solutions of nonlinear dispersive wave equations, including the Korteweg-de Vries (KdV),
nonlinear Schrödinger (NLS) and Sine-Gordon equations. A DSW forms due to the dispersive
resolution of a discontinuity and is the dispersive equivalent of a gas dynamic shock for which
a discontinuity is resolved by viscosity [1]. A DSW is a non-steady modulated wavetrain which
continually expands and has solitary waves at its leading edge and linear, small amplitude waves
at its trailing edge (for the case of negative dispersion; if dispersion is positive then the orientation
of the DSW, i.e. the relative position of the linear and soliton edges, changes). This modulated
wavetrain provides an oscillatory transition between the two levels of the initial discontinuity.

DSWs/undular bores are a common wave form which can be found in a broad array of
physical systems. The classical undular bore is the tidal bore found in regions of large tidal
flows and suitable topography, for example the Severn Estuary in England and the Bay of
Fundy in Canada. However, undular bores arise in a wide range of fluid systems, including the
atmosphere, an example being morning glory clouds [2,3], and the semi-diurnal internal tide [4].
They also arise in geophysics (magma flow) [5–7] and Fermi gases [8]. Of particular relevance to
the present work, they arise in nonlinear optics for a wide range of optical materials, including
photorefractive crystals [9–11], optical fibres [12–17], nonlinear thermal optical media [18,19],
colloidal media [20,21] and nematic liquid crystals [21,22].

DSW solutions of nonlinear dispersive wave equations are usually found using Whitham
modulation theory [1,23,24]. Whitham modulation theory is a method for analysing slowly
varying (modulated) wavetrains and deriving equations for the parameters, mean height,
wavenumber, amplitude, etc., of such wavetrains. It is equivalent to the method of multiple
scales, but much simpler than this to implement. When the underlying wavetrain is stable, the
modulation equations form a hyperbolic system for the wavetrain parameters. It was found
that a simple wave solution of the hyperbolic modulation equations for the KdV equation
corresponds to a DSW [25,26], so that the standard method for finding DSW solutions is from the
modulation equations for the relevant governing equation. This original method due to Gurevich
and Pitaevskii [25] and Fornberg and Whitham [26] relies on the hyperbolic modulation equations
being in Riemann invariant form, which is guaranteed if the governing equation is integrable
with an inverse scattering solution [27]. However, most equations governing DSWs in physical
applications are not integrable. This limitation was overcome to a certain extent when it was
found that the leading, soliton, edge and trailing, small amplitude wave, edge of a DSW could be
determined without a knowledge of the full Whitham modulation equations [28].

In the present work a DSW due to coherent light propagation in a nematic liquid crystal is
analysed. While the specific context is light propagation in a nematic liquid crystal, equations
similar to those for light propagation in this medium also arise for other nonlinear optical media
[18,29–34], in fluid mechanics [35] and in models of quantum gravity [36]. An optical DSW in
a nematic liquid crystal is found to possess a number of unique features. While the equation
governing the optical field in a nematic liquid crystal is of defocusing NLS-type [37], the DSW
is found to be of positive polarity, KdV-type, due to the effect of the nematic optical medium,
which has a highly “nonlocal” response [38–40]. It is further found that the dispersion relation
for linear waves is non-convex, so that there is a resonance between the DSW and dispersive
radiation. This results in a resonant wavetrain propagating ahead of the DSW. A similar resonant
coupling between a DSW and radiation was found for nonlinear optical beam propagation in
optical fibres when higher order dispersive terms were included in the governing NLS equation
to enable such coupling, both without [14,15,17] and with [16] loss. The driving mechanism is the
resonant coupling with higher order dispersion, which can also occur with just a soliton [41]. The
total structure of the Riemann problem solution is then found to consist of four distinct regions, (i)
an expansion wave linking the initial level behind to an intermediate shelf, (ii) a KdV-type DSW
on this shelf, (iii) a resonant wavetrain leading the DSW and (iv) a front bringing the resonant
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wavetrain down to the initial level ahead. Asymptotic solutions for all these four regions are
obtained and compared with full numerical solutions of the governing equations, with generally
excellent agreement being found.

The paper is organised as follows. In Section 2 the equations governing light beam propagation
in a nematic liquid crystal are introduced and related to similar systems of equations in other
physical contexts. In Section 3 the dispersive-hydrodynamic properties of these nematic equations
are analysed and it is found that, while the dispersionless limit is described by a hyperbolic system
equivalent to the shallow water equations, which is consistent with the dispersionless limit of the
defocusing NLS equation, the linear dispersion relation is non-convex, implying the possibility
of the formation of a KdV-type DSW in the low frequency region and the generation of high
frequency resonant radiation by the DSW. This effect is a counterpart of the well known radiating
solitary waves in systems with higher order dispersion studied previously in many physical
contexts, from gravity-capillary waves [42] to optical supercontinuum generation (see e.g. [43]
and references therein). In Section 4 the fifth order KdV equation (also known as the Kawahara
equation) is derived from the nematic equations under a balance between strong nonlocality and
the small amplitude, long wave approximation. The coefficient of the fifth order dispersion term
is proportional to the nonlocality squared. It is then shown numerically that the effect of the
nonlocality on the DSW is the generation of a radiative wavetrain ahead of the DSW. In contrast
to the well studied radiating solitons of the fifth order KdV equation, which are intrinsically
unsteady, the solitary wave at the leading edge of the radiating DSW remains steady due to energy
influx from the rest of the DSW. It can then be well approximated by the standard KdV soliton if
the higher order dispersive term is sufficiently small. In contrast to previous work [22] it is found
that the velocity of the leading edge of the KdV DSW is given by a classical shock jump condition,
rather than the conservation of Riemann invariants [28]. This suggests that the resonant wavetrain
acts as an effective viscous loss term for the DSW. In Section 5(c) a WKB solution is constructed
for the rapidly oscillating, resonant, linear radiative wavetrain in the full nematic system under
the assumption that the lead solitary wave in the DSW can be approximated by a KdV soliton.
Section 6 is devoted to comparisons of the constructed modulation solution with full numerical
solutions of the nematic system.

