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Abstract  

Combined energy systems present an opportunity to enhance the competitiveness of 

renewables and overcome other challenges of these novel renewables by realising the 

synergies between them. Among the different possibilities for combined systems, this 

work focuses on wave and wind co-located farms with the aim of assessing their 

benefits relative to standalone wind farms. To this end we estimate the energy 

production, investigate the power smoothing and shadow effect, and quantify the 

reduction in downtime achieved by the co-located farm through a case study off the 

Danish coast – a promising area for co-located farms based on the available resource 

and other considerations including technical constraints. The analysis is carried out 

based on hindcast data and observations extending from 2005 to 2015, and by means of 

state-of-the-art numerical models of the wind and wave fields – WAsP and SWAN, 

respectively.  It is found that the energy yield per unit area with the combined wave-

wind farm increases by 3.4% relative to a standalone wind farm, the downtime periods 

decrease by 58% and the power output variability reduces by 12.5%. Moreover, the 

capital and operational expenditures (CAPEX and OPEX, respectively) would also be 

significantly reduced thanks to the synergies realised through the combination of wind 

and wave power. 
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Nomenclature 

AWTk: percentage of Accesible Wind Turbines during k % of time 

b: spacing between the piles of the wind turbines (m) 

c (τ): cross-correlation factor between two variables for a time lag τ 

ct:: transmission coefficient of the offshore wind turbines 

cx: spatial velocities in the x components (ms
-1

) 

cy: spatial velocities in the y components (ms
-1

) 

cθ: rate of change of group velocity which describes the directional (θ) rate of turning 

due to changes in currents and water depth 

cσ: rate of change of group velocity which describes the frequency (σ) shifting due to 

changes in currents and water depth 

Cd: drag coefficient of the wind turbine piles 

d: water depth (m) 

D: rotor diameter (m) 

Dp: diameter of the wind turbine piles (m) 

E: energy density (Jm
-3

) 

EMODnet: European Marine Observation and Data Network  

ERDF: European Regional and Development Fund 

f : wave frequency (s
-1

) 

g: gravity acceleration (ms
-2

) 

H: height at which the wind speed is measured (m) 

Hm0: significant wave height (m) 

Hm0: average significant wave height (m) 
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Hm0,max: maximum value of the significant wave height (m) 

Hs: significant wave height (m) 

(Hs,b)i: significant height incident on the i-th wind turbine in the baseline scenario, i.e. 

without WECs (m) 

(Hs,W)i: significant height incident on the i-th wind turbine with co-located WECs (m) 

HRCj: significant wave height reduction along the j-th row of wind turbines. This non-

dimensional index reflects the wave recovery with increasing distance from the WECs 

HRF: wave Height Reduction within the Farm. It is a non-dimensional parameter that 

provides information about the average wave height reduction within the wind farm 

IA: increase in the accessible timeframe for O&M achieved with co-located WECs 

J: raw wave power (kWm
-1

) 

J: average raw wave power (kWm
-1

) 

Jfarm: time-averaged power generated by the WECs (kW) 

JW, i : is the power generated by the i-th WEC (kW) 

k: percentage of time during which the wind turbines are accessible 

L: distance between the twin bows of a single WaveCat WEC (m) 

m: number of turbines in the j-th row 

mn: spectral moment of order n 

nT : total number of time points  

nW: total number of WECs or wind turbines 

N: wave action density spectrum (Js) 

O&M: Operation & Maintenance 

P: raw wind power (kWm
-2

) 

P: average raw wind power (kWm
-2

) 

Pfarm: time-averaged power generated by the wind turbines (kW) 
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PW, i : is the power generated by the i-th wind turbine (kW) 

PDA: Peripherally Distributed Array 

R
2
: coefficient of determination 

RES: Renewable Energy Directive (2009/29/EC) 

RMSE: Root Main Square Error Stot: the energy density source terms which describe 

local changes to the wave spectrum (Js
-1

) 

SWAN: Simulating WAves Nearshore 

t: a point in time (s) 

T: total number of time points considered (s) 

Tb: total number of hours per year with Hs ≤ 1.5m for the baseline scenario, i.e. isolated 

turbines (h) 

Te: energy period (s) 

Te: average energy period (s) 

Te,max: maximum energy period (s) 

Tmo1: mean wave period (s) 

TW: total number of hours per year when Hs within the wind farm is lower or equal to 

