
This work has been submitted to NECTAR, the Northampton Electronic Collection
of Theses and Research.

Conference Proceedings

Title: A study of recent contributions on performance and simulation techniques for
accelerator devices

Creators: Ajam, H. and Opoku Agyeman, M.

Example citation: Ajam, H. and Opoku Agyeman, M. (2017) A study of recent
contributions on performance and simulation techniques for accelerator devices. In:
International Conference on Electrical and Electronics Engineering. Turkey: IEEE
ICEEE. (Accepted)

It is advisable to refer to the publisher's version if you intend to cite from this work.

Version: Accepted version

Note: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

http://nectar.northampton.ac.uk/9279/

NEC
TAR

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NECTAR

https://core.ac.uk/display/80691709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nectar.northampton.ac.uk/9279/

A Study of Recent Contributions on Performance
and Simulation Techniques For Accelerator Devices

Hussein Ajam, Michael Opoku Agyeman
Department of Computing and Immersive Technologies

The University of Northampton, United Kingdom
Michael.OpokuAgyeman@northampton.ac.uk

Abstract— High performance computing platform is
moving from homogeneous individual unites to
heterogeneous systems. Where each unit is a combination of
homogeneous cores and accelerator devices. Accelerator
such as GPUs, FPGAs, DSPs, these devices usually designed
for the specific and intensive type of computing tasks. The
presence of these devices have created fresh and attractive
development platforms for developers and designers, brand
new performance analysis frameworks and optimization
tools. This is the cutting edge in the performance of some
accelerator devices like GPUs and Intel’s Xeon Phi. We
outline some of the existing heterogeneous systems and their
development frameworks. The core of this study is a review
of performance modeling of these devices. In this paper, we
address the emerging issues that affect the performance of
these devices and associated techniques employed for
simulation and evaluation.

Keywords—; GPU; FPGA; DSP; GPGPU.

I. INTRODUCTION
Accelerators devices are a combination of hardware pieces

usually forming mini computers, but they instead designed
specifically to perform specific task or subtask effectively.
These devices are provided with a Central Processing Unit
(CPU), which responsible for processing instructions of
software fragments and manipulate them. Since these devices
are specifically designed for specific tasks, they tend to have
different CPUs architectures, different number of cores, and
endless combinations of these cores, diverse instruction sets and
various memory hierarchies. Each piece of these devices is
designed based on the predefined tasks of a specific board. Since
these devices are designed to focus on specific sort of
applications, sometimes heterogeneous devices consist different
set and types of cores [1-6], and that add more challenges in
order to measure performance or find the best suitable
simulation technique. High performance computing (HPC)
community started the journey of these accelerators when they
used Graphics Processing Units (GPUs) as accelerators for
general purpose computations [7] and that what derived the term
of General Purpose Computing on GPUs (GPGPU) [8]. The
main reason behind them was to support image processing and
manipulations.

Measuring the performance of these verity of accelerators is a
critical task, since they are diverse and been designed for
completely different purposes, customizable devices [1][2].
Accurately scale of performance requires extensive programs
writing just to achieve primary implementation. Unfortunately,
there is no outstanding tool or model that can be considered as
the reference instrument for performance prediction and tuning
[9], building specific hardware and inject them with software to
cover a single family of accelerators is not an efficient way,
especially with the verity of factors that can influence devices
performance. The biggest challenge is comparing and measure
the performance of processors and accelerators attached to it
simultaneously. The complexity of that task gets rapidly higher
when we want to reach the optimization level of a device or
trying to reach the aggregated performance of their processors,
not to mention the parallel systems with thousands of hybrid
nodes which adds increasingly difficulties to this task. In this
paper, our main objective is reviewing different literatures
about precisely to compile, organize and analyze the
performance of accelerator-based computing. The paper is
organized as follows, providing some background knowledge
on some accelerator-based computing hardware’s, some of their
development tools and outline their modeling methodologies.
Then we move on to review and compare the performance,
power consumption and finally their simulation techniques.
The last section will cover the conclusion and discussion about
our own views and findings.