2. Nematic equations
In this paper, we consider the propagation of a polarised, coherent beam of light through the
medium of a nematic liquid crystal [38,40]. We assume that the electric field of the light is in the
x direction and that the beam propagates in the z direction. Nematic molecules are elongated
molecules, hence their name as nematic comes from the Greek word for thread, along which
electrons can move freely. Hence an electric field, either an external static electric field or the
electric field of light, results in the nematic molecules becoming dipoles and rotating in the
direction of the electric field due to the resulting torque in order to minimise the potential energy
[38,40]. The molecules rotate until the elastic forces balance the electrostatic forces. This rotation
changes the refractive index of the nematic medium. Normally a nematic is a focusing medium,
so that the refractive index increases on rotation of the molecules. This self-focusing can then
balance the diffractive spreading of a light beam, so that a bright optical solitary wave, termed
a nematicon, can form [38,40,44]. However, the addition of azo-dyes to the nematic medium
changes its structure so that it can become a defocusing medium as rotation of the molecules then
decreases the refractive index [45]. In this case, a dark solitary wave, a dark nematicon, can form,
a dip in a uniform background, rather than the rise from a background of a bright nematicon in
the focusing case. The added complication of the nematic medium is that if the nematic molecules
are initially aligned with their axis, termed the director, orthogonal to the electric field, the optical
Freédericksz threshold exists so that a minimum electric field strength is required to overcome the
elastic forces of the nematic medium before the molecules can rotate [40,46]. To enable nematicons
to form at milliwatt power levels so that there is not excessive heating of the nematic, which
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can result in it undergoing a phase transition, an external static electric field is applied to pre-
tilt the nematic molecules at an angle θ0 to the z direction. In the particular case θ0 = π/4, the
Freédericksz threshold vanishes [40,44].

Let us denote the extra rotation from the pre-tilt caused by the electric field of the light beam
to be θ. Then in the paraxial, slowly varying envelope approximation the system of equations
governing the propagation of a nonlinear light beam through a defocusing nematic liquid crystal
is [38–40,45]

i
∂u

∂z
+

1

2

∂2u

∂x2
− 2θu = 0, (2.1)

ν
∂2θ

∂x2
− 2qθ = −2|u|2. (2.2)

Here u is the complex valued envelope of the electric field of the light beam. The parameter ν,
termed the nonlocality, measures the elastic response of the nematic and is large, ν =O(100),
in experiments [47]. This large value of the nonlocality ν will be found to have a dominant
effect on the structure of a DSW in a defocusing nematic liquid crystal. The parameter q is
proportional to the square of the pre-tilting electric field. The electric field equation (2.1) is a
nonlinear Schrödinger (NLS)-type equation, which is coupled to equation (2.2) for the response
of the nematic medium.

The context of the system of equations (2.1) and (2.2) has been explained in detail in terms of
the nonlinear optics of liquid crystals. However, this system arises in a wide range of applications.
In nonlinear optics, it arises whenever the response of the optical medium is based on some type
of diffusive phenomenon [29], for example it arises in the optics of nonlinear thermal media [18,
31], for example lead glasses [30,32,33], and certain photorefractive crystals [34]. A similar system
of equations arises in simplified models of fluid turbulence [35] and quantum gravity [36].

In this paper we consider the Riemann problem for the nematic system (2.1) and (2.2). The
electric field equation (2.1) will be solved with the initial condition

u=

{
u3, x < 0

u1, x > 0
(2.3)

at z = 0, with u3 >u1 so that a DSW is be generated. For consistency, the director equation (2.2)
gives

θ=

 Θ3 =
u2
3
q , x < 0

Θ1 =
u2
1
q , x > 0

(2.4)

at z = 0.
A typical solution of the nematic equations for the step initial condition (2.3) for large

nonlocality ν is displayed in Figure 1(a). For comparison, the solution for small ν is displayed
in Figure 1(b), noting that the nematic equations (2.1) and (2.2) reduce to the NLS equation in
the limit ν→ 0. As found in previous work [22], for large values of the nonlocality ν the solution
does not display the typical defocusing NLS DSW structure of Figure 1(b) [37], even though the
electric field equation (2.1) is of defocusing NLS-type. There is a KdV-type DSW in the electric
field on the intermediate shelf of height u2 between the initial levels u3 and u1. Preceding this
DSW, there is a relatively high frequency wavetrain, with a front which brings it back to the initial
level u1. The KdV DSW and resonant wavetrain are mirrored in the director response, at a much
reduced amplitude, with the resonant wavetrain in the director having amplitude O(ν−1). The
inset in Figure 1(a) shows the details of this resonant wavetrain. In this paper, the complex wave
structure seen in Figure 1(a) is understood as a radiating DSW. Such radiating DSWs typically
arise for nonlinear wave equations with higher order dispersion, the model equation being the
fifth order KdV equation, or Kawahara equation. Although the theory of radiating solitons for the
fifth order KdV and similar equations is well understood, see e.g. [48–50] and references therein,
the counterpart for DSW theory has only started to be explored (see the monograph [51] and
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Figure 1. Numerical solution of nematic equations (2.1) and (2.2) for u3 = 1.0, u1 = 0.5 and q= 2. Initial condition for

|u| (z = 0): short dashed line; initial condition for θ (z = 0): long dash line; numerical solution for |u| at z = zf : solid line;

numerical solution for θ at z = zf : dotted line. (a) ν = 200, zf = 600, inset detail of resonant wavetrain, (b) ν = 0.1,

zf = 300.

references therein and the recent papers [12,14–17]). In addition to the leading resonant wavetrain,
there are also radiative waves on the intermediate shelf on which the DSW sits. These are most
likely due to internal resonances within the DSW which is a modulated periodic wave with a
range of phase and group speeds.

3. Nematicon dispersive hydrodynamics
To analyse the Riemann problem (2.1)–(2.4) it is instructive to introduce the Madelung
transformation

u=
√
ρeiφ, v= φx (3.1)

in order to set the nematic equations (2.1) and (2.2) in the so-called dispersive hydrodynamic form

∂ρ

∂z
+

∂

∂x
(ρv) = 0, (3.2)

∂v

∂z
+ v

∂v

∂x
+ 2

∂θ

∂x
− ∂

∂x

[
ρxx
4ρ
− ρ2x

8ρ2

]
= 0, (3.3)

ν
∂2θ

∂x2
− 2qθ = −2ρ. (3.4)

The above hydrodynamic form highlights the presence of two characteristic spatial scales in the
system for large ν: the long scale O(ν1/2) and the short scale O(1), which is consistent with the
two distinct types of oscillatory structures observed in Fig. 1(a). These distinct structures are
characterised by differing typical wavelengths and different types of dispersion, which can be
understood by analysing the linear dispersion relation for this system.

Linearising the hydrodynamic form of the nematic equations (3.2)–(3.4) around the
background levels ρ̄, v̄ and θ̄ with

ρ= ρ̄+ ρ̃, v= v̄ + ṽ, θ=
ρ̄

q
+ θ̃, (3.5)

where |ρ̃| � ρ̄, |ṽ| � |v̄| and |θ̃| � ρ̄/q, gives the dispersion relation for right-propagating waves
[22]

ω= kv̄ +

√
ρ̄k√

νk2 + 2q

[
νk2 + 2q

4ρ̄
k3 + 4k

]1/2
. (3.6)



6

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

We note that since the dispersion relation (3.6) is obtained not for the original system (2.1)
and (2.2), but for its dispersive-hydrodynamic representation (3.2)–(3.4), it does not contain the
frequency shift 2Θ1 due to the background carrier wave

√
ρ̄ exp(−2iΘ1z).

