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Abstract 

Co-located wave and wind energy farms can serve to tackle one of the downsides of 

offshore wind energy relative to its onshore counterpart: the longer non-operational 

periods. These are partly caused by delays to maintenance tasks due to energetic sea 

states preventing access. By co-locating Wave Energy Converters (WECs) in an 

appropriate configuration it may be possible to reduce the wave heights within the wind 

farm area (shielding effect) and thereby increase the weather windows for maintenance. 

Previous works analysed the improvements in accessibility obtained by configuring the 

co-located WECs as a peripheral barrier or interspersed within the farm. However, the 

former led to an insufficient wave height reduction as the distance to the barrier 

increased and the latter presented other handicaps, notably in respect of the submarine 

cable installation and the navigation of workboats. The objectives of this work are: (i) to 

analyse whether a uniformly distributed array may be more convenient in these respects 

and (ii) to carry out a comparative economic assessment. This investigation is carried 

out through a case study at the Horns Rev 1 wind farm by means of a high-resolution 

spectral wave model. Annual cost savings of up to 900,000 € are found. 
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Nomenclature  

ATR: rated power of transformer (MVA) 

AWTk: percentage of Accessible Wind Turbines during the k percentage of time 

b: the pile spacing (m) 

cx : spatial velocities in the x component (ms
-1

) 

cy : spatial velocities in the y component (ms
-1

) 

ct:: transmission coefficient of the offshore wind turbines 

cθ : rate of change of group velocity which describe the directional rate of turning 

cσ : rate of change of group velocity which describe the frequency shifting due to 

changes in currents and water depth 

Cd: drag coefficient of the piles  

Ccable: cost of the electricity transmission cable (€/m) 

CMV/HV: cost of the MV/HV transformer (k€) 

Ct: total costs (€) 

CALM: Catenary Anchor Leg Mooring 

d: depth (m) 
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D: distance between the twin bows of a single WaveCat WEC 

Dc: catenary diameter (m) 

Dp: pile diameter (m) 

EMODnet: European Marine Observation and Data Network  

ERDF: European Regional and Development Fund 

Hi : incident significant wave height (m) 

Hs: significant wave height (m) 

Hsi: significant wave height incident on the i-th turbine in the baseline scenario without 

WECs (m) 

Hs,WECi: significant height incident on the i-th turbine with co-located WECs (m) 

HRAj: significant wave Height Reduction along the j-th Area of wind turbines with co-

located WECs 

HRF: wave Height Reduction within the Farm with co-located WECs (m) 

In,: maximal current in the medium voltage cable (A)  

Jfarm: average power output of all co-located WECs (W/m) 

JW,i :  power production of the i-th WEC (W/m) 

JWEC: average power production per WEC generated by the co-located (W/m) 

k: percentage of time during which the wind turbines are accessible 

K: constant with a value 0.02 kg/(m·mm
2
) for studless chain and 0.0219 kg/(m·mm

2
) for 

stud-link chain 

m: number of turbines in the j-th area 

n: total number of wind turbines 

nW: total number of WECs 
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N : wave action density spectrum (Js) 

NDA: Non-uniformly Distributed Array 

L: total length of the catenary (m) 

LCOE: Levelised Cost of Energy  

Ot: electricity generation (MWh) 

O&M: Operation & Maintenance 

PDA: Peripherally Distributed Array 

PTO: Power Take-off System  

r: discount rate 

Stot: energy density source terms which describe local changes to the wave spectrum (Js
-

1
) 

SWAN: Simulating WAves Nearshore 

t: a point in time  

T: total number of time points considered  

Tp: peak wave period (s) 

Uw:  wind speed at 10 m.  

UDA: Uniformly Distributed Array  

WCALM: weight of the mooring system (N) 

WEC: Wave Energy Converter 

WF: Wind Farm 

α: cost coefficient to calculate the electricity transmission cable that depends on the 

operating voltage of the cable (€/m) 
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β : cost coefficient to calculate the electricity transmission cable that depends on the 

operating voltage of the cable (€/m) 

γ: cost coefficient to calculate the electricity transmission cable that depends on the 

operating voltage of the cable (1/A) 

θwave: wave direction (º) 

θwind: wind direction (º) 

1. Introduction 

Recently, at the Paris climate conference (COP21) in December 2015, 195 countries 

adopted the first-ever universal, legally binding global climate deal. The agreement set 

out a global action plan to put the world on track to avoid dangerous climate change by 

limiting global warming. In this context, reducing carbon emissions and, therefore, 

finding alternatives to fossil fuels is fundamental. Marine energy is regarded as a 

promising energy source due to the vast resource available around the world [1-8]. 

