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Efficient computation of cubature rules with application to new asymmetric rules
on the triangle

Stefanos-Aldo Papanicolopulosa,∗

aInstitute for Infrastructure & Environment, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK

Abstract

This paper presents a new, efficient method for computing cubature rules, based on least-squares minimisation and the
use of orthogonal bases. The method, which can be applied for any integration domain, is tested here for the case of
asymmetric cubature rules on the triangle showing how the computation of the necessary basis, and its derivatives, can
be optimised. The numerical results presented include three new cubature rules with fewer points than known rules of
the same degree.
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1. Introduction

The numerical computation of a multiple integral over a given domain (“cubature”) is of interest to many different
disciplines. A classical reference on cubature is the book of Stroud [1], with further information to be found, among
others, in [2] and in chapter 6 of [3]. An extensive list of (then) known cubature formulas (or “rules”) can be found
in [4, 5] and online at the Encyclopaedia of Cubature Formulas [6]. Many other results have been published in the
literature since; in the case of cubature on the triangle, for example, these include [7–13].

Cools [2] has discussed the “science behind the art” of obtaining cubature rules. In most practical cases, cubature
rules are obtained by the iterative, numerical solution of a set of non-linear equations, taking into account possible
symmetries. Considering again the example of cubature on the triangle, early results obtained in this way include
among others [14–16], while different methods to obtain cubature rules were successfully used in [7, 8, 12].

This paper presents a new, efficient method for computing cubature rules using least-squares minimisation to
iteratively solve a set of polynomial equations. The method uses concepts introduced for cubature rules in [7, 9, 13]
together with the least-squares method of Golub and Pereyra [17] to increase the efficiency and robustness of the
iterative solutions. While the proposed method has general applicability to any domain and imposed symmetry, it
is here further applied to the specific case of asymmetric cubature rules on the triangle. This shows how significant
additional efficiency can be obtained by optimising the computation of the orthogonal basis used and its derivatives,
and also provides new cubature rules of theoretical interest.

The structure of the paper is as follows: Section 2 presents a brief overview of how the non-linear equations for
cubature rules are obtained. Section 3 gives a summary of the least squares method of Golub and Pereyra [17], which
is further simplified in Section 4 when obtaining cubature rules using orthogonal bases. Section 5 examines the specific
case of asymmetric cubature rules on the triangle, presenting an efficient way of computing the required matrices,
resulting in a number of new rules that are presented in Section 6. Section 7 contains a discussion of the new results in
this paper, while Section 8 presents the conclusions.
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2. Theoretical background

A cubature rule approximates the integral of a function f on a domain Ω (normalised by the domain’s measure) as
the weighted sum of the function’s value evaluated at a set of np points xi,∫

Ω

f (x)dx
/ ∫

Ω

dx ≈
np∑
j

w j f (x j) (1)

The cubature rule is of polynomial degree φ if equation (1) is exact for all polynomials (in the coordinates x) of degree
up to φ but not exact for at least one polynomial of degree φ + 1.

Since equation (1) is linear in the function f , to obtain a rule of degree (at least) φ we only need to ensure that it is
exact for a basis of the polynomials of degree φ,

Pφ = {ψi(x) | i = 1 . . . nb} (2)

where we don’t show the dependence of ψi and nb on φ. Equation (1) therefore becomes

np∑
j

w jψi(x j) =

∫
Ω

ψi(x)dx
/ ∫

Ω

dx i = 1 . . . nb (3)

which is a non-linear system of equations which must be solved for the coordinates x j and the weights w j.
Introducing the nb × np matrix A and the nb-element vector b defined as

ai j = ψi(x j) (4)

bi =

∫
Ω

ψi(x)dx
/ ∫

Ω

dx (5)

the non-linear system (3) can be written as
r = A(x j)w − b = 0 (6)

where we have explicitly shown the dependence of A on x j.
Equation (6) can be solved for the unknowns x j and w by minimising the square of the norm of the vector r with

respect to these unknowns and checking that the minimum value is approximately zero. While a suitable least-squares
minimisation algorithm can be directly applied to the non-linear system (6), a significant reduction in the number of
unknowns can be obtained by exploiting the fact that the system is actually linear in the weights w. In the context
of obtaining cubature rules, this has been for example done by Zhang et al. [9] and Witherden and Vincent [13] for
minimisation problems, and previously by Taylor et al. [18].

3. The minimisation problem

Golub and Pereyra [17] have presented a general method that can be used to solve the system (6) for the unknowns
x j and w. This section provides a simplified summary of this method, assuming that the matrix A always has full
column rank and that the system has a solution.