To better understand the dispersive properties of the nematic system given by the dispersion
relation (3.6) we consider its long wave and short wave expansions. Expanding (3.6) in powers of
k� 1 and retaining terms up to O(k5) we have

ω' k(c+ v̄)− c

4

(
ν

q
− q

4ρ̄

)
k3 +

c

32

(
3ν2

q2
+
ν

ρ̄
− q2

16ρ̄2

)
k5, (3.7)

where c=
√

2ρ̄/q. The expansion (3.7) requires not just that k� 1, but that νk2 =O(1) or νk2� 1,
which generally does not hold true even for reasonably small wavenumbers k due to the very
large value of the nonlocality ν. Nevertheless, as we shall see, the expansion (3.7) captures some
key qualitative features of the full dispersion relation. Now looking at the short wave asymptotics
of (3.6), we obtain that for strong nonlocality ν� 1

ω' kv̄ +
1

2
k2 +O((k

√
ν)−1), νk2� 1. (3.8)

One can see from the expansions (3.7) and (3.8) that for sufficiently small wavenumbers ωkk < 0,
while for large wavenumbers ωkk > 0. Thus the full dispersion relation (3.6) is non-convex, which
has important physical consequences as it implies the possibility of resonance between long
and short waves and hence the generation of short wave radiation propagating ahead of the
DSW. The effect of resonant radiation generation by solitary waves in equations with higher
order dispersion is well known in the context of gravity-capillary waves, see e.g. [42,48–50] and
references therein. There is also abundant literature on radiating solitary waves in nonlinear
optics, see e.g. [43,52] and references therein. However, the counterpart of this for DSW theory
is yet to be developed. A few existing notable contributions include numerical investigations of
radiating DSWs described in the monograph [51] and the recent papers [12,14–17] on the effects
of higher order dispersion on NLS DSWs in the context of nonlinear optics.

In Figure 2 a comparison between the full dispersion relation (3.6) and the 5-th order Taylor
expansion (3.7) is shown for the physically realistic nonlocality ν = 200 [47]. It can be seen that
(3.7) is a good approximation to the full dispersion relation in the limit of low wavenumber, as
expected. However, due to the large factor in front of the k5 term in the approximate dispersion
relation (3.7) the low wavenumber expansion rapidly deviates from the exact dispersion relation
as k increases. Nevertheless, it qualitatively captures the key feature of the full dispersion relation,
its non-convexity, so can be used for qualitative predictions of the effects of nonlocality on the
nematic DSW behaviour. It is further seen from Figure 2 that the full phase velocity ω/k is not
monotone and has a minimum, which is also qualitatively captured by the long wave dispersion
relation (3.7). The corresponding nonlinear equation with this linear dispersion relation, the fifth
order KdV equation, will be derived in the next section.

Let us now look at the opposite, dispersionless limit of the nematic system (3.2)–(3.4), which is
described by the hyperbolic system of shallow water type [1]

∂ρ

∂z
+

∂

∂x
(ρv) = 0, (3.9)

∂v

∂z
+ v

∂v

∂x
+ 2

∂θ

∂x
= 0, (3.10)

θ =
ρ

q
. (3.11)

These equations can be set in the Riemann invariant form

v +
2
√

2
√
q

√
ρ= constant on C+ :

dx

dz
= V+ = v +

√
2
√
q

√
ρ, (3.12)
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Figure 2. Nematic dispersion relation (a) Full dispersion relation (3.6): solid line, 5th order expansion (3.7): dashed line,

(b) nematic phase velocity C = ω/k: solid line, 4th order expansion velocity: dashed line. The parameters are ρ̄= 1.0,

v̄= 0, ν = 200 and q= 2.

v − 2
√

2
√
q

√
ρ= constant on C− :

dx

dz
= s+ = v −

√
2
√
q

√
ρ. (3.13)

The rarefaction wave seen in Fig. 1 can then be described by a centred simple wave solution of
equations (3.12) and (3.13) in which the right-going Riemann invariant is constant. This solution
will be presented in Section 5(a).

4. Fifth order KdV equation
It has been shown that the nematic system (2.1) and (2.2) reduces to the Korteweg-de Vries (KdV)
equation in the limit of small deviations from a background level [22,53]. However, the physically
large value of the nonlocality ν [47] and the linked resonant wavetrain have major effects on the
asymptotic analysis, which were not considered in this previous work.

Indeed, assuming ν� 1, but νk2 =O(1), one has to retain the fifth order terms in the
dispersion relation expansion (3.7), which implies the necessity of keeping the fifth order
dispersion term in the corresponding asymptotic KdV equation. The asymptotic reduction of the
nematic equations to the KdV equation in the limit of small deviations from a background level
u0 will then be revisited, taking account of the large value of the nonlocality ν. This asymptotic
KdV equation will be derived from the hydrodynamic form of the nematic equations (3.2)–(3.4).
Let us expand the hydrodynamic variables as

ρ = ρ0 + ε2P1(ξ, η) + ε4P2(ξ, η) + . . . , (4.1)

v = ε2V1(ξ, η) + ε4V2(ξ, η) + ε6V3(ξ, η) + . . . , (4.2)

θ =
ρ0
q

+ ε2θ1(ξ, η) + ε4θ2(ξ, η) + ε6θ3(ξ, η) + . . . , (4.3)

where ρ0 = u20 and 0< ε� 1 is a measure of the deviation from the background u0, here ε2 =

u2 − u1. Also, ξ = ε (x− Uz) and η= ε3z are the usual stretched variables used to derive the KdV
equation [1]. We also assume that all corrections to the equilibrium state ρ= ρ0, v= 0, θ= ρ0/q

vanish as |ξ| →∞.
Substituting the expansions (4.1) and (4.3) into the director equation (2.2), we obtain at O(ε2)

θ1 =
P1

q
(4.4)

and at O(ε4)

θ2 =
ν

2q

∂2θ1
∂ξ2

+
P2

q
+
νε2

2q

∂2θ2
∂ξ2

. (4.5)



8

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

The term νε2θ2ξξ/2q is formally O(ε2) and should appear at next order in the expression for θ3,
as in [53]. However, this implicitly assumes that ν =O(1), which is not the case for experimental
values of ν. Hence, this term will be retained at O(ε4). Treating νε2θ2ξξ/2q as a correction,
equation (4.5) can be solved for θ2 to give

θ2 =

[
ν

2q

∂2θ1
∂ξ2

+
P2

q

]
+
ν2ε2

4q2
∂4θ1
∂ξ4

+
νε2

2q2
∂2P2

∂ξ2
. (4.6)

Note that the last term in (4.6) has to be retained as (4.5) implies that P2 can be of O(ν), making
the last term O(ν2ε2).

