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ABSTRACT 9 

The elastic properties of snow layers are key determinants for slab avalanche release 10 

models. This study investigates the relationships between microstructure and anisotropic 11 

elastic properties of snow. We employed micro-finite element (FE) models built from X-12 

ray micro-computed tomography (CT) images to compute the effective orthotropic 13 

stiffness and compliance tensors for a wide range of snow densities and morphologies. The 14 

representativeness of the snow samples for numerical homogenization is rigorously 15 

established through the convergence analysis of the computed stiffness tensor and effective 16 

isotropic Young's modulus. The microstructure of snow is quantified in terms of ice volume 17 

fraction, ice thickness and second rank volume- and surface-based fabric tensors. The 18 

isotropic elasticity model based on ice volume fraction could explain 89% of the variability 19 

of the stiffness tensor computed by the µFE model with mean relative norm error of 43%. 20 

In contrast, the orthotropic elasticity model based on a fabric tensor and the volume fraction 21 

raised the adjusted coefficient of determination (    
   to 97% with mean relative norm 22 

error of 28%. Overall, the fabric based orthotropic elasticity relationship yielded better 23 

results compared to isotropic model with higher     
 , lower relative norm errors and 24 
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smaller dispersion of residuals for the prediction of stiffness tensor components as a whole 25 

as well as for the individual elastic constants. We conclude that ice volume fraction in 26 

conjunction with fabric descriptors of the snow microstructure can be used to predict the 27 

anisotropic elastic properties of snow via the relations established in this study.  28 
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  1. Introduction 35 

 Snow is a material with a porous open cellular structure consisting of a complex 36 

interconnected network of sintered ice crystals. The layers in a snowpack are subjected to 37 

continual structural transformations under the influence of metamorphism and densification 38 

processes, resulting in a spectrum of snow microstructure classes (Fierz et al., 2009). The 39 

mechanical properties of snow are critical for avalanche hazard assessment (Schweizer et 40 

al. 2003) and are intrinsically linked with (a) its microstructure, which refers to the volume 41 

fractions and spatial configuration of ice and pore phases, and (b) physical properties of ice. 42 

Dry snow slab avalanches are generally released by initiation and rapid propagation of 43 

mixed-mode shear-compression fracture in a thin weak layer buried underneath a strong 44 

cohesive snow slab (McClung, 1996; Reiweger et al., 2015). The elastic properties of the 45 

slab and weak layers are key determinants for slab avalanche release models, which not 46 

only influence the transmission of deformation to the weak layer for failure initiation but 47 

are also important for fracture propagation in the weak layer (Sigrist and Schweizer, 2007; 48 

Habermann et al., 2008; Heierli et al., 2008; Mahajan et al., 2010; Gaume et al., 2015a,b).  49 

The direct measurement of the elastic properties of weak snow classes, such as 50 

depth hoar, faceted and surface hoar crystals, from experiments is subject to large errors as 51 

sample geometry and loading conditions are often not perfect. Moreover, the pure elastic 52 

strain range for snow is very small which makes elastic loading extremely difficult to 53 

perform. The structural and mechanical properties of these snow classes also exhibit 54 

anisotropy (Reiweger and Schweizer, 2010; Srivastava et al., 2010), which plays an 55 

important role in transforming the vertical collapse deformation energy into shear 56 
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deformation for crack propagation (McClung, 2005). However, physical characterization of 57 

the anisotropic stiffness (      ) or compliance (      ) tensors requires multiple 58 

measurements on the same sample that is nearly impossible because of the destructive 59 

nature of the tests. Therefore, most of the previous studies (Mellor, 1975, 1977; Frolov and 60 

Fedyukin, 1998, Camponovo and Schweizer, 2001; Scapozza and Bartelt, 2003; Sigrist, 61 

2006) assumed snow as an isotropic material and reported quasi-static and dynamic 62 

measurements of Young’s modulus of relatively well bonded snow in the vertical direction. 63 

In these studies, it was found that the Young’s modulus of snow is strongly related to its 64 

density, however large unexplained variance remained which cannot be attributed solely to 65 

different measurements techniques. It is hypothesized that a part of scatter is caused by 66 

anisotropy of the snow samples that cannot be accounted for by a scalar quantity such as 67 

density.    68 

An alternative is a computational approach using micro-finite element (FE) 69 

methods, where a 3D digitized model of the microstructure is built from high resolution X-70 

ray micro-computed tomography (CT) images. The homogenized stiffness tensor is then 71 

computed over a representative volume element (RVE) of the microstructure for a given set 72 

of boundary conditions (Garboczi and Day, 1995). The FE approach was first used by 73 

Schneebeli (2004) to compute the vertical Young's modulus of depth hoar snow. Recently, 74 

FE method was applied on samples from different snow layers to calculate their effective 75 

Young’s moduli and Poisson's ratios under the assumption of isotropy (Kochle and 76 

Schneebeli, 2014). Statistically reconstructed 3D snow microstructure was also used as an 77 

input geometry to compute the effective Young’s modulus using mesh-free modelling 78 
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(Yuan et al., 2010). However, these studies were restricted to computation of effective 79 

Young's modulus and Poisson's ratio and the evaluation of the full anisotropic stiffness 80 

tensor and its possible relation with snow microstructure was not explored. 81 

The 3D CT imaging allows characterization of microstructural anisotropy of 82 

porous materials by methods such as mean intercept length (MIL) (Whitehouse, 1974), star 83 

length distribution (SLD) (Smit et al., 1998) or star volume distribution (SVD) (Cruz-Orive 84 

et al., 1992). Applied to snow, these measures can describe the spatial distribution of ice 85 

and pore phases with a function that can be approximated by an ellipsoid (Harrigan and 86 

Mann, 1984) or by spherical Fourier series (Kanatani, 1984). Both approaches lead to the 87 

definition of a positive definite second rank fabric tensor that characterizes the 88 

microstructural arrangement and anisotropy in a porous solid. A preliminary study reported 89 

significant correlation between MIL fabric measures and Young's moduli of snow 90 

(Srivastava et al., 2010) and could explain the anisotropic stiffening under temperature 91 

gradient metamorphism. The granular description of structural anisotropy via contact 92 

normal tensors (Shertzer and Adams, 2011) looks very appealing, however grain 93 

segmentation and identification of grain contacts in 3D CT images of snow microstructure 94 

is not trivial. Recently, Hagenmuller et al. (2014a) introduced a new microstructural 95 

parameter, the minimum cut density, which describes the reduced thickness of the ice 96 

matrix at bonds and showed good correlation with anisotropic Young’s modulus of faceted 97 

snow. However, its relationship with all the components of the stiffness tensor is yet to be 98 

explored.  99 
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The mathematical basis for relationship between a second rank fabric tensor 100 

characterizing microstructure and the fourth rank elasticity tensor was first proposed by 101 

Cowin (1985). Following this approach, Zysset et al. (1998) developed an orthotropic 102 

elasticity model which also ensured the positive definiteness of the elasticity tensor a priori 103 

and can be reduced into (at least) a cubic symmetry model when the eigenvalues of the 104 

fabric tensor coincide. The generalized Zysset-Curnier orthotropic elasticity model (Zysset 105 

et al., 1998) consisted of five material constants besides fabric tensor and volume fraction. 106 

An extensive review by Zysset (2003) listed the formulations of existing theoretical 107 

morphology-elasticity models and compared them by applying to a common data set of 108 

trabecular bone and idealized open and closed cell 3D structures. The fabric tensor based 109 

morphology-elasticity models are very appealing as they provide an alternative to the much 110 

more computationally expensive µFE methods. In absence of CT-images, polar 111 

distribution of mean intercept length on 2D vertical snow sections can be used to obtain a 112 

measure of structural anisotropy. Alternatively, Kuo et al. (1998) approach could be used to 113 

approximate the MIL fabric tensor in 3D from stereological measurements on three 114 

mutually-perpendicular planar sections of snow samples. 115 

The main objective of this study was to investigate if elastic properties of snow can 116 

be reliably predicted on the basis of either ice volume fraction alone or in conjunction with 117 

fabric tensors. We employed voxel based FE simulations on CT images to compute the 118 

homogenized stiffness tensors for a wide range of snow densities. The microstructural 119 

anisotropy was characterized using surface- and volume-based fabric measures. The FE 120 

and fabric results were analysed statistically against isotropic and orthotropic morphology-121 
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elasticity relationships. Our findings confirm that ice volume fraction along with fabric are 122 

the best determinants of the anisotropic elastic properties of snow using CT imaging. 123 

