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Abstract 

PTEN is one of the most frequently mutated tumor suppressor genes in human 

cancers. Loss of function alteration of PTEN results in increased activation of PI3K/Akt 

signaling, which is associated with increased proliferation, survival and neoplastic 

growth. Here, we have addressed the effects of conditional deletion of PTEN in 

hematopoietic cells. For this purpose, we have crossed PTEN conditional knock-out 

mice with a knock-in mouse expressing the CRE recombinase in the CD45 locus 

(CD45:Cre; PTEN fl/fl). CD45 is also known as leucocyte common antigen and is 

expressed in virtually all white cells as well as in hematopoietic stem cells. Using a 

reporter mice, we demonstrate that CD45:Cre mouse displays recombinase activity in 

both myeloid and lymphoid cells. However, CD45:Cre+/- PTENfl/fl mice develop T-

Acute lymphoblastic Leukemia and Lymphoma, but no other types of hematological 

malignancies such as myeloproliferative disorders of B-cell lymphomas. These results 

indicate that conditional deletion of PTEN in hematopoietic CD45-positive cells diverts 

neoplastic growth to the formation of T-cell malignancies. 



 

Introduction 

PTEN (phosphatase and tensin homolog deleted on chromosome 10) encodes a dual 

lipid and protein phosphatase that plays a crucial role in the phosphatidylinositol-3 

kinase/Akt/mammalian Target of Rapamycin (PI3K/Akt/mTOR) signaling pathway. 

PTEN dephosphorylates phosphatidylinositol-3,4,5-triphosphate (PIP3) to 

phosphatidylinositol-4,5-diphosphate (PIP2), thereby antagonizing the activation of the 

function of PI3K. 12( Loss of PTEN function causes the activation of PI3K/Akt signaling 

that leads to increased cell growth and survival.345  

PTEN is one of the most frequently mutated tumor suppressor genes in human 

cancers. The tumor suppressive function of PTEN was identified as the chromosome 

region 10q23 partially or completely deletd in multiple neoplasias. 67 Moreover, 

germline mutations of PTEN gene were identified in patiens with Cowden disease. 6 

Loss-of-function alterations of PTEN are frequently found in solid tumors such as 

glioblastomas, thyroid breast, colon prostate or endometrial carcinomas 8 and in 

hematological malignancies including both lymphoid 9101112 and myeloid neoplasms. 

131415  

The PI3K/AKT/mTOR pathway has been implicated in human leukemogenesis. The 

role of PTEN in maintenance of hematological homeostasis has been evidenced by 

PTEN knock-out (KO) mouse models. Mice hemizygous for PTEN (PTEN+/-) develop 

multiple neoplasias, including both solid and hematological malignancies. 161718 

Conditional deletion of both PTEN alleles in many cell types have been achieved by 

crossing conditonal PTEN floxed mice 19 with different Cre expression systems. We 

have recently demonstrated tamoxifen-inducible expression of Cre recombinase in 

epithelial cells leads to the development of thyroid, endometrial and prostate 

neoplasias. 20 Conditional PTEN deletion in hematological system also results in the 

appearance of malignancies. Tamoxifen-inducible Cre under the control of Rosa26 

promoter (R26CRE:ER) causes PTEN excision in a broad spectrum of cells, leading to 

development of multiple neoplasias including lymphomas. 21 Lck-mediated Cre 

expression allows conditional deletion of PTEN in double negative thymocytes, leading 

to development of T-cell lymphomas. 22 Finally, by using the polyinosine-polycytidine 

inducible Mx1-Cre mice (Yilmaz 2006) or the VE-cadherin-Cre mice, PTEN has been 

successfully deletes in hematopoietic stem cells (HSC). In both mice models, animals 

suffer from either acute myeloid leukemia (AML) or T-acute lymphoblastic 

leumekina/lymphoma (T-ALL). 