Already well established commercially, offshore wind energy is the most developed 

marine renewable, with a relatively mature technology [9-11]. Tidal [12-14] and wave 

energy [15, 16] are less developed. Notwithstanding their environmental benefits, these 

renewables have to be economically competitive if they are to attract significant 

investment [17]. Offshore wind energy has a greater resource and better availability 

than its onshore counterpart [18-21]; on the minus side, it involves higher initial 

investments and maintenance costs [22-23]. Comparatively frequent maintenance is 

required in the harsh marine environment [24], yet access to the turbines by workboats – 

the  most cost-effective access system [22] – is only possible when the  significant wave 

height is below 1.5 m [22, 25, 26]. The resulting downtime [27-30] causes significant 

costs and raises the power output variability, all of which may hamper the development 

of offshore wind.  
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In this context, the co-location of Wave Energy Converters (WECs) in a wind farm [31] 

has emerged as a solution to increase the accessibility to the wind turbines: the co-

located WECs extract energy from the incident waves [32], reducing wave heights  in 

their lee [33,34] and, consequently, improving the accessibility to the wind turbines [35-

37]. Moreover, other synergies between offshore wind and wave energy can be realised 

through the co-located WECs [35, 38], including a more sustainable use of the scarce 

marine space [39], a reduction in the intermittency inherent to renewables [40, 41] or 

the opportunity to reduce costs by sharing some of the most expensive elements of an 

offshore project [34, 42]. 

Within these co-located arrays, different options may be considered [43]: (i) a 

Peripherally Distributed Array (PDA), where WECs are placed along the perimeter of 

the wind farm, forming a barrier; (ii) a Uniformly Distributed Array (UDA), with WECs 

deployed uniformly throughout the wind farm; or (iii) a Non-uniformly Distributed 

Array (NDA). Previous studies [31, 44] demonstrated that co-located farms increase 

considerably the accessibility to the wind turbines for maintenance. However, in the 

first case (PDA array) the wave height reduction achieved in the area farthest from the 

barrier of WECs was not enough to ensure an appropriate level of accessibility [45]. 

The NDA configuration, with part of the WECs forming a peripheral barrier and the 

remaining WECs interspersed between the wind turbines to counter wave regeneration 

by diffracted energy overcomes this downside, resulting in a more uniform wave height 

reduction [46]. However, this configuration presents other shortcomings, notably in 

relation to the installation of the moorings and submarine cables and the 

manoeuvrability of workboats for access to wind turbines and WECs, which are not 

facilitated by the non-uniform layout [47]. 
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With this in view, the aim of this work is to assess the option of uniformly distributed 

arrays (UDAs), and in particular to determine whether this configuration may achieve 

similar values of wave height reduction while facilitating the circulation through the 

farm. For this purpose, a case study at the Horns Rev offshore wind farm is carried out 

in which four UDA layouts are considered. A third-generation wave model, SWAN 

(Simulating WAves Nearshore) and real (observed) wave data are used for estimating 

the wave conditions within the farm.  

This paper is structured in four steps. First, on the basis of previous results obtained at 

Horns Rev 1 with PDA and NDA configurations, four UDA configurations are 

proposed and tested for a representative sea state. Second, the two best configurations 

are simulated with real annual sea data by means of the wave model. Third, the results 

obtained are analysed in terms of wave height reduction within the wind farm area and 

power production by means of indicators defined ad hoc. These results are then 

translated into monetary terms by means of the levelised cost. Finally, the results for the 

UDA co-located farms are compared with those for PDAs and NDAs, and conclusions 

are drawn. 

 2. Methodology 

2.1. Study area 

The assessment of the UDAs was carried out by considering an offshore wind farm 

currently in operation: Horns Rev 1. Located off the Danish North Sea coast (Figure 1), 

the water depth and distance to shore are in the ranges 6-14 m and 14-20 km, 

respectively. Horns Rev 1 is composed by 80 turbines (Vestas V80-2MW) with a 

monopile substructure erected on a grid of 10 rows [48-49]. The distance between the 
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individual wind turbines and rows is 560 m, occupying an area of 21 km
2
. The wind 

turbines are ordered on a Cartesian grid (Figure 2). 

 
Figure 1. Horns Rev 1 wind farm location.  

 

Figure 2. Horns Rev 1 wind farm layout. The colour scale represents the water depth [in 

m].  

 

2.2. Wave and wind climate 

North Sea 

Horns Rev 1 Denmark 
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Hindcast data from WaveWatch III, a third-generation offshore wave model, were used 

in conjunction with wave buoy measurements from May 2012 to April 2013. The main 

wave climate characteristics are shown in Table 1 and Figure 3. Westerly waves, from 

the III and IV quadrants, prevail, and the mean significant wave height is 1.49 m. The 

prevailing wind direction is northerly, from the I and IV quadrants, and the mean wind 

speed is 8.40 m/s (Table 1). On the basis of the relatively low inter-annual variability of 

wave power in the northern part of the North Sea [50] the results can be extended to the 

present.  

Table 1. Main wave and wind statistics Horns Rev 1 from May 2012 to April 2013. Hs 

is the significant wave height, Tm01 the mean wave period, θwave  the wave direction, Uw 

the wind speed at a height of 10 m above the sea, and θwind  the wind direction. 