1.5 m with co-located WECs  

THD: Total Harmonic Distortion 

Uw: wind speed (ms
-1

) 

U10m: wind speed at 10 m above the sea level (ms
-1

) 

U10m: average wind speed 10 m above the sea level (ms
-1

) 

U10m,max: maximum value of the wind speed 10 m above the sea level (ms
-1

) 

WAsP: Wind Atlas Analysis and Application Program 

WEC: Wave Energy Converter 

z: roughness length (m) 
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ρa: air density (kgm
-3

) 

ρw: sea water density (kgm
-3

) 

θ: propagation direction (º) 

σ: standard deviation  

μ: average value 

 

1. Introduction 

The Renewable Energy (RES) Directive (2009/29/EC) established an EU target of a 

20% share of renewable energy in the total energy consumption by 2020. Recently, at 

the Paris climate conference (COP21) in December 2015, 195 countries adopted the 

first-ever universal, legally binding global climate deal. The agreement set out a global 

action plan to put the world on track to avoid dangerous climate change by limiting 

global warming to well below 2°C. The agreement is due to enter into force in 2020. In 

this context, marine energy [1] emerges as one of the most promising alternatives to 

fossil fuels due to its substantial potential for electricity production [2], not least 

through the combination of various renewables in the same marine space [3], which can 

significantly enhance marine energy competitiveness [4]. Co-located projects are a 

solution to simultaneously tackle two major challenges: reducing technology costs [5] 

and achieving a more sustainable use of natural resources [6]. In particular, this research 

deals with the co-location of Wave Energy Conversion (WEC) technologies into a 

conventional offshore wind farm [7]. The addition of co-located Wave Energy 

Converters (WECs) to wind farms [8] is supported by a number of synergies ranging 

from an increase in the energy yield [9] to a reduction in the operation and maintenance 

cost  [10] and smoothed power output [11].  
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In Part I of this work, the wave resource off the Danish coast was characterised in order 

to determine the best location for a co-located wave and wind energy farm. The aim of 

Part II is to define a co-located wave and wind farm at this location and assess its 

benefits relative to a standalone, conventional offshore wind farm. The co-located farm 

is designed on the basis of the current offshore farms characteristics and the results of 

previous studies concerning the most convenient co-located farm layout [12]. Hourly 

wave and wind observations from 2005 to 2015 combined with hindcast data are 

implemented on two numerical models: WAsP (Wind Atlas Analysis and Application 

Program) and SWAN (Simulating WAves Nearshore). The former is an industry-

standard software for predicting the wind climate, wind resource, and power production 

from wind farms; and the latter is a third-generation numerical model that calculates 

wave generation and propagation. 

The differences between the combined system and the conventional wind farm are 

quantified in terms not only of the global power production but also the performance of 

the devices, the downtime periods and the power variability. Moreover, the enlarged 

weather windows for O&M (Operation and Maintenance) thanks to the shadow effect of 

the co-located WECs are determined. 

2. Materials and Methods 

2.1. Wave and wind numerical models  

The wind resource assessment and wind farm calculations were carried out by means of 

the WAsP (Wind Atlas Analysis and Application Program) software [13], which is an 

implementation of the so-called wind atlas methodology [14]. The program employs a 

comprehensive list of models for projection of the horizontal and vertical extrapolation 

of wind climate statistics [15]. It is a linear numerical model based on the physical 
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principles of flows in the atmospheric boundary layer, capable of describing wind flow 

over different terrains, close to sheltering obstacles and at specific points. Moreover, 

WAsP models the estimated power loss in wind farms due to the wind speed reduction 

in wakes from up-wind turbines [16]. In terms of wind farm modelling, the wake model 

in the commercial version is based on Katic et al. [17], using a linear expansion of the 

wake diameter set with a wake decay coefficient ⎯ a value of 0.04 or 0.05 is 

recommended for offshore applications [18].The model has been amply validated 

through a number of comparisons between measured and modelled wind statistics and 

wind farm production [19].  