To date, there is no existing mouse model to achieve specific PTEN deletion in 

hematopoietic cells without affection of other cell types. In the present work, we have 

addressed the effects of conditional deletion of PTEN in CD45 expressing cells. For 

these purpose, we have crossed PTEN conditional knock-out mice with a knock-in 

mouse expressing the CRE recombinase in the CD45 locus. The resulting mouse 

develops T-ALL, but no other types of hematological malignancies. 



Materials and methods 

Ethical statement 

All procedures performed in this study followed the National Institute of Health Guide 

for the Care and Use of Laboratory Animals and were approved by the Committee on 

Ethics of Animal Experiments of Universitat de Lleida/IRB Lleida (CEEA). 

Mice 

Mice were housed and maintained in a barrier facility, and pathogen-free procedures 

were used in all mouse rooms. Up to 15 mice were housed together in each cage and 

kept in a 12-hour light/dark cycle at 22°C with ad libitum access to autoclaved food and 

water.  

Floxed homozygous PTEN (C;129S4-Ptentm1Hwu/J, hereafter called PTEN fl/fl) and 

reporter mT/mG (B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J) mice 

were obtained from the Jackson Laboratory  (Bar Harbor, ME, USA). CD45:Cre mice 

were kindly donated by Dr. Alexander Medvinsky. 23 

CD45:Cre PTEN fl/fl mice were bred in a mixed background (C57BL6; 129S4) by 

crossing PTEN fl/fl and CD45:Cre mice; this followed by backcrossing CD45:Cre+/- 

PTEN fl/+ and PTEN fl/fl mice. Three weeks after birth, animals were weaned and tails 

were cut in order to genotype them. Isolation and PCR analysis of tail genomic DNA 

was perfomed as previously described. 1924 

During all the study, humane endpoints were used. Mice were monitorized every day 

and euthanized when they showed lethargy, ruffled fur, haunched posture or anorexia. 

For this purpose, animals were anesthesized with isofluorane and sacrificed by cervival 

dislocation. Organs were collected and further processed for the different studies 

described below. 

Genotyping of PTEN deletion 

Genomic DNA was isolated from WT and KO spleens by standar procedures. Briefly, 

tissue was chopped and digested with 1mg/mL of proteinase K (Sigma, Sant Louis, 

MO) at 55ºC for 4 hours. Samples were boiled 5 minutes and DNA was precipitated 

with 100% ethanol. Standar PCR was performed using three different primers: 

common forward P1 5’-ACTCAAGGCAGGGATGAGC-3’, reverse P2 5’-

AATCTAGGGCCTCTTGTGCC-3’ and reverse P3 5’-



GCTTGATATCGAATTCCTGCAGC-3’. PCR products were resolved in agarose gels 

and visualized by ethidium bromide staining.  

Western blot analysis 

Spleens were washed with PBS, frozen in liquid nitrogen and homogenized in ice with 

lysis buffer (2% sodium dodecyl sulfate, 125 mmol/L Tris-HCl, pH 6.8). Samples were 

boiled for 5 minutes at 95ºC, sonicated for 30 seconds and centrifuged (10 minutes at 

15000 rpm). Supernatants were recovered and protein concentrations were determined 

with a protein assay kit (Bio-Rad, Hercules, CA). Equal amounts of proteins were 

subjected to SDS-PAGE and transferred to PVDF membranes (Millipore). Nonspecific 

binding was blocked by incubation with TBST (20 mmol/L Tris-HCl, pH 7.4, 150 mmol/L 

NaCl, 0.1% Tween-20) plus 5% of non-fat milk. Membranes were incubated with 

primary antibodies overnight at 4°C followed by 1hour incubation with secondary 

antibody diluted 1/10000 in TBST. Signal was detected with ECL Advance (Amersham 

Pharmacia, Buckinghamshire, UK). Anti phospho-AKT and anti-PTEN rabbit antibodies 

were purchased from Cell Signaling (Beverly, MA); polyclonal rabbit anti-Cre was from 

Novagen (Billerica, MA); monoclonal mouse anti cyclin D1 and anti c-Myc were from 

Santa Cruz Biotechnology (Santa Cruz, Ca); monoclonal mouse anti-tubulin was from 

Sigma Aldrich (St Louis, MO).   