 

Hs (m) Tm01 (s) θwave (º) Uw (ms
-1

) θwind (º)  

Mean 1.49 5.84 228.97 8.40 171.55 

Median 1.38 5.72 245.91 8.28 168.95 

Std. deviation 0.81 1.66 92.56 3.52 111.67 

Minimum 0.09 2.36 0.02 0.02 0.24 

Maximum 5.41 16.05 359.97 22.21 360.00 

Percentiles 

10 0.52 3.84 81.32 3.84 27.79 

20 0.73 4.46 138.37 5.27 53.80 

25 0.83 4.72 176.38 5.79 68.29 

30 0.93 5.02 212.06 6.38 82.16 

40 1.14 5.38 231.36 7.40 126.39 

50 1.38 5.72 245.91 8.28 168.95 

60 1.61 6.16 266.51 9.21 198.63 

70 1.91 6.60 291.95 10.16 241.05 

75 2.03 6.79 309.00 10.78 280.07 

80 2.19 6.96 319.53 11.42 306.56 

90 2.62 7.53 328.64 13.11 330.58 
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Figure 3. Significant wave height (Hs) [left] and wind speed (Uw) [right] roses at the 

study site. 

On these grounds, a representative case study with a significant wave height (Hs) of 2 

m, a mean period (Tm01) of 5.5 s and 270º as the predominant wave direction (θwave) was 

defined for a first assessment of the effectiveness of the UDA configurations in 

reducing the wave height below the workboat threshold (1.5 m). 

2.3. Co-located farm layouts 

The WEC device used in all cases studies was WaveCat: a floating offshore WEC 

whose principle of operation is wave overtopping [51].  The wave transmission 

coefficient was based on the laboratory tests carried out with a model at a 1:30 scale to 

determine the wave field-WEC interaction [52].  The  nominal power at 1:1 scale is 

expected to be 1.2 MW [53]. As for the configuration of the devices, the minimum 

spacing between devices is 2.2D,  where D = 90 m is the distance between the twin 

bows of a single WaveCat WEC [54].  

The UDAs were laid out based on the results obtained for PDA [45, 55] and NDA [44] 

configurations in previous works, which may be summarised as follows. In the PDA 

(Figure 4), the co-located WECs configuration consisted of two main rows of WECs 
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with a spacing of 198 m orientated towards the prevailing wave direction, and other 

rows of WECs at an angle of 45º to face secondary wave directions and thus protect a 

larger wind farm area. The average wave height reduction in the farm (HRF) was 

around 17%, but its distribution throughout the wind farm (HRAj) showed important 

differences between the first and last rows of turbines (from 20.6% to 8.1%) (Figure 4). 

The NDA, with WECs deployed not only along the periphery but also within the wind 

farm, led to a more uniform wave reduction, with similar values of accessibility, and 

consequently availability, for all the wind turbines (Figure 4). In fact, the sampling 

variance of HRAj values was 32.14 m
2
 for the PDA and 13.41 m

2
 for the NDAs [46]. 

 
Figure 4. Comparative scheme of the wave climate between the baseline scenario (left), 

the PDA (middle) and NDA (right) co-located farms at Horns Rev. The colour scale 

represents the significant wave height [in m].  

To define the UDA layouts for this comparative study a number of initial premises were 

adopted: (i) the total number of WECs was to be the same as in the previous studies 

with NDAs and PDAs at Horns Rev 1 (55 WECs); (ii) the barrier of WECs at the 

periphery of the farm orientated to the prevailing wave direction was maintained to 

achieve a sufficiently large initial shielding effect; and (iii) the rest of the devices were 

uniformly redistributed within the wind farm in order to avoid wave height 

regeneration. On this basis four UDA configurations were defined (Figure 5). 

 

PDA Wind farm NDA 
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Figure 5. Co-located wave-wind farms: PDA, NDA and UDA configurations, from (i) 

to (iv).  

2.4. Wave propagation model 

The effectivity of the UDAs was assessed through the third-generation numerical wave 

model SWAN (Simulating WAves Nearshore), which was successfully used in previous 

work to model the propagation of waves, the absorption (transmission) of energy by the 

wave farm and also the impact of a wave farm on coastal processes [54, 56-61]. The 

evolution of the wave field is described by the action balance equation,  

𝜕

𝜕𝑡
 𝑁 +  

𝜕

𝜕𝑥
 𝑐𝑥𝑁 +  

𝜕

𝜕𝑦
 𝑐𝑦𝑁 +  

𝜕

𝜕𝜎
 𝑐𝜎𝑁

𝜕

𝜕𝜃
 𝑐𝜃𝑁 =  

𝑆𝑡𝑜𝑡

𝜎
 ,  (1) 

where t is time (s), cx and cy are spatial velocities in the x and y components (ms
-1

), cθ 

and cσ are rates of change of group velocity which describe the directional (θ) rate of 

turning and frequency (σ) shifting due to changes in currents and water depth, N is wave 

action density spectrum, and Stot is the energy density source terms which describe local 

changes to the wave spectrum.  