Substituting the expansions (4.1)–(4.3) into the “mass” and “momentum” equations (3.2) and
(3.3), we have at O(ε3)

∂V1
∂ξ

=
U

ρ0

∂P1

∂ξ
and U

∂V1
∂ξ

=
2

q

∂P1

∂ξ
, (4.7)

respectively, on using (4.4) for θ1. Compatibility between these two equations for V1 and P1 then
gives the coordinate velocity U as

U2 =
2

q
ρ0. (4.8)

Identifying u20 = ρ̄ from Section 3, we see that U = c from the long wave expansion (3.7) of the
linear dispersion relation.

Similarly, at O(ε5) the mass and momentum equations (3.2) and (3.3) give

ρ0
∂V2
∂ξ
− U ∂P2

∂ξ
+
∂P1

∂η
+ V1

∂P1

∂ξ
+ P1

∂V1
∂ξ

= 0 (4.9)

and

− U ∂V2
∂ξ

+ 2
∂θ2
∂ξ

+
∂V1
∂η

+ V1
∂V1
∂ξ
− 1

4ρ0

∂3P1

∂ξ3
= 0, (4.10)

respectively.
It was shown in [22,53] that substituting the leading order part of (4.6) (the terms in brackets)

into (4.10) and combining it with (4.7) and (4.9) leads to the KdV equation. We now need to extend
this derivation by including the higher order terms of (4.6). The problem we encounter is with the
computation of the last term in (4.6) as the correction P2 cannot be computed separately at order
O(ε5), leading to equations (4.9) and (4.10), and a higher order approximation is required. This
difficulty can be circumvented by suggesting a suitable ansatz for P2 which is compatible with
(4.9) and (4.10). Let

P2 = αν
∂2θ1
∂ξ2

= α
ν

q

∂2P1

∂ξ2
, (4.11)

where α is a constant. Then substituting (4.6) and (4.11) into (4.10) we obtain, on using (4.7),

∂V2
∂ξ

=− 1

ρ0

[
∂P1

∂η
+

2U

ρ0
P1
∂P1

∂ξ
− ανU

q

∂3P1

∂ξ3

]
. (4.12)

Substituting (4.6), (4.11) and (4.12) into (4.9) we obtain the fifth order KdV equation for P1

∂P1

∂η
+

3

qU
P1
∂P1

∂ξ
+
U

4

(
ν

q
− q

4ρ0

)
∂3P1

∂ξ3
+
ν2ε2ρ0
4q3U

(1 + α)
∂5P1

∂ξ5
= 0. (4.13)

For the 5th order KdV equation (4.13) to be consistent with the long wave expansion (3.7) of the
linear dispersion relation [1] we have to choose α=−1/4 (note that due to the scaling for ξ and
η one has to replace (ω − kc)→ ε3ω, k→ εk in (3.7) to make the comparison). We note that if the
substitution (4.11) were not compatible with equations (4.9) and (4.10), it would not be possible to
obtain agreement for both dispersive terms in (4.13) with the expansion of the nematic dispersion
relation (3.7) using the single fitting parameter α.

The 5th order KdV equation (4.13) differs from that found in [22,53] due to the P1ξξξξξ term,
which arises at this order as ν is large. The polarity of the solitary wave solution of the 5th order
KdV equation (4.13) depends on the sign of the coefficient of the P1ξξξ term. It is then clear that in
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Figure 3. Numerical solution of 5th order KdV equation (4.14) for w0 = 0.5 and γ = 0.05. dashed line: initial condition

at t= 0, solid line: solution at t= 20.

the nonlocal regime with ν large the solitary wave solution of the defocusing nematic equations
(2.1) and (2.2) is a bright solitary wave, rising above a background level, rather than the usual
dark solitary wave of the defocusing NLS equation, which the nematic equations become in the
limit ν→ 0.

Although the fifth order KdV equation (4.13) has a limited range of validity as an asymptotic,
quantitative model for nematic DSWs, it provides major qualitative insight into their dynamics by
capturing the effect of resonant radiation. To illustrate this, we solved numerically the normalised
5th order KdV equation

∂w

∂t
+ 6w

∂w

∂x
+
∂3w

∂x3
+ γ

∂5w

∂x5
= 0 (4.14)

for sufficiently small γ > 0. Equation (4.14) has been derived in several physical contexts,
including magnetoacoustic waves and capillary-gravity waves of small amplitude when the Bond
number is close to, but just less than, 1/3 (see e.g. [42] and references therein). Radiating solitary
waves solutions of (4.14) were discovered by Kawahara [54] and then studied analytically and
numerically in a number of papers (see e.g. [48–50] and references therein).

Let us consider the 5th order KdV equation (4.14) with the initial condition w= 0, x> 0 and
w=w0, x< 0, so that a DSW is generated. Due to the non-convexity of the dispersion relation
for (4.14), there is the possibility of energy exchange between long and short waves propagating
with the same phase velocity (see Figure 2), so this DSW is expected to generate a resonant linear
wavetrain propagating ahead of it [51]. Such a radiating KdV DSW is displayed in Figure 3. The
solution shown in this figure has strong similarities to the radiating nematic DSW solution of
Figure 1(a). However, the resonant wavetrain of the nematic solution is more uniform, which is
due to the smoothing effect of the large nonlocality ν.

In conclusion, we note that, although the known theory of radiating solitary waves provides
some intuition as to the counterpart radiating DSW solution, the major contrasting feature of
radiating DSWs is the fact that the lead solitary wave of the radiating DSW remains steady, while
an isolated radiating solitary wave is intrinsically unsteady due to the radiation carrying away
the solitary wave’s energy [48].
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5. Dam break problem for the nematic system
The solution of the Riemann problem (2.1)–(2.4) for the nematic system generically consists of
three distinct parts: a rarefaction wave, a (bright) DSW and a radiative wavetrain (see Figure
1(a)). The rarefaction wave was analysed in [22], so below we only briefly outline the relevant
results. Our main attention in this section will be on the DSW on the intermediate level u2 and
the resonant wavetrain generated by it.

(a) Rarefaction wave
The solution displayed in Figure 1(a) shows that there is an expansion wave linking the initial
level u3 behind the DSW to the level u2 on which the KdV DSW sits. This expansion wave solution
has already been determined [22], so only the relevant details will be given here.