Histopathology and Immunohistochemical analysis 

Animals were euthanized and organs were collected, formaline-fixed O/N at 4ºC 

embedded in paraffin for histologic examination. Paraffin blocks were sectioned at a 

thickness of 3 μm, dried for 1h at 65º before pre-treatment procedure of 

deparaffinization, rehydration and epitope retrieval in the Pre-Treatment Module, PT-

LINK (DAKO) at 95 °C for 20 min in 50x Tris/EDTA buffer, pH 9. Before staining the 

sections, endogenous peroxidase was blocked. The antibodies used were against 

CD3ε (clone M-20, Santa Cruz Biotechnology), PTEN (clone 6H2.1), Ki67 (clone TEC-

3, DAKO, Denmark), CD20 (clone L26, DAKO, Denmark) and Myeloperoxidase 

(polyclonal, DAKO, Denmark). After incubation, the reaction was visualized with the 

EnVision FLEX Detection Kit (DAKO, Denmark) for CD20, C-KIT, Myeloperoxidase and 

PTEN, Polyclonal Rabbit Anti-Rat Immunoglobulins/Biotinylated and Streptavidin 

(DAKO, Denmark) for ki67 and Polyclonal Bovine Anti-Goat IgG/Biotinylated (Santa 

Cruz Biotechnology) and Streptavidin (DAKO, Denmark) for CD3ε using 

diaminobenzidine chromogen as a substrate. Sections were counterstained with 

hematoxylin. Appropriate negative controls were also tested. Representative images 

were taken with a Leica DMD 108 microscope. 



Hematoxilyn and Eosin (H&E) stained samples were histologically reviewed and 

evaluated by two pathologists, following uniform pre-established criteria 

Cytological analysis 

Blood was collected from the submandibular vein and smears were immediately 

prepared and fixed in 100% ethanol. For diff-quick staining, slides were fixed with Diff-

Quick fixative reagent and stained with Diff-Quick solution I (eosinophilic) and Diff-

Quick solution II (basophilic) before being brought to destilled water, air dried and 

mounted. 

For Papanicolau stain, ethanol fixed slides were stained with hematoxylin and 

counterstained with Orange G and Eosin Azure (EA50), cleaned with 95% ethanol and 

mounted. 

Proliferation analysis  

50 high power microscope fields were examined for mitotic figures and counted. 

Ki-67 staining was used to asses the index of proliferation of splenic cells in KO and 

WT mice. Five representative fields of each tissue were photographed for each animal.  

Proliferation was calculated as the percentage of Ki-67 positive nuclei to the total 

number of nuclei of each field (1000-2000 total nuclei were evaluated for each animal). 

Counting was performed using ImageJ software (WayneRasband, NIH, Bethesda, MD). 

FACS 

Blood was collected from the submandibular vein in heparinized capillars. Bone 

marrow cells were obtained from the long bones (tibias and femurs). After cleaning 

them from adherent soft tissue, the tip of each bone was removed and the marrow was 

harvested by inserting a syringe needle (30-gauge) into the end of the bone and 

flushing Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco). Spleen was chopped 

and digested 30 minutes at 37ºC in DMEM with 1mg/mL of collagenase D  (Sigma, 

Sant Louis, MO). Splenocytes were filtered through a 70 μm-strainer (MARCA) and 

centrifuged. Red blood cells were removed from blood, bone marrow and spleen 

samples using lysis buffer (0, 15M NH4Cl, 0,01M KHCO3, 0,1 EDTA) FACS analysis of 

the bright cells was performed using the following antibodies: APC anti-mouse TCR 

and FITC anti-mouse B220, both obtained from EBioscience.   



For the reporter CD45:Cre mT/mG mice analysis, blood and BM were collected as 

described and green/red fluorescences were analysed. 