PDA NDA UDA-(i) 

UDA-(ii) UDA-(iii) UDA-(iv) 
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The model was implemented in the so-called nested mode in all cases, with two 

computational grids: (i) a coarse grid from offshore to the coast covering an area of 

42×32 km with a resolution of 70×80 m, and (ii) a fine (‘nested’) grid covering the 

study site (9×9 km) with a resolution of 12×20 m. The bathymetric data from the 

European Marine Observation and Data Network (EMODnet) were interpolated onto 

this grid. 

Both WECs and wind turbines were represented in the model by means of a 

transmission coefficient, whose value can theoretically vary from 0% (i.e., 100% of 

incident wave energy absorbed) to 100% (no energy absorbed) [19, 32, 54, 57-60, 62, 

63]. Wave transmission through the WECs was implemented on the wave propagation 

model using the results of the laboratory tests carried out by Fernandez, Iglesias [52]. 

For its part, the transmission coefficient of the offshore wind turbines (ct) was 

calculated using   

𝑐𝑡 = 4 (
𝑑

𝐻𝑖
)  𝐸 [−𝐸 +  √𝐸2 +  

𝐻𝑖

2𝑑
], and   (2) 

𝐸 =
𝐶𝑑(

𝑏

𝐷𝑝+𝑏
)

√1− (
𝑏

𝐷𝑝+𝑏
)

2
,     (3) 

where d is the water depth (m), Hi is the incident significant wave height (m) and E a 

non-dimensional coefficient that is calculated as a function of: the pile diameter (Dp) in 

m, the pile spacing (b) in m, and the drag coefficient of the piles Cd  (1.0 for a smooth 

pile) [64].  

2.5. Shielding effect and power output indicators  

The performance of the co-located UDA configurations was assessed by means of 

shielding effect and power output indicators defined ad hoc. First, the mean wave 
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reduction throughout the wind farm was assessed through the significant wave Height 

Reduction within the Farm (HRF), 

𝐻𝑅𝐹 =
100

𝑛
∑

𝐻𝑠𝑖
−(𝐻𝑠,𝑊𝐸𝑐)𝑖

𝐻𝑠𝑖

𝑛
𝑖=1  ,    (4) 

where the index i designates a generic turbine of the wind farm, n is the total number of 

turbines, Hsi is the significant wave height incident on the i-th turbine in the baseline 

scenario (without WECs), and (Hs, WEC)i is the significant wave height incident on the i-

th turbine with co-located WECs. 

Second, the variation of the wave height reduction within the farm was assessed by 

means of the significant wave Height Reduction along the j-th area of wind turbines, 

𝐻𝑅𝐴𝑗 =
100

𝑚
∑

𝐻𝑠𝑖
−(𝐻𝑠,𝑊𝐸𝑐)𝑖

𝐻𝑠𝑖

𝑚
𝑖=1 ,    (5) 

where the index i denotes a generic turbine of the j-th area of the wind farm, m is the 

number of turbines in the j-th area, Hsi is the significant height incident on the i-th 

turbine in the baseline scenario (without WECs) and (Hs, WEC)i  is the significant height 

incident on the i-th turbine with co-located WECs. Each j-area corresponds to a north-

south (vertical in the figures) row of wind turbines, numbered from east to west. 

Further, the global accessibility to the wind turbines was assessed by means of the 

percentage of time that the significant wave height was below the workboats limit (1.5 

m). Finally, the percentage of wind turbines that are accessible (i.e., with a significant 

wave height in their vicinity below 1.5 m) is given by 

 𝐴𝑊𝑇𝑘 =  
𝐴𝑐𝑐𝑒𝑠𝑖𝑏𝑙𝑒 𝑤𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠
× 100 ,    (6) 
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where k is the percentage of time during which the wind turbines are accessible. This 

indicator was assessed for k = 100%, 90%, 80%, 70%, and 60% or less.  

The average power production of the co-located WECs is given by  

𝐽𝑓𝑎𝑟𝑚 =  
1

𝑇
  ∑ ∑  (𝐽𝑊,𝑖)𝑡

𝑇
𝑡=1

𝑛𝑊
𝑖=1  ,     (7) 

where the index i designates a generic WEC, nW is the total number of WECs, t 

represents a point in time, T the total number of time points considered and JW,i is the 

power production of the i-th WEC. The average wave power production per WEC in the 

farm can be calculated as 

𝐽𝑊𝐸𝐶 =
𝐽𝑓𝑎𝑟𝑚

𝑛𝑊
 .     (8) 

2.6. Economic assessment 

The preliminary cost when starting up a wave farm involves engineering tasks and 

licences. Both are related to the installed power, the former ranges between 570,000€ 

and 2,300,000€ [65], and the latter can be estimated in Euros as 2.83% of the nominal 

power in Watts [66]. In this study, an average value of 1,500,000€ was assumed for the 

cost of preliminary studies, design and other engineering tasks to start up the proposed 

wave farms as stand-alone systems.  

