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SUMMARY

The numerical errors in idealised discrete element method (DEM) simulations are investigated analytically

by comparing energy balances applied at the beginning and end of one time-step. This study focuses on

the second-order velocity-Verlet integration scheme due to its widespread implementation in DEM codes.

The commercial DEM software PFC2D was used to verify the correctness of key results. The truncation

errors, which are larger than the round-off errors by orders of magnitude, have a superlinear relationship

with both the simulation time-step and the interparticle collision speed. This remains the case regardless

of simulation details including the chosen contact model, particle size distribution, particle density or

stiffness. Hence, the total errors can usually be reduced by choosing a smaller time-step. Increasing the

polydispersity in a simulation by including smaller particles necessitates choosing a smaller time-step to

maintain simulation stability and reduces the truncation errors in most cases. The truncation errors are

increased by the dissipation of energy by frictional sliding or by the inclusion of damping in the system.

The number of contacts affects the accuracy and one can deduce that because 2D simulations contain

fewer interparticle contacts than the equivalent 3D simulations, they therefore have lower accrued simulation

errors. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: validation; discrete element method; granular media; particle methods; time integration,

explicit

1. INTRODUCTION

Since its development in the 1970s [1,2], the discrete element method (DEM) has become extremely

popular as a tool for investigating the particle-scale behaviour of granular materials in science

and engineering. Many researchers have conducted numerical simulations to establish how the

simulation conditions and input parameters (e.g., the contact model [3, 4], the number of particles

[5–7] or the interparticle friction coefficient [8–10]) affect simulation results such as the observed

load–deformation response. This aim of this study is to investigate how the choices made in a DEM

∗Correspondence to: Kevin Hanley, Institute for Infrastructure and Environment, School of Engineering, The University
of Edinburgh, Edinburgh EH9 3JL, UK. E-mail: k.hanley@ed.ac.uk
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2 K. J. HANLEY AND C. O’SULLIVAN

simulation affect its accuracy and therefore the reliability of the result: a subject which has received

little academic attention to date. DEM simulations are dynamic and there will inevitably be errors

associated with temporal discretization in the time integration algorithm. There may also be errors

due to spatial discretization.

The error generated in one step of any numerical method can be divided into two categories:

truncation error or round-off error [11]. The sum of all errors from previous steps is sometimes

called the inherited error [12]. Truncation errors occur when a limited number of terms are used

to approximate the infinite number required for an exact representation (e.g., Taylor series are

often represented by fewer than five terms). Round-off errors occur because computers use a finite

number of digits to represent numbers: an exact representation of an irrational number such as π

would require infinitely-many digits. Round-off errors are usually smaller than truncation errors

by orders of magnitude. This study focuses primarily on truncation errors as round-off errors are

less significant and are also hardware- and implementation-specific, depending on factors including

the representation chosen for floating-point numbers and the number of arithmetic operations

performed.

The approach adopted in this study is to initially quantify the truncation error for the simplest

possible ‘base case’: the normal impact of two identical frictionless spheres with a linear contact

model. The truncation error is quantified by comparing energy balances applied to the idealised

system at the beginning and end of one time-step. Energy balances have been used previously

in studies of DEM simulation accuracy [13, 14] and more generally to check the correctness of

DEM code implementations [15, 16]. Energy balances are often used for similar purposes in other

computational methods such as the finite element method [17]. Other approaches to quantify error

have been adopted in DEM, particularly the comparison of simulation outputs with analytical

solutions [18–21]; however, the versatility of an approach based on energy balances favoured its

adoption for this study.

The truncation error depends on the integration scheme chosen [13,19–21]. This study is based on

the second-order velocity-Verlet integration scheme as it is a good compromise between accuracy

and computational efficiency [13]. Furthermore, this integration scheme has been widely adopted

in DEM codes including the open-source codes LAMMPS [22], LIGGGHTS [23], Yade [24] and

MercuryDPM [25, 26], although other schemes are also in use (e.g., PFC2D/3D use a related

Verlet-based scheme [27, 28]). Once the base case has been established, it is adapted in many

ways, including by choosing dissimilar particles, by changing contact model, by permitting the

development of shear forces and the dissipation of energy by friction, by including damping or

interparticle bonds in the model formulation, and by introducing multiple simultaneous contacts.

All of these analyses are done symbolically using the Maple 17.00 software [29]. The effect of

simulation time-step and density scaling on error are quantified analytically and discussed. Key

expressions obtained for the truncation error are verified by comparing with the results of PFC2D

simulations [30].

The aim of this paper is to identify and show the relative importance of those factors which affect

the truncation error. This is achieved by focusing on small, idealised systems and analysing a single

time-step only. Because the accrued error is generally path-dependent, the total accrued truncation

error in a large simulation cannot be estimated by multiplying the error for one time-step and one

interparticle contact by both the number of time-steps and contacts. However, it might be inferred

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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ACCURACY OF DISCRETE ELEMENT SIMULATIONS 3

that any actions identified to reduce the truncation error for a single contact and time-step, e.g.,

changing the particle density, would similarly reduce the unknown total accrued error in a large

simulation.

2. MATHEMATICAL ANALYSIS OF THE BASIC TWO-PARTICLE DEM

The fundamental velocity-Verlet equations for a particle α of mass m with no angular velocity are

(1–4), in which v, f and x refer to translational velocity, force or displacement, respectively; n

and s superscripts are used to distinguish normal and shear/tangential components of contact force,

and subscripts refer to accrued simulation time, t, and the simulation time-step, ∆t. In a typical

implementation, (1) and (2) are executed at the beginning of the time-step, then the net forces are

updated (3) which is usually the most computationally-expensive part of the calculation, before (4)

is executed at the end of the time-step.

vα,t+∆t
2

= vα,t +
∆t

2m
fα,t (1)

xα,t+∆t = xα,t +∆tvα,t+∆t
2

(2)

fα,t+∆t = fα,t + fn
α,t+∆t + fs

α,t+∆t (3)

vα,t+∆t = vα,t+∆t
2

+
∆t

2m
fα,t+∆t (4)

2.1. Truncation error for base case

The simplest possible ‘base case’ is the normal impact of two identical frictionless spheres with a

linear contact model, as illustrated in Figure 1. At a time t, the particles are in touching contact with

no overlap (fα,t = fβ,t = 0). Particle α has a velocity vα,t = vi while particle β is at rest (vβ,t = 0).

During the time-step t → t+∆t, an overlap, and hence a normal contact force, is developed while

the shear force remains zero.

-fα,t+Δt fβ,t+Δt

vα,t vβ,t vα,t+Δt vβ,t+Δt

α β

t = t+Δtt = t

xα,t xβ,t xα,t+Δt xβ,t+Δt

βα Un

+x

Figure 1. Schematic of the two-particle base case, showing an initial touching contact at time t and the
development of an overlap by time t+∆t.

As there is no mechanism for energy dissipation in this system, (5) represents an energy balance

applied to the system at times t and t+∆t.

