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Abstract 

A modular, hybrid HVDC transformer, located in the turbine 
nacelle has been proposed for the offshore wind industry to 
improve efficiency and redundancy while reducing costs. The 
injection of harmonics by the transformer power electronics 
however, complicates the core loss calculations of such a 
transformer. The standard Steinmetz Equation is no longer 
valid and the alternative loss equations proposed in the 
literature are significantly more complicated. Therefore, 
many in the industry still use the Steinmetz Equation with the 
signal’s Fourier Transform. However, the literature suggests 
this to be inaccurate without quantifying it. This paper will 
therefore compare the accuracy of this approach to a 
prominent alternative presented in the literature, the improved 
Generalised Steinmetz Equation.  

1 Introduction 

The trend for offshore wind farms to move further offshore, 
combined with the falling cost of power electronics has 
resulted in an increase in the number of wind farms using 
HVDC systems for power transmission [1], [2]. The HVDC 
converters in use today though are not optimised for the 
offshore wind industry, offering little in terms of system 
redundancy and accounting for roughly 11% of their capital 
costs [3], [4]. A modular, high power (5-10 MW), Medium 
Frequency (MF = 500 – 2000 Hz), hybrid HVDC transformer 
(Fig 1) has therefore been proposed in [5] to address these 
issues. The DC bus voltage is stepped up within the turbine 
nacelle and converted to HVDC for parallel grid connection, 
negating the requirement for an offshore HVDC platform. 
The modular HV design increases system redundancy and 
inter-array cable losses are minimised. By operating in the 
MF range, the transformer’s size and weight are minimised, 
simplifying the turbine’s installation and foundation design. 

This however, increases the transformer loss density and 
hence accurate calculation of core loss is imperative. 
Historically, transformer core losses have been calculated 
using the empirical Steinmetz Equation (SE) (1) but is only 
valid for sinusoidal waveforms. 

 (1) 

Where, pcore is power loss per unit volume of the core (Vc), f 
is the frequency of the input waveform and  the peak flux 
density. The material constants α, β and k are collectively 
termed the Steinmetz Parameters. The harmonics injected by 
the power electronics in the hybrid transformer however, 
create a highly non-sinusoidal waveform, which render the 
results derived by applying (1) inaccurate.  

 
Fig 1: Offshore wind farm using proposed hybrid HVDC 

transformer design  

Due to the recent advancements in power electronics there are 
now a litany of equations in the literature for calculating core 
loss for non-sinusoidal waveforms.  These may be categorised 
into three areas. The first describes core loss based on either 
macroscopic energy calculations or statistically determining 
the domain wall motion. In the second, core loss is assumed 
to comprise of three components, hysteresis, classic eddy 
current loss and excess eddy current loss. While both can be 
accurate and indeed, separating loss components was very 
popular previously, many parameters are not expressly given 
by core manufacturers. Excessive calculations and 
measurements [6]–[8] must therefore be performed, thus 
complicating their implementation and are not discussed 
further here.  

The third area comprises empirical formulae, which seek to 
generalise (1) such that it maybe used for all waveforms. The 
advantage of this approach is that normally only the 
Steinmetz Parameters are required and as such are the most 
practical to use. In 1999 the Modified Steinmetz Equation 
(MSE) [9] was published however, shortly after, the 
Generalised Steinmetz Equation (GSE) was released in 2001 
[10] to overcome the mismatch between the SE and MSE for 
sinusoidal waves. The GSE was found to be less accurate than 
the MSE for some cases [8] though, leading to the improved 
General Steinmetz Equation (iGSE), published in 2003 [11]. 
The iGSE becomes increasing less accurate with Pulse Width 
Modulation however, as it does not account for relaxation 
effects. The improved improved General Steinmetz Equation 
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(i2GSE) [12] does account for relaxation however, it requires 
significantly more variables, not all of which are provided by 
core manufacturers as standard. The iGSE is therefore 
considered to be the best compromise between accuracy and 
usability.  

The iGSE however, is still significantly more complicated to 
implement than the SE. As a result many in the industry 
continue to use the SE with the Fourier Transform of the non-
sinusoidal waveform (FTSE). This has been suggested to be 
inaccurate in the literature due to the non-linearity of the SE. 
The magnitude of this inaccuracy compared to the iGSE 
under different load cases however, has not been investigated 
[13].  

The aim of this paper is to determine the accuracy of the 
FTSE and its dependence on waveform, frequency, flux 
density and material. For comparison, core loss will also be 
calculated using the iGSE and the SE. The accuracy of all 
three methods will be determined from experimentally 
obtained losses from a transformer core. 

