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Catalytic activity and chemical structure of Nano MoS2 
synthesized in a controlled environment  

H. Zhang,a H. Lin,a Y. Zhenga,c*, Y.F. Hub, A. MacLennanb 

A novel hydrothermal method for preparation of nano MoS2 for hydrodesulfurization (HDS) with MoO3 as precursors is 

presented. The redox reaction mechanism is, for the first time, revealed. It is shown to involve the oxidation of S2- to SO4
2- 

while hexavalent Mo is reduced to quadrivalent Mo to form MoS2. HS- group is identified to play a key role in reduction of 

MoO3. The acid-base behaviour of Na2S to HS- group and the yield of the resulting MoS2 are controlled via the pH of the 

synthesis solution. Various characterization methods, e.g. XRD, TEM, SEM, BET, TPR, XPS, XANES, EXAFS, etc. are employed 

for the characterization of the synthesized MoS2. The results show that high purity MoS2 is obtained. The ratio of 

precursors, MoO3 and Na2S, influences the crystal structure and catalytic activity. Slight less sulfur than stoichiometric ratio 

of S/Mo produces defect sites, which promotes catalyst activities in the hydrodesulfurization of real light cycle oil (LCO). 

Introduction 

Nano-scaled molybdenum disulfide (MoS2) has a layered 

structure with individual sheets strongly covalently bonded within 

but held together through weak van der Waals interactions. This 

results in two distinct surfaces of MoS2: basal and edge planes. 

Within a layer, each Mo (IV) center is bonded to six sulfurs forming 

a trigon prismatic coordination while every sulfur atom is 

connected with three Mo forming pyramidal interstices1,2. The 

unique structure and chemistry properties make MoS2 widely 

applied as a functional material in diverse fields of lubrication, 

electronic transistors, batteries, photovoltaics, catalysis, and 

sensing3. MoS2 also shows high activity in hydrodesulfurization 

reaction4. 

There are different methods for synthesis of nano MoS2 

including solid-gas sulfidation, thermal decomposition, and solution 

reactions5. Hydrothermal method is an alternative route to 

preparing nano MoS2 with MoO3 as precursor6. Compared to 

thiomolybdate, MoO3 is an attractive precursor as it is cost-

effective. MoO3 has been used as precursor to synthesize nano 

MoS2 of different morphologies, e.g. nano-sheet4, nanowires7, 

nanotubes and nanorods8. Our previous study discussed the effect 

of temperature on the nucleation and growth process6. A 

relationship has been established between the crystallization 

process and MoS2 structure. Successful production of nano MoS2 

through hydrothermal route is associated with a number of 

synthesis parameters such as pH of solvent, precursor 

concentration, and temperature. However the reaction 

mechanisms for formation of MoS2 are poorly understood.  

This work tends to address this deficiency. In particular, the role 

of reducing agent in transformation of hexavalent Mo to 

quadrivalent Mo to form MoS2 will be studied. The reaction 

mechanism of the nano MoS2 formation is discussed. Appropriate 

synthesis condition results in high yield of highly dispersed nano 

MoS2 crystalline that has high hydrodesulfurization activity. The 

textural and chemical structure of synthesized catalysts were 

extensively characterized by various techniques, e.g. TEM, BET, 

XRD, XPS, TPR and XAFS, etc. The hydrodesulfurization (HDS), 

hydrodenitrogenation (HDN) activities were evaluated using a real 

diesel fraction - light cycle oil (LCO). 

Experimental Section 

Preparation of MoS2 catalysts. A series of molybdenum sulfide 

catalysts were synthesized using MoO3 (STEM Scientific) and 

Na2S·9H2O (Fisher Scientific) as precursors6. 14.4 grams of MoO3 

was used in the synthesis. Different molar ratios of Na2S to MoO3 

were employed and listed in Table 1. Na2S·9H2O and MoO3 were 

gradually dissolved in deionized water and 4M HCl was added drop-

wisely to adjust the pH of the solution. The mixture was then 

transferred into autoclave and reacted for 2 h at 320˚C at 500 rpm 

in nitrogen or hydrogen atmospheres. The resultant black solid was 

filtered, washed using deionized water and ethanol, and then dried 

under nitrogen protection at 150 ˚C for 4 h. The catalyst recovery 

rate was calculated based on theoretical MoS2 yield (Equation 1). 