As for the capital cost, the initial investment at the Horns Rev 1 wind farm was 272 M€ 

[67]. In the case of the co-located WEC arrays proposed, the capital cost encompasses: 

(i) WEC structure; (ii) power take-off system (PTO); (iii) mooring system; (iv) 

installation; and (v) electrical connection. The cost of the WECs depends on the 

material employed for the structure. In the case of the WaveCat, steel is the material 

selected, with a reference cost of 3,400 €/ton [68]. The displacement of the WaveCat 



16 
 

model at a 1:30 scale is 360 kg, and the weight of the structure is 100 kg [52]. The cost 

of the PTO can be estimated as 5,000 €/kW [68]. As for the assembly, the most usual 

mooring system is CALM (Catenary Anchor Leg Mooring), whose cost can be 

calculated as a function of its weight (WCALM), 300 €/ton [68]. Its weight (in N) can be 

estimated as [69] 

𝑊𝐶𝐴𝐿𝑀 = 9.81 𝐿 𝐷𝑐
2𝐾,     (9) 

where L is the total length of the catenary (m), Dcits diameter (mm) and K a constant 

with a value 0.02 kg/(m·mm
2
) for studless chain and 0.0219 kg/(m·mm

2
) for stud-link 

chain. The total length of the mooring line (L) is usually estimated as 3-5 times the 

water depth [70-72]. In this work, the three-legged CALM system configuration [73] 

was selected and the length of the mooring line was assumed to be 4 times the water 

depth. Therefore, the total length of the catenary per WEC was 120 m. As for the 

diameter a conservative value of 120 mm was considered [74-76]. Finally, the cost of 

the WECs installation and assembly has to be added – some 250,000€/MW [1, 77-79].  

The electricity generated by the Horns Rev 1 wind farm (600,000,000 kWh/year [50]) is 

exported by a 63 km inter-array cable with MVAC (30 kV) to the transformer  (75 

MVA), which elevates the power up to 110 kV (HVAC) for the transmission to shore. 

Then, a 34 km export cable connects the transformer with the onshore station at Oksby 

(Esbjerg) [80]. The specific cost of the cable itself, Ccable (€/m), is a function of the 

voltage and the maximal current [81]: 

𝐶𝑐𝑎𝑏𝑙𝑒 =  𝛼 +  𝛽𝑒(𝛾𝐼𝑛/105),     (10) 

where α, β and γ are cost coefficients that depend on the operating voltage of the cable. 

For a 30 kV cable, these coefficients are 54.37 (€/m), 78.83 (€/m) and 234.34 (1/A), 
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respectively. In, (A) is the maximal current in the medium voltage cable. The specific 

installation cost for MV (medium voltage) is assumed to be 380 (€/m) [81].  

For MV/HV transformers from 50 to 800 MVA [82] the cost can be obtained as a 

function of the rated power of transformer, ATR (MVA), as follows: 

𝐶𝑀𝑉/𝐻𝑉(𝑘€) = 44.568 𝐴𝑇𝑅
0.7513 .    (11) 

The cost of the offshore substation platform and its installation can be calculated as 

0.0485 M€/MW [83]. Finally, the cost of the export HVAC cable can be calculated with 

the same equation as the inter-array cable (Eq. 10) but different coefficients: α= 204.97 

(€/m), β =47.42 (€/m) and γ =333.587 (1/A). The installation cost for HV cable is 750 

€/m [81].  

Over the lifetime of the wind farm, the annual Operation and Maintenance (O&M) costs 

are around 16 €/MWh [67]. Moreover, the balancing of the power production from the 

turbines is the responsibility of the farm owner. According to previous Danish 

experience, balancing brings in an equivalent cost of around 3 €/MWh [67].  The O&M 

cost of the WECs was estimated at 30 €/MWh [84-87]. As for the wind turbines, the 

O&M strategy at the Horns Rev wind farm is based on workboats, and their cost is in 

the range 10-28 €/MWh [23, 88-91].  

Finally, the decommissioning cost at the end of the useful life of the installation ranges 

between 0.5 and 1% of the capital cost. In this study, a value of 0.75% was adopted.  

The cost-competitiveness of the co-located farm was assessed by means of the 

Levelised Cost of Energy (LCOE), calculated as total cost divided by the total output 

(the value of the electricity generated) over the lifetime of the farm, both in present 

value: 
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𝐿𝐶𝑂𝐸 =
∑ 𝐶𝑡/(1+𝑟)𝑡𝑛

𝑡=0

∑ 𝑂𝑡/(1+𝑟)𝑡𝑛
𝑡=0

  ,    (17) 

where Ct is the sum of all costs in year t, Ot is the value of the output in year t, n is the 

lifetime of the farm in years (t=0…n), and r is the discount rate, which ranges between 

5 and 15% in marine energy studies. 

 

3. Results and discussion 

3.1. Wave propagation model 

The nearshore wave propagation model was validated with wave buoy data (Section 

2.2). A good correlation was achieved between the simulated and observed time series 

(Figure 6), as shown by the values of the coefficient of determination (R
2
) and the Root 

Main Square Error (RMSE), 0.93 and 0.32 m, respectively.

 

Figure 6. Time series simulated (Hs, SWAN) and measured (Hs, buoy) significant wave 

height for the case study.  
 