The available wave resource was assessed through the third-generation numerical wave 

model SWAN (Simulating WAves Nearshore). This model was successfully applied to 

examining the impact of wave farms on the wave conditions in their lee in recent studies 

such as [20] or [21]. It computes the evolution of random waves accounting for 

refraction, wave generation due to wind, dissipation and non-linear wave-wave 

interactions [22]. The evolution of the wave field is described by the action balance 

equation,   

𝜕

𝜕𝑡
 𝑁 +  

𝜕

𝜕𝑥
 𝑐𝑥𝑁 +  

𝜕

𝜕𝑦
 𝑐𝑦𝑁 +  

𝜕

𝜕𝜎
 𝑐𝜎𝑁

𝜕

𝜕𝜃
 𝑐𝜃𝑁 =  

𝑆𝑡𝑜𝑡

𝜎
  ,  (1) 

where t is time (s), cx and cy are spatial velocities in the x and y components (ms
-1

), cθ 

and cσ are rates of change of group velocity which describe respectively the directional 

(θ) rate of turning and frequency (σ) shifting due to changes in currents and water depth, 

N is wave action density, and Stot are the energy density source terms which describe 

local changes to the wave spectrum. The model was implemented on a computational 

grid encompassing an area of approx. 134 km × 167 km with a resolution of 300 m × 

300, and a nested grid focused on the co-located farm location covering an area of 8.5 
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km × 8.5 km with a resolution of 17 m × 17 m. Bathymetric data from the European 

Marine Observation and Data Network (EMODnet) were interpolated onto this grid.  

The wind turbines and WECs were implemented on SWAN as individual obstacles 

characterised by a transmission coefficient [23]. For wind turbines the transmission 

coefficient, Ct, was computed from  

𝐶𝑡 = 4 (
𝑑

𝐻𝑠
)  𝐸 [−𝐸 + √𝐸2 +  

𝐻𝑠

2𝑑
] ,   (2) 

𝐸 =
𝐶𝑑(

𝑏

𝐷𝑝+𝑏
)

√1− (
𝑏

𝐷𝑝+𝑏
)

2
 ,     (3) 

where d is water depth (m), Hs is incident significant wave height (m), Dp is the pile 

diameter (m), b is the pile spacing (m), and Cd is the drag coefficient. For a smooth pile, 

as in this case, Cd is equal to 1 [24]. For WECs, the transmission coefficient values were 

obtained from laboratory tests reported in [25]. 

2.2. Indicators  

The available wind power (P) is given by  

𝑃 =  
1

2
𝜌𝑎𝑈𝑤

3   ,     (4) 

where Uw is the wind speed, and ρa is the air density, assumed equal to 1.23 kg/m
3
, 

considering an average air temperature of 5 °C [26]. Wind speeds are often available 

from meteorological observations measured at a height of 10 m. However, hub heights 

of offshore wind turbines are usually 40 to 80 m [27]. The following equation  allows 

the conversion of wind speed values measured at a certain height to the corresponding 

values at the hub  height (or any other height of interest) [28]: 
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 𝑈𝑤1 = 𝑈𝑤2
ln  (𝐻1/𝑧)

ln (𝐻2/𝑧)
 ,    (5) 

where Uw1 is the wind speed to be calculated at the height H1, Uw2 is the measured wind 

speed at the height H2, and z is the roughness length. 

The available wave power (J) can be computed from [29]: 

𝐽 =  
𝜌𝑤𝑔2

64𝜋
𝐻𝑚𝑜

2 𝑇𝑒 ,     (6) 

where ρw is the sea water density (1027 kg/m
3
, considering an average water salinity 

concentration of 33 ppm and an average water temperature of 7 °C), g is the 

gravitational acceleration (g = 9.82 m/s
2
), Hm0 is the significant wave height, and Te is 

the energy period, which is defined in terms of spectral moments as follows:  

𝑇𝑒 =
𝑚−1

𝑚0
 ,     (7) 

where mn represents the spectral moment of order n, which is given by: 

𝑚𝑛 = ∫ ∫ 𝑓𝑛𝐸(𝑓, 𝜃)𝑑𝑓𝑑𝜃
∞

0

2𝜋

0
  ,    (8) 

where f is the wave frequency and E = E(f, 𝜃) is the energy density with 𝜃 the 

propagation direction. The energy period can be estimated as Te = 1.14 Tmo1 [1]. 

The power variability was analysed through statistical indicators such as the standard 

deviation (σ) or confidence intervals [30]. The variability is important as the peak-to-

average ratio has been identified as a major cost driver in renewable energy systems 

[31]. Moreover, for co-located wave and wind farms the analysis of the wave-wind 

correlation is fundamental. It was quantified by means of the cross-correlation factor, 

c(τ),   

𝑐(𝜏) =
1

𝑇
∑

[𝑥(𝑘)−𝜇𝑥][𝑦(𝑘−𝜏)−𝜇𝑦]

𝜎𝑥𝜎𝑦

𝑛𝑇−𝜏
𝑗=1  ,   (9) 
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where μx, μy and σx, σy are the mean and standard deviation of two generic signals x and 

y, and τ is the time lag. 