The prepared MoS2 catalysts at various Na2S to MoO3 molar ratios 

were denoted as CAT–x (where x stands for the molar ratio of Na2S 

to MoO3). pH values of the initial synthesis solution and the final 

filtrate were determined using a pH meter (AB 15, Fisher Scientific). 

The concentrations of sulfur anions S2O3
2- and SO4

2- in the filtrate 
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were determined by an ion chromatography (DIONEX, DX-120). The 

reference MoS2 was purchased from SPI supplies. 
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Equation 1 

Catalyst characterization. The transmission electron microscopic 
(TEM) images were recorded on a JEOL 2011 STEM (JEOL Ltd., 
Tokyo, Japan) operated under high-resolution mode and 200 keV 
electronical energy. The average length and thickness of MoS2 
crystals calculated using Equations 2 and 3 were expected values.  
At least 200 images of different MoS2 particles (particle’ refers to 
one MoS2 crystalline) were used. The morphology of catalysts was 
also observed by Scanning electron microscopy (JEOL JSM6400 
SEM).  

Average thickness �̅� =
∑ 𝑁𝑖𝑇𝑖𝑖=1,2,…

∑ 𝑁𝑖𝑖=1,2,..
=
∑ 𝑁𝑖𝑇𝑖𝑖=1,2,…

𝑁
   Equation 2 

Average length �̅� =
∑ 𝑁𝑖𝐿𝑖𝑖=1,2,…

∑ 𝑁𝑖𝑖=1,2,…
=
∑ 𝑁𝑖𝐿𝑖𝑖=1,2,…

𝑁
                     Equation 3 

where T, L, and i stand for thickness, length, and number of layers , 

respectively. �̅� is the expected value of particle thickness and �̅� is 

the expected value of particle length. It is assumed that all i-th 

layered particles have the same thickness (Ti). The length of i-th 

layered particles, Li, is an average length of the particles that have 

the same numbers of layers (i). Ni denotes the number of i-th 

layered particles and N represents the total number of particles.  

The measurement of nitrogen adsorption-desorption isotherm 

was conducted on Autosorb-1 (Quantachrome Instruments). The 

specific surface area of catalyst was determined using the 

Brunauer-Emmett-Teller (BET) method. The total pore volume was 

calculated from the volume of nitrogen adsorbed at the relative 

pressure p/p0 0.995. Pore size distribution was analyzed from the 

isotherms by the Barrett-Joyner-Halenda (BJH) method.  

The synthesized products were identified by the X-ray 

diffraction (XRD) pattern, which were recorded on a diffractometer 

(Bruker AXS D8 XRD) using CuKα radiation with the 2θ range of 5-

85° and the scan speed of 1°/min.  

The elemental analysis for molybdenum and sulfur was 

conducted on a JEOL-733 Superprobe, operating at 15 keV and 100 

nA.  

Temperature programmed reduction (TPR) was conducted on 

Autosorb-1 (Quantachrome Instruments). 100 mg catalyst was 

added in a quartz tube and heated to 700°C at a rate of 10°C/min, 

under a 50 ml/min flow of 2% H2 in Ar. The consumption of H2 and 

production of H2S was monitored by a mass spectrometer (RGA 200 

Stanford Research Systems, Inc.). 

The XPS measurements were performed on an AXIS 165 

spectrometer (Kratos Analytical, University of Alberta). The base 

pressure in the analytical chamber was lower than 3 x 10-8 Pa. 