Fluorescence emission was measured using FACSCalibur (BD Biosciences, San Jose, 

CA, USA) 

CD45:Cre reporter assays 

For reporter assays of the cre activity, CD45:Cre+/- and mT/mG+/+ mice were bred. 

The resulting offspring was weaned and genotyped. One month after birth, CreER+/- 

mT/mG+/- mice were sacrified and organs were collected and fixed in 4% PFA for 4 

hours at room temperature. Samples were cryoprotected in PBS with 30% sucrose 

overnight at 4ºC and embedded in OCT (VWR International). 8-μm sections of frozen 

tissue were cut with cryostat and nuclei were counterstained with Hoescht and samples 

mounted with PBS:glycerol (1:1). 

Tissue immunofluorescence was visualized and analyzed using a confocal microscope 

(Olympus, Tokyo, Japan). Confocal images were edited using FluoView software 

(Olympus). 

Statistical analysis 

Experiments were performed at least three times and statistical significance was 

determined by Student’s test with p-value ≤0.05 (*); p-value ≤0.01 (**) or p-value 

≤0.001(***). 



Results 

 

Generation of conditional mouse model to delete PTEN in CD45-expressing cells 

 

To achieve conditional deletion of the two PTEN alleles in CD45 expressing cells, 

conditional PTEN knock-out mouse (PTENfl/fl) 19 was crossed with a knock-in mouse 

expressing Cre recombinase into the CD45 locus (CD45:Cre) 23 

 

We fist evaluated the effects of conditional deletion of the two PTEN alleles in mice 

lifespan (Fig.1A). Kaplan-Meier analysis of mice survival revealed that none of the mice 

(female n=15; male n=5) expressing Cre recombinase and the two floxed PTEN alleles 

(CD45:Cre+/- PTEN fl/fl, designed as KO) survived beyond 30 weeks of age. Mice 

lacking Cre expression but having two PTEN floxed alleles (CD45-/- PTEN fl/fl 

designed as wild type, WT) showed normal survival (females n=15; males n=4). 

 

Necropsy of CD45:Cre+/- PTEN fl/fl mice revealed that 100% of male and female mice 

had severe splenomegaly, hepatomegaly and enlargement of other lymphoid organs 

such as the thymus and the lymph nodes (Fig. 1B). To demonstrate Cre mediated 

recombination of PTEN in lymphoid organs, we performed genotyping and western blot 

analysis of the spleen from one WT mouse and two KO littermates (Fig 1C). 

Genotyping demonstrated the presence of an amplified band corresponding to the 

recombined allele in KO mice. Accordingly, western blot analysis confirmed complete 

loss of PTEN expression and increased Akt phosphorylation in KO mice (Fig 1D). 

 

Deletion of PTEN in CD45.expressing cells leads to development of diffuse 

peripheral lymphomas/leukemias 

 

As mentioned above, macroscopic evaluation evidenced a marked increase of 

lymphoid organs, thus suggesting that conditional deletion of PTEN in CD45 cells leads 

to development to lymphomas. To further demonstrate the presence of such 

malignancies, we performed histopathologic analysis of both lymphoid and non-

lymphoid tissues. Histopathological examination of the spleen revealed loss of PTEN 

expression with a disruption of its normal architecture by a diffuse infiltration of 

lymphoid cells (Fig. 2A) that exhibited irregular nuclei, prominent nucleoli and high 

mitotic rates (Fig. 2B) as well as cytologic atypia and strong Ki-67 immunoreactivity 

(Fig. 2C). Western blot analysis revealed a marked increase of cyclin D1 and c-Myc 

expression in KO mice spleens (Fig. 2D), both of them targets of PTEN in 



lymphomagenesis.  

 

Histopathological analysis of other organs demonstrated atypical lymphoid cells lacking 

PTEN infiltrating in kidneys, live, lungs, colon or ovary (Fig. 3A). Moreover, flow 

cytometer analysis and peripheral blood extension from WT and KO mice revealed a 

dramatic increase of lymphocyte population (Fig 3B, 3C). These results suggest that 

deletion of PTEN in CD45 expressing cells results in development of severe 

leukemia/lymphomas.  