As equation (6) is linear in the weights w, we eliminate them by computing them as a linear least squares solution
of the system. Indicating with A+ the Moore-Penrose pseudoinverse of A, we get

w = A+b (7)

Substituting (7) into (6) we obtain the non-linear system

r = (AA+ − I)b = 0 (8)

which can be solved by minimising the norm of r.
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Setting
M = I − AA+ (9)

we see that M = MT and M2 = M , and therefore

r = −Mb (10)

and
||r||2 = rT r = bT Mb (11)

where || · || is the Euclidean norm.
To obtain the pseudoinverse A+ we compute the thin QR decomposition of A so that

A = QR (12)

where Q is nb × np with QT Q = I and R is an upper triangular np × np matrix. The pseudoinverse is then given by

A+ = R−1QT (13)

so that M is computed as
M = I − QQT (14)

If A (and therefore M) depend on a vector of variables v then to minimise r we need, for some algorithms, the
Jacobian J given by

[J]is =
∂ri

∂vs
(15)

The Jacobian can be approximately computed using finite differences, but it can also be expressed explicitly in an
exact form as

[J]is =
∑
j,k,l

(
mi j

∂a jk

∂vs
a+

klbl + a+
ki
∂a jk

∂vs
m jlbl

)
(16)

Starting from equations (15), (10) and (9), equation (16) is directly obtained by expressing equation (5.4) in [17] using
the notation of the present paper and using index notation to avoid ambiguity due to the presence of the three-index term
∂a jk/∂vs. Note that, as r is defined here with the opposite sign from that used in [17], equation (16) for the Jacobian
has the opposite sign from equation (5.4) in [17].

4. Using an orthogonal polynomial basis

The procedure in section 3 can be directly used to solve the non-linear system (6) to obtain cubature rules, by
choosing any appropriate polynomial basis. While the simplest basis consists of monomials, its numerical behaviour is
very poor. We therefore choose the polynomial basis Pφ to be orthogonal in the domain Ω [7, 10, 13]. While more
expensive to compute than the monomial basis, the orthogonal basis has several advantages as will be seen in the
following.

By definition, for an orthogonal basis we have∫
Ω

ψi(x)ψ j(x)dx = ciδi j (17)

Assuming ψ1 to be the constant element of the basis we get∫
Ω

ψ1ψ1dx = c1 ⇒

∫
Ω

dx = c1ψ
−2
1 (18)

and therefore
bi =

∫
Ω

ψi(x)dx
/ ∫

Ω

dx = ψ1δi1 (19)
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We therefore need to solve the system
r̄ = −Me1 = 0 (20)

where e1 = {1, 0, 0, . . .}T , and then compute the weights

w = ψ1 A+e1 (21)

Note that in index notation r̄i = −mi1 and ||r̄||2 = m11 = −r̄1.
The Jacobian is given by

[J]is =
∑
k, j

(
mi j

∂a jk

∂vs
a+

k1 + a+
ki
∂a jk

∂vs
m j1

)
(22)

In a µ-dimensional space, the vector v of the unknowns can be written as

v =


x(1)

x(2)

...
x(µ)

 (23)

where x(α) is the vector of all the coordinate components in the α dimension. Therefore,

J =

[
∂r
∂x(1)

∂r
∂x(2) · · ·

∂r
∂x(µ)

]
=

[
J (1) J (2) · · · J (µ)

]
(24)

Since
∂a jk

∂x(α)
s

=
∂ψ j(xk)

∂x(α)
s

=
∂ψ j(x)
∂x(α)

∣∣∣∣∣∣
x=xs

δks (25)

we can define the matrices G(α) as

g(α)
js =

∂ψ j(x)
∂x(α)

∣∣∣∣∣∣
x=xs

(26)

so the individual J (α) matrices are then given by

[J(α)]is =
∑

j

(
mi jg

(α)
js a+

s1 + a+
sig

(α)
js m j1

)
(27)

In the present paper summation over an index is explicitly indicated by the summation symbol, with no summation
being implied for repeated indices. Therefore in equation (27) no summation is implied over s.

It is worth noting that the coordinates x are not necessarily Cartesian, a fact that will be further exploited in the
following section.

5. Calculation of basis polynomials and their derivatives

This section presents how the polynomials of an orthogonal basis, and their derivatives, can be efficiently calculated.
We consider a triangular domain, for which a standard orthonormal polynomials basis has been proposed in the literature
[19–21]. For degree φ we can write this basis in the form

ψi j =
√

2(2i + 1)(i + j + 1)Pi(d/s)P(2i+1,0)
j (1 − 2s)si (28)

where i = 0, . . . , φ, j = 0, . . . , φ − i. The functions Pi and P j are Jacobi polynomials and the quantities d and s can be
written in terms of the barycentric (or areal) coordinates as

s = L2 + L1, d = L2 − L1 (29)
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In equation (28) we express in a natural way the basis polynomials ψ using two indices. It is however easy to revert
to the single-index notation used elsewhere in this paper, for example by setting

ψk = ψi j with k = i
(
φ + (3 − i)/2

)
+ j + 1 (30)

For the needs of the algorithm presented in Section 4, we need to compute the values of all the basis polynomials,
and possibly their derivatives, for all (trial) cubature points. While it is possible to do so directly by using equation (28)
and any library for computing Jacobi polynomials and their derivatives, it is very inefficient to do so. This happens
because Jacobi polynomials are computed through recurrence relations, so that individual computation of each Jacobi
polynomial would lead to multiple computations of the same intermediate results. We therefore show in the following
how the basis polynomials can be computed using recurrence relations.