The time-averaged power generated by the WECs and wind turbines,  𝐽�̅�𝑎𝑟𝑚 and �̅�𝑓𝑎𝑟𝑚 

respectively, was calculated as:  

�̅�𝑓𝑎𝑟𝑚 =  
1

𝑇
  ∑ ∑  (𝑋𝑊,𝑖)𝑡

𝑛𝑇
𝑗=1

𝑛𝑊
𝑖=1  ,    (10) 

where X can stand for wave or wind power production, the index i designates a generic 

WEC or wind turbine, nW is the total number of WECs or wind turbines, j represents a 

point in time, nT  is the total number of time points considered and XW, i is the power 

generated by the i-th WEC or wind turbine. It is assumed that the devices are operating 

95% of the time in a typical year [32].  

The power smoothing – resulting from aggregating power from diverse resources [33] ⎯ 

was assessed through the Total Harmonic Distortion (THD), which can be defined as  

𝑇𝐻𝐷 =  
𝜎

�̅�
 ,      (11) 

where �̅� is the average power output and can refer to wave power (J), wind power (P) or 

wave and wind power (J+P). 

Harsh sea conditions could increase downtime due to delays to maintenance and repairs. 

In the case of wind farms, the operational limit to workboats is a significant wave height 

of 1.5 m [34]. Co-located WECs, extracting energy from the incoming waves, provide a 

less energetic wave climate within the farm and thereby increase the duration and 

number of the weather windows to carry out maintenance; this is known as the shadow 

effect [10, 35, 36]. To quantify the shadow effect of the co-located WECs the 

significant wave Height Reduction within the Farm (HRF) (Eq. 12) and the significant 

wave Height Reduction along the j-th Column of wind turbines (HRCj) (Eq. 13) indices 
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were defined. They provide, respectively, information about the average wave height 

reduction and the wave recovery with increasing distance from the WECs.  

𝐻𝑅𝐹 (%) =
100

𝑛
∑

1

(𝐻𝑠,𝑏)𝑖
 [(𝐻𝑠,𝑏)𝑖 −  (𝐻𝑠,𝑊)𝑖] 

𝑛𝑊
𝑖=1 ,   (12) 

where the index i designates a generic turbine of the wind farm, nW is the total number 

of turbines, (Hs,b)i is the significant height incident on the i-th turbine in the baseline 

scenario (without WECs), and  (Hs,W)i  is the significant height incident on the i-th 

turbine with co-located WECs. 

𝐻𝑅𝐶𝑗(%) =
100

𝑚
∑

1

(𝐻𝑠,𝑏)𝑖
 [(𝐻𝑠,𝑏)𝑖 −  (𝐻𝑠,𝑊)𝑖] 𝑚

𝑖=1 ,   (13) 

where the index i denotes a generic turbine of the j-th row (row of wind turbines 

numbered from the north to the south) of the wind farm, and m is the number of turbines 

in the j-th row.  

The Increased Accessibility (IA) (Eq. 14) is a nondimensional index quantifying the 

increase in the timeframe accessibility to the wind turbines ⎯ percentage of time when 

the significant wave height is lower than 1.5 m in the vicinity of the wind turbines ⎯ 

thanks to the co-located WECs:  

𝐼𝐴 (%) =  
𝑇𝑊−𝑇𝑏

𝑇𝑏
× 100 ,    (14) 

where TW and Tb are the total number of hours per year when Hs within the wind farm is 

below or equal to 1.5 m with co-located WECs and in the baseline scenario, 

respectively.  

Finally, the index AWTk (Eq. 15) quantifies the percentage of wind turbines that are 

accessible during k% of the time:  

   𝐴𝑊𝑇𝑘 =  
𝐴𝑐𝑐𝑒𝑠𝑖𝑏𝑙𝑒 𝑤𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠
× 100 ,  (15) 
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where k is the percentage of time during which the wind turbines are accessible. In this 

study this parameter was assessed for k = 100%, 90%, 80%, 70% and 60%.  

2.3. Study area  

Previous studies have identified the North Sea as one of the best areas for deploying co-

located farms due to the available resource and the moderate water depths [37, 38]. The 

present study focuses on the northwest Danish coast, which offers plenty of opportunity 

for marine energy [39].  