II. BACKGROUND
Since we are discussing different factors and issues

regarding HPC devices, we are providing background
information about some different terms and tools to use
throughout the rest of this paper. We used the word device many
thimes in this papper but we do not deticate to any phisical
aspects of these device in our research, our focus is about the
processors and their different cores in adition to GPUs and how
they integrate to each other and eventually find ways to measure
their performance based on CPUs and accelerator attached to it.

A. Accelerators and Heterogeneous Architectures

We are focusing on Heterogenous Architecture in this paper,
Heterogenous regarding architectures with multi-cores, each
core has different characteristics, but they are designed to work
together consistently. Accelerators can be classified into: GPUs
and many-cores such as Intel’s Xeon Phi coprocessor [10]. Other
approaches like Field Programmable Gate Arrays (FPGAs) and
Digital Signal Processors (DSPs) [11]. GPUs are programmable
computational accelerators that aim to accelerate a wide range
of parallel applications [12], composed of a set of processing
cores and a memory hierarchy. A global memory space is
accessible to all the cores in the GPU [13]. GPUs were first
designed as high compute density hardware, they had fixed
processors’ instructions sets that can chive fixed number of
instructions. Over the time, they have been improved rapidly
and gained increasingly general-purpose capabilities such as
support for flexible control flow and random memory accesses,
the raw computing capacity of a GPU has increased greatly and
exceeds the capacity of general-purpose CPU [12]. The Intel
Xeon Phi accelerator is the second-generation product of these
family, designed based on the concept of Many Integrated Core
(MIC) architecture which basically means a combination of
many CPU cores grouped over a single chip [13]. And the
memory space will be shared between the GPUs and CPUs
which reduced the expenses of the older accelerators where they
used to use independence memory space each [11].

B. Development Tools for Accelerators

Accelerators applications are usually written using software
that built and provided by the Accelerators manufacture
companies, such as Quartus by Intel Altera for FPGAs
accelerators which are also designed by Intel Altera [14]. These
types of software usually consist of manufacturer-specific tool
chains or can be implementations of standard APIs [21] which
may provide a space of portability for code between different
devices. However, standards APIs applications will not provide
accurate performance measurements. As mentioned earlier
there is no such ultimate stander tools but instead fine-tuning
and specific device application is the way to fully explode
capabilities of an accelerator. Another way to program
accelerators is using frameworks:

1. OpenCL [15] which is a standardized, vendor-neutral
framework, used to program almost all different
accelerators, defining a hardware model and an API.

2. CUDA [16] This one was built specifically for NVIDIA
GPUs, it still implements similar concepts from
OpenCL, but uses slightly different terminologies, this
allows developers to use GPU in general purpose
processing.

3. Others such as OpenMP [13] and MPI [15].

C. Tools and Techniques for Performance Modeling

We can simply use debuggers and the devices manuals sheets
to port and tune applications into an accelerator device.
However, this ease does not let us to estimate or predict the

performance capability of that device, especially with parallel
programing and multi code units. We can Imagine that the same
results application can be written in endless ways, and each way
will be performed under certain circumstances on the different
cores of a device which make prediction even more complex.
We focus in this research on models of parallel applications
executed on heterogeneous devices, that can be used to help to
predict their combined performance over these devices.
Moreover, efficiently testing application code process itself has
gained enormous complexity, before applying any performance
modeling application first and most important to make sure that
the used code is concurrency bugs free. That requires a
sequence of steps from a scheduler to manifest [17]. As
schedulers are nondeterministic, both detecting and
reproducing these faults are hard. Traditionally, concurrent
programs are heavily stress-tested the application is run many
times hoping for the right set of decisions from the scheduler
that unearth latent bugs [17].In this section, we describe
methods to characterize devices and applications in order to
estimates performance models of the outlined devices.

1. Characterizing Devices
Two types of characteristics can be collected for any
accelerator device:

a. Fixed characteristics: Can be gathered from the
devices manufactures manuals, data-sheets, and
manufactures APIs which request information
from its devices automatically and fill out a list
of data obtained to get analysis in the API and
passed to different processing point and get
feedback.

b. Dynamic characteristics: Obtained from
hardware resources, performance counters [11].