2. Materials and Methods 124 

2.1 Snow Samples 125 

The numerical analyses were performed on a heterogeneous collection of 25 snow 126 

samples. These samples were either obtained via field sampling or prepared using 127 

controlled cold-lab experiments. A description of the samples, including their classification 128 

according to the International Classification for Seasonal Snow on the Ground (Fierz et al., 129 

2009), is given in Table 1. The analyzed samples span most of the seasonal snow classes 130 

(Figure 1): 2 samples of Precipitation Particles (PP), 1 of Decomposing and Fragmented 131 

precipitation particles (DF), 9 of Rounded Grains (RG), 8 of Faceted Crystals (FC) and 5 of 132 

Depth Hoar (DH). Seven samples (HF1 – HF7) were prepared from kinetic metamorphism 133 

experiments where the snow samples evolved under a fixed temperature gradient of 96 K 134 

m
-1 

(Srivastava et al., 2010). These samples correspond to various stages of transformations 135 

into facetted crystals and depth hoar. Four of the RG snow samples (ET1, T1, T2 and T3) 136 

were prepared under isothermal conditions at 264 K after sieving. Another RG sample 137 

(MTS1) was taken from the data of Chandel et al. (2014). The remaining samples 138 

comprising various snow classes were directly collected from Patsio (32 45’N, 77 16’E; 139 

3800 m a.s.l.) and Dhundhi (32 21’N, 77 7’E; 3050 m a.s.l) field research stations in the 140 

Indian Himalayas. All the samples were scanned non-destructively with a Skyscan 1172 141 

(Bruker, Belgium) X-ray micro-computed tomography system at resolutions ranging 142 
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between 4.97 m and 8.56 m. The resolutions of the images were further reduced by a 143 

factor of three or four to allow reasonable computational times. The grayscale images were 144 

filtered with a 3
3
 median filter and segmented into ice and pore phases. The resulting cubic 145 

volumes of side-length ranging from 5.96 mm to 9.55 mm were used for the microstructure 146 

analysis and numerical computation of elastic properties.  147 

2.2 Microstructure Parameters and Construction of Fabric Tensors 148 

The microstructure was characterized in terms of ice volume fraction (   ), ice 149 

thickness (    ), pore thickness (     ), and volume- and surface-based fabric tensors.  s 150 

was calculated using the hexahedral marching cube volume model (Lorensen and Cline, 151 

1987).      and       defined as the mean diameter of ice structures and pores in snow 152 

respectively, were obtained using the distance transform of the ice matrix and pores 153 

(Hildebrand and Ruegsegger, 1997). The density of snow (   ) was calculated by 154 

multiplying     with density of ice (               ). 155 

Fabric tensors can provide quantitative characterization of both anisotropy and 156 

orientation of the material phase of interest. In this study we used second rank MIL, SLD 157 

and SVD fabric tensors to characterize the three planes of orthotropic symmetry and degree 158 

of microstructural anisotropy. The MIL is defined as the mean distance between two 159 

solid/pore interfaces in a given direction. The distribution of the MIL at a point in 3D space 160 

forms an ellipsoid, and provides a second rank fabric tensor   (Harrigan and Mann, 1984). 161 

The MIL fabric tensor is defined as the inverse square root of  . The SLD is constructed by 162 

placing a sequence of points in the ice phase and measuring the lengths of lines emanating 163 
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from the points until they encounter a solid/pore interface (Smit et al., 1998). The SVD is 164 

also constructed by placing a sequence of points in the ice phase, but instead of lines 165 

infinitesimal cones are used (Cruz-Orive et al., 1992). Because MIL traverses multiple 166 

phase boundaries, they reflect anisotropy of the configuration of the pore/solid interface, 167 

while the star analyses account for the directional configuration of the ice phase. All the 168 

directional measurements were carried out using QUANT3D (Ketcham and Ryan, 2004).  169 

In general, the positive definite second rank fabric tensor   can be expressed as 170 

(Cowin, 1985; Zysset, 2003): 171 

                                                                                                 

 

   

 

   

 

where    are the strictly positive eigenvalues and    the normalized eigenvectors. Since 172 

the fabric tensors defined by MIL, SLD and SVD have different physical units, they were 173 

normalized by their trace,          . 174 

 The relationship among fabric tensor eigenvalues may be thought of as representing 175 

a continuum of fabric shapes, varying between three end members: spheres (      176 

  ), discs (        ), and rods (        ). Benn (1994) defined an isotropy 177 

index ( ) and an elongation index (  ) to describe the fabric shape as, 178 

  
  

  
            

  

  
                                                                                                                 

 Using these indices, it is possible to describe and compare snow fabric 179 

characteristics across different snow types. 180 
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2.3 FE computations of elastic properties 181 

The linear elastic properties of snow were computed from CT data using a voxel-182 

based FE programme (Bohn and Garboczi, 2003). FE models of segmented cubical 183 

volumes of snow were created by converting image voxels into homogeneous linear 184 

hexahedral elements. For ice, linear elastic and isotropic properties were specified with a 185 

Young’s modulus of 9.5 GPa and Poisson’s ratio of 0.3 (Sanderson, 1988). The 186 

homogenized elastic properties of FE models were evaluated by performing FE 187 

simulations of six independent load cases (three compressive and three shear tests) under 188 

periodic boundary conditions. The loading in each case is in the form of the imposed unit 189 

macroscopic strains, 190 

 
 
 

 
 
   
   
   
   
   
    

 
 

 
 

 

 
 
 

 
 
 
 
 
 
 
  
 
 

 
 

 

 
 
 

 
 
   
   
   
   
   
    

 
 

 
 

 

 
 
 

 
 
 
 
 
 
 
  
 
 

 
 

 

 
 
 

 
 
   
   
   
   
   
    

 
 

 
 

 

 
 
 

 
 
 
 
 
 
 
  
 
 

 
 

                                                                            

 
 
 

 
 
   
   
   
   
   
    

 
 

 
 

 

 
 
 

 
 
 
 
 
 
 
  
 
 

 
 

 

 
 
 

 
 
   
   
   
   
   
    

 
 

 
 

 

 
 
 

 
 
 
 
 
 
 
  
 
 

 
 

 

 
 
 

 
 
   
   
   
   
   
    

 
 

 
 

 

 
 
 

 
 
 
 
 
 
 
  
 
 

 
 

                                                                             191 

The full homogenized stiffness tensor of each snow cube was computed by means 192 

of stress and strain averages of the FE analysis results. In its most general form, the 66 193 

matrix representation of anisotropic stiffness tensor, defined relative to the image 194 

coordinate system, involves 21 independent elastic coefficients and is given by  195 
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If planes of elastic symmetry exist, some of these coefficients are interdependent or 196 

zero when measured in a coordinate system aligned with the normals to the symmetry 197 

planes (Cowin and Mehrabadi, 1987). In the case of orthotropy, off-diagonal elements, 198 

denoted    , are zero when the three loading directions parallel the normal vectors of the 199 

three planes of orthotropic symmetry and the number of independent elastic constants are 200 

reduced to 9. For materials that do not have pure orthotropic symmetries, values of    , are 201 

non-zero but small relative to the    , terms. A numerical optimization procedure was then 202 

used to find the coordinate transformation that minimizes an orthotropy objective function 203 

defined as (Rietbergen et al., 1996) 204 

    
    

 
   

    
 

   
                                                                                                                              205 

The non-orthotropic entries of the transformed stiffness tensor,         
, were then 206 

set to zero to obtain the best orthotropic representation of the stiffness tensor,         
. The 207 

relative norm error (       ) caused by forcing orthotropic symmetry is quantified by, 208 

        
         

         
 

         
 

                                                                                                      



12 
 

The matrix form of corresponding orthotropic compliance tensor         
 is given 209 

by, 210 

         
           

 
  

 

 
 
 
 
 
 
 
 
 
 

 

  
 
   

  
 
   

  
   

 
   

  

 

  
 
   

  
   

 
   

  
 
   

  

 

  
   

   
 

    
  

    
 

    
 

     
 

     
 
 
 
 
 
 
 
 
 

                                                                                                                                                                                                                                                                                                                                                                           211 

where Ei, Gij and  ij are the engineering constants.  212 

The effective isotropic Young's modulus (    ) and Poisson’s ratio (    ) of each 213 

snow cube was estimated from the bounds on effective isotropic bulk (    ) and shear 214 