Setting
Qi(d, s) = Pi(d/s)si (31)

and
Ri, j(s) =

√
2(2i + 1)(i + j + 1)P(2i+1,0)

j (1 − 2s) (32)

we can write
ψi j = Qi(d, s)Ri, j(s) (33)

From the recurrence relation for the Jacobi (actually Legendre) polynomial Pi

P0(x) = 1, P1(x) = x, iPi(x) = (2i − 1)xPi−1(x) − (i − 1)Pi−2(x) (34)

we easily obtain
Q0 = 1, Q1 = d, iQi = (2i − 1)dQi−1 − (i − 1)s2Qi−2 (35)

The partial derivatives of Qi with respect to d and s can be computed either by differentiating the relations (35) or by
using the formula

(1 − x2)P′i(x) = −ixPi(x) + iPi−1(x) (36)

Combining the two approaches results in the following simple formulas

∂Q0

∂d
= 0,

∂Qi

∂d
= iQi−1 + d

∂Qi−1

∂d
(37)

∂Q0

∂s
= 0,

∂Qi

∂s
= −s

∂Qi−1

∂d
(38)

The recurrence relation for Ri, j(s) can be easily computed from the well-known recurrence relation for Jacobi
polynomials, obtaining

Ri,0 =
√

2(2i + 1)(i + 1) (39a)

Ri,1 =
(
c(1)

i,1 + c(2)
i,1 s

)
Ri,0 (39b)

Ri, j =
(
c(1)

i, j + c(2)
i, j s

)
Ri, j−1 + c(3)

i, j Ri, j−2 (39c)

where

c(1)
i, j =

√
(i + j + 1)(i + j)

4(2i2 + 2i j + j2 + i)
j(2i + j + 1)(2i + 2 j − 1)

(40a)

c(2)
i, j = −

√
(i + j + 1)(i + j)

2(2i + 2 j + 1)
j(2i + j + 1)

(40b)

c(3)
i, j = −

√
i + j + 1
i + j − 1

(2i + j)( j − 1)(2i + 2 j + 1)
j(2i + j + 1)(2i + 2 j − 1)

(40c)

The quantities in equations (40) can be pre-calculated as they only depend on the indices i and j.
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a) b) c)

Figure 1: Computed new asymmetric cubature rules on the triangle: a) degree 11, 26 points, PO quality; b) degree 20, 77 points, PO quality; c)
degree 22, 92 points, PO quality

The basis polynomials are therefore computed by equation (33), and their derivatives with respect to d are easily
calculated as

∂ψi j

∂d
=
∂Qi

∂d
Ri, j (41)

The derivatives with respect to s are obtained by multiplying equations (39) on both sides with Qi and using equa-
tion (33), to obtain recurrence relations for the ψi, j, and then differentiating with respect to s to obtain the recurrence
relations

∂ψi,0

∂s
=
∂Qi

∂s

√
2(2i + 1)(i + 1) (42a)

∂ψi,1

∂s
=

(
c(1)

i,1 + c(2)
i,1 s

)∂ψi,0

∂s
+ c(2)

i,1ψi,0 (42b)

∂ψi, j

∂s
=

(
c(1)

i, j + c(2)
i, j s

)∂ψi, j−1

∂s
+ c(2)

i, j ψi, j−1 + c(3)
i, j

∂ψi, j−2

∂s
(42c)

The equations presented in this section, though clearly not the only possible way to compute the basis polynomials
and their derivatives, have been obtained by attempting to minimise the number of computations required.

6. Numerical results

The algorithm presented in this paper, for the case of asymmetric cubature on the triangle, has been implemented in
Fortran 95. The initial guess for the coordinates of the cubature points was obtained by considering a uniform random
distribution of points inside the triangle.

Using this code, three new cubature rules were found, improving in terms of number of points on previously
available results of the same degree. These new rules are shown graphically in Figure 1 and tabulated in Appendix
A. Arbitrary precision arithmetic has been used to refine the Fortran results, which are calculated in double-precision
but suffer from loss of accuracy due to all the intermediate calculations, to full double-precision accuracy (i.e. the
maximum accuracy provided by double-precision numbers).

The first rule is an asymmetric cubature rule of degree 11 with 26 points and of PO quality (all weights positive but
one point outside the triangle). Though the presence of a cubature point outside the domain of integration decreases
its practical importance, this rule represents an important and long-missing result as all previously available rules
had more points [22]. This (degree 11) is the lowest degree for which a rule improving on the number of points used
(independently of quality) has been presented for the triangle since the degree seven rule by Gatermann [23]. The other
two rules, for degrees 20 and 22 with 77 and 92 points respectively, are also of PO quality but with more points outside
the triangle. Once more, they improve in terms of number of points on all previously known cubature rules.

In all three new rules computed here, the number of points is of the form np = 3k + 2, while it is easily seen that
rules possessing rotational or full symmetry cannot have such a number of points. It is therefore necessary to consider
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asymmetric rules (or rules which only exhibit symmetry along one median) to obtain rules with this number of points.
Rotationally symmetric rules of PI quality (that is with positive weights and all points inside the triangle), with one
more point for each degree than the rules presented here, have been computed by Xiao and Gimbutas [10].

From the tabulated results in Appendix A, it is easily seen that points outside the triangle are associated with
smaller weights, with the weight decreasing with increasing distance. For each combination of degree and number of
points presented here, a number of different rules were actually computed. The rules presented here are those with the
maximum smallest weight, and therefore with outside points closest to the triangle.