Monochromatic Al Kα source (hν = 1486.6 eV) was used at a power 

of 210 W. The analysis spot was 400 ×700 μm. The resolution of the 

instrument is 0.55 eV for Ag 3d and 0.70 eV for Au 4f peaks. The 

survey scans were collected for binding energy extending from 1100 

eV to 0 with pass energy of 160 eV and a step of 0.4 eV. 20 eV with 

a step of 0.1 eV was used for the pass-energy for high-resolution 

spectra. The number of scans varied from 3 to 30 to ensure a good 

signal to noise ratio.  

The X-ray absorption near edge structure (XANES) spectra were 

obtained at a Soft X-ray Microanalysis Beamline (SXRMB) of the 

Canadian Light Source (CLS; Saskatoon, SK, Canada) equipped with a 

Si (1 1 1) double crystal monochromator. CLS, a 2.9 GeV, third 

generation storage ring, presently operates with an injection 

current of 250 mA. Samples were sulfided at 280˚C in H2 with 

dimethyl disulfide (DMDS) for 2h prior to measurement. Catalyst 

powders were uniformly dispersed on double-sided conducting 

carbon tapes under a dry nitrogen atmosphere. The measurements 

of S K-edge and Mo L3-edge were made in total electron yield by 

recording the sample drain current. Data analysis of the XANES 

spectra was performed using Athena software. Mo K-edge EXAFS 

spectra were recorded in the transmission mode at room 

temperature. Fourier transformation of the k/f (k) weighted EXAFS 

data for Δk=14Å-1(3<k<17) was performed to obtain the radial 

distribution function around Mo. Detailed procedure was described 

elsewhere8. 

Hydrodesulfurization evaluation. A batch reactor (Parker Autoclave 

Engineers) was employed in this experiment. A light cycle oil (LCO) 

with 1.46% S and 156 ppm N provided by a local refinery was used 

as feedstock. When the reactor was heated to 375 ºC, LCO was 

introduced into the reactor. The weight ratio of catalyst to oil is 

1:200. The hydrodesulfurization (HDS) and hydrodenitrogenation 

(HDN) took place at 375 ºC under H2 gas pressure of 1400-1500 psi 

and 1000 rpm. 

The total sulfur and nitrogen concentrations of the feedstock 

and the hydrotreated products were measured by a Sulfur/Nitrogen 

analyzer (9000 series, Antek Instruments Inc). The sulfur species 

were analyzed by a gas chromatography (GC) equipped with a non-

polar VF-1ms capillary column (15 m x 0.25 mm x 0.25 μm, max 

temperature: 325°C) and a PFPD detector (Varian 450). The 

following temperature profile was used: 2 min at 120°C, followed by 

a linear increase at 6°C /min to 170°C and a further  increase at 

20°C /min to 290°C, kept for 2 min. Density of the liquid oil was 

measured by a portable density meter (DMA 35N, Anton Paar 

GmbH, Graz, Austria) following ASTM 4052. The HDS/HDN 

conversion was calculated by subtracting the sulfur/nitrogen in the 

feed from product and divided by the sulfur/nitrogen in the feed. 

The calculation of rate constant k was based on pseudo-first order 

reaction. 

Results and discussion 

Synthesis of MoS2 in controlled medium. A series of MoS2 were 

synthesized in a medium of controlled pH values. The experimental 

parameters are shown in Table 1. MoO3 and Na2S serve as 

molybdenum and sulfur sources, respectively. Without addition of 

HCl, precursor Na2S is first mixed in deionized water. Then MoO3 

powders were slowly stirred in and completely dissolved in the 



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

basic solution. A clear yellow liquid with pH=12.59 was resulted, 

which liquid was then transferred to an autoclave for 2 hour 

hydrothermal reaction at 320˚C. No solid catalyst was produced 

(entry 1). HCl was used to adjust the pH of resulted liquid mixture 

for all other entries. The clear yellow liquid turns to be dark red or 

brown once HCl was dropped in. Slightly reducing initial pH of the 

Na2S-MoO3 solution from 12.59 to 10.61, a small amount of dark 

solid product was detected after the 2-hour synthesis (entry 2). The 

single 002 diffraction peak shown in the XRD pattern (Figure 1) 