EK
α,t = EK

α,t+∆t + EK
β,t+∆t + ENS

t+∆t − ǫ (5)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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4 K. J. HANLEY AND C. O’SULLIVAN

The K and NS superscripts denote the kinetic energy and the normal component of strain energy,

respectively. ǫ represents the truncation error; the negative contribution of error to (5) implies a

net generation of energy during this time-step as expected from [15, 18]. The energy terms can be

substituted by

EK
α,t =

1

2
m |vi|2 (6)

EK
α,t+∆t =

1

2
m |vα,t+∆t|2 (7)

EK
β,t+∆t =

1

2
m |vβ,t+∆t|2 (8)

ENS
t+∆t =

|fn
α,t+∆t|

2

2 kn
. (9)

For this case, fn
α,t+∆t = −fn

β,t+∆t. (9) is applicable only to a linear, Hookean contact model with

a constant spring stiffness kn. For a linear contact model, fn
α,t+∆t = −kn Un where Un is the

interparticle overlap. After substituting (6–9) into (5),

1

2
m |vi|2 =

1

2
m |vα,t+∆t|2 +

1

2
m |vβ,t+∆t|2 +

|fn
α,t+∆t|

2

2 kn
− ǫ . (10)

Since the particles are initially in touching contact, and using (1) and (2),

Un = (xβ,t − xα,t)− (xβ,t+∆t − xα,t+∆t)

= ∆t
(

vα,t+∆t
2

− vβ,t+∆t
2

)

= ∆tvi . (11)

Substituting for vα,t+∆t and vβ,t+∆t in (10) using (1) and (4),

1

2
m |vi|2 =

1

2
m

∣

∣

∣

∣

vi +
∆t

2m
fα,t+∆t

∣

∣

∣

∣

2

+
1

2
m

∣

∣

∣

∣

∆t

2m
fβ,t+∆t

∣

∣

∣

∣

2

+
|fn

α,t+∆t|
2

2 kn
− ǫ . (12)

fs
α,t+∆t = fs

β,t+∆t = 0 and fn
α,t+∆t = −fn

β,t+∆t; therefore, fα,t+∆t = −fβ,t+∆t = fn
α,t+∆t. This

substitution is made in (12). Noting also that vi and fn
α,t+∆t differ in sign,

0 = m

∣

∣

∣

∣

∆t

2m
fn
α,t+∆t

∣

∣

∣

∣

2

− 1

2
|vi|∆t |fn

α,t+∆t|+
|fn

α,t+∆t|
2

2 kn
− ǫ (13)

ǫ =
|fn

α,t+∆t|
2

(

|fn
α,t+∆t|∆t2

2m
− |vi|∆t+

|fn
α,t+∆t|
kn

)

.

Recall that fn
α,t+∆t = −knUn = −kn ∆tvi. Hence,

ǫ =
kn ∆t |vi|

2

(

kn ∆t3 |vi|
2m

− |vi|∆t+ |vi|∆t

)

ǫ =
k2n |vi|2 ∆t4

4m
. (14)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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ACCURACY OF DISCRETE ELEMENT SIMULATIONS 5

(14) indicates that the truncation error in one time-step, expressed in terms of energy, has a quadratic

relationship with both normal spring stiffness and collision speed (which is related to strain rate for

a dense granular system). The truncation error is inversely proportional to particle mass and has a

fourth-order dependence on the simulation time-step.

(14) implies that the truncation error can be reduced by increasing particle mass relative to the

stiffness – either by increasing the diameter or the density. However,∆t cannot be chosen arbitrarily;

a limitation of Verlet-based integration schemes is conditional stability which is contingent on

adopting a time-step lower than the critical time-step. If the time-step chosen for a simulation is

too large, the instability is often manifested by a non-physical generation of energy which may be

detected by means of an energy balance [31]. The stable time-step for linear, undamped systems

using a central difference time integration scheme is usually set as a multiple of the critical time-

step for an idealised system [28,32–34] which depends on particle mass. This stable time-step, ∆ts,

is given by (15) where η is a constant:

∆ts = η

√

m

kn
. (15)

Substituting (15) into (14), the truncation error when ∆t = ∆ts is ǫs ∝ m |vi|2. Hence, assuming

that the simulation time-step is chosen using the conventional approach (15), the truncation error is

directly proportional to particle mass for these linear systems. ǫ is positive indicating an increase in

energy during a loading time-step.

If the initial relative velocity of vi is partitioned differently between the particles, e.g., if particle

α has a velocity vα,t =
vi

2 and particle β has a velocity vβ,t = −vi

2 , it is straightforward to show

that the truncation error is unchanged. Thus ǫ is independent of the manner in which the relative

velocity is partitioned among the colliding particles.

2.2. Effect of dissimilar particles on truncation error

The particles in Section 2.1 have identical masses, m. However, the particles could have different

masses, mα and mβ , because of a difference in size and/or density. Adopting the same approach as

in Section 2.1 except distinguishing between mα and mβ,

1

2
mα |vi|2 =

1

2
mα |vα,t+∆t|2 +

1

2
mβ |vβ,t+∆t|2 +

|fn
α,t+∆t|

2

2 kn
− ǫ .

This distinction is also made in (1) and (4) when substituting for vα,t+∆t and vβ,t+∆t. The

truncation error becomes

ǫ =
k2n |vi|2 ∆t4(mα +mβ)

8mαmβ
. (16)

(14) is recovered by substituting mα = mβ = m into (16). As in Section 2.1, the initial distribution

of relative velocity among the particles does not affect the truncation error, i.e., whether the

heavier particle has the greater or lesser speed does not affect ǫ. The truncation error is minimised

for identical particles; as the particle masses become increasingly dissimilar, the truncation error

increases non-linearly. This is best demonstrated by imposing the following two restrictions on mα

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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6 K. J. HANLEY AND C. O’SULLIVAN

and mβ where C is a constant and R ≤ 1:

mα +mβ = C
mα

mβ
= R .

Figure 2a is a plot of ǫ, normalised by the truncation error at R = 1 (i.e., 14), against R. The curve in

Figure 2a has the analytical form
(R+1)2

4RC2 . The error is unbounded as R → 0. This analysis disregards

the dependence of time-step on particle mass. For systems containing particles of differing masses,

(15) remains applicable but it is commonplace for the mass in (15) to be chosen conservatively

as the minimum particle mass: mα in this case. Substituting for ∆t in (16), ǫs ∝ C R |vi|2 as

plotted in Figure 2b. The direct proportionality of ǫs and C again indicates that increasing the

particle masses will degrade the accuracy of a simulation time-step. Increasing the polydispersity

by including smaller particle sizes reduces the truncation error in a time-step, provided that the size

of this time-step is chosen according to (15).

R = mα / mβ

ϵ 
n

o
rm

al
is

ed
 b

y
 ϵ

 a
t 

R
 =

 1

0 0.2 0.4 0.6 0.8 1
100

101

102

103

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R = mα / mβ

ϵ 
n

o
rm

al
is

ed
 b

y
 ϵ

 a
t 

R
 =

 1
a) b)

Figure 2. The non-dimensionalised truncation error in one time-step for a linear, undamped, two-particle
system. (a) ignores the dependence of time-step on particle mass while (b) assumes a time-step proportional

to
√

mα/kn.