7. Discussion

The method presented in this paper shares common characteristics with those presented by Zhang et al. [9] and
Witherden and Vincent [13] (hereinafter referred to respectively as ZCL and WV), in that all methods consider the
weights as dependent variables and then solve the resulting problem using non-linear least squares. To achieve efficiency
without compromising its robustness, the proposed method differs from ZCL and WV in the following points:1

1. Use of an orthogonal basis. This was already done in WV, and previously by Taylor et al. [7, 18], but not in ZCL.
The major difference in this paper is that we minimise the number of computations (and associated computation
time) by recognising that all basis polynomials need to be computed at the same time and for all cubature points.
Section 5 shows how this can be exploited in the case of the triangle. Optimisations based on array storage order
and cache size are not considered here, as they are language- and hardware-dependent respectively.

2. Another benefit of using an orthogonal basis is that the vector e1 appears instead of b, so that instead of computing
the matrix-vector products, only the appropriate columns (or rows) of the relevant matrices are used (compare
for example equations (16) and (27)).

3. Analytical computation of the Jacobian. ZCL state that numerical differentiation seems much more likely to
find a good solution compared to analytical differentiation, which is however much faster. In informal testing
while obtaining the numerical results of Section 6, however, using the analytical Jacobian was much faster
without increasing the number of attempts; this may be because of the better numerical behaviour obtained using
an orthogonal basis. Note that efficient computation of the Jacobian requires an efficient computation of the
derivatives of the basis polynomials, as for example done in Section 5.

4. Avoiding explicit computation of the weights. By closely following the method of Golub and Pereyra [17],
we avoid the explicit computation of the weights, which is carried out in both ZCL and WV, and significantly
decrease the number of computations required (which decreases not only computation time but also numerical
error). Note that if numerical differentiation is used to compute the Jacobian, then only the Q matrix is needed
and R is never used and thus never inverted. To compute the Jacobian analytically, R is implicitly inverted to
obtain the pseudoinverse A+, the first column of which is actually the vector of the weights (scaled by ψ1). Even
in this case, however, unnecessary intermediate results don’t need to be stored.

5. Use of QR factorisation to eliminate the weights. The use of a QR decomposition, as proposed by Golub and
Pereyra [17], was shown in our testing to be robust enough numerically, while it is faster than singular value
decomposition (SVD) as used in WV. Like SVD, QR decomposition allows for the computation of M in a simple
way, without the need to compute the pseudoinverse A+, unlike in the case of the LU decomposition with column
pivoting used in ZCL.

The proposed method can be applied to different integration domains, and can also take into account different
symmetries of the required cubature rules (either because symmetry is a required characteristic for a given application,
or simply to allow a solution to be found by decreasing the number of equations and of unknowns). As mentioned
above, however, computational efficiency depends on an appropriate method for computation of the orthogonal basis
polynomials. Additionally, imposing symmetry leads to more complex formulas for evaluating the Jacobian J, as the

1While the ZCL and WV papers only give an overview of the algorithms used, they provide links to source code implementing the respective
methods. This comparison therefore is based not only on the published papers, but also on the author’s understanding of the source code for both
methods, in the version available at the time of the preparation of the present paper.
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different types of possible “orbits” must be dealt with in a different way; this complexity however does not translate
into significant additional computational cost.

Applying the present method in the case of asymmetric rules on the triangle allows therefore for a simple
implementation, as no symmetry is imposed, while at the same time demonstrating how the computation of the
orthogonal basis can be efficiently implemented. Additionally, the results obtained and presented in Section 6 are new
and of theoretical interest, and thus relevant on their own. Indeed, very few previous works have considered asymmetric
cubature rules on the triangle [7, 8], even though such rules are a superset of all symmetric rules and will therefore
include the rule with the minimal number of points for a given quality and degree.

The theoretical comparison of the proposed algorithm to the ZCL and WV algorithms provides strong indications
that the first one should outperform the other two for any kind of integration domain and imposed symmetry. To further
demonstrate the efficiency of the proposed algorithm, the implementation provided for the WV algorithm was modified
to allow computation of asymmetric rules on the triangle. Searching for a 26 point rule of degree 11, the average
performance for the proposed algorithm was 0.265 seconds per trial rule (i.e. for each initial random guess) while for
the WV algorithm it was 2.308 seconds per trial rule. Even more importantly, the proposed algorithm obtained 6 valid
rules for 80 tested trial rules, while the WV algorithm obtained 2 valid rules for 307 tested trial rules. While clearly not
rigorous, this comparison provides further support for the claim of efficiency of the proposed algorithm.

The performance of the algorithm and its implementation is such that for the 92-point rule of degree 22 a solution
was obtained within a few hours, using a single CPU core (as noted above, multiple solutions were obtained to keep the
one with outside points closest to the triangle). There is however clearly room for improvement, if the method is to be
applied to obtain rules of higher degree, or for three- (and perhaps even higher-) dimensional regions. The main areas
where improvements to the implementation could be made are as follows:

1. Implementing large-scale parallelisation either by completely independent parallel runs with different initial
guesses (as done in ZCL and WV) or by employing an appropriate global optimisation solver.

2. Using a constrained minimisation algorithm to enable searching only for cubature rules with all points within the
integration domain, instead of checking the quality of each rule that is obtained by unconstrained minimisation.
This may also involve using a different minimisation algorithm than the trust-region least-squares algorithm used
in the present paper.

3. Using better-than-random initial values for the minimisation algorithms, as done in ZCL and also for example by
Wandzura and Xiao [24] and by Xiao and Gimbutas [10]. Note however that WV prefer using a random set of
initial values due to the simplicity of the method and the almost null computational cost of obtaining the initial
values.