 
Figure 1. The Northwest Danish coast (the red framed area). 

Based on the analysis of hourly series of wave and wind data from 2005 to 2015, the 

site of coordinates (56.65ºN, 8.03ºE) was identified as the best location for deploying a 

co-located farm in terms of wave and wind power, power variability, correlation 

between waves and winds, distance from shore and water depth. Hindcast data from 

WaveWatch III, a third-generation offshore wave model, were used in conjunction with 

metocean data from February 2005 to January 2015 kindly provided by the Horns Rev 

wind farm. 
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The wave climate at this site is characterised by an average significant wave height of 

1.5 m (Table 1) and 315º as predominant wave direction (Figure 2). The Jutland 

Peninsula shelters the area from southeasterly waves so the potential decreases clearly 

from this direction. The analysis of the wind direction (Figure 3) is also important in 

planning the wind farm layout. The predominant wind directions are from the III and IV 

quadrants, with significant westerly components.  The mean wind speed was 8.7 m/s 

(Table 1).  

Table 1. Most relevant wave and wind statistics of the site point no. 43. �̅�𝑚𝑜: average 

significant wave height, Hm0,max: maximum value of the significant wave height, �̅�𝑒: 

average energy period, Te,max: maximum energy period; �̅�10𝑚: average wind speed at 10 

m above the sea level, U10m,max: maximum wind speed at 10 m above the sea level. 

Wave 

�̅�𝑚𝑜± σ (m) 1.53 ± 1.12 

Hm0,max (m) 9.66 

�̅�𝑒 (s) 5.86 

Te,max (s) 18.55 

Wind 
�̅�10𝑚± σ (m s

-1
) 8.67 ± 3.76 

U10m,max (m s
-1

) 28.94 

 

 

Figure 2. Wave rose (left) and wave power rose (right) for site no. 43 for the total study 

period (from February 2005 to January 2015) 
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Figure 3. Wind rose (left) and wind power rose (right) for site no. 43 for the total study 

period (from February 2005 to January 2015. 

 

2.3. Co-located wave and wind farm layout  

At present the average offshore wind farm off the Danish cost is composed by 37 wind 

turbines with an installed capacity of 98 MW [40]. However, the current tendency is 

towards larger farms, composed by more than 80 turbines, and with larger turbines. The 

average turbine size is expected to be around 5 MW in the years to come [41].  

The selection of the substructure is directly dependent on the water depth [8], which 

was around 20 m in this case. Monopile is the most cost-effective substructure type for 

offshore wind energy conversion systems due to its simple global design. In practice it 

is feasible for water depths of up to 35 m; in deeper water other substructures are 

employed, e.g. jacket frames or tripods [8].  

As for the wind farm layout, many studies have been carried out by different researchers 

with a view to its optimization [42]. In spite of recommendations  that wind turbines 

should not be installed in grids but instead scattered throughout the farm [43-45], 

currently wind farms are commonly ordered in rows perpendicular to the prevailing 
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wind direction [46] or staggered for the main wind direction to maximise the energy 

output [47]. Indeed, [47] stated that 10% extra power output can be captured from the 

staggered wind farm. For this reason, a staggered wind farm was proposed in this work. 

As for the geometry of the park, existing large wind farms have adopted square 

arrangements balancing energy output and cabling costs [48]. The location of the 

turbines is often optimized in order to minimize the wake effect – the shading effect of a 

wind turbine on other wind turbines downstream from it [49]. Using greater spacing 

between turbines implies less interaction but increased costs for array cables [50, 51]. In 

this sense, there exist discrepancies in the literature about the most convenient distance 

between turbines. For instance, it has been stated [52] that the distance between turbines 

in a row is usually of the order of 5–10 rotor diameters (5D–10D,where D is the rotor 

diameter), while other studies [53-55] considered that 7D–12D is typically the distance 

between rows.  

Accounting for all these factors, the proposed farm in this study was composed by 80 

turbines, erected on a grid of 8 rows with monopiles as substructures. The distance 

between the individual turbines and rows was 8D – average value in the literature, i.e. 

960 m. The farm layout was staggered with respect to a westerly wind to maximise the 

energy output, and covered an area of 58 km
2
 with a density of 5 MW/km

2
. 