The experiment set-up is discussed in section 2 and empirical 
equations briefly explained in section 3. The results are 
displayed in section 4 and key points discussed in section 5. 
Conclusions are drawn on the applicability of using the FTSE 
in section 6.  

2 Experiment Setup 

There are many approaches to calculate core loss, each 
attempting to isolate the core losses from the winding and 
other parasitic losses. The set-up chosen to calculate the core 
losses for both characterisation and comparison purposes in 
this study is shown in Fig 2 

A Pacific 360-AMX power generator was used to generate 5 
test waveforms to investigate how accuracy changes with 
wave shape. The waveforms used shown in Fig 3 include: a 
sine wave; distorted sine wave at 10% Total Harmonic 

Distortion (THD); a triangular wave and two square waves at 
0.33 and 0.5 duty ratios (D=0.33 and D=0.5 square). Each 
waveform was repeated over a range of frequencies between 
500 Hz and 2,000 Hz and voltages 20 Vrms and 60 Vrms to test 
for sensitivity to both f and B. The generated waveform was 
verified by a Voltech PM6000 Universal Power Analyser and 
fed to the primary winding of the Core Under Test (CUT). 
Ferrite was chosen as the core material as this is a realistic 
material for this application, while still exhibiting enough 
losses to yield accurate results. The CUT was placed in a 
Weiss Technik SB Series environmental chamber set to 25 °C 
to maintain constant ambient conditions. A thermocouple, 
attached to the CUT logged its temperature to ensure a 
constant core temperature is maintained throughout testing. 

 
Fig 2. Core loss experiment setup 

The secondary winding of the transformer was open circuited 
and 4 cycles of the primary current and secondary voltage 
recorded using a Tektronix TDS 2024B oscilloscope. By 
measuring the open circuit secondary voltage, only the core 
losses were considered, allowing the direct calculation of the 
BH loop. This method is widely used in the literature due to 
its accuracy. Flux Density (B) can then be calculated from: 

(2)

 
 Fig 3: Generated waveforms a) sine b) distorted sine c) triangular d) D=0.5 square e) D=0.33 square 
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Where N2 is the number of turns on the secondary, Ae is the 
effective area of the core and v(t) is the time varying voltage 
across the secondary. The magnetic field strength (H) is then 
defined as: 

 (3) 

Where N1 is the number of turns on the primary i(t) is the 
time varying primary current and Le the magnetic path length.  

The core power loss per unit volume is: 

 (4) 

Where f the waveform frequency.  

The core manufacturer’s datasheet only provides core loss 
information between frequencies of 25 kHz to 400 kHz. The 
range of interest however, lies far outwith of this at 500 Hz to 
2000 Hz. Therefore the CUT needed to be characterised first 
to determine its Steinmetz Parameters over the range of 
interest. To accomplish this, sine waves between 500 Hz and 
2000 Hz at flux densities of 0.05 T to 0.3 T were passed 
through the CUT. H was then calculated using (3) and the 
core loss from (4). These results were then extrapolated to 
cover frequencies up to 4 kHz. Extrapolating the loss data 
from the datasheet covered the remaining 4 kHz to 10 kHz 
and 10 kHz to 25 kHz frequency ranges. The properties of the 
CUT are given in Table 1.  

Manufacturer Epcos 

Material N87 Ferrite 

Shape UI 

Le (m) 0.258 

Ae (m2)  

N1:N2 92:37 

Vc (m3)  

Bsat (T) 0.49 

Table 1: CUT property table 

A three dimensional linear regression of the logarithm of (1) 
using the relationship between core loss, frequency and flux 
density can then be used to calculate the Steinmetz 
Parameters for the frequency ranges shown in (Table 2). 

Frequency Range 
(Hz) 

Core 1 

k α β 

<1000 49.580 1.194 2.265 

1000-4000 26.682 1.286 2.295 

4000-10,000 267.213 0.774 1.472 

10,000-25,000 1029 0.763 1.952 

25,000-50,000 398.87 0.921 2.200 

>50,000 71.305 1.114 2.338 

Table 2: Calculated Steinmetz Parameters 

3 Predicted Core Loss 

With the calculated Steinmetz Parameters core loss may be 
calculated using the three analytical methods: the SE, FTSE 
and iGSE for each experiment variation. As several cycles 
were recorded for each variation these were first separated 
into individual waves for the SE and iGSE methods. The 
average core loss for each variation was then taken to 
improve accuracy. The SE can therefore be simply calculated 
from (5), which has been adapted from (2). 

 (5) 

For the ith of n cycles in each experimental variation. 