(    ) moduli of an orthotropic material (Cowin et al., 1999; Yoon et al.,2002),   215 

                                                                                                                           

where the subscript R (V) stands for the Reuss (Voigt) bounds on      and     . The Voigt 216 

and Reuss bounds can be determined from the components of the matrix representation of 217 

        
and its corresponding compliance tensor         

 (Hill, 1952), 218 
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and 219 

   
 

  
                          

 

 
               

   
 

                                                  
                       

The upper Voigt and lower Reuss bounds on      and     , computed on the full 220 

image volumes, were found to be very close for the snow samples considered (Figure 2). 221 

Consequently, the values of      and      are simply computed as the average of these 222 

bounds and converted into equivalent      and      as,   223 

    
         

          
      

           

             
                                                                            

2.4 Representative Volume Element (RVE)  224 

Criteria for the RVE are often linked to continuum modeling assumptions (Nemat-225 

Nasser and Hori, 1998), convergence of a given property (Swaminathan et al., 2006), or 226 

statistical representation of specific microstructural features (Kanit et al., 2003, Niezgoda et 227 

al., 2010). In homogenization problems, the RVE essentially refers to the smallest volume 228 

element of the microstructure that is statistically representative of the porous material as a 229 

whole while effectively smoothing out the local heterogeneities in such a way that the 230 

homogenized macroscopic properties are captured to a desired accuracy (Swaminathan et 231 

al., 2006; Niezgoda et al., 2010).  The success of RVE-based homogenization critically 232 

relies on satisfaction of the assumption of scale decoupling (Nemat-Nasser and Hori, 1998) 233 
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i.e.                 , where        is the length scale of the individual microstructure 234 

heterogeneities (e.g. grains, pores) and      is the linear size of RVE. We investigated the 235 

size of the RVE by performing numerical computations on concentric cubic snow volumes 236 

of increasing sizes. The smallest volume for which the      as well as the norm of the 237 

effective orthotropic stiffness tensor,          
 , converged (at least locally) to that for the 238 

entire microstructure within a specified tolerance of 20% was taken as the RVE.  239 

The convergence based RVE criteria lacks explicit connection between inherent 240 

microstructural variability in a material and the variability in elastic properties. In order to 241 

investigate the statistical variability, the total volume of each of the snow samples (300
3
 242 

voxel
3
) was partitioned into three sets of cubical sub-volumes, i.e. (i) set of 64 cubes with 243 

edge length (L)=75 voxel, (ii) set of 27 cubes with L=100 voxel, and (iii) set of 8 cubes 244 

with L=150 voxel (Figure 3). Depending on the resolution of individual snow images, the 245 

cube edge lengths of 150 voxel, 100 voxel and 75 voxel translated into physical edge 246 

lengths of 2.6-4.8 mm, 1.7-3.2 mm and 1.3-2.4 mm respectively. The stiffness tensors for 247 

all the sub-volumes of different sets were computed for investigating the effect of sub-248 

volume sizes on the relative variability of      and   .   249 

2.5 Isotropic and Orthotropic Morphology-Elasticity Models 250 

Based on the power law relations between elastic moduli and solid volume fraction, 251 

an isotropic (ISO) model that relates compliance ( ) and stiffness ( ) tensors to ice volume 252 

fraction (  ) can be expressed as (Zysset, 2003),  253 



15 
 

       
  

    
     

    

    
                                                                                                         

          
           

                                                                                                      

where {  ,   , k} and {  ,   , k} are alternative but equivalent sets of ISO model 254 

constants. In particular, for a nonporous solid (i.e.     ), the model constants    and    255 

are interpreted as Lamé constants,    the elastic modulus and    the Poisson’s ratio. The 256 

exponent k characterizes the power law dependence on the ice volume fraction.   is the 257 

second rank identity tensor and the double tensorial products       and        are 258 

equivalent to              and       
 

 
               , respectively.  259 

The Zysset-Curnier (ZC) fabric-elasticity model (Zysset, 2003) predicts positive 260 

definite fourth rank orthotropic compliance and stiffness tensors using volume fraction in 261 

the range [0, 1] and an arbitrary second rank fabric tensor   as,  262 
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where {  ,   ,   , k, l} and {  ,   
 
,   , k, l} are alternative but equivalent sets of ZC 263 

model constants. The ZC model reduces into ISO model if     and the following relation 264 

holds (Zysset, 2003), 265 

   
  

       
           

                                                                                                              

The choice of          ensures that the model constants   ,    and    can be 266 

interpreted as elastic modulus, shear modulus, and Poisson’s ratio of a solid (no 267 

porosity)       and (at least) cubic     (     ) material (Zysset et al., 1998; Zysset, 268 

2003). Additionally, if the relation    
  

       
           

 
 also holds, then the ZC model 269 

constants can be interpreted as the elastic properties of an extrapolated isotropic material 270 

with volume fraction     .   271 

The parameters of ISO and ZC models were fitted to the FE and fabric results by 272 

constructing multiple linear regression equations of the form, 273 

                                                                                                                                                   

where vector   is a 12n vector consisting of log-transformed 12 non-zero components of 274 

the orthotropic compliance or stiffness tensor for n samples,   is the 12n   p matrix 275 

containing the ice volume fraction and fabric data,   is a vector of the p model constants 276 

and vector   contains the residuals. The linear system of equations was then solved for   by 277 

minimizing the sum of squared residuals leading to,  278 
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The ZC model was evaluated using each of the three fabric tensors (MIL, SLD and 279 

SVD) to investigate if volume based fabric measure provides a closer fit to compliance and 280 

stiffness tensors than surface based fabric descriptors. The model fits were evaluated by 281 

analysing both magnitude of the residuals and the adjusted coefficient of determination 282 

(    
 ). Further, the model norm error (       ) describing the relative variation between 283 

the predicted and FE calculated elasticity tensor was quantified as, 284 

            
         

        

         
 

     
         

        

         
 

                                              

3. Results and Discussion 285 

3.1 Representative volume element considerations 286 

The convergence of   ,     , and          
  with increasing cubic volume size is 287 

shown in Figure 4. Volume fraction     was found to converge in the volume range [1.5
3
, 288 

2.5
3
] mm

3
 within the tolerance of 20% for all the snow samples. The values of      and 289 

         
  can also be observed to progressively converge to that for the entire 290 

microstructure. The critical RVE can be well approximated to be in the volume range [4.0
3
-291 

6.5
3
] mm

3 
for all samples except M1 and M2. For these low density (97-130 kgm

-3
) PP 292 

snow samples, the RVE appears to be larger than the available scanned volume. As a 293 

comparison, the RVE for a µFE based constrained uniaxial simulations of the effective 294 

Young’s modulus of low density snow (   < 300 kg m
-3

) was around 6.5
3
 mm

3
 (Kochle and 295 

Schneebeli, 2014).
 
The RVE for the effective thermal conductivity of snow (Calonne et al., 296 

2011) was reported in the range of [2.5
3
-5.5

3
] mm

3
. Additionally, RVE sizes for the 297 
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minimum cut-density, a parameter which showed excellent correlation with Young' 298 

modulus of snow, were also determined in the range of [3
3
-6

3
] mm

3
 (Hagenmuller et al., 299 

2014a). The RVE estimates with respect to the stiffness tensor of snow obtained in this 300 

study are consistent with previously reported estimates for other properties.   301 

Any volume larger than the minimum RVE size can be regarded as representative 302 

and thus maximum available image volume for each of the snow samples fulfills the RVE 303 

criteria with respect to the effective stiffness tensor except for samples M1 and M2. Even if 304 

an RVE cannot be realized due to physical size constraints for M1 and M2, the stiffness 305 

tensors corresponding to maximum available volumes can be still used to describe apparent 306 

properties (Huet, 1990). Approximating         by     , the values of           307 

corresponding to the full image volume of the samples were found to be in the range 17 to 308 

75. Alternatively taking             ,             ranges from 12 to 50. The relatively 309 

high values of   (73 and 51) for samples M1 and M2 seems to fulfil the condition    , 310 

however the corresponding values of   (16 and 12) appears to be too low to satisfy     . 311 