2.3. Effect of contact model on truncation error

Many simulations of real materials use contact models based on Hertzian mechanics rather than a

simple linear model. fn
α,t+∆t and ENS

t+∆t may be found for a Hertzian contact using

fn
α,t+∆t = −fn

β,t+∆t = −Hn U
3

2

n (17)

ENS
t+∆t =

2

5
|Un fn

α,t+∆t| (18)

where Hn is a function of the particle radii (rα and rβ), shear modulus (G) and Poisson’s ratio (ν):

Hn =
4G

3 (1− ν)

√

rα rβ

rα + rβ
. (19)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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ACCURACY OF DISCRETE ELEMENT SIMULATIONS 7

(18) is substituted into (5) as for the linear contact model. A distinction is made between mα and

mβ in (20) and particle α is assumed to possess all of the initial kinetic energy:

1

2
mα |vi|2 =

1

2
mα |vα,t+∆t|2 +

1

2
mβ |vβ,t+∆t|2 +

2

5
|Un f

n
α,t+∆t| − ǫ . (20)

A similar back-substitution procedure is adopted as before, using (17) to substitute for normal

contact force where necessary. As in Sections 2.1 and 2.2, an expression for the truncation error

in the energy balance, ǫ, may be obtained as a function of known simulation parameters. This

expression is expressed most concisely as

ǫ =
H2

n |vi|3 ∆t5(mα +mβ)

8mα mβ
− 1

10
Hn (∆t |vi|)

5

2 (21)

which simplifies to the following when mα = mβ = m:

ǫ =
H2

n |vi|3 ∆t5

4m
− 1

10
Hn (∆t |vi|)

5

2 . (22)

(21) contains a mixture of masses and radii (within Hn). (21) may be written purely in terms of mass

by replacing rα and rβ with 3

√

3mα

4π ρ and 3

√

3mβ

4π ρ , respectively, assuming particles α and β have the

same density, ρ. The truncation error is independent of the manner in which the relative velocity

is partitioned among the colliding particles, as was the case for a linear contact model. Both of the

terms in (21) contain shear modulus, time-step and collision speed in their numerators, indicating

that the magnitude of the truncation error generally increases with these factors. If the first term,

proportional to the fifth power of time-step, is negligible in comparison with the second term, then

the magnitude of the error is independent of particle density. There is a non-trivial time-step (23) at

which ǫ = 0:

∆tǫ=0 =

(

4mα mβ

5Hn

√

|vi| (mα +mβ)

)
2

5

. (23)

The increased complexity of (21) compared with (16) makes it difficult to ascertain whether

ǫ increases or decreases in magnitude when the degree of polydispersity is increased. In fact,

either scenario is possible depending on the parameters chosen for the model. The following input

parameters were selected to illustrate this: ρ = 2650 kg m−3, G = 0.2 Pa, ν = 0.2, C = 1.388 × 10−6 kg

and ∆t = 0.01 s. |vi| was varied between 0.1 m s−1 and 500 m s−1 while R was varied between 0.001

and 1. The chosen simulation time-step of 0.01 s is stable at all R and was calculated based on

Rayleigh wave transmission [35], applying a factor of safety of ten to the calculated critical time-

step. Figure 3 shows the variation of truncation error with R and collision speed.

When the collision speed is large (≥ 50 m s−1), |ǫ| increases non-linearly with increasing

polydispersity, as seen for a similar linear system in Figure 2. However, a transition in behaviour

occurs at smaller collision speeds whereby increasing polydispersity, i.e., decreasing R, reduces the

magnitude of the error until some transition point is reached (e.g., R = 0.17 when |vi| = 10 m s−1).

This transition point is marked by a change of sign: ǫ > 0 to the left of this transition point whereas

ǫ < 0 above this value. The reason for this transition is apparent from (21). At large collision speeds,

the first term dominates (∝ |vi|3) so ǫ > 0. As the collision speed decreases, the negative second

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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8 K. J. HANLEY AND C. O’SULLIVAN

0.1

0.5

1

5

10

50

100

500

R = mα / mβ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

|ϵ
| 

n
o

rm
al

is
ed

 b
y

 |ϵ
| 

at
 R

 =
 1

Collision speed (m s-1)

Figure 3. The absolute values of the truncation errors in one time-step, non-dimensionalised by the value
for two identical particles (R = 1) for an undamped, frictionless two-particle system with a Hertzian contact

model in which the collision speed is varied from 0.1 m s−1 to 500 m s−1.

term (∝ |vi|
5

2 ) becomes increasingly significant, causing ǫ to become negative for a larger range of

R. In Figure 3, the time-step is the same for all R. In practice, ∆t is a function of the minimum

particle diameter (15): if R is increased by including smaller particles in the simulation, ∆t must

be reduced. This analysis indicates that increasing the polydispersity of a simulation will usually

reduce ǫ because of the strong dependence of ǫ on ∆t.

2.4. Considering shear forces between frictional particles: linear contact model

Real particles are frictional and shear forces can be developed at interparticle contacts. Most DEM

codes use simple Coulomb-type friction. The base case developed in Section 2.1 was modified to

permit the development of shear forces by allocating particle α an initial angular velocity,ωa,t = ωi,

in addition to a translational velocity, vi. Figure 4 shows the modified two-particle schematic.

Compared to the base case, the problem is two-dimensional rather than one-dimensional.

vα,t vβ,t vα,t+Δt vβ,t+Δt

α β

t = t+Δtt = t

xα,t xβ,t xα,t+Δt xβ,t+Δt

βα Un

ωi ωα,t+Δt

ωβ,t+Δt

fα,t+Δt fβ,t+Δt

+x

+y +

2r

Figure 4. A modification of the two-particle base case in Figure 1 to include an initial non-zero angular
velocity of particle α.
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ACCURACY OF DISCRETE ELEMENT SIMULATIONS 9

The complete set of velocity-Verlet equations for particle α is

vα,t+∆t
2

= vα,t +
∆t

2m
fα,t (24)

ωα,t+∆t
2

= ωα,t +
5∆t

4mr2
Mα,t (25)

xα,t+∆t = xα,t +∆tvα,t+∆t
2

(26)

fα,t+∆t = fα,t + fn
α,t+∆t + fs

α,t+∆t (27)

vα,t+∆t = vα,t+∆t
2

+
∆t

2m
fα,t+∆t (28)

ωα,t+∆t = ωα,t+∆t
2

+
5∆t

4mr2
Mα,t+∆t . (29)

Particles α and β remain collinear at time t+∆t. Therefore, the normal and shear components of

contact force act in the x- and y-directions, respectively. As for the base case, fn
α,t+∆t = −fn

β,t+∆t

and similarly fs
α,t+∆t = −fs

β,t+∆t. M refers to moment or torque acting on a particle. This can

be calculated as the product of the shear force and the displacement of the contact point from the

particle centroid:

Mα,t+∆t = fs
α,t+∆t

(

xβ,t+∆t − xα,t+∆t

2

)

(30)

Mβ,t+∆t = fs
β,t+∆t

(

xα,t+∆t − xβ,t+∆t

2

)

. (31)

Mα,t+∆t = Mβ,t+∆t since both the shear forces acting on particles α and β and the displacements

of the contact point from the centroids differ only in sign. Both moments are negative which implies

that ωα,t+∆t < ωi and ωβ,t+∆t < 0. Mα,t = Mβ,t = 0 as the shear forces are zero at time t.

Normal forces are always calculable from the positions of the particle centroids whereas shear

forces require incremental calculation. This important distinction is unnecessary in this special case

of a simulation consisting of one time-step. Although it is not explored in this paper, the calculation

of shear forces incrementally is inherently much less accurate than the calculation of normal forces.