confirmed that the solid product was amorphous MoSx. Continuous 

adjustment of the Na2S-MoO3 solution to pH=5.70 (entry 3) leads to 

a satisfactory result. The yield of MoS2 reached as high as 96% of its 

theoretical value. The obtained MoS2 also shows satisfactory 

crystallinity as indicated by the XRD pattern (Figure 1).  Further 

acidification of the Na2S-MoO3 solution to pH=0.95 lead to an 

unsuccessful synthesis (entry 4) with significant amount of MoO2 

identified. This finding suggests that the initial pH of synthesis 

solution plays a key role in formation of nano crystalline MoS2. 

Gaseous environment is also a factor that influences the 

conversion from MoO3 to MoS2. With inert gas (nitrogen) filled in 

the reaction chamber, Na2S (S2-) acted as reduction agent and 

crystallized MoS2 was successfully synthesized (entry 3, 5 and 6). 

However, reductive gas, e.g. hydrogen gas, can replace Na2S, 

function as a reduction agent during the synthesis, reducing MoO3 

to MoO2 instead of formation of MoS2 (Figure 1). Compared to 

entries 5 & 6, entry 7 has a very high pH of filtrate suggests little 

comsumption of Na2S during the synthesis (Table 1). Reductive gas 

atmosphere has negative impact on the formation of crytallized 

MoS2.  

Synthesis reactions: identification of the key role of H+ and HS-. In 

the hydrothermal synthesis, crystalline MoS2 is formed from the 

redox reaction of MoO3 and Na2S, where Mo is reduced from Mo6+ 

to Mo4+. Sodium sulfide is hydrolyzed in water to give strong 

alkaline solutions, as shown in Reaction 1 and Reaction 2. Due to 

acid nature, MoO3 is easily dissolved in the basic solution to give 

MoO4
2- (Reaction 3), forming a clear yellow solution, as seen in 

entry 1 of Table 1. Unfortunately, MoO4
2- group is not directly 

responsible for the precipitation of solid MoS2.  

Addition of a few drops of HCl darkens the solution. Continuous 

titration of acids leads to precipitation of solids (entry 2), which is 

confirmed to be molybdenum sulfides (amorphous). H+ appears to 

be a likely mechanistic requirement for the solid precipitation. It is 

known that MoO4
2- could react with H+ and HS- to form tetrahedral 

sulfido-molybdenum complexes such as MoOS3
2-, MoO2S2

2-, 

MoO3S2- and MoS4
2- 10. This is a [H+]-dependent process and high 

[H+] is beneficial to O removal. The HS- was confirmed to be an 

effective incoming nucleophile to interact with O2- on Mo (VI) 10. 

Sufficient [H+] and [HS-] is then led to initial precipitation of MoSx at 

room temperature 5, which is the seed for production of crystal 

MoS2 7. Reaction 4 and Reaction 5 are proposed to describe the 

process. 

HS- group plays a key role in the redox reaction. The hydrolysis 

of sulfide ion gives three species: S2-, HS- and H2S. Given the ΔH and 

ΔG16, rate constants can be calculated and then the molar 

concentrations of the three species at different pH can be 

determined. The theoretical acid-base behaviour of the S2-, HS- and 

H2S as a function of pH are shown in Figure 2. In strong alkaline 

solutions, sulfide ion presents in the deprotonated form as the 

sulfide dianion, S2− while in strong acid environment, it exists in the 

form of H2S. HS- becomes inadequate in both strong acid and strong 

alkaline synthesis solution. Without sufficient HS- Reaction 4 most 

likely stops and thus formation of intermediate complexes MoO4-

nSn
2- becomes limited. The presence of S2− in strong alkaline solution 

cannot facilitate Reaction 4 to proceed (entry 2). This suggests that 

S2- plays no role in formation of MoS2. With strong acid solution, 

large amount of H2S produced and remains in gaseous phase due to 

its poor solubility in acidic solution. A certain amount of MoO2 is 

formed (entry 4). On the other hand, HS- is produced in mild acid 

solution (entry 3, 5 and 6) and good yields of MoS2 are obtained. 