It should be noted however that the above ideas for improvement consider only implementation aspects, with the
overall algorithm remaining the same as presented in this paper.

8. Conclusions

We have presented a method for the computation of cubature rules using an orthogonal basis and a least-squares
minimisation algorithm. While similar methods have been previously proposed in the literature, the present method
achieves greater efficiency, by starting with the theoretical treatment of the problem by Golub and Pereyra [17] and
optimising it considering the properties arising from the use of an orthogonal basis. An efficient way to compute the
orthogonal basis is also presented, for the case of the triangle, showing that such a basis can be used without a major
performance penalty.

The numerical results presented for the case of asymmetric cubature on the triangle serve to demonstrate the
effectiveness and efficiency of the proposed method. They are however also very interesting in their own right, as they
are new cubature rules of theoretical interest, improving on previously available results even for relatively low degrees.

The proposed method is not dependent on a particular domain or imposed symmetry. Various ideas are provided on
how the performance of the method can be further improved for three-dimensional domains or for a higher number of
points.
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Appendix A. New cubature rules

Tables A.1, A.2 and A.3 present the cubature rules computed in Section 6. For each rule, the table lists the the
weight of each cubature point and its areal coordinates, in increasing order of weight. An asterisk (*) has been placed
next to each row corresponding to a point outside the triangle.

Table A.1: Asymmetric PO cubature rule of degree 11 with 26 points

w L1 L2 L3

1.7703429351573682e-03 0.6258738065923632 -0.0444983835604058 0.4186245769680427 *
1.1407181542799245e-02 0.0290632953572617 0.9408484762789769 0.0300882283637613
1.4450148832022789e-02 0.9330583391486744 0.0334630956930928 0.0334785651582328
1.4571713721870356e-02 0.0318590326985022 0.0355146752201139 0.9326262920813839
1.5082717050370174e-02 0.1624826332186683 0.0139846877219226 0.8235326790594090
1.7381504665411469e-02 0.0132184617612812 0.6427888268154324 0.3439927114232864
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Table A.1: Asymmetric PO cubature rule of degree 11 with 26 points (continued)

w L1 L2 L3

1.9788048913795569e-02 0.5918294793334099 0.3931416942741072 0.0150288263924829
2.3034628317738500e-02 0.8055758967896875 0.0246651880397084 0.1697589151706041
2.4074295611862854e-02 0.8043214954660826 0.1701217153423755 0.0255567891915419
2.5782293138424881e-02 0.1517977741136217 0.8180708557984559 0.0301313700879224
2.7854536597135951e-02 0.0290692872577444 0.1779293919407720 0.7930013208014837
2.8027408557939566e-02 0.0342125596440218 0.8141179370835360 0.1516695032724423
3.0133750535085932e-02 0.0248467017693192 0.3973211985920437 0.5778320996386371
3.5325613244976901e-02 0.3532703142982785 0.6159167605516321 0.0308129251500894
3.9626273680208260e-02 0.3617812618781889 0.0348462422413524 0.6033724958804587
4.7049077672300709e-02 0.7255128905173974 0.1342004546749753 0.1402866548076273
4.7626634579448043e-02 0.1526877583775490 0.1082745708776674 0.7390376707447836
4.9123786306245618e-02 0.5767609187090251 0.3299095455530797 0.0933295357378951
5.5892517086728270e-02 0.0957812464558656 0.5537082795511952 0.3505104739929392
5.6926272805302974e-02 0.1662869182873340 0.6799902364777285 0.1537228452349375
5.7326951870023362e-02 0.5809311067210347 0.0593349142682010 0.3597339790107644
6.3471175918900887e-02 0.1331546134128777 0.2982865414345181 0.5685588451526042
6.3806180979645840e-02 0.3613509750869149 0.4889662400184307 0.1496827848946544
7.4255945293930314e-02 0.3263421583773203 0.1749834270680896 0.4986744145545902
7.7589779768121364e-02 0.4933483827105916 0.2373606333716019 0.2692909839178066
7.8621220374552806e-02 0.2608387984712898 0.4018889231575169 0.3372722783711933