 

CD45:Cre+/- PTENfl/fl mice develp T-cell but not B-cell lymphomas 

 

Next, we investigated the nature of lymphomas observed in CD45:Cre+/- PTENfl/fl 

mice. For this purpose, we performed flow cytometry analysis using B220 and anti-TCR 

antibodies to differentiate B-lymphocytes from T-lymphocytes. Analysis of bone 

marrow, blood and spleen samples obtained from WT and KO mice revealed a marked 

decrease of B lymphocytes and an increased population of T-cells in KO mice (Fig 4A), 

suggesting that the malignancies developed by KO mice were compatible with T-cell 

lymphoma. To further demonstrate T-cell nature of lymphomas, we carried out 

immunohistochemical analysis of KO spleens, lymph nodes and bone marrow with 

anti-CD3 antibodies, which specifically recognize T cells. In WT mice, CD3+ cells 

location was restricted to paracortical zone of lymph nodes and the periarteriolar 

lymphoid sheath of the spleen (Fig 4B). In contrast in KO mice, bone marrow, as well 

as the germinal centers of both lymph nodes and spleens, were invaded by CD3+ cells. 

To address the presence of remaining myeloid cells in these tissues, we performed 

immunostaining of myeloperoxidase (MPO) in all of them. As expected, due to the 

increase in the lymphoid population, PTEN deletion caused a marked decrease of 

myeloperoxidase expressing cells. (Fig 4C)  

 

Accordingly to the described results, lymphocytic infiltrates found in liver, lung, kidney 

or colon, were positive for CD3 staining (Fig 4D). Immunohistochemistry analysis of 

blood extensions also revealed an increase of CD3 expressing cells in peripheral blood 

(Fig4D). These results indicate that in all cases analyzed, KO mice developed T-cell 

lymphoma/leukemia, with no myeloid or B cell disease. 

 

CD45:Cre mouse display recombinase activity in myeloid and lymphoid lineages 

 

CD45 is expressed in all nucleated hematopoietic cells, including both lymphoid and 



myeloid lineages. However, all CD45:Cre+/- PTEN fl/fl mice analyzed showed T-ALL 

while none of them seemed to develop myeloid malignancies. Thus, we wondered 

whether CD45:Cre recombinase activity was causing recombination (and therefore 

PTEN ablation) in both cell lineages. To test CD45:Cre recombinase activity, we 

crossed CD45:Cre mice with a double fluorescent reporter mouse that expresses  

membrane-targeted tandem dimer Tomato (mT) prior to Cre mediated excision, and 

membrane-targeted green fluorescent protein (mG) after excision (mT/mG mouse).24 

One month after birth, the resulting offspring (CD45:Cre+/- mT/mG+/-) was analyzed 

for the presence of red and green fluorescence by flow cytometry and confocal 

microscopy. First, we analyzed the percentage of myeloid cells and lymphocytes 

displaying red of green fluorescence in peripheral blood samples. Flow cytometric 

analysis revealed the presence of both lymphocytes and myeloid cells expressing 

green fluorescence (Fig 5A), suggesting that Cre activity was able to induce 

recombination in both cell populations. These results were further confirmed by 

confocal microscopy analysis of peripheral blood and bone marrow extensions, as well 

as spleen and lymph node sections. In all those tissues, we observed the presence of 

green lymphocytes and granulocytes (Fig 5B). The evidences indicate that, as 

expected, the expression and activity of Cre recombinase under the control of CD45 

promoter was able to cause recombination in all blood lineages, although the efficiency 

was higher in lymphoid cells than in myeloid populations. 

 



Discussion 

In the present report, we have investigated the effects of conditional deletion of PTEN 

in hematopoietic cells. To date, there is no existing mouse model to achieve deletion of 

PTEN exclusively in hematopoietic cells, but not in other cell types.  For this purpose, 

we have crossed a previously described knock-in mouse expressing Cre recombinase 

in CD45 locus23 with conditional PTEN floxed mouse. Such combination resulted in a 

mouse model that specifically deletes PTEN in hematopoietic system, but not in other 

cell type, resulting in the development of T-ALL but no other types of solid or 

hematological malignancies.  