The expansion wave linking the initial level u3 behind to the intermediate level u2 =
√
ρ2 can

be found as a simple wave solution of the Riemann invariant equations (3.12) and (3.13) as [22]

√
ρ=


u3,

x
z <−

√
2u3√
q√

q

3
√
2

[
2
√
2u3√
q − x

z

]
, −

√
2u3√
q ≤

x
z ≤

√
2√
q

(
2u3 − 3

√
ρ2
)

√
ρ2,

√
2√
q

(
2u3 − 3

√
ρ2
)
< x
z ≤ s+

(5.1)

and

v=


0, x

z <−
√
2u3√
q

2
√
2u3

3
√
q + 2x

3z , −
√
2u3√
q ≤

x
z ≤

√
2√
q

(
2u3 − 3

√
ρ2
)

v2 = 2
√
2√
q

(
u3 −

√
ρ2
)
,

√
2√
q

(
2u3 − 3

√
ρ2
)
< x
z ≤ s+

. (5.2)

Here s+ is the velocity of the lead soliton of the KdV DSW, which lies at the leading edge of the
intermediate shelf. The simple wave solution (5.1) linking the initial level u3 and the intermediate
shelf u2 will be used for the comparisons with numerical solutions in Section 6.

The velocity s+ of the leading edge of the DSW on the shelf u2 needs to be determined.
In contrast to the KdV and defocusing NLS equations, this velocity is not determined by the
conservation of the Riemann invariant onC− across the DSW [28], but by the classical shock jump
condition. We note here that the occurrence of the classical shock conditions in a conservative
dispersive hydrodynamics was observed earlier in numerical simulations of large amplitude
shallow water DSWs [55] and optical DSWs in photorefractive media [56] (see also [57]) and,
very recently, in the context of radiating dispersive shock waves governed by the defocusing NLS
equation modified by third order dispersion [12,14,15,17]. This remarkable generic phenomenon
requires further analytical study.

The non-dispersive equations (3.9)–(3.11) have the jump conditions [1]

s+ =
ρ2v2
ρ2 − ρ1

and s+ =

1
2v

2
2 + 2ρ2

q −
2ρ1
q

v2
(5.3)

as ahead of the shock, ρ= ρ1 and v= 0 and behind the shock, ρ= ρ2 and v= v2. Eliminating
between these equations gives

v2 =
2
√
q

ρ2 − ρ1√
ρ2 + ρ1

and s+ =
2
√
q

ρ2√
ρ2 + ρ1

. (5.4)

The expansion fan solution (5.2) also gives an expression for v2 in terms of the intermediate level
u2. Matching this and (5.4) then gives that this intermediate level u2 = ρ22 is the solution of

u42 − 4u3u
3
2 + 2

(
u23 + 2u21

)
u22 − 4u3u

2
1u2 − u41 + 2u23u

2
1 = 0 (5.5)

with u1 ≤ u2 ≤ u3. For the particular case u1 = 0, u2 = (2−
√

2)u3. Also, as u1→ u3, u2→
(u3 + u1) /2, which is the value obtained by conservation of the Riemann invariant (3.13) on
C− [22].
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(b) Dispersive shock wave: lead solitary wave
In previous work [22] the DSW solution of the KdV equation [25,26] was used for the DSW on
the intermediate shelf u2. While this was found to give good agreement with numerical solutions
for values of u1 near u3, significant disagreement was found for values of u1 away from u3. As
discussed above, this is due to the velocity s+ of the front of the full nematic DSW not being
well determined by the velocity of the leading edge of the asymptotic KdV DSW. The reason
for this behaviour is that the DSW is subject to radiative losses due to the resonance with the
co-propagating linear short wavelength waves, resulting in a rapidly oscillating wavetrain shed
ahead of the DSW. For small initial steps the radiating DSW is described in the framework of
the 5th order KdV equation (4.13). However, for general jumps the full nematic system should
be used due to the 5th order KdV equation not being accurate in capturing large wavenumber
dispersive behaviour (see Fig. 2).

We now need to relate the shock velocity s+ to the amplitude of the lead soliton of the DSW.
Since the solitary wave solution of the full nematic system is not available, as an approximation
we shall use the soliton solution of the standard KdV equation, that is (4.13) without the 5th
derivative term. On noting the scalings in the expansions (4.1)–(4.3) and equating s+ given by
(5.4) to the lead soliton velocity, this gives

as = ε2A=

√
2u22√

u22 + u21

− u1. (5.6)

The lead soliton of the KdV DSW itself is given by [22]

|u|=√ρ= u0 + ε2A sech2 β(x− s+z) + . . . , (5.7)

where

β =
ε
√
A√

2(2q)1/4α
√
ν

and α=

[
U

4q
− qU

16u21ν

]1/2
. (5.8)

These results will be used in the next section to find a solution for the resonant wavetrain leading
the KdV DSW seen in Figure 1(a) on identifying u0 = u1.

(c) Resonant wavetrain
Let us now consider the wavetrain ahead of the DSW. This wavetrain is generated due to a
resonance between the long wave oscillations in the DSW and co-propagating short wavelength
waves, as implied by the non-convexity of the linear dispersion relation (3.6) and discussed in
Section 4.

In determining the structure of the resonant wavetrain we refer to Figure 1(a) in which one can
observe three regions of distinctly different behaviour: region (i) provides a transition from the
lead soliton of the DSW to region (ii) which contains the (almost) uniform extended middle part
of the wavetrain; and the front region (iii) which brings the wavetrain down to the constant level
u= u1 and θ=Θ1, where Θ1 = |u1|2/q, see (2.4).

We start with the middle region (ii) for which the director θ is close to Θ1, θ −Θ1 =O(ν−1)

and the wavenumber k is O(1). Hence, the asymptotic dispersion relation (3.8) applies and the
dispersion relation for the resonant wavetrain is

ωr =
1

2
k2 + 2Θ1 (5.9)

as the resonant wavetrain is on the background carrier wave u1 exp(−2iΘ1z). Furthermore, the
resonant wavetrain in the region (ii) is then asymptotically described by the linear equation
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following from (2.1) on setting θ=Θ1,

i
∂u

∂z
+

1

2

∂2u

∂x2
− 2Θ1u= 0. (5.10)

We assume that the main resonance is with the lead soliton of the DSW, which we approximate
by the KdV soliton (5.7). Matching the phase velocity to the lead KdV soliton velocity (5.4), we
have

cr =
1

2
k +

2Θ1

k
= s+, (5.11)

which can be solved to give the wavenumber of the resonant wavetrain as

k= kr = s+ +

[
s2+ −

4

q
u21

]1/2
. (5.12)

The front of the resonant wavetrain moves at the group velocity cg [1], which is

cg = ω′r(kr) = kr. (5.13)

These expressions for the asymptotic wavenumber of the resonant wavetrain away from the DSW
and the velocity of the front of the wavetrain will be used in the solution for this wavetrain.