It should be noted that to satisfy the assumption of scale decoupling, the two conditions 312 

    and      should be separately fulfilled. Previous studies have employed  313 

              in the range between 10 and 100 for elastic response of heterogeneous 314 

materials (Xu and Chen, 2009; Ostoja-Strzewski, 2008).  315 

The structural inhomogeneity within individual image volumes was analysed in 316 

terms of the statistical uncertainties of the FE results in three different sets of cubical sub-317 

volumes with edge lengths of 75 voxel, 100 voxel and 150 voxels respectively. Figure 5 318 

shows the variation of mean      versus mean     for the corresponding sub-volumes. The 319 
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horizontal and vertical error bars represent 1 standard deviation of     and      320 

respectively. The value of      for the entire microstructure (300 voxel cube) for all 321 

samples is also shown for reference. The variability of both      and     increases with 322 

decreasing sub-volume sizes, which is to be expected as the statistical fluctuations between 323 

individual sub-volumes are expected to be larger as the volumes become smaller. The mean 324 

     for cubic volumes of 150
3
 voxels or [2.6

3
-4.8

3
] mm

3
 appear to be consistent with the 325 

data for the largest available volumes (Figure 5c). However, the results with smaller 326 

volumes of 100
3
 voxels and 75

3
 voxels show a bias in mean     , particularly for     327 

    (Figure 5a and 5b). This is attributed to the larger relative microstructural 328 

heterogeneity in the smaller volumes of low density snow as indicated by the increased 329 

standard deviations of     for smaller sub-volumes. 330 

Figure 5d shows a nearly perfect linear relationship between the coefficient of 331 

variation (CV) of ice volume fraction,        , and that of effective isotropic Young’s 332 

modulus         
. This linear scaling relation between the relative variability of a measure 333 

of microstructure and the relative variability of effective property,         
           334 

holds for an ensemble of snow classes spanning a wide range of densities (97 - 533 kgm
-3

). 335 

Figure 5d includes a 95% confidence limit of the linear fit,   = 4.56 (4.41-4.70) when data 336 

for all the smaller sub-volumes are used for regression which can be a valuable tool for 337 

exploring an alternate volume element description that is better linked to the material 338 

parameters of microstructure and elastic properties. A basic microstructural volume 339 

element (            ) size for    can be defined which scale with a minimal set of 340 
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relevant microstructural features, such as (          . The RVE for elastic properties 341 

(          ) is then directly linked to              by the linear scaling relation between 342 

       and         
 which provides adequate information to a priori decide about the 343 

           with acceptable level of microstructural and property uncertainties.  344 

3.2 Effective Isotropic Young’s modulus and Poisson ratio  345 

Figure 6a shows the plot of      versus density for comparison with previously 346 

published experimental and numerical results. The plot includes      computed over the 347 

entire microstructure (300
3
 voxels or [5.96

3
-9.55

3
] mm

3
) as well as that obtained over an 348 

ensemble of 8 sub-volumes (150
3
 voxels or [2.6

3
-4.8

3
] mm

3
) for each snow sample. 349 

Interestingly, choosing smaller but representative sub-volumes provides an ensemble of 350 

independent samples from a single snow image and allowed us to explore effective elastic 351 

properties variation across a range of snow densities. The data indicate that, overall, 352 

simulated      values compare quite well with the previous dynamic measurements (region 353 

A and curve B, Shapiro et al., 1997) and follow closely the exponential fits from µFE based 354 

simulations (curve D, Kochle and Schneebeli, 2014). The results from low strain-rate and 355 

creep tests (region C, Shapiro et al., 1997), quasi-static compression experiments (Curve E, 356 

Scapozza and Bartelt, 2003), and dynamic measurements at 100 Hz (Curve F, Sigrist 2006) 357 

are significantly lower compared to our results. It is interesting to note that the strain rate 358 

corresponding to frequency of 100 Hz in Sigrist (2006) is 2.7 x 10
-2

 s
-1

, which may not be 359 

high enough to be completely in the elastic range (McClung, 2007). The flexural vibration 360 

data (Mellor, 1975) at density 400 kg m
-3

 are at least 50% higher than values provided by 361 
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Sigrist (2006). McClung (2007) pointed out that for snow and ice, a clear distinction has to 362 

be made between the “elastic modulus" which can be measured only at very high 363 

frequencies and the “effective modulus” at lower frequencies or from static creep and low 364 

strain rate tests. While the simulated      represents the elastic moduli independent of 365 

frequency and depends primarily on snow density; the effective moduli reported in Sigrist 366 

(2006) represent a combination of truly elastic (recoverable) and viscoelastic response that 367 

depend on loading rate or frequency for a given density. Note, however, that below the 368 

density of 200 kg m
-3

, the computed      shows good match with Sigrist (2006) 369 

parameterization.  370 

The empirical parameterizations of     with density by power (Frolov and 371 

Fedyukin, 1998; Sigrist, 2006) or exponential (Scapozza and Bartelt, 2003; Kochle and 372 

Schneebeli, 2014) relationships might provide a convenient way of summarizing the data 373 

for narrow ranges of density but lack the vigorous connection with microstructure which is 374 

required to explain the anisotropic elastic properties of snow.  375 

The effective isotropic Poisson's ratio showed no clear trend with density (Figure 376 

6b). Similar to     , the       values computed over sub-volumes of size 150
3
 voxels were 377 

consistent with those obtained over the entire image volume, at least for density > 200 kg 378 

m
-3

. Among the snow classes, RG shows almost a constant value of 0.191 0.008 over the 379 

density range of 200-580 kg m
-3

. The largest scatter was found for PP and DF particles with 380 

mean value of 0.1320.053, while faceted (FC) and depth hoar (DH) snow show 381 

intermediate scatter with mean value of  0.170.02. Our estimates of       are lower than 382 
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the dynamic measurements of Poisson’s ratio for density > 400 kgm
-3

 (region D, Smith, 383 

1969), but comparable to the values reported by Kochle and Schneebeli (2014).   384 

3.3 Fabric Tensors and Orthotropic Elastic Constants  385 

 The normalized eigenvalues (  :         ) of SVD, SLD and MIL fabric 386 

tensors (        ) are summarized in Table 2. The computed orthotropic elastic 387 

parameters              are given in Table 3. The tabulated values correspond to the 388 

maximum image volume available for each sample. The mean norm error (       ) 389 

associated with orthotropic representations (        
) of the anisotropic stiffness tensors 390 

(        
) was approximately 5.5%. In order to explore the relationship between mi and 391 

mechanical parameters, normalized Young’s moduli                    and normalized 392 

shear moduli                       were calculated such that,               and 393 

                . The normalized quantities fundamentally reflect the anisotropic 394 

mechanical properties due solely to the microstructural anisotropy as represented by its 395 

fabric. 396 

The concept of fabric anisotropy describes the non-random distribution of material 397 

in 3D (Odgaard et al., 1997). Figure 7a-c shows bivariate plots of elongation index (  ) vs. 398 

isotropic index (  ) for SVD, SLD and MIL fabric tensors respectively.    used in 399 

combination with  , provides a specific characterization of the material distribution in 3D. 400 

The value of     indicates a full isotropic fabric with material equally distributed in all 401 

directions, while  =0 is indicative of more anisotropic structure. Similarly      indicates 402 

an isotropic fabric while    approaching zero means a rod like elongated fabric. There are 403 
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clear snow type dependent effects, most notably that the majority of FC and DH snow 404 

samples (except G2 and G3) seemed to appear in a cluster separate from the other samples 405 

from RG and PP+DF snow types. Figure 8 depicts the ternary shape diagram (Benn, 1994) 406 

of fabric anisotropy corresponding to SVD measure. A completely isotropic fabric appears 407 

at the apex, an anisotropic structure with an elongated unidirectional fabric would make an 408 

appearance at the right corner, and a planar anisotropic fabric at the left corner. Although 409 

there is overlap, PP, DF and RG snow fabric tends to be more isotropic while FC and DH 410 

snow tend to be more anisotropic. On closer examination of G2 and G3 sample images, it 411 

emerged that these were not homogeneous with respect to snow type and seemed to be a 412 

combination of round grain and highly faceted snow types. Additionally, FC and DH snow 413 

exhibit much stronger fabric anisotropy compared to RG and PP+DF snow.  414 

Figure 7d depicts the bivariate plot between mechanical elongation (      ) and 415 

isotropy (      ) indices which are defined as,               and          416 

         . Concerning the mechanical anisotropy, Figure 7d presents a more complicated 417 

picture with larger overlap between the FC/DH and PP/DF/RG clusters. This might be due 418 

to the low-scale randomness of the snow microstructure in the FE models which is lost by 419 

the stereological averaging process involved in the computation of second rank fabric 420 

tensors. Additionally, we found no clear trend between sample anisotropy indices and ice 421 

volume fraction (Figure 9). 422 

 Figure 10 shows typical representation surfaces of orthotropic stiffness tensors 423 

obtained via the numerical µFE optimization procedure for PP, RG, FC and DH snow 424 

classes. The corresponding ellipsoidal surfaces of SVD and MIL fabric measures in the 425 
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image coordinate system (Figure 10) suggest that both volume and surface based fabric 426 

measures come very close to the mechanical main directions. The SVD fabric measure is 427 

appearing as a better descriptor for characterizing the anisotropy in elastic properties. 428 