Therefore, the formation and the production yield of crystalline 

MoS2 is highly associated with [H+] and [HS-]. Both insufficient [H+] 

and overdose [H+] generate inappropriate pH of the synthesis 

solution, which results in unsatisfactory concentration of HS- and 

then little MoS2 can be produced. Species HS- presents in neutral 

and basic solutions at room temperature. The pH for HS- group 

shifts to lower values at the hydrothermal synthesis temperature, 

320oC, with an optimal range falling between 6 and 8. It is fair to 

comment that formation of MoS2 is a [H+] and [HS-] dependent 

process. Up to this point, it seems that both weak acid and basic 

initial solutions are suitable for MoS2 synthesis. A further discussion 

presents below to interpret whether mild acid or mild basic solution 

is optimal for the production of MoS2. 

At synthesis temperature, 320oC, the precipitated solid MoS3 

from Reaction 5 is reduced to MoS2 companying by production of 

sulfur element in Reaction 6 (Sulfur element was observed in the 

synthesis). Sulfur element reacts with water to S2O3
2- which may be 

further oxidized to SO4
2-. Reaction 7 and 8 are proposed. It is worth 

mentioning that H+ and HS- are released in both redox Reactions. 

Generation of HS- directly enhances the precipitation of MoS3 that 

is further reduced to MoS2. Produced H+ lowers the pH value of final 

filtrate than its initial solution. Apparently, complete oxidization of 

sulfur to SO4
2- favors high yield of MoS2. S2O3

2- is more stable in 

basic aqueous solution than acid solution. S2O3
2- tends to be 

S2+ H2O↔HS⁻ + OH⁻                         Reaction 1                                       

HS⁻+ H2O ↔ H2S +OH⁻                                                       Reaction 2 

MoO3 + 2OH⁻ ↔ MoO4
2 + H2O                                       Reaction 3  

MoO4
2- + nH+ + nHS⁻ ↔ MoO4-nSn

2- + nH2O     (n=1-4) Reaction 4                           

MoS4
2- + H+↔ MoS3 ↓ + HS⁻                  Reaction 5 

MoS3 
∆
→  MoS2 +S                                                                 Reaction 6                                                         

4S + 3H2O 
∆
→ 4H+ + 2HS- + S2O3

2-                                       Reaction 7 

S2O3
2- + H2O 

∆,   𝐻+

→    SO4
2-+ H+ + HS-                                     Reaction 8 
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oxidized to SO4
2- in acidic solution. Two catalysts, named CAT-2.5 

and CAT-3.0 (Table 2) were synthesized at weak acid and weak basic 

initial solutions. 96.2% and 55.1% of the theoretical yield were 

obtained respectively. Concentration of SO4
2- in the filtrates directly 

corresponds to the MoS2 yield. This demonstrates that initial 

synthesis solution must be weak acid to achieve optimal yield of 

MoS2. A reaction scheme for hydrothermal synthesis of MoS2 using 

MoO3 and Na2S as precursors is summarized and shown in Scheme 

1. The overall reactions are shown in  Reaction 9 and   Reaction 10 

with S2O3
2- and SO4

2- as main oxidized product, respectively. 

Adjustment of S/Mo ratio. Six atomic ratios of sulfur to 

molybdenum of the precursors, ranging from 2 to 5, are prepared 

and the results are shown in Table 2. The stoichimetric S/Mo molar 

ratio in MoS2 is 2. Since a portion of Na2S acts as redox mediator 

during the synthesis, the S/Mo ratios of the obtained MoS2 are 

inevitably lower than its corresponding S/Mo ratios of precursors. 