The shear force for this analysis is calculated as the product of the contact shear stiffness, ks, and

the increment of shear displacement during the time-step t → t+∆t, Us. Us is solely due to the

initial angular velocity, ωi:

fs
α,t+∆t = −ks Us = −ks ωi∆t

(

xβ,t+∆t − xα,t+∆t

2

)

. (32)

The shear force acting on particle α is negative, giving a negative moment (30) to oppose the positive

initial angular velocity. The energy balance corresponding to Figure 4 is

EK
α,t = EK

α,t+∆t + EK
β,t+∆t + ENS

t+∆t + ESS
t+∆t + EF

t+∆t − ǫ . (33)

ESS
t+∆t is the strain energy stored in the shear spring and EF

t+∆t is the energy dissipated by frictional

sliding during the time-step t → t+∆t. If a linear contact model is used with a shear stiffness ks
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10 K. J. HANLEY AND C. O’SULLIVAN

and the particles have the same radius, r,

EK
α,t =

1

2
m |vi|2 +

1

5
mr2 |ωi|2 (34)

EK
α,t+∆t =

1

2
m |vα,t+∆t|2 +

1

5
mr2 |ωα,t+∆t|2 (35)

EK
β,t+∆t =

1

2
m |vβ,t+∆t|2 +

1

5
mr2 |ωβ,t+∆t|2 (36)

ENS
t+∆t =

|fn
α,t+∆t|

2

2 kn
(9)

ESS
t+∆t =

|fs
α,t+∆t|

2

2 ks
. (37)

The energy dissipated by Coulomb friction is described by a piecewise function governed by the

interparticle friction coefficient, µ [28]. Once frictional sliding occurs, the shear force is reduced

in magnitude from |fs
α,t+∆t| to µ

∣

∣fn
α,t+∆t

∣

∣. In (38), fs
t+∆t is the average of the shear forces at the

beginning and end of the time-step (after rescaling) while Us
s is the slip displacement at the contact.

EF
t+∆t =







0 if
∣

∣fs
α,t+∆t

∣

∣ ≤ µ
∣

∣fn
α,t+∆t

∣

∣

∣

∣fs
t+∆t U

s
s

∣

∣ if
∣

∣fs
α,t+∆t

∣

∣ > µ
∣

∣fn
α,t+∆t

∣

∣

(38)

Initially, let us assume that EF
t+∆t = 0. (33) becomes

1

2
m |vi|2 +

1

5
mr2 |ωi|2 =

1

2
m |vα,t+∆t|2 +

1

5
mr2 |ωα,t+∆t|2

+
1

2
m |vβ,t+∆t|2 +

1

5
mr2 |ωβ,t+∆t|2 +

|fn
α,t+∆t|

2

2 kn
+

|fs
α,t+∆t|

2

2 ks
− ǫ . (39)

Following the same approach as in Section 2.1, (24–32) are simplified and successively substituted

into (39) to leave ǫ as a function of |vi|, |ωi|, kn, ks, r and ∆t:

ǫ =
k2n |vi|2 ∆t4

4m
+

k2s |ωi|2 ∆t4
(

28r2 − 20∆t |vi| r + 5∆t2 |vi|2
)

(2r −∆t |vi|)2

128mr2
. (40)

The second term becomes zero when ωi = 0 and (14) is recovered for the truncation error. Whether

the addition of this second term increases or decreases the error depends solely on the sign of
(

28r2 − 20∆t |vi| r + 5∆t2 |vi|2
)

: a quadratic equation in terms of r (or ∆t |vi|) with complex

roots. The interparticle overlap is restricted to small values to remain physically reasonable [36],

particularly in a single time-step. Hence, |Un| = ∆t |vi| ≪ r so the second term in (40) is invariably

positive. Thus, the use of frictional particles and the development of shear forces increases the

truncation error in the energy balance for a linear contact model.

The foregoing analysis assumes that the friction limit has not been reached. If this is not the case,

(38) must be included in the energy balance. The shear force is rescaled immediately after the forces

are updated in the velocity-Verlet integration scheme (27), i.e., before the velocities are updated at

the end of the time-step (28, 29). The shear force before rescaling is unchanged from (32); this is
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ACCURACY OF DISCRETE ELEMENT SIMULATIONS 11

relabelled fs
α,old to avoid confusion. Hence,

fs
α,t+∆t = µfn

α,t+∆t (41)

fs
α,old = −ks Us = −ks ωi∆t

(

xβ,t+∆t − xα,t+∆t

2

)

. (32)

fs
t+∆t is given by the average of the shear forces at the beginning and end of the time-step:

fs
t+∆t =

fs
α,t + fs

α,t+∆t

2
=

fs
α,t+∆t

2
. (42)

For a linear contact model, Us
s is easily found as the difference between unscaled and rescaled shear

forces divided by contact shear stiffness. Therefore,

Us
s =

fs
α,t+∆t − fs

α,old

ks
(43)

EF
t+∆t =

∣

∣fs
t+∆t U

s
s

∣

∣ =

∣

∣

∣

∣

∣

fs
α,t+∆t

(

fs
α,t+∆t − fs

α,old

)

2ks

∣

∣

∣

∣

∣

. (44)

The analysis proceeds as before to obtain the analytical expression for ǫ:

ǫ =
k2n |vi|2 ∆t4

4m
+

µ2 k2n |vi|2 ∆t4

32mr2

(

28r2 − 20∆t |vi| r + 5∆t2 |vi|2
)

. (45)

Only the first term, i.e., (14), remains when µ → 0. Interestingly, |ωi| does not appear in (45). It

is unclear by inspecting (40) and (45) whether reaching the Coulomb friction limit increases or

decreases ǫ. Defining the ratio of these errors, (45)/(40), as ǫr, Figure 5 plots |ǫr| against µ using the

following parameters: ρ = 2650 kg m−3, r = 3.97 × 10−4 m, kn = ks = 1 MN m−1, |vi| = 1 m s−1, |ωi|
= 1 s−1 and ∆t = 1 × 10−8 s. |ǫr| increases monotonically as µ is increased. As µ → 0, |ǫr| → 1 as

expected.
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Figure 5. The variation of the absolute ratio of the truncation errors with the interparticle friction coefficient,
µ, in one time-step when the Coulomb friction limit is reached (45) and is not reached (40).
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12 K. J. HANLEY AND C. O’SULLIVAN

2.5. Considering shear forces between frictional particles: Hertzian contact model

The equivalent analysis for a Hertzian contact model is very similar. (33–36) remain valid and the

required velocity-Verlet equations are (24–29). For a Hertzian contact model, fn
α,t+∆t and ENS

t+∆t

are given by (17) and (18), respectively. The moment terms at time t+∆t are both equal to (30),

as for the linear contact model. The major difference compared to the linear case is that the contact

shear stiffness is a function of interparticle overlap (noting that tangent and secant stiffnesses are

equivalent for one time-step). This requires the shear force and the shear component of strain energy

to be calculated differently:

fs
α,t+∆t = −fs

β,t+∆t = −Hs Us

√

|Un| (46)

ESS
t+∆t =

1

2
|Us f

s
α,t+∆t| . (47)

Hs, like Hn (19), is a function of the particle radii, G and ν:

Hs =
4G

2− ν

√

rα rβ

rα + rβ
=

4G

2− ν

√

r

2
if rα = rβ = r .