2. Characterizing Applications

To get applications characteristics, we should describe the
program into a matrix of characteristics, and eventually feed the
performance module with this matrix, the accuracy of that
module will be down to the quality of generated matrix.
Different methods can generate application matrixes [11] like
Analysis of the source code, analysis of an intermediate
representation (IR) and disassembling the final binary files.

3. Modeling Methodology
Performance models are designed to list the behavior of an
application on a device. Performance models should generate
reports of performance from input applications ported into a
specific device. Some researchers [11] identify the modeling
performance of parallel systems into three main approaches:
Analytical modeling [18] form a set of equations represent most
of system characteristics in mathematical way and compare results
of different sets’ equations. Machine Learning [19] imply
artificial intelligence in the performance modeling task by
machinery studying the relations and behavioral of systems and
eventify assemble some new valuable information. Simulation
[18] tools to represent models behavioral and evaluate performance
of hardware as well as applications.

III. REVIEW OF PERFORMANCE MODELS

As we discussed before, performance models are
representation for systems performance (Application and
hardware), the output of these modules will depend on the
system inputs and it should help to classify the target system.
Performance of a particular system can be exploited from many
parameters, things like power consumption, to execution time
and others. But in order to define a useful module that can help
to understand and develop the system, we have to go through a
sequence of actions step-by-step:

1. Calculate the execution time of a specific application on
a specific device.

2. Identify performance bottlenecks, modify the code for
the next time.

3. Calculate the estimate power consumption.

4. List details of the resources usage for the next step
(Simulation).

A. Estimate Execution Time

Estimate the execution time is very important factor in
performance modeling. But in the same time, it is a difficult task
because of the verity of issues that would cause delays and
changing in execution time and others factors. This topic can be
classified depending on different modules nature. We take GPU
as a platform to review estimation execution time. For a use case
example, we will highlight a generic mechanism to estimate
execution time in GPUs, this is not the ultimate way but its
briefly highlight general steps. Before Estimating time in GPUs,
we need to classify the process of execution an application on a
GPU [20], in these steps:

a. Dispatch the data of an application into GPU memory.

b. Execute the application

c. Collect the results from the GPU memory.

There are different models to calculate execution time; we will
highlight one of them in this paper [20]. The module calculates
each step consumption time individually and finally add them
together to find the total time. In the Equation 1, (W dispatch) is
the amount of data to copy from CPU into GPU memory,
divided by the bandwidth of the dispatch. βdispatch is the error
term of the linear regression.

𝑇dispatch 𝑊dispatch = 	
𝑊dispatch

𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
+ 𝛽dispatch							(1)

Equation 2, the execution time can be calculated as:

𝑇exec 𝑊exec = 	
𝑊exec

𝐺𝑃𝑈𝑠𝑝𝑒𝑒𝑑
+ 𝛽exec						(2)

Equation 3, (Wcollect) is the amount of memory to copy from
GPU to CPU when the application has finished, divided by the
bandwidth of the collect.

 𝑇collect 𝑊collect = 	 Fcollect

GHIIJGKLMNOPQOKR
+ 𝛽collect							(3)

Equation 4, Finally adding these values together to find the total
consumption time.

𝑇GPU = 𝑇dispatch + 	𝑇exec + 𝑇collect							(4)

As mentioned before this is not the only way to measure. The
the modern architectures require more complex theory and it
variegate from one to another based on devices family and
hierarchy, but this is a straight foreword way to follow and
understand the idea behind it.