Table A.2: Asymmetric PO cubature rule of degree 20 with 77 points

w L1 L2 L3

3.3272031899930308e-09 -0.2139722826185562 0.8852704943288995 0.3287017882896566 *
1.1522730667251121e-08 1.1421952868429700 -0.1722740343873985 0.0300787475444285 *
6.1193449764404254e-08 0.5992142624452174 -0.1265986873996475 0.5273844249544302 *
6.7168983640976152e-08 0.1243798718893910 -0.1187856182759406 0.9944057463865496 *
8.5515199758833790e-07 0.0653183349102199 1.0288244853951577 -0.0941428203053776 *
1.5175231945732550e-05 -0.0536667090855444 0.1640223252964244 0.8896443837891200 *
7.6510157049546390e-05 0.2856083204150442 -0.0344098409098498 0.7488015204948056 *
2.1765189868301176e-04 0.9360808436934921 0.0834052574449411 -0.0194861011384333 *
1.4315614431658254e-03 0.8030525284397181 0.1945616339233715 0.0023858376369104
1.9314426547382595e-03 0.0120188880734230 0.0122773002304659 0.9757038116961111
2.0834859747296434e-03 0.0117885985793459 0.9746833066691727 0.0135280947514814
2.4504339436383215e-03 0.9724194714380300 0.0151595907332457 0.0124209378287244
3.1752343328823898e-03 0.2595828898422352 0.7374061786479605 0.0030109315098044
4.1332493970509188e-03 0.0113901722279700 0.0638319730537900 0.9247778547182400
4.2393898837920337e-03 0.0624536748324726 0.0119686440555381 0.9255776811119894
4.2462464843566120e-03 0.5364878869178866 0.4586406435763420 0.0048714695057714
4.5784993771821117e-03 0.0115287726880496 0.9184513045542639 0.0700199227576865
5.0680982671320988e-03 0.9212296278015700 0.0137267427812455 0.0650436294171845
5.7354175259044468e-03 0.0609542503069404 0.9220601718596792 0.0169855778333804
6.1150285138198147e-03 0.1498077783451357 0.0117795744693113 0.8384126471855530
6.1404661979067891e-03 0.7078898074639406 0.0083409100880332 0.2837692824480262
6.1545543320798148e-03 0.8323428152565519 0.0109109589105934 0.1567462258328547
6.8948715222448776e-03 0.0119250456031764 0.8218085619732910 0.1662663924235326
7.0247457608165264e-03 0.1455472291954016 0.8407014888010812 0.0137512820035173
7.1746550318843929e-03 0.0095334490986295 0.4104869400812500 0.5799796108201205
7.2507179234764397e-03 0.6796683414344640 0.3100866480213636 0.0102450105441724
7.2852898422032166e-03 0.0098923273022164 0.5566731853629672 0.4334344873348164
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Table A.2: Asymmetric PO cubature rule of degree 20 with 77 points (continued)

w L1 L2 L3

8.0472822752512336e-03 0.5534560716862930 0.0104547658690505 0.4360891624446565
8.2951743144646277e-03 0.8094842242438749 0.1706822036252221 0.0198335721309030
8.3634959197703732e-03 0.9020135076631229 0.0746138877131692 0.0233726046237078
8.6328876403430689e-03 0.0129694574942775 0.2705576393189556 0.7164729031867668
8.6338660310716417e-03 0.0586275629455061 0.0612222576866121 0.8801501793678818
8.8186775137681390e-03 0.3924249096626205 0.5952063888311978 0.0123687015061817
9.4468854954044334e-03 0.0137405978198458 0.6946591202501084 0.2916002819300458
9.5691674028340313e-03 0.0187516304312782 0.1512275875775564 0.8300207819911654
1.0147724906551308e-02 0.4029563699535816 0.0137359323322952 0.5833076977141232
1.0601836707815451e-02 0.1376506380168706 0.0564581638297467 0.8058911981533827
1.1199272640821794e-02 0.0598726536103753 0.8585595585971510 0.0815677877924737
1.2008691726336927e-02 0.6248823528936678 0.0416470200265497 0.3334706270797824
1.2065306563947097e-02 0.2629381743397160 0.0199626935996523 0.7170991320606317
1.3121419922390531e-02 0.8380490837191127 0.0647623246114735 0.0971885916694138
1.3465012408395130e-02 0.2575339958346665 0.7060473448618915 0.0364186593034420
1.3785919289998268e-02 0.5354016478572056 0.4290126813155198 0.0355856708272746
1.4132111135062390e-02 0.7432315022640500 0.0513341047302288 0.2054343930057212
1.4405132814676555e-02 0.0488883387859558 0.5218697460311620 0.4292419151828821
1.5264441906139244e-02 0.0624726931520615 0.7578158119621619 0.1797114948857766
1.5301286542334050e-02 0.1435972310505592 0.7859738136269185 0.0704289553225222
1.6474551417327365e-02 0.6691011121275246 0.2763262735810618 0.0545726142914136
1.6532264494773961e-02 0.7651859663690987 0.1551000926249013 0.0797139410059999
1.6624974592286139e-02 0.0885954672172786 0.1371782771633756 0.7742262556193458
1.6829113483477516e-02 0.0527740002133012 0.3823667578709374 0.5648592419157614
1.7932849136018492e-02 0.0680360399128474 0.2476912983745129 0.6842726617126397
1.8780448844569661e-02 0.0698062102092748 0.6315959576620008 0.2985978321287244
1.8820167387222608e-02 0.2079871121564631 0.0924058022638531 0.6996070855796838
1.8879556804683955e-02 0.3901829313032221 0.5474116133643799 0.0624054553323979
1.8889095827054366e-02 0.4760763868427125 0.0602551121213251 0.4636685010359623
2.0549961352460224e-02 0.3348863482569718 0.0747904975261003 0.5903231542169280
2.0664562937209037e-02 0.5864230153923678 0.1034891045584583 0.3100878800491739
2.1196592533383173e-02 0.1465901036680476 0.6902217267840939 0.1631881695478585
2.1242623436456073e-02 0.6891984248492541 0.1306777966591577 0.1801237784915882
2.1417656759145985e-02 0.2564310038854510 0.6359512644008602 0.1076177317136887
2.1922234938203348e-02 0.5198079657360537 0.3791169744786023 0.1010750597853440
2.3120581286951603e-02 0.1189889352865325 0.4579430288192932 0.4230680358941744
2.4157383298376990e-02 0.6136703242392350 0.2440243430685658 0.1423053326921992
2.4284601989132075e-02 0.1562497737922975 0.5645689373126001 0.2791812888951025
2.4476493188372424e-02 0.2558715036994906 0.5365717557358474 0.2075567405646620
2.4640553062607307e-02 0.1707341034155206 0.1920780732761519 0.6371878233083275
2.4869718628262086e-02 0.3790868969534791 0.4744250782345639 0.1464880248119570
2.4953403930638818e-02 0.1375806059274538 0.3194314574881331 0.5429879365844131
2.6494936022368213e-02 0.2189111413867021 0.4161899655526268 0.3648988930606711
2.6990664473401601e-02 0.4344120958112691 0.1469767439359339 0.4186111602527970
2.7035897305238948e-02 0.2965501572072155 0.1700101823487815 0.5334396604440030
2.7329813084088887e-02 0.3230707204784158 0.4000967067151431 0.2768325728064411
2.7716535223871964e-02 0.5305962772598443 0.2030397952102567 0.2663639275298991
2.8325725738883217e-02 0.2484602615536088 0.2880666512775105 0.4634730871688807
2.8495989683869940e-02 0.4587355289252984 0.3306635431439684 0.2106009279307332
3.1621731921240055e-02 0.3769856631093792 0.2653966961081434 0.3576176407824775
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Table A.3: Asymmetric PO cubature rule of degree 22 with 92 points