 

3.2. Wave height reduction and accessibility  

First, the effectiveness of the four proposed co-located UDA of WECs was analysed in 

terms of wave height reduction for a representative sea climate (Section 2.2) (Table 2, 

Figure 7).  
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Table 2. HRAj (%) and HRF (%) values obtained with co-located WECs at Horns Rev 1 

under a sea state with: Hs = 2 m, Tp = 6 s and θwave = 270º. The colour scale represents 

the significant wave weight, Hs (m).  

 
HRAj (%) 

j-th area PDA NDA 
UDA 

i ii iii iv 

1 31.27 29.00 26.73 24.47 22.20 19.93 

2 30.86 27.36 23.87 20.38 16.89 13.40 

3 28.14 23.12 18.10 13.07 8.05 3.03 

4 30.34 28.44 26.54 24.64 22.74 20.84 

5 28.80 28.41 28.01 27.61 27.22 26.82 

6 26.74 23.88 21.03 18.17 15.31 12.45 

7 22.21 23.28 24.36 25.43 26.51 27.58 

8 19.55 22.95 26.34 29.73 33.12 36.52 

9 18.21 21.62 25.02 28.42 31.82 35.22 

10 16.23 17.65 19.07 20.48 21.90 23.31 

HRF (%) 25.24 24.57 21.34 21.22 22.84 23.44 

 

HRAj (%) 32 28 24 20 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison of the wave height reduction obtained with co-located WECs at 

Horns Rev 1 under a sea state with: Hs = 2 m, Tp = 6 s and θwave = 270º. The colour scale 

represents the significant wave weight, Hs (m).  

NDA UDA-(i) 
PDA 

UDA-(ii) UDA-(iii) UDA-(iv) 
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The UDA-(i) layout provided good wave height reduction with similar values to those 

obtained with NDAs but with the advantage of a greater protection in the last rows of 

wind turbines (Table 2, Figure 6). In exchange, the wave height reduction was lower 

along the third row of wind turbines (Table 2) due to the existence of a unique first 

barrier instead of the double barrier of the other configurations, which provided a larger 

initial reduction and, thus, retarded wave regeneration. In any case, the difference is not 

too great and, moreover, with the UDA configuration the interferences between WECs 

of consecutive rows disappeared, and therefore a larger power production may be 

expected.  

In the case of the second configuration, UDA-(ii), waves were not well intercepted by 

the initial WECs barrier (Figure 6) due to the larger separation between devices needed 

to maintain the same number of WECs as in the other configurations; thus, the wave 

height reduction decreased in the first rows of wind turbines (Table 2), especially in the 

southwest part of the wind farm (Figure 6). 

As for the configuration UDA-(iii), the wave height reduction in the entire farm (HRF) 

was closer to the values obtained with the PDA and NDA configurations than with 

UDA-(i) and UDA-(ii). However, this layout was discarded in view of the large 

interferences between rows of WECs, not least in the case of the fourth (easternmost) 

row (Figure 7), which could be detrimental to power output.  

Finally, the configuration UDA-(iv) achieved the greatest values of wave height 

reduction in the entire farm; however, the reduction was not as uniform as in the case of 

UDA-(i).  

Based on the above results, the configurations UDA-(i) and (iv) were selected to 

continue the analysis with the entire wave dataset, extending from May 2012 to April 
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2013. The UDA configurations achieved larger values of wave height reduction in the 

entire farm (HRF) than the PDA and NDA configurations (Table 3); however, this did 

not translate into a better accessibility ⎯ the percentage of time when the wind turbines 

are accessible – since the reduced significant wave heights were still above the limit 1.5 

m threshold for workboat operation. Indeed, the NDA configuration achieved the best 

level of accessibility, followed by PDA. However, the accessibility values of the UDA 

configurations were not far behind, especially in the case of UDA-(iv). In all cases the 

accessibility was over 70% (Table 3) ⎯ a notable improvement with respect to the 

baseline, the standalone wind farm (approx. 60%). 

Table 3. HRF and accessibility values achieved considering the annual series of wave 

data with the PDA, NDA and UDA-(i),(iv) configurations of co-located WECs. 

Parameter 
Configuration 

PDA NDA UDA-(i) UDA-(iv) 

HRF (%) 17.01 17.93 18.27 18.46 

Accessibility (%) 70.89 71.10 70.41 70.82 

Analysing the variation in wave height reduction moving away from the peripheral 

barrier of WECs is critical to establishing whether UDAs are able to mitigate the wave 

regeneration that occurred in the case of the PDA. On the basis of the HRAj values 

(Table 4), it is clear that the wave height reduction on the last rows of wind turbines was 

improved with the proposed layouts thanks to the WECs introduced between the fifth 

and sixth rows of wind turbines. On the downside, a smaller reduction was achieved in 

the western areas of the farm, albeit greater than the average reduction in the farm 

(HRF). Therefore, UDAs presented a more uniform wave height reduction over the 

wind farm, particularly in the case of UDA-(i), which had the lowest variability in HRA. 