B. Bottleneck and Code Optimization

While the application code being transformed into an
accelerator, it is very important to analysis its performance
during the runtime, and looking for any potential bottleneck,
and fix them by making some recommendation to modify the
code. And just like any programing compiler, for example, it
can give you recommendation to fix the situation and remove
the code from the bottle neck. However, the new modification
recommendation can kill the performance or open a new bigger
problem. So, these modifications should be under study and
carefully check before applying them. Accelerators programing
software usually have profilers in their toolkits (such as NVIDIA
Visual Profiler for the CUDA platform), these tools should be
used to optimize the code. Their job is analyzing the code
execution and spotting any bottleneck.
 What are the bottlenecks and Why they should be
eliminated? Bottleneck is any code segment that contends
threads Bottleneck may consist of a single thread or multiple
threads that need to reach a synchronization point before other
threads can make progress [21]. There are two general types of
bottlenecks, threads that stall due to a bottleneck with called
writer [21] and the ones that execute a bottleneck called
executers. A single instance of a bottleneck can be responsible
for one or many waiters [21]. Bottlenecks have a great impact
on the performance because the processor spends many
executing cycles to execute these bottlenecks which waste a
tremendous amount of time sometimes. Bottlenecks cause
thread serialization. Therefore, a parallel application spends
most of its executing time in bottlenecks, which make the
situation worse is these types of application. Some examples of
bottlenecks.
Amdahl’s Serial Portions [4 Bottlenecks]: One thread exists
on a critical path and should be scheduled on the fastest core to
minimize execution time.
Critical Sections: Only one thread can execute a particular
section at a given time, and any other thread wanting to
execute the critical section must wait.
Barriers: When a thread reaches a barrier, it must wait until
all other threads reach the same barrier.
Pipeline Stages: In a pipelined parallel program, loop
iterations are split into stages that execute on different threads.
Threads executing other pipeline stages wait for the slowest
pipeline stages

C. Selecting Code Optimization

As mentioned before, manufacturers manuals recommending
different optimization techniques that can be applied to
accelerate the execution times of program. And Some of these
optimization tools can even be implemented automatically by
compilers. For example, in this book [22], the author describes
a methodology and some heuristics to find and optimize parallel
code in the Xeon Phi. He provides a taxonomy of potential
optimizations, relates the metrics that indicate the presence of
bottlenecks and describes some good practices to remove them
a combination of optimizations is not trivial, because of possible
negative interactions among them.

D. Power Consumption Estimation

Over the last 15 years, HPC manufacture companies always
looking to reduce the power consumption of their devises, and
to achieve that, they have to know exactly the performance of
their existing products regarding power consumption.
Application power modeling aims to estimate the power required
to execute a selected segment of code on a specific device. To
estimate accurately, we must not only look at the code and device
properties, but also application inputs and some other
characteristics.
Standalone Models: Wang	 and	 Ranganathan	 [23],	 to	 start	
modeling	first	need	to	execute	a	set	of	micro-benchmarks	with	
the	help	of	external	power	consumption	meters	to	characterize	
the	target	device.	The	module	finally	will	estimate	the	power	
conception	 based	 on	 the	 execution	 time	 and	 other	 factors.	
Then	after	measuring	 that,	 the	aim	 is	 identifying	 the	enough	
number	of	multiprocessor	that	would	provide	the	best	power	
consumption	and	sufficient	performance	any	ways	they	must	
not	 affect	 other	 performance	 factors	 by	 reducing	 power	
consumption.	
Single	 Simulators	 model:	 The	 second	 type	 of	 power	
consumption	modules	 is	 the	single	 simulator	ones,	 these	are	
tied	 to	one	 type	of	devices.	Most	of	 these	are	simulators	and	
used	 for	 multiple	 performance	 simulating	 not	 only	 power	
consumption,	 will	 cover	 some	 in	 the	 simulation	 section	 the	
next.	

E. Simulation

Simulators can be defended as representatives of models
behavioral; they are used widely to evaluate performance of
hardware as well as applications. Gathered simulation data can
be used for multiple proposes for instance help to develop the
simulated systems (hardware and applications). A Simulator
should can be classified as a general performance tool but
general under the specific type of device, not all devices, this
tool will provide different performance measurement from
bottleneck detection to power consumption and code
optimization. The level of accuracy is also down to the devices
itself, so kind of both simulator and the processor help each
other, the processor should provide the simulator accurate
modeled details and the quality of the workloads in order to
receive accurate and valid simulation from the simulator. There