The wavenumber (5.12) is real if u1 ≤ u1c, where u1c is the solution of

s+ =
2
√
q

u22√
u22 + u21c

=
2
√
q
u1c. (5.14)

For u1 above u1c there is only a transient wavetrain ahead of the DSW [1]. This existence of a
critical u1 above which there is no resonant wavetrain is in agreement with previous work [22]
in which the critical value was found to be u1c = u3/

√
2. For u3 = 1, q= 2 and ν = 200 numerical

solutions give the critical value u1c = 0.69 [22]. For these parameter values the new modulation
value (5.14) u1c = 0.648 is slightly below the numerical cut-off, while the previous modulation
value u1c = 1/

√
2 is slightly above. It should be noted that numerical solutions do not show

a sharp transition to no resonant wavetrain as given by (5.14), but a rapid transition from an
upstream uniform wavetrain to none over a u1 range of about 0.1.

Above the critical value (5.14) the resonant wavetrain ceases to exist. The DSW on the
intermediate level u2 then becomes the standard KdV type DSW and the approximate solution
of [22] holds. The amplitude and velocity of the lead soliton of the DSW are, then cf. (5.4), (5.6),

as = ε2A= u3 − u1, s+ =

√
2

q
u3. (5.15)

As equation (5.10) is linear, it does not allow the determination of the resonant wavetrain
amplitude. For that, one needs to go beyond the approximation θ=Θ1 in the wavetrain and
include the (significant) variations of the director in the transition region (i) between the DSW
and the uniform wavetrain region.

As the phase velocity of the resonant wavetrain is the same as the (classical shock) velocity s+
(5.4) of the lead soliton of the DSW, to determine the solution for the wavetrain in the transition
region we will use the moving coordinate ζ = x− s+z. By inspection of the numerical solution
of Figure 1(a) it is reasonable to assume that the approximate director solution in the transition
region is given by the lead solitary wave of the DSW, so that from equations (4.4) and (5.7) of the
KdV expansion of Sections 4 and 5(b) we have

θ=
u21
q

+ ε2
2u1
q
A sech2 βζ. (5.16)

The ansatz (5.16) transforms the equation for the electric field (2.1) into a linear, variable coefficient
equation whose solution can be sought in the form

u= u1e
−2iu2

1z/q+iσ(ζ) + ure
−2iu2

1z/q+iσ(ζ), (5.17)
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where σ(ζ) and ur(ζ, z) are the phase correction due to the variable coefficient and the wavetrain
amplitude, respectively. To be consistent with the director (5.16) ur =O(ε2) as it is proportional
to the jump height u2 − u1. Substituting (5.16) and (5.17) into the electric field equation (2.1) we
have

i
∂ur
∂z
− i(s+ − σ′)

∂ur
∂ζ

+
1

2

∂2ur
∂ζ2

−
(

4ε2u1
q

A sech2 βζ − s+σ′ −
i

2
σ′′ +

1

2
σ′2
)
ur

+ σ′u1s+ −
1

2
u1σ
′2 − 4ε2u21

q
A sech2 βζ = 0. (5.18)

We now choose the phase correction σ(ζ) so that the relation

s+σ
′ − 1

2
σ′2 =

4u1ε
2

q
A sech2 βζ (5.19)

is satisfied. Then, on using (5.19) to leading order in ε, we obtain from (5.18) the equation for the
variation of the wavetrain amplitude in the transition region as

i
∂ur
∂z
− i(s+ − σ′)

∂ur
∂ζ

+
1

2

∂2ur
∂ζ2

= 0. (5.20)

In deriving this equation, we have noted that σ′′ is higher order in ε ( since β ∼ ε/
√
ν, see (5.8)).

Using the numerical solution (see Fig. 1(a)) and the soliton solution (5.7) as a guide to the
structure of the transition region we shall look for the solution of equation (5.20) for ur as fast
(scaled as O(1)) oscillations with a slowly varying (scaled as O(β−1)) envelope. We then seek a
WKB solution of the form

ur =W (X,Z)eiψ(X,Z)/β , (5.21)

where the slow variables areX = βζ and Z = βz. This WKB expansion is valid if 1/
√
ν� ε�

√
ν,

which holds as ν is large. The first inequality is due to using the first two terms of the KdV
expansion (4.3) for the director (5.16) and the second is required for the validity of the WKB form
(5.21). Substituting the WKB form (5.21) into equation (5.20) gives the eikonal equation

∂ψ

∂Z
+

1

2

(
∂ψ

∂X

)2

−
(
s+ − σ′

) ∂ψ
∂X

= 0 (5.22)

and the transport equation

∂W

∂Z
+

(
∂ψ

∂X
− s+ + σ′

)
∂W

∂X
=−1

2

∂2ψ

∂X2
W. (5.23)

We note that the group and phase velocity argument gave that as the resonant wavetrain
approaches the wavefront at x= cgz, it becomes a uniform wavetrain of wavenumber kr and
frequency k2r/2 + 2Θ1 [22]. We then find that the solution of the eikonal equation (5.22) is

ψ= krX −
(

1

2
k2r − s+kr

)
Z − 4ε2u1kr

qs+(kr − s+)β̃
A tanhX, β̃ =

√
νβ =

ε
√
A√

2(2q)1/4α
. (5.24)

We note that the phase correction (5.24) becomes infinite as kr→ s+. This is expected as the group
velocity of the front of the resonant wavetrain is kr . When the velocity of the lead soliton of the
KdV DSW is greater than the group velocity, the wavetrain cannot propagate away from the
DSW. There is then no upstream resonant wavetrain, with only a small amplitude transient being
present [22].