CD45 encodes a receptor type protein with phosphatase activity that is expressed in all 

nucleated hematopoietic cells, including hematopoietic stem cells. and mature 

lymphoid and myeloid cells. For this reason, CD45 has traditionally been designated as 

the Leucocyte Common Antigen (LCA) and commonly used to distinguish 

hematopoietic cells by either flow cytometry or immunohistochemistry. Here, we have 

demonstrated that conditional deletion of PTEN in CD45 expressing cells leads to 

development of T-ALL, with no evidence of other hematological malignancies. These 

results raise several questions. First question is, why conditional PTEN deletion in all 

CD45 cells only develops lymphoid neoplasms but no other types of hematological 

manlignancies? Second, why all lymphoid neoplasms correspond to T-cell 

malignancies but none of the mice analyzed showed evidence of B-cell neoplasias? 

Regarding the first question, we considered the possibility that PTEN was not deleted 

in myeloid cells because Cre recombinase was not efficiently expressed in this lineage. 

However, using mT/mG reporter mice, we have demonstrated Cre recombination in 

both myeloid and lymphoid cells. Although these results suggest that loss of PTEN in 

hematopoietic cells favors the formation of lymphoid malignancies, we cannot rule out 

the possibility that the differences observed are affected by differences in the efficiency 

of recombination, which is lower in the myeloid lineage. Two previous studies have 

demonstrated that PTEN expression is required to maintain HSCs and participates in 

lineage choice and leukemogenesis. 2526. The use of Mx1-Cre mice for PTEN ablation 

leads to a rapid formation of myeloproliferative disease (MPD) that mainly progresses 

to acute myeloid leukemia (AML) 2526 On the other hand, the use of the VE-cadherin-

cre mice for PTEN excision has been reported to cause T-ALL in 74% of the animals 

analyzed. 27 It is important to note that in the first model, PTEN is silenced in adult mice, 

while in the second one it occurs at the fetal level. In this sense, our model is closer to 

the VE-cadherin-cre mice, as CD45 is expressed already in the fetal state of 



hematopoiesis and we observe T-ALL but not any myeloid leukemia. These facts 

suggest that the outcome of the mutation can be affected not only by the tissue where 

it happens, but also the moment when it occurs. Another point to take into account is 

the fact that neither Mx1-Cre nor VE-cadherin-cre mice delete PTEN exclusively in 

hematopoietic cells. We report the first study where PTEN has been knocked in all the 

hematopoietic system since its very beginning without affecting other cell types and 

avoiding stimulation of the system with inducers as IFN, which has been reported to 

modulate hematopoiesis. 28 

Regarding the second question, is worth to mention that the vast majority of lymphoid 

neoplasms are of B-cell origin (85-90%), with most of the remainder being T cell 

tumors. 29Nonetheless, immunostaining analysis of KO mice revealed that 100% of 

mice displayed T-ALL, but none of them had signs of B-ALL. Previous studies have 

demonstrated that, while conditional deletion of PTEN in mouse T cells results in lethal 

T cell lymphomas 22, animals lacking PTEN in B cells showed altered B lymphocyte 

differentiation, but no evidence of malignancy.30 Furthermore, reduction of B cells has 

also been found by Zhang and collaborators 26 after conditional deletion of PTEN in 

HSCs using the inducible Mx1-Cre mouse. In agreement to these mouse models for 

conditional deletion of PTEN, our model suggests that PTEN ablation diverts the 

formation of lymphoid malignancies to T lineages. Accordingly, PTEN +/- mice, with a 

single copy of PTEN in all the cell of the organisms, develop T-cell lymphomas, but no 

B cell neoplasias. 161718 

In summary, we describe a new mouse model in which PTEN has been specifically 

deleted in CD45 positive hematopoietic cells. Such deletion resulted in the 

development of T-ALL, but no other types of hematological malignancies such as AML 

of B-cell lymphomas, indicating that loss of PTEN in hematopoietic cells diverts the 

formation of hematological neoplasias to the formation of T cell malignancies. As PTEN 

is a frequently mutated gene in human blood malignancies, understand how it 

regulates hematopoiesis and the tumorigenic process in mouse models is a valuable 

tool that will help to improve the understanding of the human disease and the 

designing of new therapies. 
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FIGURE LEGENDS. 