(47) can also be used for the linear analysis instead of (37) but is slightly less convenient in practice.

Assuming no energy is dissipated by friction,

ǫ =
H2

n |vi|3 ∆t5

4m
− 1

10
Hn (∆t |vi|)

5

2

+
H2

s |vi| |ωi|2 ∆t5
(

28r2 − 20∆t |vi| r + 5∆t2 |vi|2
)

(2r −∆t |vi|)2

128mr2
. (48)

The final term of (48) becomes zero when ωi = 0 and (22) is recovered. This final term is very

similar to that for a linear contact model (40). Using a similar argument, it again follows that the

truncation error in the energy balance is increased by the development of shear forces.

3. TOTAL ERROR ACCRUED IN A SIMULATION

In Section 2, expressions were developed for the truncation error at one contact during one loading

time-step. Taking the simple base case as an example, the temptation exists to estimate the total

truncation error for a simulation by multiplying (14) by both the number of interparticle contacts and

the number of time-steps. This would provide an unreasonably large upper-bound on total truncation

error as most of the error accrued during loading cancels out when unloading occurs.

Consider the unloading analogue of the base case shown in Figure 6. The initial configuration is

the same as the base case at time t+∆t, except the signs of the velocity terms are reversed because
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t = t+Δtt = t

+x

-fα,t fβ,t

vα,t vβ,t

βα Un

xα,t xβ,t

vα,t+Δt vβ,t+Δt

xα,t+Δt xβ,t+Δt

βα

Figure 6. Analogue of the two-particle base case for unloading.

the particles are separating:

fn
α,t = −fn

β,t = −kn ∆tvi

vα,t = −vi

(

1− kn ∆t2

2m

)

vβ,t = −vi kn ∆t2

2m
.

Applying the basic velocity-Verlet equations:

vα,t+∆t
2

= vα,t+∆t = −vi

vβ,t+∆t
2

= vβ,t+∆t = 0

xα,t+∆t = xα,t −∆tvi

xβ,t+∆t = xβ,t .

The particles are again in touching contact at time t+∆t. The energy balance is

EK
α,t + EK

β,t + ENS
t = EK

α,t+∆t − ǫ .

By comparing with (5–9), the truncation error is the reverse of (14), i.e.,

ǫ = −k2n |vi|2 ∆t4

4m
(49)

This result implies that the truncation error terms will simply cancel out in a load–unload cycle.

Unfortunately, a perfect cancellation of positive and negative error terms does not occur in practice

for several reasons. Most DEM simulations do not involve perfectly symmetrical load reversals. The

truncation errors are path-dependent and the loading and unloading phases will generally contain

different numbers of time-steps. In some simulations, there may be a loading phase without a

corresponding unloading phase (e.g., simulating the triaxial shearing of a granular soil). A good

illustration of the non-cancellation of the truncation errors is gained by considering what happens

in a two-particle system with a fixed overlap in which one of the particles has an angular velocity

ωi and there is no mechanism for energy dissipation. As one particle slows, the other increases in

angular velocity. The angular velocities of both particles oscillate out of phase between ±ωi but
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14 K. J. HANLEY AND C. O’SULLIVAN

the accumulated error continually increases in magnitude. This makes it difficult to determine a

reasonable upper bound for the accrued truncation error.

4. COMPLICATIONS OF THE BASIC DEM

The simplest two-particle cases were considered in Section 2. In a real granular system, particles

have multiple simultaneous contacts and features such as damping or interparticle bonding are often

included in the model. In this Section, these three complications of the base case are considered.

4.1. Consideration of multiple contacts

Consider those seven highly-idealised configurations of particles shown in Figure 7. Particle β is

stationary at time t while each of the multiple α particles is initially in touching contact with β and

has a speed |vi|. Hence, all contact forces are identical in magnitude although different net forces

act on the particles. Using the same approach based on energy balances as before, the truncation

errors for these seven cases are given in Table I. Both linear and Hertzian contact models were used

in the analysis of case b.

Figure 7. The seven cases considered for multiple simultaneous contacts with particle β shown at time t.

The truncation errors in Table I depend on the net forces acting on the contacting particles;

firstly, the net forces are resolved so that they are aligned with the branch vector and then the

differences between these resolved forces are summed for all contacts. The resulting summed force
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ACCURACY OF DISCRETE ELEMENT SIMULATIONS 15

Table I. Truncation errors calculated for the seven cases shown in Figure 7 where Nc is the number of
contacts. The final column contains a comparison with the two-particle base cases given by (14) and (22).

Case Nc Truncation error, ǫ Comparison with base case

a 2
k2

n |vi|2 ∆t4

4m
1 × (14)

b (linear) 2
k2

n |vi|2 ∆t4

2m
2 × (14)

b (Hertz) 2
H2

n |vi|3 ∆t5

2m
− 1

5
Hn (∆t |vi|)

5

2 2 × (22)

c 3
k2

n |vi|2 ∆t4

2m
2 × (14)

d 4
k2

n |vi|2 ∆t4

2m
2 × (14)

e 3
3 k2

n |vi|2 ∆t4

4m
3 × (14)

f 3

(

3−
√
2
)

k2

n |vi|2 ∆t4

4m

(

3−
√
2
)

× (14)

g 4

(

4−
√
2
)

k2

n |vi|2 ∆t4

4m

(

4−
√
2
)

× (14)

is proportional to ǫ. This is illustrated in Figure 8 for three cases: a, b and f. For clarity, let |f |
represent the magnitude of the contact force. For case a, the net force acting on both α particles has

a magnitude |f | while there is no net force on β. The summed difference in net force magnitudes is

2|f |: the same as for the two-particle base case. Hence, the truncation error is also the same as for

the base case. For case b, there are force differences of 2|f | in both the x- and y-directions: a total

of 4|f |, and so ǫ is twice the value for the base case. Case f requires forces to be resolved along the

branch vectors joining the particle centroids as shown in Figure 8. Once the net forces have been

resolved, the differences at the three contacts are 2|f | − |f |√
2

(at two contacts) and 2|f | −
√
2|f |. The

sum is 6|f | − 2
√
2|f |, which is a multiple of

(

3−
√
2
)

of the base case value of 2|f |. ǫ for case f is

the same multiple of (14).

Adding non-collinear contacts to particle β increases the total truncation error in the energy

balance. The relationship is clearly dependent on the specific configuration of the contacts: doubling

the number of contacts, Nc, does not necessarily double ǫ. Because 3D simulations have larger

coordination numbers than the equivalent 2D simulations, the accumulated truncation error is

expected to be larger. However, Table I implies that the average truncation error per contact may be

similar in 2D and in 3D.

4.2. Damping

Two forms of damping are considered in this paper: local and viscous damping. Both are widely

used and are options in DEM codes such as PFC2D/3D [27, 28]. Although both add additional

damping forces to the system, there are two main differences between these forms of damping:

1. Local damping acts on a particle; viscous damping acts at a contact.
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16 K. J. HANLEY AND C. O’SULLIVAN

Figure 8. Magnitudes of the net forces acting on particles α and β for three of the cases shown in Figure 7:
cases a, b and f.