To solve the transport equation (5.23) the resonant wavetrain leading the KdV DSW must be
matched to the intermediate shelf, so that W =W0 = ε2 = u2 − u1 at X = 0 on noting the full
solution (5.17) for u. Then using the eikonal equation solution (5.24), the solution of the transport
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equation (5.23) is

W =W0

[
1 +

2u1ε
2krA

qs+(kr − s+)2
sech2X

] [
1 +

2u1ε
2krA

qs+(kr − s+)2

]−1
. (5.25)

The height of the resonant wavetrain exponentially approaches the constant value

Wc =W0

[
1 +

2u1ε
2krA

qs+(kr − s+)2

]−1
(5.26)

as the front of the wavetrain at x= cgz is approached, so that the total height of the envelope of
the resonant wavetrain in the region (ii) is given by

ar = u1 +W0

[
1 +

2u1ε
2krA

qs+(kr − s+)2

]−1
. (5.27)

Finally, we describe region (iii) of the resonant wavetrain which brings it down to the initial
level u1 (see Figure 1(a)). In the region of this front, as for the uniform middle region (ii), we
approximate θ by θ=Θ1 = |u1|2/q, so that the linear equation (5.10) holds. If we use a moving
coordinate ζg = x− cgz moving with the velocity of the front, the electric field is governed by

i
∂u

∂z
− icg

∂u

∂ζg
+

1

2

∂2u

∂ζ2g
− 2Θ1u= 0. (5.28)

To match with the initial level ahead, we seek a solution of the form

u= u1e
−2iΘ1z + ufe

−2iΘ1z , (5.29)

so that uf is the solution of

i
∂uf
∂z
− icg

∂uf
∂ζg

+
1

2

∂2uf

∂ζ2g
= 0. (5.30)

To match with the uniform wavetrain behind, we have the boundary condition |uf |= ar − u1
at ζg = 0. The linear equation (5.30) can be solved using Laplace transforms to give the Fresnel
integral solution

uf =
2 (ar − u1)√

π
ei(cgζg+

1
2 c

2
gz−π/4)

∫∞
ζg√
2z

eit
2

dt. (5.31)

6. Comparison with numerical solutions
In this section, full numerical solutions of the nematic equations (2.1) and (2.2) will be compared
with the modulation theory solutions of Sections 5 (a), (b) and (c). The numerical solution of the
electric field equation (2.1), which is of NLS-type, was obtained using the pseudo-spectral method
of Fornberg and Whitham [26], modified to improve its accuracy and stability [58], but without the
boundary damper due to the non-zero boundary conditions. These improvements include using a
4th order Runge-Kutta scheme to propagate forward in z, resulting in higher accuracy, in Fourier
space, rather than in real space, resulting in improved stability [58]. The numerical solution of the
linear director equation (2.2) was obtained using a spectral method [59]. This numerical scheme
is discussed in [60]. For the numerical solutions of this work 32768 points were used for the FFT
with a x domain of length 8192.0 and a z step of ∆z = 0.002. The x domain was chosen long
enough so that the waves at the numerical boundaries generated by periodicity were far from
the region of interest. Finally, the initial condition (2.3) was smoothed using tanhx/W to avoid
spurious numerical effects due to large x derivatives, with W = 1 found to be suitable.

Figure 4 shows a comparison between the numerical solution of the nematic equations (2.1)
and (2.2) for u3 = 1.0 and u1 = 0.5 at z = 300 for q= 2 and ν = 200. For clarity, in these figures
only the upper envelope of the resonant wavetrain (5.17), (5.21) and (5.25) and the upper envelope
of the Fresnel front (5.31) are shown. It can be seen that there is very good agreement in general
between the numerical solution for the electric field |u| and the modulation theory solution of
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Figure 4. Comparison between numerical solution of nematic equations (2.1) and (2.2) and the modulation theory solution

of Sections 5(a), 5(b) and 5(c) for u3 = 1.0, u1 = 0.5, q= 2 and ν = 200. Initial condition for |u| (z = 0): short dashed

line; initial condition for θ (z = 0): long dash line; numerical solution for |u| at z = 300: solid line; numerical solution for

θ at z = 300: dotted line; modulation solution: dot-dot-dash line. Only the lead soliton of the modulation theory DSW

solution is shown.

Sections 5(a), 5(b) and 5(c). In particular, there is excellent agreement for the position of the lead
soliton of the DSW, which is the same as that of the trailing edge of the resonant wavetrain. This
is in contrast to the result of previous work [22] in which this position was determined by the
velocity s+ =

√
2/qu3 of the lead soliton of the standard KdV DSW solution [25,26], resulting in

the DSW leading edge being at x= 300 for the parameters of Figure 4, noting that the numerical
position is x= 247.5. It is then clear that the shock velocity (5.4) determined from the shock jump
conditions for the non-dispersive “shallow water” equations (3.9)–(3.11) and giving x= 265.9

for the lead soliton at z = 300 yields much better agreement with the numerical solution for the
position of the leading edge of the DSW than the velocity determined by the KdV DSW solution.
The differing length scales of the KdV DSW (O(

√
ν)) and the resonant wavetrain (O(1)) can

be clearly seen. The major disagreement is that the front of the numerical resonant wavetrain
has more structure than the linear Fresnel integral solution of Section 5(c). However, the Fresnel
integral solution gives the correct spatial extent of the transient front of the resonant wavetrain.
Furthermore, if the Fresnel integral solution is shifted so that it starts ahead of the rise in the
numerical front, it is in very good agreement with the numerical front.

The other noticeable disagreement between the numerical and analytical solutions is the
amplitude of the lead soliton of the DSW. The amplitude of the DSW in the electric field u is
generally under-predicted by the KdV theory of Section 5(b), which was based on the classical
shock speed (5.4). However, this approximation yields good agreement for the DSW in the
director θ, given in the KdV approximation by Eq. (5.16). This is in contrast to the results of [22]
for which the standard DSW solution of the KdV equation was used to determine the DSW on
the intermediate level u2. The results of [22] strongly over-predicted the height of the bore in
the director, this major discrepancy being fixed in the present theory. Finally, it can be seen that
under the resonant wavetrain there is a slight rise in the director above θ=Θ1 due to O(ν−1)

corrections in the asymptotic expansions. These higher order corrections will be dealt with in
future work based on a full description of a resonantly radiating DSW.

The agreement between the modulation theory and numerical solutions is further quantified
in Figure 5. Figure 5(a) shows a comparison of the height (background plus amplitude) of the lead
soliton of the DSW as given by numerical solutions and the modulation solution (as = ε2A+ u1),
using (5.6) for the amplitude below the cut-off (5.14) and (5.15) above. The choice of the total
height rather than amplitude for the comparisons is due to the soliton background being not
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Figure 5. (a) Height as of lead soliton of the DSW. Numerical solution of (2.1) and (2.2): pluses; analytical solution

as = u1 + ε2A (5.6) and (5.15): dashed line. (b) Height u2 of intermediate shelf. Numerical solution of (2.1) and (2.2):

pluses; modulation solution (5.5): dashed line. (c) Height ar of resonant wavetrain as a function of the upstream level u1.