Figure 11a-c shows the plots between     and    for the three fabric measures. The 429 

Pearson correlation coefficients between    and     were found to be highly significant (p 430 

< 0.01) with r = 0.84, 0.87 and 0.91 for MIL, SLD and SVD fabric measures respectively. 431 

Figure 11d-f show the relation between     and      with correlation coefficients r = 432 

0.81-0.86 at p < 0.01. The correlation coefficients between     and       were slightly 433 

lower (r= 0.72-0.73), but still highly significant at p < 0.01 (Figure 11g-i). These results 434 

clearly demonstrate that a strong relationship exists between morphology characterized by 435 

fabric tensors and the orthotropic elastic properties obtained from FE homogenization and 436 

establish the basis for evaluating the orthotropic morphology-elasticity model (Zysset and 437 

Curnier, 1995) for snow.    438 

3.4 Morphology-elasticity model fits for snow 439 

 The results of multiple linear regression analysis for ISO and ZC models for both 440 

compliance and stiffness approaches are presented in Table 4A. Neglecting fabric 441 

information and using an isotropic power law model yielded     
 of 0.81 and 0.89 with 442 

associated mean model norm errors of 40% and 43% for compliance and stiffness fits 443 

respectively. Depending on the fabric measure used, the ZC model provided     
  in the 444 

range of 0.85-0.87 and mean         in the range of 30-31% for compliance fits. In 445 

contrast, when applied on the stiffness tensor, the ZC model explained about 97% of the 446 
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variation of stiffness components with associated mean         in the range of 27-29%. 447 

The plots between µFE computed and predicted components of both the compliance and 448 

stiffness tensors are shown in Figure 12. The histograms of model norm errors are also 449 

compared in Figures 13a and 13b which clearly indicate the better predictive power of ZC 450 

model with lower relative norm errors as compared to ISO model for both the compliance 451 

and stiffness approaches. Interestingly, the regression results suggest that the ISO and ZC 452 

models better described the data when used with stiffness tensor components in comparison 453 

to the compliance approach. In the present study, the distribution of compliances was found 454 

to be more skewed (Skewness=5.3) compared to the distribution of stiffness components 455 

(Skewness=3.1) which might have resulted in more optimal weighting of data in 456 

relationships based on stiffness approach.   457 

 The histograms of the residuals of stiffness tensor components (Figure 14) indicate 458 

that the estimation errors are approximately normally distributed. Compared to ISO model, 459 

the ZC model resulted in significant improvement with approximately 42-48% reduction in 460 

standard deviation of the residuals of stiffness tensor components. The model performance 461 

was further evaluated for the prediction of individual orthotropic engineering constants (  , 462 

    and    ) using the stiffness approach. Depending on the fabric measure used, the ZC 463 

model could explain about 96-97% of the variations in   , 94-97% of the variations in     464 

and 52-63% of the variations in     (Table 4A). In contrast, the ISO model shows no 465 

correlation with     and explained about 84% of the variations in    and about 94% of the 466 

variation in     . A comparison between predicted engineering constants from the two 467 
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models (ZC with SVD fabric and isotropic) and those calculated from the µFE analyses are 468 

shown in Figure 15.  469 

 The model parameters for the compliance and stiffness fits are shown in Table 4B 470 

and 4C respectively. The values of ZC model constants {  ,   ,   } and {  ,   
 
,   } in 471 

Table 4C satisfy the relations    
  

       
            

 
 and can be interpreted as the elastic 472 

properties of an extrapolated  isotropic solid with       and     . Considering the wide 473 

range of densities and snow classes used in this study, the order of magnitude of    and    474 

compares well with the Young's modulus (9.5 GPa) and shear modulus (3.57 GPa) of ice. 475 

The exponent   varied between [0.63-0.66] for SVD fabric tensor and between [2.36-2.64] 476 

for SLD and MIL measures. Since SVD measure uses length dimensions cubed, the 477 

amplified differences between the major and minor components in the directional 478 

distribution data resulted in lower values of exponent   corresponding to SVD fabric.  479 

 The estimates of exponent   of ice volume fraction for ZC and ISO models were in 480 

the range of [4.32-4.48] and [4.51-4.71] for compliance and stiffness fits respectively. 481 

Applying theory of propagation of uncertainty to an isotropic model fit of the form     
  482 

yields a uncertainty scaling relation as              . The estimates of exponent   483 

match very closely with the variability scaling parameter   = 4.56 [4.41-4.70] obtained 484 

from analysis of statistical uncertainties of the FE results (Figure 5d) and establishes the 485 

appropriateness of power law dependence on ice volume fraction in both ISO and ZC 486 

models. The exponent of snow density in previously published power law relations of 487 

Young’s modulus varied between 2.94 (based on high frequency cyclic loading 488 
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experiments in Sigrist, 2006) to 6.6 (obtained via numerical simulations, Hagenmuller et 489 

al., 2014a).  490 

 The strong non-linearity between Young's modulus and ice volume fraction (or 491 

density) is at variance with the prediction of quadratic dependence on solid volume fraction 492 

for periodic open-cell solids with regular arrangement of isotropic cells (Gibson and Ashby, 493 

1997). The deviations from quadratic dependence for random open-cell porous solids have 494 

been related with large scatter in strut-thickness distribution, imperfections, irregularities, 495 

or anisotropy in the cell arrangements (Guessasma et al., 2008; Andrews et al., 1999). 496 

Numerical simulations (Guessasma et al., 2008) provided values of volume fraction 497 

exponent as high as 3.97±0.47 for a disordered open cell solid model consisting of 498 

overlapping spherical pores with solid volume fraction in the range 0.1-0.38. Compared to 499 

architecturally optimized cellular materials like metallic foams or honeycomb structures, 500 

the 3D microstructure of various snow classes is highly disordered and is reflected in many 501 

dead-ends existing in the ice matrix which do not contribute to the stress pathways (Theile, 502 

2011). Thus, the non-uniform stress distribution in the tortuous matrix of disordered open 503 

cell solids reduces their stiffness which is reflected in values of exponent k > 2. The values 504 

of exponent k obtained in this study are within the range reported in previous experimental 505 

(Sigrist, 2006) and numerical studies (Hagenmuller et al. 2014a) on snow and are consistent 506 

with those reported for disordered open cell solids (Guessasma et al., 2008).  507 

In general, the study shows that ice volume fraction along with fabric tensors is a 508 

very good predictor of the anisotropic stiffness tensor of snow. Our results (Figures 11 and 509 

12, Tables 4) also suggest that the choice of volume (SVD, SLD) or surface (MIL) based 510 
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fabric measures does not affect the prediction of elastic properties in a systematic way; all 511 

three provide a good representation of the mechanical characteristic of the snow fabric. 512 

Overall, the ZC model consistently performed better than the ISO model, producing higher 513 

correlation coefficients of determination, lower relative norm errors and smaller dispersion 514 

of residuals for the prediction of stiffness tensor components as a whole as well as for 515 

individual elastic constants. The recently introduced microstructural indicator, the 516 

minimum cut density, also showed excellent correlation           with anisotropic 517 

Young’s moduli (Hagenmuller et al., 2014a). However, its association with all the 518 

components of the stiffness tensor is not yet clear. 519 

 This study has a few limitations. It is known that discretisation errors can lead to 520 

overestimated stiffness values as a function of resolution in µFE models (Arns et al. 2002). 521 

For three-dimensional random open cell solids, the discretisation errors have been shown to 522 

be less than 10% if the strut thickness is covered by a minimum of four voxels (Roberts and 523 

Garboczi, 2002). Depending on the mean ice thickness (    ) and resolutions for individual 524 

samples (Table 1), a discretization of four to seventeen voxels per ice structure thickness 525 

was achieved which approximately meets the previously proposed criteria by Roberts and 526 