To find the core loss through FTSE, the Fast Fourier 
Transform (FFT) of B must first be found to separate it into 
its harmonic components. The SE can then be applied to each 
component (j to m) and summed using vector addition to 
determine the total core loss according to (6). As only 4 
cycles could be recorded on the oscilloscope, the flux density 
vector was first extended (  to improve the FFT 
accuracy. This was achieved by repeating the recorded cycles, 
taking great care to stich the repeated cycles together properly 
so that the end of the last sequence lead into the beginning of 
the next. 

 (6) 

Application of the iGSE however, requires B to be passed 
through an algorithm first. The algorithm must separate B into 
its rising and falling sections and then major and minor loops 
and if necessary, the minor loops into sub-loops and sub-sub-
loops etc. A rising minor loop, or minor sub-loop is defined 
as; a period when the flux density decreases in an area where 
the average gradient is positive until the original flux density 
(before the decrease) is reached. The major loop then, 
contains all the data points in the rising section, minus those 
contained in the minor loop so that the major loop is 
monotonically increasing. The same can be applied to the 
falling section of the B-H curve. The iGSE should then be 
applied to each loop and summed to find the total power loss 
for the cycle as in (7)-(9). 

 (7) 

 (8) 

or, as a discrete function: 

 (9) 
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Total core loss is then determined by a weighted average of 
the power from each loop as in (10) and the average loss from 
each variation calculated by applying (11). 

 (10) 

 (11) 

Where ploop is the core loss for each loop, δBl is the change in 
flux between points l and l-1, δtl is the time between point l 
and l-1 and Tcycle and Tloop are the periods of the cycle and the 
oth loop respectively. The results of all three methods may 
then be compared to the experimentally obtained core losses 
and hence the accuracy of each determined. 

4 Results 

The calculated core losses for the Epcos N87 core are 
presented here. The results are analysed for; constant input 
voltage, varying frequency and flux density; constant 
frequency, varying voltage and flux density; as well as 
constant flux density, varying voltage and frequency (2). The 
losses were calculated using experimentally obtained voltage 
and current measurements and three empirical methods; the 
standard SE, the FTSE and the iGSE. The measurements and 
calculations were repeated for five waveforms; a sine wave, 
distorted sine wave with a 10% THD, a triangular wave and 
two square waves, D=0.33 square and D=0.5 square. The 
results are shown below in Fig 4 to Fig 6. 

It can be seen from Fig 4 to Fig 6 that all three empirical 
methods achieved the best results when used with a sinusoidal 
input voltage waveform. This is particularly true for the 

constant frequency case. It is clear that as the THD of the 
input waveform increases towards 45% (the D=0.5 square 
wave), the accuracy of the standard SE diminishes. This is to 
be expected as the SE is only valid for sinusoidal waveforms.  

 
Fig 4: Core losses for a sine wave determined from 

experimental results, the SE, FTSE and iGSE at different 
frequencies and flux densities. 

To compensate for this inaccuracy many in the industry 
perform a Fourier Transform on the flux density waveform 
and use the SE on the result. This approach yielded relatively 
accurate results for the sinusoidal, distorted sinusoidal and 
triangular waves over all frequencies and flux densities but 
performed best at lower flux densities and frequencies. 

 
Fig 5: Core losses for a) distorted (10%THD) sine wave and b) triangular wave determined from experimental results, the SE, 

FTSE and iGSE at different frequencies and flux densities. 
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Fig 6: Core losses for a) square wave (D=0.33) and b) square wave (D=0.5) determined from experimental results, the SE, 
FTSE and iGSE at different frequencies and flux densities

The iGSE performed well over all waveforms, frequencies, 
voltages and flux densities, matching the experimental data 
best in all but the D=0.5 square wave. Here, somewhat 
surprisingly the standard SE performed marginally better. 
Both the SE and FTSE performed best between 500 Hz and 
1000 Hz achieving errors of around ±5% for the sinusoid, 
distorted and triangular waveforms. The iGSE continued to 
perform well for the D=0.33 square wave with errors <±5% 
but this increased for the D=0.5 case to around ±7%. The SE 
had errors of ±5% for the D=0.5 square wave however, this 
increased to ±8% for the D=0.33 square wave.  

The error of all methods increased for frequencies above 1000 
Hz, in some cases by a factor of 2. However, this is likely due 
to a poorer fit of the calculated Steinmetz Parameters with the 
calibration results and is discussed further in section 5. This 
does however, highlight the importance of obtaining accurate 
Steinmetz Parameters. A Safety Factor (SF) of around 5% 
should be used if there is a high degree of confidence in the 
values of the Steinmetz Parameters and otherwise a SF of 
10% should be used with the SE and iGSE methods. While 
the error of the FTSE is similar to that of the SE and FTSE 
for the sinusoid and triangular waves, it increases to around 
±45% in the square wave cases.  