A comparison between the Siemens Wind Turbine SWT-3.6-120 [56] and other larger 

turbines, such as the REpower 5M [57], AREVA M5000 turbine [58] or NREL 5-MW 

[59], was carried out to select the wind turbine according to the site characteristics. 

These turbines have similar values of cut-in, rated and cut-out wind speeds but different 

rotor diameters and rated power values (Table 2). However, analysing their power 

curves and the existing wind resource it was found that they would be operating over 
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50% of their capacity during 70% and 60% of the time in the case of the SWT-3.6-120 

and 5MW turbines, respectively. Moreover, SWT-3.6-120 would require monopiles 

with a smaller diameter due to the lower weight of the turbine, which would reduce the 

foundation cost. For these reasons, the Siemens Wind Turbine SWT-3.6-120 was 

selected.  

Table 2. Technical characteristics of the Siemens Wind Turbine SWT-3.6-120, 

REpower 5M, AREVA M5000 and NREL 5-MW turbines. 

SWT-3.6-120 

Nominal power 3.6 MW 

REpower 5M 

Nominal power 5 MW 

Rotor diameter 120 m Rotor diameter 126 m 

Hub height 90 m  Hub height 90 -120 m  

Cut-in wind speed 3-5 m/s Cut-in wind speed 3.5 m/s 

Rated wind power 12-13 m/s Rated wind power 13 m/s 

Cut-out wind speed 25 m/s Cut-out wind speed 30 m/s 

Areva M5000 

Nominal power 5 MW 

NREL 5-MW 

Nominal power 5 MW 

Rotor diameter 135 m Rotor diameter 126 m 

Hub height 70 -90 m  Hub height 90 m  

Cut-in wind speed 4 m/s Cut-in wind speed 3 m/s 

Rated wind power 12.5 m/s Rated wind power 11.4 m/s 

Cut-out wind speed 25 m/s Cut-out wind speed 25 m/s 

As for the co-located WECs, the WaveCat was selected [60]: a floating offshore WEC 

whose principle of operation is wave overtopping. It has a length overall of 90 m [60], 

its  nominal power at 1:1 scale is expected to be 1.2 MW [61] and the transmission 

coefficient was obtained through laboratory tests [25]. Among the possible co-located 

layouts [8], a Peripherally Distributed Array (PDA), where WECs are placed on the 

perimeter of the wind farm as a barrier, emerges as the best option at the current stage of 

technology development  [62]. The best results in terms of power production and 

shielding effect [63] were achieved for a layout with the co-located WECs protecting 

the farm not only from the predominant wave direction but also from the secondary 

directions. Moreover, previous studies on the interactions between devices[64]  

concluded that the best results were obtained considering the minimum allowed spacing 

between devices, 2.2L, where L = 90 m is the distance between the twin bows of a 
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single WaveCat WEC [65].  Due to the similarities of the proposed wind farm with 

Horns Rev wind farm, a ratio between the number of WECs and wind turbines of  0.7 

was used, which led to optimum results in a recent study [35].  Thus, 56 WECs were 

deployed on a PDA layout oriented to the North to intercept the majority of incomings 

waves (Figure 4), with protection in particular against northwesterly waves since 315º 

was the predominant wave direction during the study period.  

 
Figure 4. Co-located farm layout. The colour scale reflects the water depth in m.  

3. Results and discussion 

3.1. Wind and wave model validation 

The results obtained from the two models used in this study (SWAN and WAsP) were 

successfully validated in terms of significant wave height and wind speed, respectively,  

with the metocean data from February 2005 to May 2015 provided by 3 buoys around 

the Horns Rev 3 wind farm. In both cases, a good correlation was observed between the 

simulated and measured time series (Figure 5). This was corroborated by the values of 

  . 
WEC 

Wind turbine 
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the coefficient of determination (R
2
), close to unity, and of the Root Main Square Error 

(RMSE) (Table 3). 

 
 

 
Figure 5. Correlation between hindcasts and metocean data from the buoy no.1 in the 

Horns Rev 3 area in terms of significant wave height (Hmo) and wind speed at 10 m 

above the sea level (U10m) from February to August 2005.  

 

Table 3. Coefficient of determination (R
2
) and Root Main Square Error (RMSE) 

between hindcasts and measured significant wave height (Hm0) and wind speed at 10 m 

above the sea level (U10m) from February 2005 to May 2013, for the three buoys 

considered. 