Under-dosed Na2S inevitably leads to excessive MoO3 in the 

synthesis, e.g. CAT-2.0. Molybdenum-dominant solid particles are 

generated and embedded between the layered MoS2, resulting in 

poor uniformity of MoS2 (Figure 3). On the other hand, excessive 

Na2S results in strong alkaline synthesis solution and thus scarce 

solid catalyst is formed, e.g. CAT-5.0. The XRD patterns and electron 

diffraction rings of the four catalysts, as shown (Figures 4 and 5), 

confirm the successful synthesis of MoS2. 

Determination of MoS2 chemical structure. Their S/Mo ratios of 

three catalysts, CAT-2.5, CAT-3.0, and CAT-3.75 determined by 

microprobe analysis are 1.85, 2.05 and 2.10, respectively (Table 3). 

The bulk and surface chemical states of the catalysts are identified 

by XANES and XPS spectra. The S K-edge (a) and Mo L3-edge (b) 

XANES spectra are displayed in Figure 6. The spectra acquired 

simultaneously in total electron yield (TEY) with an estimated 100 

nm in probing depth are more bulk sensitive. The peak (whiteline) 

at 2471eV (peak A) is due to the S 1s to 3p dominated transitions of 

S in -2 oxidation state11. According to the typical periodic slab 

model12, two types of S coordination are noticed on the MoS2 

surface. Thus, two broad peaks (B and C) located at 2478-2484eV 

and 2489-2495eV may be attributed to S pyramidal coordination on 

basal planes and S hexogen structure, respectively. The Mo L3-edge 

(whiteline) observed at 2524eV with the shoulder peak (2532eV) is 

associated with the electron transition from Mo 2p3/2 to vacant 4d 

13, 14 and the trigonal prismatic coordination of Mo atoms, 

respectively 13, 15. Apparently, all spectra exhibit identical vacancy 

state as the reference, indicating a high purity of MoS2. 

Typical XPS spectra of S 2p core level region of as-prepared MoS2 

catalysts are shown in Figure 7.  All the spectra exhibit typical 

profiles of pure MoS2 with strong S and Mo peaks. The S 2p spectra 

contain the S 2p3/2 (161.8 eV) and the S 2p1/2 (163.0 eV) spin-orbit 

doublet with intensity ratio of around 2:1, which are indexed to a 

typical spectrum of sulfide S2- ion17. Small but unmistakable 

differences in chemical shift are also observed among the catalysts. 

S 2p3/2 peak of CAT-2.5 slightly shifts to lower energy, whereas the 

peak of CAT-3.0 shifts to higher energy (circled), giving the electron 

binding energy order of CAT-2.5< CAT-3.75comple< CAT-3.0.  

The TPR traces of sulfide catalysts are shown in Figure 8, 

illustrating the consumption of H2 and the production of H2S in the 

temperature range of 100-500°C. For H2 consumption, typical peaks 

for weakly bonded sulfur are observed in the low temperature 

range of 200-370°C. It is commonly accepted that the consumption 

of H2 can reflect the number of weakly bonded sulfur on the surface 

of catalysts 12, 18. H2 is firstly dissociative adsorbed on two sulfur 

dimers which are bonded on adjacent Mo sites, creating two S-Mo-

SH groups. Then one hydrogen atom transfers from one group to 

another to form a SH-Mo-SH group. Finally, H2S is released from an 

active site of *-Mo-S, where * refers to the sulfur vacancy 12. 

However, one assumption is made that the two sulfur dimers 

bonded on the same Mo atom. Otherwise, the SH-Mo-SH group 

cannot be formed properly, in which case, the system needs to be 

stabilized by a state of two *-Mo-SH groups, thus, no H2S can be 

released. Therefore, the difference between H2 consumption and 

H2S production in the TPR spectrum may differentiate the existing 

active sites from those that can be potentially formed. For catalyst 

CAT-2.5, the TPR spectrum shows a large H2 consumption but no 

H2S production. The absence of a H2S peak suggests a high 

deficiency of S on the surface. The wide peak also suggests 

inhomogeneous defect sites. For the CAT-3.0 and CAT-3.75, the H2S 

content is highly associated with the H2 consumption, indicating the 

high coverage of S on the surface. It is noted from the TPR spectra 

that the initiation temperature for releasing H2S is lower on CAT-

3.75 than CAT-3.0 and the H2S curve is wider. This may be due to 

the different type of sulfur on the catalyst surface. CAT-3.75 

contains over-stoichiometric sulfur that may be weakly bonded to 

catalyst thus easy to eliminate. In contrast, H2S curve over CAT-3.0 

barely has none-stoichiometric sulfur. Sulfur species are uniformly 

bonded within CAT-3.0 so that H2S peak is sharp. 