In fact, the analysis of accessibility to the wind turbines (AWTk) (Table 5) showed that 

the new configurations not only improved the global accessibility nearly as much as 

PDAs and NDAs (an improvement of approx. 10% with respect to the baseline 
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scenario) but also achieved a more uniform distribution of wave height, leading to 

similar values of accessibility for all the wind turbines.  

Table 4. HRAj values based on the annual series of wave data with the PDA, NDA and 

UDA(i),(ii) configurations of co-located WECs. 

j-th area 
HRAj (%) 

PDA NDA UDA-(i) UDA-(iv) 

1 30.62 28.27 21.14 23.45 

2 26.28 23.29 17.12 17.23 

3 21.53 20.5 15.8 15.65 

4 19.98 20.38 16.16 16.93 

5 17.44 18.52 17.59 19.97 

6 15.02 16.34 26.80 28.03 

7 11.68 17.07 21.22 21.40 

8 10.18 12.8 18.28 16.04 

9 9.25 11.49 15.79 14.54 

10 8.16 8.67 12.87 11.37 

 

HRAj (%) 32 28 24 20 16 

 

 

Table 5. AWTk (%) values for the standalone system (Wind Farm, WF) and for the co-

located farms with PDA, NDA or UDA configurations. 

k (%) 

Configuration 

WF PDA NDA UDA-(i) UDA-(iv) 

100 0 0 0 0 0 

90-100 0 0 0 0 0 

80-90 0 10 3.75 2.5 5 

70-80 0 46.25 55 45 47.5 

60-70 45 43.75 41.25 52.5 47.5 

≤60 55 0 0 0 0 

 

3.3. Power production  

In addition to the shielding effect of the co-located WECs discussed in the previous 

section, their power production is of interest per se. In the case of the PDA 

configuration the results were generally good; nevertheless, the WECs deployed on the 

second row of the peripheral barrier saw their output reduced due to the wave power 
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deficits in the wakes of the WECs on the first row [45]. This problem was in part 

overcome with the NDA configuration, which reduced the interference between devices 

by intercalating some of the WECs within the wind turbines, at a distance from the 

peripheral barrier – leading to an increase of the average power production per WEC 

(JWEC) of approx. 1%.  The new configurations, UDA-(i) and (iv), achieved even better 

results, with increases of approx. 3% and 2% (Table 6). The explanation is 

straightforward. Whereas in the case of the NDA configuration only certain WECs were 

removed from the double peripheral barrier and distributed amid the wind turbines, in 

the UDA configurations a greater number of devices were relocated, especially in the 

case of UDA-(i), in which there was no double barrier of WECs – the entire second row 

was deployed after the fifth row of wind turbines, where wave heights were beginning 

to recover. In the case of UDA-(iv), the power production increased in spite of the 

double barrier of WECs since the spacing between WECs was greater than in the case 

of the PDA and NDA configurations, leading to reduced interference between WECs of 

the first and second rows.  

Table 6. Average power production (Jfarm) generated by the co-located WECs and 

average power production per WEC (JWEC) for the PDA, NDA and UDA configurations. 

Configuration PDA NDA UDA-(i) UDA-(iv) 

Jfarm (MW) 30.6 31.0 31.6 31.3 

JWEC (kW) 557.1 563.5 574.1 568.2 

 

3.4. Economic analysis 

The costs of the four co-located arrays as independent systems (without considering the 

synergies with the wind farm) are summarised in Table 7. Some of them were the same 

for the four configurations, such as the costs of licenses and permitting, which are 

dependent on installed power, and the cost of the WECs and the mooring system. 

Among the different categories, the WECs had the highest weight in the total cost. This 
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is expected to reduce as the technology develops and economies of scale are realised. 

The O&M cost was certainly not negligible – it is an ongoing expenditure which 

represents a sizeable amount at the end of the service life of the farm. 

Table 7. Costs involved in the four co-located farms analysed.  

Category PDA NDA UDA-(i) UDA-(iv) 

Preliminary 

costs 

Engineering  (€) 1,500,000 1,500,000 1,500,000 1,500,000 

Licenses (€) 1,867,800 1,867,800 1,867,800 1,867,800 

TOTAL (€) 3,367,800 3,367,800 3,367,800 3,367,800 

Capital cost 

WECs 

WECs structure (€) 504,900,000 504,900,000 504,900,000 504,900,000 

PTO (€) 330,000,000 330,000,000 330,000,000 330,000,000 

Mooring (€) 624,413 624,413 624,413 624,413 

Installation  (€) 16,500,000 16,500,000 16,500,000 16,500,000 

Electrical 

installation 

Inter-array cable 
Length (km) 10.23 14.52 12.09 14.12 

Cost (€) 7,169,068 8,988,270 8,476,166 8,421,566 

Offshore station (€) 4,343,238 4,343,238 4,343,238 4,343,238 

Export cable (€) 37,589,360 37,589,360 37,589,360 37,589,360 

TOTAL 901,126,079 902,945,281 902,433,177 902,378,577 

O&M cost (€/year) 3,860,514 3,904,992 3,978,576 3,937,626 

Decommissioning (€) 6,758,446 6,772,090 6,768,249 6,767,839 

 