Garboczi (2002). By assuming an isotropic and homogeneous Young's modulus of ice at 527 

the matrix level, the predicted elastic properties are related exclusively to the 528 

microstructural-fabric of snow and all matrix level effects such as degree of sintering or 529 

micro-damage in ice matrix are ignored.  530 

It is interesting to note that despite high correlations, significant uncertainties still 531 

exist in the prediction of stiffness tensor for individual snow samples. The relative norm 532 
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errors associated with the isotropic model range between 20% and 108%, while those 533 

associated with the ZC model range between 2% and 79%. The uncertainties in the 534 

predicted results may not only be due to the occurrence of artefacts in both the fabric tensor 535 

and FE-based mechanical assessments (boundary conditions and voxelized mesh) but also 536 

due to the insufficient resolution of the images as well as an inherent inadequacy of second-537 

order fabric tensors in characterizing the full mechanical significance of the microstructure. 538 

The effect of low scale variability or disorderness of the snow microstructure in the FE 539 

models is essentially lost by the stereological averaging process involved in the 540 

computation of second-rank fabric tensors. The prediction error may be partially reduced 541 

by increasing the resolution of the microstructure images, but we expect the local 542 

variability or randomness of the snow microstructure to remain a major limitation for 543 

second-rank fabric tensor based morphology-elasticity model.  544 

Further, the experimental determinations of Young’s modulus of snow (Mellor, 545 

1975; Frolov and Fedyukin, 1998; Scapozza and Bartelt, 2003; Sigrist, 2006) are also 546 

associated with considerable scatter of at least similar magnitude. The fabric-elasticity 547 

relationships obtained in this study, on the other hand, predict not only uniaxial Young’s 548 

moduli, but also include full orthotropic stiffness and compliance tensors which 549 

characterize the elastic response of snow to any possible loading. 550 

4. Conclusion 551 

The inter-linking of the elastic properties of snow with its density and 552 

microstructure plays a key role in understanding the microstructural causes of slab 553 
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avalanche release mechanisms. The homogenized orthotropic stiffness tensors of the snow 554 

samples were computed using X-ray µCT derived high resolution digital µFE models. The 555 

maximum available cubic image volume for each sample fulfilled  the RVE criteria with 556 

respect to the homogenized stiffness tensor except for low density new snow samples. The 557 

           is found to be directly linked with              via a linear scaling relation, 558 

        
        , which can be used to a priori decide about the            with 559 

acceptable level of microstructural and property uncertainties. The estimates of exponent k  560 

of ice volume fraction for isotropic (      ) and orthotropic (      ) models match 561 

very closely with the variability scaling parameter       . The study shows that effective 562 

isotropic Young's moduli and Poisson ratio's, derived from µFE computed orthotropic 563 

stiffness and compliance tensors, compare quite well with previously published results 564 

thereby validating the numerical modelling approach adopted. The anisotropic elastic 565 

properties computed from µFE analysis essentially reflect the mechanical properties of 566 

snow due to its microstructure and are not affected by experimental artifacts. Multiple 567 

linear regressions of the ice volume fraction based isotropic model and the results of µFE 568 

analysis explained up to 89% of the variability in stiffness tensor components with 569 

associated mean relative norm error of 43.2%. Accounting for microstructural fabric in ZC 570 

model raised the adjusted coefficient of determination     
 to 97% with a mean model norm 571 

error of 28.4%. The standard deviation of the residuals of stiffness tensor components also 572 

considerably reduced by 42-48% with the introduction of fabric tensors in ZC model. In 573 

terms of which fabric measure to employ, the study found no systematic variation in the 574 
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performance of volume- and surface-based fabric tensors and all three fabric measures 575 

could reasonably explain the anisotropic elastic properties of snow.  576 

 In conclusion, the fabric-elasticity relations obtained in this study can be used to 577 

predict the homogenized elastic properties of snow by measuring ice volume fraction and 578 

fabric descriptors through high resolution X-ray µCT imaging; an approach which is 579 

several order of magnitude more computationally cost effective in comparison to µFE 580 

based homogenization. For future work, a systematic study on a larger set of samples 581 

covering a wider density and snow type range could provide more refined morphology-582 

elasticity model constants. Since stiffness and ultimate strength of snow have been shown 583 

to be highly correlated (Hagenmuller et al., 2014b), this approach shows promise for 584 

extension to the prediction of post-elastic behaviour.  585 
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Table 1: Description of the snow samples used in this study. PP: precipitation particles, RG: 

rounded grains, DF: decomposing and fragmented precipitation particles, FC: faceted 

crystals, DH: depth hoar, s: ice volume fraction,   : snow density,           and   

         , where      is the mean ice thickness and       is the mean pore thickness. 

 

Sample Snow 

Class 

Resolution 

(m) 

Image 

volume 

L
3
 (mm

3
) 

s       

(kgm
-3

) 

hice     

(mm) 

hpore 

(mm)    
 

’
 

ET1 RG 19.87 5.963 0.436 400 0.236 0.212 25.3 28.2 

G1 DF 23.89 7.173 0.212 194 0.149 0.376 48.0 19.1 

G2 DH 25.69 7.713 0.347 319 0.267 0.449 28.9 17.2 

G3 FC 23.89 7.173 0.344 315 0.228 0.374 31.5 19.2 

G4 DH 23.89 7.173 0.382 350 0.339 0.507 21.1 14.1 

HF1 RG 25.69 7.713 0.401 368 0.140 0.159 55.2 48.5 

HF2 FC 25.69 7.713 0.455 418 0.144 0.156 53.6 49.4 

HF3 FC 25.69 7.713 0.466 427 0.143 0.164 53.8 47.1 

HF4 FC 25.69 7.713 0.467 428 0.153 0.182 50.5 42.4 

HF5 DH 25.69 7.713 0.449 412 0.155 0.201 49.7 38.4 

HF6 DH 25.69 7.713 0.438 402 0.150 0.216 51.3 35.7 

HF7 DH 25.69 7.713 0.443 406 0.156 0.224 49.4 34.5 

KFC1 FC 31.85 9.553 0.338 310 0.378 0.562 25.3 17.0 

KFC2 FC 31.85 9.553 0.274 251 0.381 0.614 25.1 15.6 

M1 PP 25.69 7.713 0.106 97 0.105 0.473 73.1 16.3 

M2 PP 17.13 5.143 0.142 130 0.101 0.421 51.1 12.2 

MTS1 RG 23.89 7.173 0.234 214 0.118 0.283 60.9 25.3 

S1 RG 25.69 7.713 0.349 320 0.239 0.320 32.2 24.1 

S2 RG 25.69 7.713 0.408 374 0.259 0.279 29.7 27.7 

S3 FC 25.69 7.713 0.357 327 0.446 0.476 17.3 16.2 

S4 FC 25.69 7.713 0.433 397 0.398 0.452 19.4 17.1 

S5 RG 25.69 7.713 0.395 362 0.310 0.367 24.9 21.0 

T1 RG 25.69 7.713 0.460 422 0.217 0.211 35.5 36.6 

T2 RG 25.69 7.713 0.581 533 0.217 0.150 35.6 51.2 

T3 RG 25.69 7.713 0.444 407 0.318 0.309 24.3 24.9 
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Table 2: Normalized eigenvalues (        ) of the SVD, SLD and MIL derived fabric 

ellipsoids.  