2. The local damping force is proportional to the unbalanced force (i.e., the particle acceleration

force) on a particle [36]; the viscous damping force is proportional to the relative velocity at

a contact.

4.2.1. Local damping The only active force in the base case is the normal contact force between

particles α and β: fn
α,t+∆t = −fn

β,t+∆t = −kn ∆tvi. Since local damping acts at the particle scale,

it affects neither these contact forces nor the strain energy. However, the net forces acting on particles

α and β become [28]

fα,t+∆t = fn
α,t+∆t − γl

∣

∣fn
α,t+∆t

∣

∣ sgnvα,t+∆t
2

= fn
α,t+∆t (1 + γl)

fβ,t+∆t = fn
β,t+∆t − γl

∣

∣fn
β,t+∆t

∣

∣ sgnvβ,t+∆t
2

= fn
β,t+∆t .

γl is a dimensionless local damping coefficient. Since the contact force and velocity are opposed

for α, the inclusion of local damping increases the magnitude of fα,t+∆t. Local damping is also

applicable to rotational degrees of freedom in cases where these are non-zero. The energy balance

is the same as (5) with the addition of one extra term, ED
t+∆t: the energy dissipated by damping.

EK
α,t = EK

α,t+∆t + EK
β,t+∆t + ENS

t+∆t + ED
t+∆t − ǫ (50)

ED
t+∆t is calculated for each particle as the magnitude of damping force multiplied by the increment

of displacement. Since (xβ,t+∆t − xβ,t) and the contribution of damping to fβ,t+∆t are both zero,
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particle β does not contribute to (51).

ED
t+∆t = γl

∣

∣fn
α,t+∆t

∣

∣ ∆t

∣

∣

∣
vα,t+∆t

2

∣

∣

∣
= γl kn ∆t2 |vi|2 (51)

The truncation error when local damping is active is

ǫ =
k2n |vi|2 ∆t4

4m
+

γl kn |vi|2 ∆t2

8m

(

4m+ kn ∆t2 (γl + 2)
)

. (52)

Since γl ≥ 0, the inclusion of local damping increases the truncation error in the energy balance.

4.2.2. Viscous damping The viscous damping term is a multiplier of relative velocity which

opposes motion [28]. Viscous damping acts at a contact and therefore affects the contact forces

and strain energy:

fn
α,t+∆t = −kn ∆tvi − γv

(

vα,t+∆t
2

− vβ,t+∆t
2

)

= −vi (γv + kn ∆t)

fn
β,t+∆t = kn ∆tvi − γv

(

vβ,t+∆t
2

− vα,t+∆t
2

)

= −fn
α,t+∆t .

γv is a viscous damping coefficient which has SI units of kg s−1. (50) is also applicable for viscous

damping for which ED
t+∆t is substituted by

ED
t+∆t = γv |vi| ∆t

∣

∣

∣
vα,t+∆t

2

∣

∣

∣
= γv |vi|2 ∆t .

The truncation error when viscous damping is active is

ǫ =
k2n |vi|2 ∆t4

4m
+

γv |vi|2
4mkn

(

2γv m+ kn ∆t
(

6m+ 2kn ∆t2 + γv ∆t
))

. (53)

As in (52), the second term of (53) is positive so the inclusion of viscous damping increases ǫ.

4.3. Interparticle bonding

The fundamental particles in DEM are sometimes bonded together, e.g., to simulate crushable

agglomerates [37–39]. The two most common types of interparticle bond are contact bonds and

parallel bonds [28,36].

4.3.1. Contact bond Contact bonds are the simpler of these two types. They consist of two

orthogonal springs at a contact in the normal and tangential directions [28]. Contact bonds are

capable of transmitting only forces, not moments. Only the normal component is active in the base

case. This component of the contact bond can be envisioned as a linear contact spring which is

active only in tension (i.e., when the particles are not in contact: Un < 0). The force imposed on the

particles therefore becomes

fn
α,t+∆t = −fn

β,t+∆t = −kn Un ∀Un .
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18 K. J. HANLEY AND C. O’SULLIVAN

It is usual for the normal contact spring (active in compression) and the normal contact bond (active

in tension) to have the same stiffness. The contact bond has a finite strength: when the magnitude of

fn
α,t+∆t exceeds a limiting value in tension, the bond breaks and fn

α,t+∆t is instantaneously reduced

to 0.

Consider the modification of the base case shown in Figure 9. The particle velocities at time t are

reversed compared to the base case (i.e., vα,t = −vi; vβ,t = 0) so that a separation of the particles

occurs during the time-step t → t+∆t. The energy balance is identical to (10) where the strain

energy now applies to the contact bond rather than the normal contact spring. If it is assumed that

the strength of the contact bond has not been reached at time t+∆t, (14) is obtained for ǫ. The

truncation error is the same in tension prior to bond failure as in compression. Once bond failure

occurs, the strain energy can be tracked as bond failure energy.

-fα,t+Δt fβ,t+Δt

vα,t vβ,t vα,t+Δt vβ,t+Δt

α β

t = t+Δtt = t

xα,t xβ,t xα,t+Δt xβ,t+Δt

βα Un

+x

contact bond

Figure 9. Modification of the two-particle base case shown in Figure 1 to give a separation of the particles
by time t+∆t.

4.3.2. Parallel bond Parallel bonds bonds transmit both forces and moments [28, 36]. They are

so-called because they act in parallel with the contact model. Parallel bonds can be envisioned

as a thick elastic spring connected rigidly to both particles so that rotating or twisting one of the

particles relative to the other generates a torque. Parallel bonds are characterised by five parameters:

a bond radius, rb; a normal and shear strength; a normal stiffness, kbn and a shear stiffness, kbs.

The stiffnesses have dimensions of [stress]/[displacement] rather than the more common [force]/

[displacement] [40].

Consider again the case shown in Figure 4 in which particle α has an initial angular velocity,

ωi. Add a parallel bond at this contact and assume that neither the normal strength nor the shear

strength are reached during the time-step t → t+∆t. The forces acting on α and β at time t+∆t

differ from those in Section 2.4, noting that fα,t = fβ,t = 0:

fα,t+∆t = −fβ,t+∆t = fα,t + fn
α,t+∆t + fs

α,t+∆t + f bn
α,t+∆t + f bs

α,t+∆t .

f bn
α,t+∆t and f bs

α,t+∆t are the contributions of the parallel bond to the net force on α in the normal

and orthogonal directions to the branch vector. Since this is a two-dimensional problem, these forces

are calculated using a simplification of the general three-dimensional equations [27,36]:

f bn
α,t+∆t = −f bn

β,t+∆t = −kbn π r2b Un

f bs
α,t+∆t = f bs

β,t+∆t = kbs π r2b Us .
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The moment terms must also be modified from (30, 31):

Mα,t+∆t = fs
α,t+∆t

(xβ,t+∆t − xα,t+∆t

2

)

−M b
β,t+∆t

Mβ,t+∆t = fs
α,t+∆t

(xβ,t+∆t − xα,t+∆t

2

)

+M b
β,t+∆t

where the contribution of the parallel bond to moment is

M b
β,t+∆t =

π

4
kbn r4b ∆tωi .