w L1 L2 L3

4.5395639901349092e-09 0.4649821382452427 0.7111505756504594 -0.1761327138957021 *
2.2271274087684915e-08 0.9332413498021373 0.2072453224809921 -0.1404866722831294 *
1.3651386509171615e-07 0.7188146070148182 -0.1085923748471092 0.3897777678322910 *
1.2620323408591148e-06 -0.0753425185865285 0.3657388261010510 0.7096036924854774 *
1.2773886859207504e-06 -0.0729720466214084 0.9087809877046706 0.1641910589167378 *
3.4515501760991334e-06 0.1613900535324765 -0.0567779747516549 0.8953879212191783 *
1.7271454205030007e-05 0.3964730375095246 -0.0393347505474985 0.6428617130379740 *
1.0102564890393311e-04 0.0325670755950674 0.9836159918553805 -0.0161830674504479 *
1.0289895715049877e-04 0.5110834897688819 -0.0167145669135699 0.5056310771446880 *
2.5849787427155538e-04 0.9698153095809794 -0.0084738641497777 0.0386585545687983 *
6.9262488612911405e-04 0.0045668480222933 0.0112732881898780 0.9841598637878287
1.4141283516694330e-03 0.9785347731846658 0.0131017828795071 0.0083634439358271
1.4930106714526691e-03 -0.0020936608309148 0.6111729711663046 0.3909206896646103 *
1.5129779019346722e-03 0.0082446591796961 0.9773748146351398 0.0143805261851641
1.7068811763706268e-03 0.0286161958663017 0.0083941811270468 0.9629896230066514
1.9349920621679056e-03 0.0065762640156403 0.0528100601072915 0.9406136758770682
2.5088294593341612e-03 0.2758666449617112 0.0042128769998266 0.7199204780384622
3.0884974212190485e-03 0.1058689430939781 0.8868858914256998 0.0072451654803221
3.1061258925912809e-03 0.6192264806124585 0.3769418326829147 0.0038316867046268
3.5061520285316948e-03 0.8837762141045503 0.0083705323204879 0.1078532535749618
3.5565092691088905e-03 0.9254105836968477 0.0644641060621398 0.0101253102410124
3.9496670800454524e-03 0.0108650060510515 0.9206641434920366 0.0684708504569120
4.0376177795052796e-03 0.0094414108757236 0.1221323424228500 0.8684262467014264
4.0937996280007192e-03 0.0834379668080314 0.0114591516812569 0.9051028815107116
4.7340311582250246e-03 0.0461305836421291 0.9332880935918074 0.0205813227660635
4.9593015383271003e-03 0.9301326043260487 0.0232412078745276 0.0466261877994238
5.0841050964592767e-03 0.4009202375315670 0.5856759399555980 0.0134038225128350
5.1537586866185813e-03 0.2002986318444794 0.7901613525413712 0.0095400156141494
5.4175393501613104e-03 0.0377632914144659 0.0488000038207257 0.9134367047648084
5.6684521721347064e-03 0.7869933035900340 0.0102546720868125 0.2027520243231536
5.8341342113779666e-03 0.8407378638103820 0.1473222888308409 0.0119398473587771
5.8959182214630989e-03 0.0105197174565544 0.2190350425308016 0.7704452400126441
5.9028999631625856e-03 0.0099790114602826 0.7272897883804312 0.2627312001592862
5.9841005968195210e-03 0.3102831400290192 0.6789943596252085 0.0107225003457724
6.0766492558934536e-03 0.4901895600744398 0.4991745270288127 0.0106359128967475
6.8080298737058088e-03 0.1679663305360452 0.0141053909355621 0.8179282785283927
6.9184793067436195e-03 0.0141127681947915 0.8324474631332752 0.1534397686719333
7.1032560517228288e-03 0.0104234395787747 0.4689980777554518 0.5205784826657734
7.3346357681360919e-03 0.7331463362172260 0.2544424502184292 0.0124112135643448
7.4375132771643090e-03 0.2768726553091220 0.0238950051964320 0.6992323394944460
7.6836516813958281e-03 0.6678935309195156 0.0120851625782621 0.3200213065022223
8.5298898938657950e-03 0.0445015015162890 0.6964091231294402 0.2590893753542709
8.6660639484361069e-03 0.0137349285317674 0.3369393972521638 0.6493256742160688
8.8904913328585393e-03 0.5375478799081402 0.0138730562867832 0.4485790638050765
9.4351999693634109e-03 0.5928350534101339 0.3771591146500973 0.0300058319397688
9.4433029493588047e-03 0.1266301093747175 0.8302226584537487 0.0431472321715338
9.5558787695999292e-03 0.4013663824060378 0.0150259944876660 0.5836076231062962
9.7679257690299608e-03 0.8579542756723133 0.0862277341830809 0.0558179901446058
9.7936899377279218e-03 0.0491710116722590 0.1233215400533555 0.8275074482743855
9.8450167213557546e-03 0.0590361244964827 0.8597698838794501 0.0811939916240672
9.8947652193418236e-03 0.8285527046102029 0.0472711454279718 0.1241761499618253
1.0445653804999097e-02 0.1028881554758129 0.0605783796272693 0.8365334648969179
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Table A.3: Asymmetric PO cubature rule of degree 22 with 92 points (continued)