 

 

 SVD SLD MIL 

Sample m1 m2 m3 m1 m2 m3 m1 m2 m3 

ET1 0.355 0.340 0.305 0.339 0.335 0.326 0.336 0.334 0.330 

G1 0.349 0.333 0.318 0.339 0.332 0.329 0.337 0.333 0.330 

G2 0.351 0.332 0.317 0.338 0.334 0.329 0.338 0.333 0.329 

G3 0.357 0.338 0.305 0.340 0.334 0.326 0.337 0.333 0.330 

G4 0.405 0.301 0.294 0.351 0.327 0.322 0.349 0.326 0.325 

HF1 0.355 0.345 0.300 0.341 0.335 0.323 0.340 0.331 0.329 

HF2 0.448 0.291 0.261 0.358 0.325 0.317 0.357 0.323 0.320 

HF3 0.503 0.256 0.241 0.373 0.316 0.312 0.366 0.318 0.316 

HF4 0.480 0.272 0.248 0.369 0.320 0.312 0.370 0.317 0.313 

HF5 0.499 0.256 0.245 0.374 0.315 0.311 0.369 0.317 0.314 

HF6 0.487 0.260 0.253 0.369 0.317 0.314 0.363 0.320 0.317 

HF7 0.473 0.272 0.255 0.366 0.319 0.315 0.366 0.319 0.315 

KFC1 0.380 0.330 0.290 0.336 0.334 0.330 0.347 0.329 0.324 

KFC2 0.415 0.303 0.282 0.348 0.330 0.322 0.348 0.329 0.322 

M1 0.399 0.336 0.265 0.348 0.333 0.319 0.340 0.338 0.322 

M2 0.381 0.348 0.271 0.344 0.336 0.321 0.341 0.336 0.323 

MTS1 0.359 0.333 0.308 0.339 0.335 0.325 0.336 0.333 0.331 

S1 0.363 0.346 0.291 0.344 0.340 0.316 0.339 0.337 0.324 

S2 0.382 0.356 0.262 0.350 0.341 0.309 0.342 0.336 0.322 

S3 0.409 0.318 0.274 0.346 0.332 0.322 0.352 0.325 0.323 

S4 0.411 0.309 0.280 0.347 0.329 0.324 0.340 0.331 0.329 

S5 0.360 0.348 0.293 0.344 0.341 0.315 0.340 0.340 0.320 

T1 0.350 0.328 0.322 0.337 0.334 0.329 0.341 0.332 0.327 

T2 0.369 0.340 0.292 0.341 0.336 0.323 0.343 0.331 0.326 

T3 0.368 0.346 0.287 0.343 0.336 0.321 0.338 0.332 0.330 

 

 

 

 

 

 

 

 



Table 3: Summary of the orthotropic elastic parameters                      and     

obtained by µFE analysis.  

 

 

Sample E1 E2 E3 G12 G13 G23  12  21  13  31  23  32 

ET1 452.1 357.2 296.1 174.2 153.4 138.8 0.22 0.17 0.24 0.16 0.21 0.18 
G1 25.1 15.9 14.1 6.8 8.7 6.2 0.13 0.09 0.29 0.17 0.19 0.17 
G2 104.0 97.8 78.2 44.1 40.2 44.0 0.20 0.19 0.18 0.13 0.25 0.20 
G3 126.4 85.5 68.4 44.8 39.9 36.8 0.20 0.13 0.23 0.12 0.19 0.15 
G4 166.8 94.2 89.2 48.9 60.2 46.7 0.19 0.11 0.26 0.14 0.19 0.18 

HF1 416.3 357.2 355.0 160.3 160.7 147.2 0.21 0.18 0.21 0.18 0.18 0.18 
HF2 901.6 505.9 475.4 287.9 276.2 208.4 0.27 0.15 0.27 0.14 0.19 0.18 
HF3 1005.5 462.5 459.0 288.6 282.6 199.3 0.27 0.12 0.27 0.12 0.19 0.19 
HF4 1071.1 465.7 454.3 292.2 289.1 194.1 0.26 0.11 0.27 0.12 0.19 0.18 
HF5 1013.5 413.7 406.1 269.9 269.6 172.6 0.28 0.12 0.27 0.11 0.18 0.18 
HF6 940.6 389.0 386.5 255.6 247.9 165.6 0.27 0.11 0.26 0.11 0.19 0.19 
HF7 1001.1 401.9 377.2 265.8 253.5 163.8 0.28 0.11 0.27 0.10 0.20 0.18 
KFC1 146.7 127.2 95.3 58.9 48.6 46.1 0.21 0.18 0.16 0.10 0.19 0.14 
KFC2 107.0 79.7 57.8 37.9 31.4 24.6 0.22 0.16 0.32 0.17 0.16 0.12 
M1 1.2 0.9 0.8 0.6 0.3 0.5 0.19 0.14 0.09 0.06 0.14 0.14 
M2 2.0 1.6 1.2 0.8 0.7 0.6 0.14 0.12 0.27 0.17 0.16 0.12 

MTS1 72.3 52.5 37.6 25.9 22.7 19.4 0.23 0.17 0.30 0.16 0.23 0.17 
S1 239.5 189.7 180.0 88.0 86.7 79.3 0.21 0.16 0.23 0.17 0.19 0.18 
S2 451.9 403.9 391.2 183.7 182.8 171.5 0.20 0.18 0.22 0.19 0.19 0.19 
S3 279.2 114.6 100.3 71.0 73.3 39.3 0.24 0.10 0.35 0.13 0.13 0.12 
S4 547.6 297.0 293.1 164.2 167.0 131.2 0.22 0.12 0.27 0.14 0.20 0.20 
S5 364.6 334.1 303.5 142.3 139.3 135.6 0.19 0.17 0.21 0.17 0.20 0.18 
T1 749.8 646.7 620.0 291.5 285.3 267.2 0.22 0.19 0.22 0.18 0.20 0.19 
T2 1944.9 1912.2 1650.0 781.5 755.7 727.2 0.21 0.21 0.25 0.21 0.22 0.19 
T3 480.6 471.2 423.6 199.1 194.7 189.5 0.19 0.19 0.21 0.19 0.20 0.18 

 

 

 

 

 

 

 

 



Table 4: (A)     
  and mean model norm error (       ) computed for compliance (     ) 

and stiffness (     ) tensor components as well as individual orthotropic engineering 

constants (  ,     and   ). The compliance approach was based on equation 6 and 8 while 

stiffness approach was based on equation 7 and 9. Entries marked 'n.s' indicate non-

significant correlation. Model parameters and 95% confidence intervals for compliance and 

stiffness approaches are shown in (B) and (C) respectively.  

(A) Compliance approach  

(     ) 

Stiffness approach 

 (     ) 

   
(MPa) 

     

(MPa) 

    

Model Fabric     
          

(%) 
    
          

(%) 
    
      

      
  

 

ZC 

SVD 0.86 30.1 0.97 27.4 0.97 0.97 0.63 

SLD 0.87 31.1 0.97 28.3 0.96 0.97 0.60 

MIL 0.85 30.0 0.97 29.4 0.96 0.94 0.52 

ISO - 0.81 40.4 0.89 43.2 0.84 0.94 n.s. 
 

(B) ZC ISO 

Fabric SVD SLD MIL - 

 Value 95% 

CI 

Value 95% 

CI 

Value 95% CI Value 95% 

CI 

    
(GPa) 

15.87 13.80 - 

18.26 

15.44 13.44 -

17.75 

15.30 13.29 -

17.62 

18.05 15.98 -

20.39 

   0.176 0.174 - 

0.178 

0.176 0.174 - 

0.178 

0.176 0.174 - 

0.178 

- - 

   
(GPa) 

6.76 5.87 - 

7.77 

6.57 5.72 - 

7.55 

6.51 5.65 - 

7.49 

7.65 6.65 - 

8.79 

k 4.34 4.23 - 

4.45 

4.33 4.22 -

4.44 

4.32 4.21 -

4.43 

4.48 4.37 -

4.59 

l 0.63 0.45 - 

0.80 

2.64 1.93 -

3.36 

2.36 1.65 -

3.08 

- - 

 

(C) ZC ISO 

Fabric SVD SLD MIL - 

 Value 95% 

CI 

Value 95% 

CI 

Value 95% CI Value 95% CI 

    
(GPa) 

5.54 4.79 - 

6.40 

5.38 4.65 -

6.22 

5.33 4.61 -

6.16 

4.43 4.17 -

4.70 

  
 
 

(GPa) 

5.48 4.80 - 

6.25 

5.32 4.66 - 

6.01 

5.27 4.62 - 

6.02 

- - 

   
(GPa) 

9.92 8.58 - 

11.46 

9.63 8.33 - 

11.14 

9.54 8.25 - 

11.04 

7.90 6.87 - 

9.09 

k 4.71 4.60 - 

4.82 

4.70 4.58 -

4.81 

4.69 4.58 -

4.80 

4.51 4.40 -

4.62 

l 0.66 0.47 - 

0.84 

2.58 1.83 -

3.32 

2.55 1.82 -

3.29 

- - 

 



Figure Captions 

Figure 1: Reconstructed 3D microstructure of representative snow classes; PP (Sample M2), 

RG (sample S2), FC (sample KFC2) and DH (sample HF5).   

Figure 2: Voigt and Reuss bounds on effective isotropic bulk (    ) and shear (    ) 

modulus computed on the full image volumes for all the samples   

Figure 3: Partitioning procedure to generate three sets of cubical sub-volumes of different 

edge lengths (L) for investigating the statistical variability. (a) set of 8 cubes with L=150 

voxels, (b) set of 27 cubes with L=100 voxels, and (c) set of 64 cubes with L=75 voxels. 