The energy balance when a parallel bond is included, assuming that frictional sliding does not occur,

is

EK
α,t = EK

α,t+∆t + EK
β,t+∆t + ENS

t+∆t + ESS
t+∆t + EB

t+∆t − ǫ (54)

where ENS
t+∆t and ESS

t+∆t are calculated using (9) and (37), as in Section 2.4 and EB
t+∆t is the strain

energy stored in the parallel bond. This is calculated as (55) for this two-dimensional case [27]:

EB
t+∆t =

1

2

(

|f bn
α,t+∆t|

2

π r2b kbn
+

|f bs
α,t+∆t|

2

π r2b kbs
+ 4

|M b
α,t+∆t|

2

π r4b kbn

)

. (55)

Solving (54) for ǫ gives the following cumbersome solution:

ǫ =
k2n |vi|2 ∆t4

4m
+

k2s |ωi|2 ∆t4
(

28r2 − 20∆t |vi| r + 5∆t2 |vi|2
)

(2r −∆t |vi|)2

128mr2
+

π∆t2 r2b
128mr2

(

kbs ∆t2 |ωi|2
(

π kbs r
2
b − 2ks

) (

5|vi|4 ∆t4 − 40|vi|3 ∆t3 r + 128|vi|2 ∆t2 r2 − 192|vi|∆t r3 + 112r4
)

+ 32|vi|2 ∆t2 r2
(

|ωi|2 kbs m+ π r2b k
2
bn + 2kn kbn

)

+ 5π |ωi|2 ∆t2 k2bn r6b + 128mr3 |ωi|2 kbs(r −∆t|vi|)
)

. (56)

The first two terms in this expression are identical to (40) showing that this is recovered if the bond

radius, rb, is set to zero.

5. EFFECTS OF TIME-STEP AND DENSITY SCALING ON TRUNCATION ERROR

Consider the dependence of truncation error, ǫ, on the simulation time-step, ∆t. Table II summarises

this for the four main two-particle cases in Section 2. The last three entries in Table II have equations

for ǫ that contain several different relationships with ∆t, e.g., (21) for the Hertzian contact model

without shear forces contains two terms: one proportional to ∆t
5

2 and the other proportional to ∆t5.

Table II shows both the lowest- and highest-order dependencies.

ǫ invariably has a superlinear relationship with ∆t. Therefore, it follows that reducing the

simulation time-step will reduce the truncation error substantially. Consider as an example the case

of the linear contact model without shear force for which ǫ ∝ ∆t4. Suppose the time-step is halved

from ∆ts (15) to 1
2∆ts. The number of time-steps needed to simulate any given time period is

doubled, but the truncation error per time-step is reduced by a factor of 16. If it is assumed that the
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Table II. Summary of the dependence of the truncation errors on time-step for the four main two-particle
cases identified in Section 2: linear and Hertzian contact models, with and without shear force.

Contact model Shear force? Equation Dependence on ∆t

Linear No (14) ǫ ∝ ∆t4

Linear Yes (40) ǫ ∝ ∆t4 — ǫ ∝ ∆t8

Hertz No (21) ǫ ∝ ∆t
5

2 — ǫ ∝ ∆t5

Hertz Yes (48) ǫ ∝ ∆t
5

2 — ǫ ∝ ∆t9

Table III. Dependence of ǫ on ρ for the four main two-particle cases identified in Section 2.

Contact model Shear force? Equation Dependence on ρ

Linear No (14) ǫ ∝ ρ
Linear Yes (40) ǫ ∝ ρ — ǫ ∝ ρ3

Hertz No (21) ǫ ∝ ρ
5

4 — ǫ ∝ ρ
3

2

Hertz Yes (48) ǫ ∝ ρ
5

4 — ǫ ∝ ρ
7

2

accrued error is correlated with the sum of the truncation errors for each time-step (notwithstanding

the discussion in Section 3), halving the time-step will reduce the accrued error by a factor of 8.

The truncation error is reduced by reducing ∆t; however, the opposite happens to the round-off

error which scales with the number of computations [11]. This implies that there is an optimal,

implementation-specific choice of ∆t which minimises the total error. Generally, if it is assumed

that the adopted time-step is the largest value which ensures stability and the code implementation

is conventional (no unnecessary computations, double rather than single precision, etc.), the round-

off error is smaller than the truncation error by orders of magnitude. It is usually beneficial from

an accuracy standpoint to reduce the simulation time-step substantially. In practice, it seems that

accuracy tends to be a secondary consideration in large-scale DEM simulations as researchers wish

to maximise the time-step to enable more ambitious simulations.

Quasi-static DEM simulations without body forces such as gravity sometimes use a technique

known as ‘density scaling’ to increase the simulation time-step [39, 41–43]. The time required to

run a simulation can be greatly reduced by increasing the particle density to physically-unrealistic

values (i.e., increasing m in (15)). Consider again the four main two-particle cases in Section 2,

focusing on the dependence of ǫ on the particle density, ρ, as shown in Table III. In all of these

equations, m ∝ ρ. For a linear contact model, ∆t ∝ √
ρ (15) and the same is true for a Hertzian

contact model [35,41].

Take as an example the linear contact model without shear force for which ǫ ∝ ρ. Assume that

the particle density is increased from ρ to 100ρ. The truncation error per time-step is increased

by a factor of 100 whereas the number of time-steps needed to simulate any fixed time period is

increased only ten-fold (15). This means that density scaling has an extremely severe effect on

absolute truncation error. If the particle densities are scaled up by 12 orders of magnitude [41, 43],

the accrued truncation error for this linear case without shear force increases by a factor of 106.

The effect of density scaling on accuracy is even more punitive in other cases. For a linear contact

model with shear force, the best-case scenario is the same as for the case without shear forces. The

worst-case scenario, assuming densities are scaled up by 12 orders of magnitude, is an increase in

the accrued truncation error by a factor of 1030.
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Clearly, the absolute error is greatly increased by the adoption of density scaling. However, the

effect on the relative error is likely to be of greater importance. The kinetic and strain energy terms

in the energy balance also have a dependence on ρ, e.g., EK
α,t ∝ ρ and ENS

α,t ∝ ∆t2 ∝ ρ for a linear

system. This means that the truncation error has the same linear dependence on ρ as the other

energy terms in (10). Thus the truncation error for a single time-step, relative to the total energy

in the system, is unchanged by density scaling when a linear contact model without shear force is

chosen. When simulating a fixed time period, increasing ρ reduces the accrued relative truncation

error because fewer time-steps need to be simulated. Unfortunately, this is only true for the simplest

case (linear contact model, no shear force). For all other cases, density scaling will increase the

accrued relative truncation error.

6. VERIFICATION IN A DEM CODE

One convenient way of verifying the applicability of these analytical solutions is by simulation using

a well-regarded DEM code. Simulations were run using the PFC2D 4.00 software [30] with the aim

of verifying (14), (16), (40) and (45). Each simulation was run for a single time-step and input

parameters were varied individually to investigate the effect on the error. These simulations were

exact replicas of the idealised cases considered in this paper, e.g., the simulations used to verify

(14) used two identical, frictionless spherical particles which were in touching contact before one

of the particles was projected towards the other at a speed |vi|. The error was computed in FISH

code based on energy balances. For example, ǫ was quantified in the simulations to verify (14) by

rearranging (5):

ǫ = EK
α,t+∆t + EK

β,t+∆t + ENS
t+∆t − EK

α,t . (57)

PFC2D is capable of calculating certain energy terms includingEF
t+∆t, E

K
α,t, E

NS
t+∆t and ESS

t+∆t [27].