In both constant voltage sets (60V and 48V) the power loss 
decreases with increasing frequency. This is due to the peak 
flux density decreasing with frequency (2). It can be seen 
from Table 2 that the flux density exponent, β, is greater than 
that of frequency, α, resulting in an inverse relationship with 
frequency. If either flux density or frequency is held constant, 
the power loss increases with increasing frequency and input 
voltage respectively.  

 

5 Discussion 

As can be seen from Fig 7 the Steinmetz Parameters obtained 
for frequencies below 1 kHz offered a closer fit to the 
measured core losses for all flux densities. The consequence 
of this can be seen in the experiment results presented in Fig 
4 to Fig 6 but is particularly evident for the sinusoidal case in 
Fig 4. Here it can be seen that at the lower frequency end of 
the constant voltage and constant flux density waveforms, the 
error in the empirical calculations is smaller. Better results 
were also achieved from the constant frequency sets as they 
were taken at 500 Hz.  

It can also be seen in Fig 7 that the core behaves oddly around 
1.5 kHz. This point was retested and the results proved 
repeatable. Extra data points were then taken around it 
showing a trend towards it further validating this point. The 
cause of this deviation from the trend at 1.5 kHz is unclear 
but as it occurs for all flux densities and proved repeatable, 
the results suggest it is due to a quirk in the core rather than 
measurement error. The consequence of this is the reduced 
accuracy of the empirical equations around this frequency and 
the general reduction in accuracy above 1000 Hz. 

While the error of the SE and FTSE in the triangular wave 
case was surprisingly low, it can be explained as follows. The 
SE is based on the flux density waveform not that of the 
voltage waveform and from (2) the flux density is obtained 
from the integral of voltage. The resulting waveform is 
therefore sinusoidal with a relatively low THD. Waveforms 
with a low THD are often used with the standard SE resulting 
in a relatively accurate representation of core losses for both 
the 10% THD and triangular waveforms. 
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Fig 7: Measured core loss between 500 Hz and 2000 Hz and 
0.05 T and 0.3 T with corresponding core loss predicted by 

Steinmetz Parameters 

As evident in Fig 6a. & Fig 6b the FTSE becomes highly 
inaccurate, less so even than the standard SE. While the 
literature suggests that it would be inaccurate due to the non-
linearity of the SE, the extent of the error was still surprising. 
Further investigation revealed that, while the FFT picked out 
the correct frequencies of each harmonic, the magnitude of 
the components differed significantly from the original 
waveform in the square wave cases. As the flux density is 
raised to a power between 2.2 and 3 (Table 2) in the SE this 
error is magnified, significantly affecting the results. It is 
known that the component magnitudes are often less accurate 
than their frequencies and many windowing techniques exist 
to improve its accuracy. It is possible therefore that better 
results maybe obtained though applying an appropriate 
window to the results. Increasing the resolution of the 
measurement data may also improve the results, although 
voltage and current readings were already taken at the 
relatively high frequency of 0.25 MHz to 1 MHz. 

It is thought that the source of this inaccuracy is the 
requirement of an infinite number of harmonic components to 
accurately represent the energy contained in each component 
of highly non-linear flux density waveforms generated by 
square waves. Since it is not possible to create an infinite 
number of harmonics, the energy is incorrectly distributed 
across them, leading to an error in the magnitude of the 
attributed flux densities.  

It might be expected that the accuracy of the iGSE for the 
D=0.33 case would decrease compared to that of the D=0.5 
case due to relaxation effects. From Fig 6 however, this does 
not appear to be true as the error increases for the D=0.5 case. 
This may be because the increase in error caused by the effect 
of magnetic relaxation is small compared to that caused by 
the increase in THD in this example. The balance may well 
shift though if the number of rapid changes in the core’s 

magnetization is increased, such as would be experienced due 
to pulse width modulation. 

6 Conclusion 

The Steinmetz Equation is used extensively in industry in 
conjunction with a Fourier Transform to calculate losses in 
non-sinusoidally excited transformer cores. This paper 
compared the accuracy of this approach to using the Standard 
SE and iGSE by comparing the calculated core losses to those 
measured in an Epcos N87 ferrite core. The core was tested 
under different waveforms to investigate the effect frequency, 
flux density, voltage magnitude and wave shape has on the 
accuracy of each empirical method.  

All three methods were found to be most accurate for a 
sinusoidally excited core. The FTSE was found to also be 
relatively accurate for a 10% THD sinusoid and triangularly 
excited core particularly at low flux densities but relatively 
inaccurate for both square waves tested. Overall the iGSE 
was found to be the most accurate, although the accuracy 
slightly reduced for the D=0.5 square wave. The iGSE is 
therefore recommended for highly non–sinusoidal flux 
density waveforms in preference to using the FTSE.  
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