Numerical solution of (2.1) and (2.2): pluses; WKB solution (5.27): dashed line. (d) Comparison for leading and trailing

edges of resonant wavetrain at z = 300. Numerical trailing edge: pluses; trailing edge x− = s+z given by the classical

shock speed s+ (5.11): solid line; numerical leading edge: crosses; leading edge x+ = cgz defined by the group velocity

(5.13): dashed line; trailing edge of [22] given by the soliton speed (5.15) in the standard modulation solution for the KdV

DSW: dotted line. The other parameter values are u3 = 1, q= 2 and ν = 200.

clearly defined in the numerical solutions (see Fig. 1(a)). Furthermore, the amplitude of the lead
wave oscillates slightly due to its interaction with the resonant wavetrain, so the figure shows the
average amplitude. The numerical solution clearly shows the predicted different DSW behaviours
above and below the resonant wave cut-off, which was not predicted in [22] for which the height
was the constant value (5.15) for the whole range of u1. Thus, one can see that the KdV soliton
height based on the classical shock wave speed is in broad agreement with the numerical values.
The appropriateness of using the classical shock wave velocity to determine the intermediate shelf
height (5.5) is quantified in Figure 5(b). It can be seen that (5.5) is in excellent agreement with the
numerical height, except for a slight discrepancy as u1→ 0. This is due to the intermediate shelf
disappearing as the dam break solution for u1 = 0 is approached [22].

Figure 5(c) shows a comparison between the height of the resonant wavetrain obtained
numerically and the modulation solution height (5.27). There is excellent agreement between
these heights, except towards the cut-off near u1 = 0.7. This is due to the discrepancy between
the numerically found cut-off and the modulation theory prediction.

Finally, Figure 5(d) shows a comparison for the leading and trailing edges of the resonant
wavetrain. It can be seen that there is excellent agreement for the position of the trailing edge,
even up to the cut-off. Previous work [22] predicted the constant (i.e. independent of u1) velocity
(5.15) for the trailing edge which was defined by the value u3 alone. Figure 5(d) clearly shows
that the present theory based on the classical shock speed for the leading edge of the DSW is in
much better agreement. The agreement for the leading edge is reasonable above u1 = 0.5 as the
cut-off is approached, but is poor as u1 decreases. There are a number of reasons for this. The
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Figure 6. Numerical solution of the nematic equations (2.1) and (2.2) for u3 = 1.0, u1 = 0.1, q= 2 and ν = 200. (a)

Initial condition for |u| (z = 0): short dashed line; initial condition for θ (z = 0): long dash line; numerical solution for |u|
at z = 300: solid line; numerical solution for θ at z = 300: dotted line, (b) phase v at z = 300.

position of the trailing edge is clearly defined by the peak of the lead soliton of the KdV DSW.
While the theory of Section 5(c) predicts a precise location for the leading edge of the resonant
wavetrain, it can be seen from Figs. 1(a) and 4 that this is not the case for the numerical solution.
There is no clean boundary between the resonant wavetrain and its front. There is an extended
transition between the two. For the comparison of Figure 5(d) the start of the hump before the
monotonic decrease of the front was chosen as the leading edge position of the wavetrain. Finally,
the present modulation solution underpredicts the cut-off point for the resonant wavetrain (at
u1 = 0.648 compared with the numerical value 0.69 for the parameter values of Fig. 5), leading to
the disagreement as the cut-off is approached.

Part of the reasons for these discrepancies is due to the major simplifying assumption adopted
in the present theory, according to which the generation of the wavetrain is dominated by a
single resonance with the lead soliton of the DSW. A more advanced theory including internal
resonances with the other components of the DSW is needed to achieve better agreement with
numerical solutions.

There is one more feature of the resonant wavetrain which complicates its analysis for large
initial jumps. As the initial level ahead u1 decreases the electric field u eventually vanishes at
a point, termed the vacuum point [37]. For sufficiently large initial jumps the vacuum point
occurs within the resonant wavetrain, so that the lower envelope becomes non-monotone. It
was shown in [37] that for the defocusing NLS DSW there is a singularity in the phase v at the
vacuum point itself. Although the resonant wavetrain for the nematic system (2.1) and (2.2) is
asymptotically described by the linear equation (5.10) rather than the defocusing NLS equation,
numerical simulations show that the vacuum point in the wavetrain has qualitatively similar
properties to the vacuum point arising in the large amplitude NLS DSW [37]. In particular, such a
DSW has a non-monotone lower envelope (see Figure 6(a)) and exhibits a phase singularity at the
vacuum point, see Figure 6(b). The WKB solution of Section 5(c) gives that the lower envelope of
the resonant wavetrain has height

al = u1 −Wc = u1 −W0

[
1 +

2u1ε
2krA

qs+(kr − s+)2

]−1
. (6.1)

For u3 = 1.0, ν = 200 and q= 2, it is found that al vanishes when u1 = 0.2416. Numerical solutions
of the nematic equations (2.1) and (2.2) show that for these parameter values a vacuum point
first occurs when u1 = 0.22. A full analysis of the solution after the vacuum point is reached is
beyond the scope of this paper. Full Whitham modulation equations would be required for a
proper analysis after the vacuum point [37].
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7. Conclusions
The Riemann problem for the equations governing the propagation of a coherent optical beam in
a defocusing nematic liquid crystal has been studied. It was found that in the highly nonlocal limit
the DSW, which comprises a major part of the Riemann problem solution, is drastically different
to the DSW solution of the defocusing NLS equation, to which the nematic equations reduce in
the small nonlocality limit, that is ν→ 0. There are two major differences: (i) the nematic DSW is of
positive polarity with a bright soliton at its leading edge; (ii) it is preceded by a short wavelength
resonant wavetrain. To clarify this structure, it was shown that in the limit of small deviations
from a background, the nematic equations reduce to a KdV equation with a fifth order derivative,
the Kawahara equation. This fifth order KdV equation is known to have a resonance between its
solitary wave solution and linear radiation. The present work shows that this resonance extends
to a resonance between the DSW and linear radiation. A modulation theory was developed to
derive solutions for the resonant wavetrain and its front. In contrast to previous work [22], it was
found that the leading edge of the DSW was determined by the classical shock jump condition,
which is non-standard for DSWs [28]. Excellent agreement was found between the major part of
the modulation theory solution and full numerical solutions of the nematic equations. However,
there are some discrepancies. Part of the observed discrepancies can be addressed by applying
a more complete modulation theory for the DSW description. When the higher order dispersion
term is a small perturbation, as in the Kawahara equation (4.14) with γ� 1, Whitham theory
for perturbed integrable equations [61,62] provides an appropriate analytical framework for the
description of the DSW evolution.

The present work leaves open a number of issues. As already discussed, resonances between
DSWs and radiation is an issue which has received little attention to date with the theory and
solution methods only starting to be developed [12,51], in contrast to the corresponding resonant
interaction between solitary waves and radiation (see e.g. [43,48–50,52]). As the nematic equations
are generic and similar equations arise in a number of fields, this resonant interaction deserves
in depth treatment. A proper analysis of possible resonances between DSWs and radiation is an
open question which deserves further treatment. This will be the subject of further work.
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