 

Figure 1. CD45:Cre+/- PTEN fl/fl mice develop a lethal disease that affects 

lymphoid organs. 

 

(A) Kaplan-Meier curve of WT and KO males and females analyzed for 60 weeks. 

Note that survival decrease dramatically after 20 weeks and none of the KO 

animals survived longer than 30 weeks. 

(B) Comparison of representative spleen, liver, thymus and lymph nodes from WT 

and KO mice. 

(C) Genotyping analysis by standard PCR of the recombined (delta) allele in spleen 

from KO but not from WT mice.  

(D) Western blot from WT and KO mice showing cre recombinase expression, in 

concordance with complete PTEN deletion and increase of Akt phosphorylation. 

Membranes were reproved with tubulin to ensure protein loading. 

 

Figure 2. Histopathological analysis reveals that PTEN deletion in CD45 

expressing cells leads to development of lymphomas. 

 

A) Representative images showing H&E staining (top panels) and PTEN 

immunohistochemistry (bottom panels) of spleen from WT and KO mice.  

B) Quantification of mitotic activity in spleens from WT and KO mice. Results are 

expressed as number of mitotic figures observed per 50 high-power microscope 

fields. 

C) Representative images and quantification of Ki-67 immunostaining in WT (left) 

and KO (right) mice.  

D) PTEN deletion in spleen from KO mice increases expression of cyclin D1 and c-

Myc, as showed by western blot. Membranes were reproved with tubulin to 

ensure protein loading. 

 

 

Figure 3. PTEN deletion in CD45:Cre mice causes diffuse peripheral 

lymphomas/leukemia. 

A) Representative images showing H&E staining (top panels) and PTEN 

immunohistochemistry (bottom panels) from WT and KO mice. Note the 



presence of PTEN negative infiltrates in different organs including lung, liver, 

colon, kidney and ovary. 

B) Flow cytometry analysis of blood samples from WT and KO mice. KO shows 

and increased percentage of lymphocytes in total blood. 

C) Representative images of papanicolau stained blood extensions obtained from 

WT and KO mice.  

 

Figure 4. CD45:Cre+/- PTEN fl/fl mice develop T cell but not B cell lymphomas 

  

A) Flow cytometry analysis of blood, bone marrow and spleen from WT and KO 

mice. Deletion of PTEN in CD45 cells leads to a dramatic increase in the 

amount of T lymphocytes, with a decrease in B cell population. 

B) Representative images of CD3 immunohistochemistry from spleen, lymph 

nodes and bone marrow from WT and KO mice. 

C) Representative images of myeloperoxidase immunohistochemistry from spleen, 

lymph nodes and bone marrow from WT and KO mice. 

D) Representative images of CD3 immunohistochemistry in lung, liver, kidney and 

colon from CD45:Cre+/- PTEN fl/fl (KO) mice. 

E) Representative images showing CD3 immunostaing of blood extension 

obtained from WT and KO mice. 

 

Figure 5. CD45:Cre+/- mice show recombination in all blood cell lineages. 

 

A) Flow cytometry analysis of peripheric blood from CD45:Cre mT/mG mice shows 

green and red fluorescence in both lymphocytes and granulocytes from 

CD45:Cre+/- mT/mG +/- animals. 

B) Representative confocal images corresponding to blood, bone marrow, spleen 

and lymph nodes from CD45:Cre+/- mT/mG +/- mice showing recombination y 

all tissues. Note the presence of recombined (green) lymphocytes (white 

arrows) and granulocytes (yellow arrows). 
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