Figure 9 shows the Fourier transform of the Mo K absorption edge 

for all the three catalysts. The spectra show two notable peaks 

corresponding to Mo-S (peak A) and Mo-Mo (peak B)15. The first 

largest peak at 1.90Å (phase shift uncorrected) arises from sulfur 

atoms in the first coordination sphere around Mo atoms, while the 

second peak at 2.86Å (phase shift uncorrected) is due to the 

nearest neighbor Mo atoms. The EXAFS results exhibit a similar 

MoS2 structure. The only difference noticed is that the Mo-Mo bond 

for CAT-2.5 is lower than the other two catalysts. The calculated 

coordination number (CN) from the Fourier transform is shown in 

3 2 2 2 4 24 9 16 4 16 8MoO Na S HCl MoS Na SO NaCl H O         Reaction 9              

3 2 2 2 2 3 24 10 18 4 18 9MoO Na S HCl MoS Na S O NaCl H O        Reaction 10 

 

 

 

 

 

Scheme 1. Proposed reaction scheme for synthesis of MoS2 

 

 

C 
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Table 4. It is noticed that all the three catalysts exhibit lower CN 

than the MoS2 in bulk. Similar to the spectra, the smallest CN of 

Mo-Mo is observed with CAT-2.5, indicating more disordered matrix 

on the surface. 

Characterization of textural structure. The morphologies of the 

three catalysts with different S/Mo molar ratios are revealed by 

TEM (Error! Reference source not found.10). The dark thread-like 

lines shown in the fringes are the reflection of (0 0 2) lattice plane 

of the crystalline MoS2, representing the stacked slabs. All the 

catalysts show dendritic morphologies and layered nanocrystallines. 

A large number of curved slabs are observed on the catalysts 

(circled in Figure 10), which may result in more defects created on 

the basal plane20. The three catalysts have similar size distributions. 

Table 3 shows narrow size ranges of 15.8-17.9 nm and 2.3-2.6nm, 

for the average slab length and thickness, respectively. The average 

lengths obtained in the present work are similar to the catalysts 

using (NH4)2MoS4 (ATM) as precursors 20, 10  while are significantly 

shorter than the crystallized MoS2 synthesized by Li et al. who 

reported 50 nm in length 8. Figure 11 shows FE-SEM images of 

MoS2. For both catalysts, thread-like MoS2 crystals are associated in 

bundles and twisted together forming a flower-like morphology. 

The images exhibit nanosized particles with an average size of 100-

200 nm. Mesopores over 10 nm are formed in between the crystals, 

as shown in the grey part surrounded by white MoS2 layers. A slight 

difference observed is that CAT-2.5 looks more dendritic, while CAT-

3.75 crystal favors growth on the boundary of particles.  

The three catalysts have large surface area ranging from 200 to 262 

m2/g (Table 3). A high pore volume of 0.9 to 2.3 m3/g is also 

observed, which is much higher than that of other catalysts 

previously reported20.  

Catalytic activities. Catalysts synthesized under hydrothermal 

method with Na2S and MoO3 precursors are subjected to undergo a 

performance test on HDS, HDN, and hydrocracking activities, using 

LCO (Figures 12, 13 and 14). The initial HDS rate constants in the 

first hour for all catalysts are higher than 2×10-4 s-1 g cata-1. The 

rates drop by half in the second hour and a further 50% off was 

observed in the rest of the reaction. The decrease of reaction rates 

for each catalyst along with reaction time is due to the fact that LCO 

contains both easy (benzothiophen and its derivatives) and hard 

sulfur (dibenzothiophen and its derivatives) compounds (Table 5). 