are different types of simulators, we are interested in GPUs related
simulators, but still highlighting others. GPUs related can be
classified furthermore to a simulator for GPUs-based accelerators
and simulators of Hybrid architecture (GPUs + CPUs).
Sequential GPU Simulators: Attila [24], One of the earliest
graphics programs simulator software, a highly configurable
approach that was classified as a generic tool, although it has
been used mostly for GPUs but it was completely GPU
manufacture independent. It simulates by gathering dynamic
traces from OpenGL applications. One main downside about it
does not support CUDA or GPGPU.
GPGPU simulators [25], One of the most widely used
simulators, specifically designed to fulfill GPGPU. Provide
functional and cycle-level timing simulation for NVIDIA
GPUs.
 Parallel GPU Simulators: Barra-Sim [16] is a functional
GPGPU Simulator for the NVIDIA GPUs. Support CUDA
codes. GPGPU - simulator [26] parallelized GPGPU-Sim. They
divide the functional units into shared and parallel components.
Simulators of Hybrid Architectures: This type of simulators
is capable of modeling hybrid architectures (CPU and GPU) that
run heterogeneous applications. Gem5-GPU [27] is a full-system
CPUGPU simulator, written specifically for Gem5 [28]. It can
simulate programs for GPU and CPU simultaneously.
Multi2Sim [29] is a simulation framework for heterogeneous
Systems, was generally designed to include different
architectures and modules like superscalar, Multithreaded, and
Multicore. A summary of the simulation tool discussed in this
paper is provided in Table 1.

Simulator Heterogeneous CUDA	
codes

Require
Configur-
ation

Accuracy

GPGPU-
Sim	[22]

No, only for
NVIDIA	GPUs

yes yes 98.3	%

Barra-	
Sim	
[12]

No, only for
NVIDIA	GPUs

yes yes Low

Multi2Si-
m [25]	

GPU+CPU Yes No 7 – 30 %

 Table 1 Simulators

IV. CONCLUSION
 Huge diversity of the HPC devices and fast growing
development in such short period of time (about 15 years),
Researchers and companies are working to achieve better
performance regardless the tremendous level of high
performance they achieved so far. The developers of HPC
devices may be capable of developing and moving forward even
faster, but they facing the challenge of power consumption, for
example increasing the number of cores in multicore
architectures can boost the performance, but in the same time, it
will consume much power which should be in the consideration
when designing these architectures. As stated many times
before, Parallel Application always harder and more complex
than the ordinary application in all different situations and
performance factors. The programmers have to be familiar and
in-depth with the devices they are using before start writing code

in order to achieve the best possible performance. Performance
exploding is a very complicated task, because of the many
parameters that affect performance of a system. There is no
super general simulation tool that can fit all different
architectures and applications. Homogenous architectures are
out to date term, but in the same time Heterogenous used the
same Homogenous cores, the challenge is how to synchronize
them!

V. REFERENCES

[1] S. Mittal and J. S. Vetter, “A Survey of CPU-GPU
Heterogeneous Computing Techniques,” ACM
Comput. Surv., vol. 47, no. 4, pp. 1–35, 2015.

[2] Y. Gao and P. Zhang, “A Survey of Homogeneous and
Heterogeneous System Architectures in High
Performance Computing,” 2016 IEEE Int. Conf. Smart
Cloud, pp. 170–175, 2016.

[3] M. O. Agyeman, A. Ahmadinia and N. Bagherzadeh,
"Performance and Energy Aware Inhomogeneous 3D
Networks-on-Chip Architecture Generation," in IEEE
Transactions on Parallel and Distributed Systems, vol.
27, no. 6, pp. 1756-1769, June 1 2016.

[4] M. O. Agyeman and A. Ahmadinia, "A systematic
generation of optimized heterogeneous 3D Networks-
on-Chip architecture," NASA/ESA Conference on
Adaptive Hardware and Systems (AHS-2013), Torino,
2013, pp. 79-83.

[5] M. O. Agyeman and A. Ahmadinia, "Optimising
Heterogeneous 3D Networks-on-Chip," International
Symposium on Parallel Computing in Electrical
Engineering, Luton, 2011, pp. 25-30.

[6] M. O. Agyeman, A. Ahmadinia and A. Shahrabi, "Low
power heterogeneous 3D Networks-on-Chip
architectures," International Conference on High
Performance Computing & Simulation, Istanbul, 2011,
pp. 533-538.

[7] J. D. Owens et al., “A survey of general-purpose
computation on graphics hardware,” Computer
Graphics Forum, vol. 26, no. 1. pp. 80–113, 2007.

[8] GPGPU.org, “About.” [Online]. Available:
http://gpgpu.org/about. [Accessed: 25-Feb-2017].