w L1 L2 L3

1.1527390931442913e-02 0.0252668780123646 0.5906792594832326 0.3840538625044028
1.2767292253125432e-02 0.0522224101343283 0.4464041575932961 0.5013734322723756
1.3478903113459106e-02 0.0557922911259375 0.2219583512296826 0.7222493576443799
1.3588026786923612e-02 0.2330570599001325 0.7148687591961092 0.0520741809037583
1.3672849749700126e-02 0.7602387409043682 0.1780544689852921 0.0617067901103396
1.3838157839677994e-02 0.6537821348500996 0.2843498955459140 0.0618679696039864
1.3924834500668074e-02 0.0701192668918892 0.7616457720344102 0.1682349610737005
1.3977008809975239e-02 0.0856752082434593 0.6201239512863054 0.2942008404702353
1.4123771073724647e-02 0.7174560889009518 0.0555931048067862 0.2269508062922620
1.4798663317517431e-02 0.1975481930963446 0.0685029623840040 0.7339488445196514
1.5291214328912046e-02 0.0864145042160261 0.5134382192706653 0.4001472765133086
1.5553999941421675e-02 0.4755097609964785 0.4648363271004296 0.0596539119030919
1.5802681212130293e-02 0.0678714687817086 0.3319965021961245 0.6001320290221669
1.6234608647348465e-02 0.1469792077847016 0.7410787299023880 0.1119420623129104
1.6257930986965675e-02 0.3512216651844325 0.5879535852949610 0.0608247495206065
1.6687406294486875e-02 0.7412614927620904 0.1208940885567262 0.1378444186811833
1.6711160412937197e-02 0.1240403276591735 0.1425836013649232 0.7333760709759034
1.7224777629975396e-02 0.2138803941211439 0.2704901128161058 0.5156294930627503
1.7249444726274737e-02 0.5887704077391711 0.0628867829706776 0.3483428092901514
1.7277250957003662e-02 0.3212700989541091 0.0716976174401818 0.6070322836057091
1.7866272588789774e-02 0.4545590368099309 0.0648529251240835 0.4805880380659856
1.8010185571439035e-02 0.2888452819409681 0.2381183968667653 0.4730363211922665
1.8768448853723183e-02 0.5321635809001525 0.3570177382033145 0.1108186808965330
1.9379500993648655e-02 0.4736410292722732 0.3354671158671107 0.1908918548606161
1.9862660627271811e-02 0.1372156408075117 0.2439059721040748 0.6188783870884135
2.1294664629939871e-02 0.6213916587330183 0.1350374610368093 0.2435708802301724
2.1526907650302151e-02 0.1526036559137645 0.6340851747840728 0.2133111693021628
2.1633103075462352e-02 0.2535424994047533 0.6145682205207210 0.1318892800745257
2.2237085598750902e-02 0.6304593865191285 0.2250328820610726 0.1445077314197989
2.2636190719411340e-02 0.2308485141633608 0.1507781814727181 0.6183733043639211
2.2921010191850760e-02 0.3606076667650022 0.1476571250366021 0.4917352081983957
2.3361825113449281e-02 0.1688258437775907 0.4968017672246279 0.3343723889977814
2.3654431484015719e-02 0.5129504854212238 0.2349384554629883 0.2521110591157879
2.4182433274350601e-02 0.4874798993088388 0.1447536536811390 0.3677664470100222
2.4335794985536732e-02 0.1414118586611728 0.3795554544211256 0.4790326869177016
2.5376393663440224e-02 0.3799202246016695 0.4775364341798633 0.1425433412184672
2.5667876509629658e-02 0.2599312640326476 0.5045529126340352 0.2355158233333172
2.5948182876164511e-02 0.3606907921924177 0.3781963472779737 0.2611128605296086
2.7637005014311689e-02 0.3859853018308854 0.2567611752699346 0.3572535228991800
2.8360656700894891e-02 0.2549677295279997 0.3697330460402094 0.3752992244317908
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