Buoy no. 
Hm0 U10m 

R
2
 RMSE (m) R

2
 RMSE (m/s) 

1 0.93 0.41 0.87 0.20 

2 0.93 0.38 0.86 0.21 

3 0.90 0.34 0.87 0.27 

 

 

 

 

0

2

4

6

8

Feb-05 Mar-05 May-05 Jul-05

H
m

o
 (
m

) 

Horns Rev SWAN

0

5

10

15

20

25

Feb-05 Mar-05 May-05 Jul-05

U
w

1
0
 (

m
) 

Horns Rev SWAN

WAsP 



19 
 

3.2. Co-located farm results 

The global energy production during the study period was approx. 1,500 GWh/year. 

The time-averaged power production of the wind turbines was around 160 MW, with a 

power output per wind turbine of approx. 2 MW, which implies a load factor – the real 

output of a turbine benchmarked against its theoretical maximum output in a year  [66] 

– of 56%. The value is higher than the average, since this factor is commonly in the 

range of 35-45% [56, 67]. The wake losses (Figure 6) were 11.3%, similar or even 

lower than those observed in other wind farms currently in operation [68-70], which 

demonstrates the suitability of the proposed layout. When considering also the power 

production of the co-located WECs, the energy yield per unit of area increases by 3.4% 

with respect to the wind farm as a stand-alone installation. This implies a more 

sustainable use of the marine resource, a widely accepted goal for renewable resource 

management. 

 
Figure 6. Evolution of the normalised power from the first row of wind turbines to the 

last as consequence of the wake effect. 

Analysing the power output of the wind farm separately, its downtime was 6.6%, with 

most of it occurring during summer and spring due to the weaker winds. The 

combination with WECs decreased downtime to 2.74% ⎯ a significant reduction of 
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58.6%. Another benefit derived from combining wind and wave energy is the power 

smoothing that reduced the power variability and, consequently, the balancing cost 

when connecting the offshore installation to the grid.  Comparing wave and wind farms 

as independent installations, it was found that the power generated by the wave farm 

presented larger inter – and intra- annual variability than in the case of the wind farm 

(Figure 7). In fact, the values of the THD during the study period for the wave and wind 

farm were 1.72 and 0.56, respectively. At first sight, it might appear that the aggregation 

of WECs to the wind turbines could increase the power output variability. However, the 

low correlation between both resources (Section 3.2) led to lower values of power 

variability for the co-located farm (THD: 0.49).  

 

 
Figure 7. Inter- and intra-annual power output variability of the wave and wind farms as 

independent installations and the co-located farm.  
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The highest balancing cost due to power variability corresponds to the 15-minute 

variability. In this respect, the lag between waves and wind (Figure 8), with the highest 

cross-correlation factor for a lag of 1 hour, compensated the fluctuations to some extent 

and smoothed the power output. If wind speed is below the cut-in or above the cut-off 

values (the limits of production), wave energy could cover the power demand to some 

extent during this period.  

 
Figure 8. Correlation between wave and wind power at site no.7 for the study period; 

c(τ) is the cross-correlation factor and τ the time lag.  

Apart from the benefits associated to the power production and its smoothing, the 

proposed combined system realises other synergies such as the shadow effect of the co-

located WECs, which was evaluated in terms of the wave height reduction in the inner 

part of the wind farm. The global reduction (HRF) achieved was 7.93%. Its evolution 

with increasing distance from the barrier of WECs (HRCj) (Figure 8) showed a 

relatively uniform distribution of the wave height reduction, which decreased after the 

first row of with turbines due to the regeneration of waves with diffracted energy from 

the sides to increase again beyond the further rows thanks to the superposition of the 

individual shadow effects (wakes) of the different devices (Figure 9).   
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Figure 9. Evolution of the wave height reduction on each row of wind turbines as the 

distance from the WEC barrier increases.  

The parameters above analysed – HRF and HRCj – were translated into accessibility 

terms. The operational limit to workboats is a significant wave height of 1.5 [71, 72]. In 

this case, the total number of hours when Hs ≤ 1.5 m represented 57.39% of the year. 

Through the aggregation of the co-located WECs the accessibility increased to 68.45%, 

which involves an increase (IA) of nearly 20% (to be more precise, 19.27%). 

Remarkably, around 60% of the wind turbines experienced an increase in the accessible 

timeframe of approx. 10%, and 6% were accessible during 70-80% of the period 

considered (Table 4) ⎯ the latter being close to the co-located WECs.  