[9] J. Nickolls and W. J. Dally, “The GPU computing era,”
IEEE Micro, vol. 30, no. 2, pp. 56–69, 2010.

[10] R. Bott, Intel Xeon Phi Coprocessor High Performance
Programming, no. 1. 2014.

[11] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso,
“A survey of performance modeling and simulation
techniques for accelerator-based computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 1, pp. 272–
281, 2015.

[12] M. Silberstein, “GPUs: High-performance Accelerators
for Parallel Applications,” Ubiquity, vol. 2014, no.
August, pp. 1–13, Aug. 2014.

[13] N. P. Tran, D. H. Choi, and M. Lee, “Optimizing cache
locality for irregular data accesses on many-core intel
Xeon Phi accelerator chip,” Proc. - 16th IEEE Int.
Conf. High Perform. Comput. Commun. HPCC 2014,

11th IEEE Int. Conf. Embed. Softw. Syst. ICESS 2014
6th Int. Symp. Cybersp. Saf. Secur., pp. 153–156, 2014.

[14] Altera, “Intel FPGA and SoC.” [Online]. Available:
https://www.altera.com/. [Accessed: 23-Feb-2017].

[15] K. Opencl, “OpenCL Specification,” ReVision, pp. 1–
385, 2009.

[16] “CUDA Zone | NVIDIA Developer.” [Online].
Available: https://developer.nvidia.com/cuda-zone.
[Accessed: 24-Feb-2017].

[17] P. Banga, A. Pai, S. Roy, and M. Chaudhuri,
“Accelerating Schedule Space Exploration of Multi-
threaded Programs with GPUs,” no. 978, pp. 115–124,
2016.

[18] R. Jain, The art of computer systems performance
analysis - techniques for experimental design,
measurement, simulation, and modeling., vol. 491.
1991.

[19] T. M. Mitchell, Machine Learning. 1997.
[20] P. Velho, D. A. G. de Oliveira, E. L. Padoin, and P. O.

A. Navaux, “Accurate Analytic Models to Estimate
Execution Time on GPU Applications,” XI Parallel
Distrib. Process. Work., pp. 1–4, 2013.

[21] J. a. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt,
“Bottleneck identification and scheduling in
multithreaded applications,” ACM SIGARCH Comput.
Archit. News, vol. 40, no. 1, p. 223, 2012.

[22] Rezaur Rahman, Intel Xeon Phi Coprocessor
Architecture and Tools: The Guide for Application. .

[23] Y. Wang and N. Ranganathan, “An instruction-level
energy estimation and optimization methodology for
GPU,” Proc. - 11th IEEE Int. Conf. Comput. Inf.
Technol. CIT 2011, pp. 621–628, 2011.

[24] V. M. del Barrio, C. Gonzalez, J. Roca, and A.
Fernandez, “ATTILA: a cycle-level execution-driven
simulator for modern GPU architectures,” 2006 IEEE
Int. Symp. Perform. Anal. Syst. Softw., pp. 231–241,
2006.

[25] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and
T. M. Aamodt, “Analyzing {CUDA} Workloads Using
a Detailed {GPU} Simulator,” Ispass, pp. 163–174,
2009.

[26] S. Lee and W. W. Ro, “Parallel GPU architecture
simulation framework exploiting work allocation unit
parallelism,” ISPASS 2013 - IEEE Int. Symp. Perform.
Anal. Syst. Softw., pp. 107–117, 2013.

[27] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A.
Wood, “gem5-gpu: A Heterogeneous CPU-GPU
Simulator,” IEEE Comput. Archit. Lett., vol. 14, no. 1,
pp. 34–36, 2015.

[28] N. Binkert et al., “The gem5 Simulator,” Comput.
Archit. News, vol. 39, no. 2, p. 1, 2011.

[29] R. Ubal, P. Mistry, D. Schaa, H. Ave, and D. Kaeli,
“Multi2Sim : A Simulation Framework for CPU-GPU
Computing,” Proc. 21th Int. Conf. Parallel Archit.
Compil. Tech. (PACT’12). Minneapolis, Minnesota,
USA. Sept. 19-23. USA ACM Press, pp. 335–344, 2012.