Since PFC2D does not compute strain energy for Hertzian contacts, a linear contact model was

used for all verification simulations. One small complication is that the kinetic energy terms at

time t+∆t are not computed in PFC2D; this is because the Verlet-based integration scheme in

PFC2D calculates particle velocities only at half-time-step intervals (i.e., t+ ∆t
2 , t+ 3∆t

2 , . . . ).

For verification purposes, (28), (29), (35) and (36) were implemented in FISH code to calculate

vα/β,t+∆t, ωα/β,t+∆t, E
K
α,t+∆t and EK

β,t+∆t, respectively. Finally, the ‘PFC ǫ’ value was calculated

in FISH code, e.g., using (57) to verify (14). These values of simulation error were written to output

files in scientific notation and with all available precision to maximise the accuracy of the simulation

output. A subset of the 2D simulations were also run in PFC3D 4.00 [44]; the results obtained were

identical to those for the 2D simulations. The time-steps used throughout Section 6 are sufficiently

small to ensure stability in all cases.

Considering firstly the verification of (14), a standard set of input parameters was defined: kn =

1 MN m−1, |vi| = 1 m s−1, r = 3.97 × 10−4 m, ∆t = 1 × 10−8 s and ρ = 2650 kg m−3. The first four

of these parameters were separately increased by one order of magnitude (e.g., |vi| was varied

between 1 m s−1 and 10 m s−1). Figure 10 compares the analytical truncation error, ǫ, with the error

obtained in the PFC2D simulations, and also shows the absolute difference between these on a

secondary y-axis. The analytical and simulation errors correspond very closely, with the absolute

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)

Prepared using nmeauth.cls DOI: 10.1002/nme



22 K. J. HANLEY AND C. O’SULLIVAN

Figure 10. Comparisons of the analytical solution for truncation error, ǫ, given by (14) with the error obtained
in PFC2D simulations in which input parameters are varied individually. kn, |vi|, r and ∆t are each varied
by one order of magnitude in a–d, respectively. The secondary y-axes show the absolute differences between

the analytical and simulation errors (in red).

difference between the two being at least five orders of magnitude smaller than ǫ. It is likely that

these absolute differences are reasonable upper-bound estimates of the round-off error for these

simulations. However, the systematic trends seen in Figure 10a indicate a lack of randomness

that one would expect for round-off error. Several of the simulations were run with two different

Intel processors (a 2.1 GHz Core i7-4600U and a 2 GHz Atom Z550) and the results obtained were

identical.

When validating (16), the main interest was in confirming that the variation of ǫ with R was

captured correctly. Figure 11 demonstrates that this is the case for kn = 1 MN m−1, |vi| = 1 m s−1,

C = 1.39 × 10−6 kg and ∆t = 1 × 10−8 s. The absolute differences are approximately eight orders of

magnitude smaller than ǫ. Figure 12 confirms the validity of (40) for the following set of standard

input parameters: kn = ks = 1 MN m−1, |vi| = 1 m s−1, |ωi| = 100 s−1, r = 3.97 × 10−4 m, ∆t =

1 × 10−8 s and ρ = 2650 kg m−3. The interparticle friction coefficient for these simulations was

set to an arbitrarily large value to ensure that EF
t+∆t is zero. In Figure 13, values of µ in the

range 0 ≤ µ ≤ 1 were chosen and ks was increased to 100 MN m−1 to ensure that EF
t+∆t > 0, thus

enabling the validation of (45). The absolute differences between the analytical ǫ and PFC2D error

values are at least four orders of magnitude smaller than ǫ in all of these analyses.
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Figure 11. Comparison of the analytical solution for ǫ given by (16) with the error obtained in PFC2D
simulations when R is varied and all other input parameters are held constant. Absolute differences are

shown in red on a secondary y-axis, as for Figure 10.

Figure 12. Comparisons of (40) with the error obtained in PFC2D simulations in which ks, |ωi| and r are
varied individually. are each varied by one order of magnitude in a–d, respectively. Absolute differences are

shown in red on the secondary y-axes, as for Figure 10.

7. CONCLUSIONS

In this paper, the truncation error, ǫ, has been quantified for a range of idealised particulate systems

by comparing energy balances at the beginning and end of one simulation time-step. Although this

analysis explicitly considers only a single time-step, the total accrued truncation error in a simulation
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Figure 13. Comparison of (45) with the error obtained in PFC2D simulations when only µ is varied. Absolute
differences are shown in red on a secondary y-axis.

necessarily depends on the error in a single step: hence inferences drawn from studies of ǫ are also

germane to the accrued error in a simulation containing millions of time-steps. Key expressions

obtained for ǫ using this analytical approach were verified by comparison with the commercial

DEM software PFC2D. This study focused on the second-order velocity-Verlet integration scheme

due to its widespread application in DEM codes.

The truncation error has a superlinear relationship with the simulation time-step, ∆t. Reducing

∆t substantially reduces ǫ; however, increasing the number of time-steps required in a simulation

inevitably increases the round-off error. This implies that there is an optimal, implementation-

specific choice of ∆t which minimises the total error. By comparing the output of PFC2D

simulations with analytical expressions for ǫ, it was confirmed that the round-off error is smaller than

the truncation error by orders of magnitude. Therefore, the accuracy of a simulation can generally

be improved by choosing a smaller time-step. If the polydispersity of a simulation is increased by

including smaller particle sizes, smaller time-steps are necessitated to maintain simulation stability

causing ǫ to be reduced.

The adoption of density scaling allows ∆t to be increased for a quasi-static simulation with a

corresponding reduction of simulation duration. This analysis showed that density scaling massively

increases the absolute error. The accrued absolute truncation error increases by a factor of 106 when

particle densities are increased by a typical scaling factor of 1012 for the case of a normal impact

of two frictionless particles with a linear contact model. However, the accrued relative truncation

error, expressed as a proportion of total energy in the system, may be reduced for the case of a linear

contact model without shear force by increasing the particle densities. In addition to particle density

and simulation time-step, many other factors influence the truncation error in a simple two-particle

system. ǫ scales superlinearly with the collision speed (in a system dominated by collisions) or the

strain rate (in a densely-packed system). If the particles are frictional (i.e., µ > 0), ǫ increases with

angular speed. The dissipation of energy by friction during a time-step also increases ǫ.

The most common complication of the basic two-particle DEM is the introduction of multiple

simultaneous contacts. Increasing the number of non-collinear contacts tends to increase ǫ for a

system. This implies that 2D simulations are inherently more accurate than 3D simulations, in

the sense of minimising the accrued simulation error, due to the reduced coordination numbers.

However, this consideration is usually outweighed by the failure of 2D simulations to capture
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the real behaviour of a physical, three-dimensional system. Although it depends on the specific

configuration of contacts, the average truncation error per contact is similar in 2D and in 3D. Other

common complications of the basic DEM include the addition of damping or interparticle bonds.

The inclusion of either local or viscous damping increases ǫ while the magnitude of ǫ is the same

for a contact bond in tension and for a compressive force caused by interparticle overlap.
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