Table 4. AWTk (%) values for the wind farm as an isolated installation and for the co-

located farm . 

k (%) 
AWTk (%) 

Wind farm Co-located farm 

= 100 0 0 

90-100 0 0 

80-90 0 0 

70-80 0 6.25 

60-70 0 61.25 

≤60 100 32.5 

The above benefits of the co-located farm in comparison with stand-alone wave and 

wind energy parks can be translated into monetary terms. The increase of the energy 
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yield per unit of area by 3.4% could reduce the site rental ⎯ which is around 3.3 €/MWh 

[73-75] ⎯ by a hefty 190,000 €/year. In the same line, the smoother power output would 

imply reductions in the balancing cost when connecting the offshore installation to the 

grid. This cost is estimated to range between 2.2 and 4.5 €/MWh for low wind power 

penetration levels [76]. In the case of the co-located farm analysed the output power 

variability was reduced by 12.5%. Following the methodology proposed in [77], the 

integration of wave and wind resources would involve a significant decrease of approx. 

1 M€/year. For its part, increasing the accessibility to the wind turbines could avoid 

delays in unexpected repairs [78]. The estimated cost (or lost earnings) of delayed 

repairs is about 300 €/h [79, 80]. With this value as a reference, around 300,000 €/year 

would be saved thanks to the shadow effect of the co-located WECs. Moreover, the 

scheduled maintenance of the WECs and wind turbines carried out at the same time or 

one after the other reduces the cost associated with the transport of maintenance staff 

and the boarding of personnel onto the offshore structure. The same applies to labour 

cost, because this covers the cost of the O&M staff, which will typically be stationed on 

the project full time, and can be shared for both installations. Taking this into 

consideration,  reductions of approx. 10% of the O&M cost can be achieved [81], which 

would correspond to savings of 4 M€/year for the co-located farm here analysed.  

 Moreover, combining different energy sources could reduce the capital cost by sharing 

common elements [5]. The cable for connection to the grid is more reliable and much 

cheaper if it is used to transport the maximum energy that it can carry. For this  case, 

and applying the methodology proposed in [82], the cost of the export HVDC cable 

would be around 14 M€. Moreover, before exporting the electricity to shore the power 

has to be elevated from medium to high through a transformer. The cost of the offshore 

station would be around 3 M€. Therefore, if the cost of the electrical installation is 
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divided between both installations, the capital cost will be significantly reduced. 

Similarly, the cost of the preliminary studies, licenses and permissions would be 

reduced by 1 M€.  

4. Conclusions 

The aim of this paper was to assess the benefits of combining wave and wind energy 

systems relative to stand-alone farms through a case study in the Danish coast. The 

location for the proposed co-located farm (56.65ºN, 8.03ºE) was characterised by a 

distance to land of a mere 8 km, which would involve reduced installation and 

maintenance costs, water depths around 20 m, northwesterly predominant waves, 

westerly winds and 11.4 kW/m and 0.64 kW/m
2
 as mean wave and wind power, 

respectively. The co-located farm proposed was composed by 80 turbines erected on a 

grid of 8 rows with monopiles as subtructures and a density of 5 MW/km
2
. As for the 

co-located WECs, 56 floating, overtopping WECs were deployed as a barrier sheltering 

the farm from incoming waves to achieve a less energetic wave climate within the farm. 

The global energy production of the proposed farm during the study period was around 

1,500 GWh/year, with a performance of the wind turbines around 56% (higher than the 

average) and wake losses of 11% (lower than the average) ⎯ which demonstrated the 

suitability of the proposed layout. The aggregation of the power output of the co-located 

WECs increased the energy yield per unit area by 3.4%, decreased downtime by 58% 

and reduced the power output variability by 12.5%. Moreover, the shadow effect of the 

co-located WECs within the wind farm increased the accessibility level by nearly 20%, 

with values close to 70% and with a fairly uniform distribution across the farm. All 

these benefits would involve cost savings around 1.5 M€/year in comparison to the 

wave and wind parks as stand-alone systems. Moreover, the capital cost and the 

maintenance costs would be reduced by 17 M€ and 4 M€/year, respectively, thanks to 
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the realisation of additional synergies, e.g. shared installations (submarine cable, 

transformer) and shared O&M staff. All in all, the reduced energy cost of co-located 

farms with regard to independent, stand-alone farms would enhance the competitiveness 

of ocean energy. 
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