Nevertheless, it is still observable that CAT-2.5 presents the highest 

HDS activity and CAT-3.0 has the lowest activity. CAT-3.75 positions 

in between. CAT-2.5 also exhibits the highest HDN (Figure 12) and 

hydrocracking (seen from the product density in Figure14) ability. 

The relationship between the properties and activities is plotted in 

Figure 15. The ratio of Mo atoms on edge to the total Mo atoms is 

calculated based on the slabs length, the method reported by 

Vrinat et. al.22. Apparently, if only Mo on the edges were active 

sites, the activity order would be totally opposite. It is indicated 

that the imperfect basal plane is important for the activities, and 

defects should be also largely located on the curved or twisted 

basal plane. This can be verified with TEM images; all the catalysts 

show highly curved morphologies. In particular, CAT-2.5 exhibits 

more blurred slabs, indicating more imperfect crystalline structure 

than the other two, which explains the highest activity of the three. 

There are also no clear relationship between activity and surface 

area (Figure 15 b). This statement has been mentioned by several 

researchers 21. Certain surface area is essential to provide more 

accessible active sites, however, effect gets infinitesimal when 

sufficient exposed area are provided. Most of the calculated area is 

inert to the reaction.  

As discussed in TPR, the hydrogen adsorbed is highly related to the 

active sites on the catalyst. From Figure 15 c, it’s easy to see that 

there is a good linear relationship between the H2 adsorption sites 

(Table 6) and HDS rate constant. The amount of active sites (as in H2 

reacted sites) reflects the catalyst activities. Similar phenomenon 

also can be seen from S/Mo atomic ratio macroscopically. The lack 

or excess of sulfur might be related to the deformation of the 

crystal structure and defects on the catalysts. When S/Mo ratio is 

lower than the stoichiometric atom ratio of MoS2 (2), defect sites 

might be already generated due to the deficiency of S. On the other 

hand, over-stoichiometric sulfur may exist in the form of S2
2- 

species, which can react with H2 to form –HS species and enhance 

hydrotreating reaction. As more defects are created during the 

synthesis, the MoS2 would deviate further from the perfect crystal, 

in other words, S/Mo ratio would further deviate from the 

stoichiometric number 2. This is consistent with our results that 

MoS2 has the highest difference with largest hydrogen adsorption 

sites. It is also showing excellent relationship between the 

difference and the activities, as in Figure 15 d.  

Relationship also can be seen from binding energy, coordination, 

disorder and activities. Although the difference is not obvious, it’s 

also found the binding energy and MoS2 cluster size (reflected by 

Mo-Mo coordination number) show the similar trend of HDS 

activity.   

Conclusions 

Novel nanocrystalline MoS2 were successfully synthesized via 

hydrothermal method using commercially available MoO3 and Na2S. 

The synthesis mechanism of hydrothermal approach was 

investigated and the reaction pathways were proposed for the 

formation of crystalline MoS2. [HS-] in the synthesis solution is 

identified as a key factor. Insufficient [HS-] can lead to a failure 

synthesis. Mild acidic medium is essential for a successful synthesis. 

The ratio of reactants, MoO3 and Na2S, is important to the 

nanocrystal structure and the yield. Excessive MoO3/Na2S ratio may 

result in poor uniformity of MoS2. Various characterization 

techniques are employed to assess the structure of synthesized 

catalysts. The three catalysts synthesized at the proper range of 

Na2S/MoO3 (from 2.5 to 3.75 in the work) have nanosized structure, 

large surface area, and high pore volume (mesopores). More 

defects at the rims are found on the CAT-2.5 than the other two 

catalysts. HDS activity of hydrotreating LCO also exhibits a 

decreasing order of CAT-2.5>CAT-3.75> CAT-3.0.   
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