It is clear that through the combination between wind turbines and co-located WECs 

important savings can be obtained. First, the engineering cost reduced to 570,000 €, 

since the site had already been studied and characterised, and part of the elements to be 

designed could be shared, e.g. the electrical grid. With regard to the capital cost, the 

largest savings were achieved in the electrical connection, since the offshore station and 

the export cable could be the same for both installations. The capital cost reduction was 

approx. 4.7%. With regard to the O&M costs, some of the costs involved could be 

shared by the wave and wind elements of a co-located farm in order to achieve cost 

reductions. This is not the case, however, of the cost of equipment replacement, which 

represented the largest proportional cost of offshore farms. Nevertheless, some savings 

can still be made: the scheduled maintenance of wave and wind energy could be carried 
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out at the same time or in a continuous period of time, reducing the cost associated with 

the transport of maintenance staff and the boarding of personnel onto offshore structures 

(5.34 k€/MW) [83]. The same applies to the labour cost, which covers the cost of O&M 

staff – its access (8.01 k€/MW) and labour (7.12 k€/MW) [83]; this staff would 

typically be stationed on the project full time, and so could be shared for both 

installations. The increase in the accessibility to the wind turbines (Table 3) also 

decreased O&M costs by reducing downtime due to delays in unexpected repairs. 

Improving the weather windows for O&M might bring about a saving of 25%, which 

would involve an overall improvement in the project cost of energy of 2.3% [92].  On 

these grounds the O&M cost of the co-located WECs reduced between 28.3% and 

29.2% for the four arrays analysed.  

The above considerations were taken into account in calculating the LCOE values of the 

four co-located farms analysed (Table 8). Among the four layouts, UDA-(i) stood out as 

the most convenient configuration of co-located WECs. The LCOE difference with the 

other configurations may seem not so relevant at first, but considering the total annual 

production (730 GWh on average), the difference does amount to approximately 

900,000 € per annum – certainly not negligible. 

 Table 8. LCOE values for the four co-located farms analysed.  

Co-located layout LCOE (€/MWh) 

PDA 200.64 

NDA 199.96 

UDA-(i) 199.41 

UDA-(iv) 199.72 

 

4. Conclusions 

Operation and maintenance is a particularly challenging aspect of offshore wind energy. 

These labours can be delayed by difficult sea conditions – in particular, large wave 

heights – leading to downtime and, consequently, increased costs. This can be offset in 
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part by combining offshore wind and wave energy systems, which can improve the 

accessibility to the wind turbines by reducing the wave heights within the farm and, in 

addition, generate additional revenue from their power production. The actual results 

depend on the configuration of the co-located farm. Previous works showed that 

peripherally distributed arrays (PDAs) achieve good results in terms of wave height 

reduction within the farm and average accessibility. However, important differences 

between the accessibility to the wind turbines located directly in the lee of the peripheral 

WEC barrier and the other turbines in the farm were found. As an alternative, non-

uniformly distributed arrays (NDAs) were investigated. By intercalating some of the 

WECs amid the wind turbines, NDA configurations were found to counter the wave 

regeneration in the lee of the peripheral barrier of WECs; however, these configurations 

present a number of problems as a result of the non-uniform layout, which hinders the 

installation, increases certain costs (e.g. the submarine cable) and hampers the 

navigation of the workboats between the wind turbines.  

On this basis, the objective of this paper was to analyse whether a different type of 

configuration for the co-located WECs, uniformly distributed arrays (UDAs), can avoid 

some of these problems and at the same time lead to a more uniform wave height 

reduction throughout the farm. For this purpose a case study was carried out at the 

Horns Rev 1 wind farm. In a preliminary study, four UDA layouts were considered, and 

the two best-performing were retained for a more detailed analysis, alongside PDA and 

NDA configurations. A dataset of wave parameters covering an entire year was used in 

conjunction with a third-generation spectral wave model (SWAN). It was found that the 

UDAs achieved larger values of wave height reduction over the entire farm than the 

PDA and NDA, mitigating the wave regeneration that occurred in certain sections of the 

farm with the PDA configuration. Moreover, increases of the power production per 
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WEC (JWEC) of approx. 3% were found. Finally, the levelised cost of energy of the co-

located farms was calculated by translating all these results into monetary terms, in 

combination with other synergies such as common strategies and shared elements. UDA 

co-located wind and wave energy farms led to better results than the PDA and NDA 

configurations. More specifically, of the four UDA configurations analysed, UDA-(i) 

stood up as the most convenient array of co-located WECs, with savings of up to 

900,000 € per year. 

The LCOE values of the co-located farms were found to be in line with those of 

offshore wind farms currently in operation [93-95], with the advantage of a more 

sustainable use of the marine space (two renewables at the same site) and smoothed 

power output due to the co-located WECs [40]. Moreover, when these values are 

compared with those of standalone wave farms, significant reductions in the LCOE are 

apparent (around 70%). In conclusion, the co-location of WECs and offshore wind 

turbines constitutes an opportunity for wave energy to become more cost competitive, 

attract investment and, thus, accelerate its development.   
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