Figure 4: Plots showing convergence of (a) ice volume fraction (s), (b) Effective Young's 

modulus (    ), and (c) norm of orthotropic stiffness tensor (         
 ), computed on 

concentric cubic snow volumes of increasing sizes. 

Figure 5: Variation of mean      versus mean s for cubical sub-volumes with edge length 

(L) of (a) 75 voxels, (b) 100 voxels, and (c) 150 voxels. The error bars represent one 

standard deviation. The linear scaling relation showing the correlation between relative 

variability of a microstructural measure,       , and effective property,         
, is shown 

in (d). Depending on the resolution of individual images, the cube edge lengths of 150 voxel, 

100 voxel and 75 voxel translated into physical edge lengths of 2.6-4.8 mm, 1.7-3.2 mm and 

1.3-2.4 mm respectively and            . 

Figure 6: (a) Comparison of      with previously published results. Dynamic measurements 

(A and B) and strain-rate and creep tests results (C) are from Shapiro et al. (1997). µFE 

simulations based exponential fit (D) from Kochle and Schneebeli, (2014), Laboratory 

measurements form Scapozza and Bartelt, (2003), (E), and Sigrist et al. (2006), (F), are also 

included. Open symbols correspond to simulations over sub-volumes with edge length, 

L=150 voxels, while filled symbols represents results from the full image volume, i.e. L=300 

voxels.  

Figure 6: (b) Scatter plot of       with density. Open symbols correspond to simulations 

over sub-volumes with edge length, L=150 voxels, while light filled symbols represents 

results from the full image volume, i.e. L=300 voxels. For comparison, µFE results (dark 

filled symbols) from Kochle and Schneebeli (2014) and measurements (region D) from Smith 

(1969) are also included. 

Figure 7: Bivariate plots of elongation index (  ) vs. isotropic index ( ) for (a) SVD, (b) 

SLD and (c) MIL fabric tensors respectively. The corresponding plot between mechanical 

elongation (      ) and isotropy (     ) indices is shown in (d). 

Figure 8: Ternary shape diagram of isotropy and elongation indices derived from SVD fabric 

measures. 

Figure 9: Fabric and mechanical anisotropy indices v/s ice volume fraction 

Revised Figure(s)



Figure 10: Fabric tensor and orthotropic stiffness tensor (     ) representations of snow 

samples depicted in Figure 1. The top and middle row depicts fabric ellipsoids for SVD and 

MIL fabric tensors while the bottom row shows the geometrical representations of       for 

PP, RG, FC and DH snow classes. The fabric tensors are shown in the original image 

coordinate system which matches closely with the mechanical main directions obtained via 

the optimization procedure.    

Figure 11: Correlation between normalized orthotropic technical constants (   ,     ,    ) 

and functions of eigenvalues (  ) corresponding to MIL, SLD and SVD fabric measures.  

Figure 12: Correlation between µFE computed and predicted components of (a) compliance, 

and (b) stiffness tensors using the (i) Zysset-Curnier (ZC) model with SVD, SLD and MIL 

fabric measures, and (ii) isotropic model.  

Figure 13: Histograms of model norm errors for (a) compliance and (b) stiffness approaches. 

Compared to ISO model, the ZC model produced 24-36% lower relative model norm errors. 

Figure 14: Histograms of residuals of stiffness tensor components for ZC model with SVD, 

SLD and MIL fabric measures and Isotropic model. Residuals are approximately normally 

distributed. ZC model appears to perform better with lower mean values and standard 

deviation of the residuals. 

Figure 15: Comparison between µFE computed and predicted engineering constants 

              using (i) ZC model with SVD fabric tensor (top row) and, (ii) isotropic model 

(bottom row).  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Reconstructed 3D microstructure of representative snow classes; PP (Sample M2), 

RG (sample S2), FC (sample KFC2) and DH (sample HF5).   

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Voigt and Reuss bounds on effective isotropic bulk (    ) and shear (    ) 

modulus computed on the full image volumes for all the samples   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Partitioning procedure to generate three sets of cubical sub-volumes of different 

edge lengths (L) for investigating the statistical variability. (a) set of 8 cubes with L=150 

voxels, (b) set of 27 cubes with L=100 voxels, and (c) set of 64 cubes with L=75 voxels. 

 

 

 

 

 

 

 

 

 

 



       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Plots showing convergence of (a) ice volume fraction (s), (b) Effective Young's 

modulus (    ), and (c) norm of orthotropic stiffness tensor (         
 ), computed on 

concentric cubic snow volumes of increasing sizes. 



 

 

 

 

 

Figure 5: Variation of mean      versus mean s for cubical sub-volumes with edge length 

(L) of (a) 75 voxels, (b) 100 voxels, and (c) 150 voxels. The error bars represent one 

standard deviation. The linear scaling relation showing the correlation between relative 

variability of a microstructural measure,       , and effective property,         
, is shown 

in (d). Depending on the resolution of individual images, the cube edge lengths of 150 voxel, 

100 voxel and 75 voxel translated into physical edge lengths of 2.6-4.8 mm, 1.7-3.2 mm and 

1.3-2.4 mm respectively and            . 

  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: (a) Comparison of      with previously published results. Dynamic measurements 

(A and B) and strain-rate and creep tests results (C) are from Shapiro et al. (1997). µFE 

simulations based exponential fit (D) from Kochle and Schneebeli, (2014), Laboratory 

measurements form Scapozza and Bartelt, (2003), (E), and Sigrist et al. (2006), (F), are also 

included. Open symbols correspond to simulations over sub-volumes with edge length, 

L=150 voxels, while filled symbols represents results from the full image volume, i.e. L=300 

voxels.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: (b) Scatter plot of       with density. Open symbols correspond to simulations 

over sub-volumes with edge length, L=150 voxels, while light filled symbols represents 

results from the full image volume, i.e. L=300 voxels. For comparison, µFE results (dark 

filled symbols) from Kochle and Schneebeli (2014) and measurements (region D) from Smith 

(1969) are also included. 

 

 

 

 

 



 

 

Figure 7: Bivariate plots of elongation index (  ) vs. isotropic index ( ) for (a) SVD, (b) 

SLD and (c) MIL fabric tensors respectively. The corresponding plot between mechanical 

elongation (      ) and isotropy (     ) indices is shown in (d). 

 

 

Figure 8: Ternary shape diagram of isotropy and elongation indices derived from SVD fabric 

measures. 



 

Figure 9: Fabric and mechanical anisotropy indices v/s ice volume fraction 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Fabric tensor and orthotropic stiffness tensor (     ) representations of snow 

samples depicted in Figure 1. The top and middle row depicts fabric ellipsoids for SVD and 

MIL fabric tensors while the bottom row shows the geometrical representations of       for 

PP, RG, FC and DH snow classes. The fabric tensors are shown in the original image 

coordinate system which matches closely with the mechanical main directions obtained via 

the optimization procedure.    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Correlation between normalized orthotropic technical constants (   ,     ,    ) 

and functions of eigenvalues (  ) corresponding to MIL, SLD and SVD fabric measures.  

 

 

 

 

 

 

 



 

  

 

                                                   

 

 

Figure 12: Correlation between µFE computed and predicted components of (a) compliance, 

and (b) stiffness tensors using the (i) Zysset-Curnier (ZC) model with SVD, SLD and MIL 

fabric measures, and (ii) isotropic model.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 13: Histograms of model norm errors for (a) compliance and (b) stiffness approaches. 

Compared to ISO model, the ZC model produced 24-36% lower relative model norm errors. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Histograms of residuals of stiffness tensor components for ZC model with SVD, 

SLD and MIL fabric measures and Isotropic model. Residuals are approximately normally 

distributed. ZC model appears to perform better with lower mean values and standard 

deviation of the residuals. 



 

 

 

 

 

 

Figure 15: Comparison between µFE computed and predicted engineering constants 

              using (i) ZC model with SVD fabric tensor (top row) and, (ii) isotropic model 

(bottom row).  

 

 

 

 

 

 

 

 

 



Highlights: 

Micro-FE computation of homogenized anisotropic stiffness and compliance tensor of snow 

from 3D X-ray tomography images.  

Characterization of microstructural anisotropy via volume- and surface based fabric tensors. 

Established fabric-elasticity relations for snow based on orthotropic and isotropic models. 
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