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Abstract

In this paper we present a novel approach for firm default probability estimation. The

methodology is based on multivariate contingent claim analysis and pair copula construc-

tions. For each considered firm, balance sheet data are used to assess the asset value, and

to compute its default probability. The asset pricing function is expressed via a pair cop-

ula construction, and it is approximated via Monte Carlo simulations. The methodology

is illustrated through an application to the analysis of both operative and defaulted firms.
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1. Introduction

Default risk is defined as the risk of a loss when a debtor (in our case a firm) does

not fulfil its commitments in a financial contract, and a default event takes place. The

probability of default (PD) is the probability that a default happens.

Following the growing financial uncertainty, there has been intensive research by in-

stitutions, regulators and academics to develop models for firm evaluation and PD esti-

mation. The existing methodologies differ on the available information and data used for

assessing the firm value. They can be broadly classified in models based on market data

and on accounting data.

Within the market data based models, the most popular are structural models; see

Merton (1970, 1974, 1977) and their extensions; for recent and complete reviews, see e.g.
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Ji (2010), Laajimi (2012), or Sundaresan (2013). The asset value is considered to be

exogenous and it is treated as the underlying asset in a contingent claim framework. A

common assumption is that the asset value follows a geometric Brownian motion, and its

drift and volatility coefficients do not depend on the capital structure of the firm. Black

and Scholes’ formula is applied to compute the asset price, and consequently the PD can

be easily estimated, see Black and Scholes (1973).

The second class of models use accounting data and financial ratios to evaluate the

firm value, and its PD. They origin from the works of Beaver (1968) and Altman (1968)

who developed univariate and multivariate models, based on linear discriminant analysis,

to predict the default of specific firms by using a set of financial ratios. Another commonly

used default prediction model is based on logistic regression, as proposed by Ohlson (1980).

The previous models have been analysed both in a classical and in a Bayesian frame-

work. For some recent works in the classical framework, see e.g. Bharath and Shumway

(2008), De Giuli et al. (2008), Kreinin and Nagi (2008), Su and Huang (2010), Altman et

al. (2011), Bo et al. (2011, 2013), Bhimani et al. (2014), Leow and Crook (2015), Tobback

et al. (2014), and references therein. For the Bayesian analysis see e.g. Kiefer (2009, 2010,

2011), Park et al. (2010), Tasche (2011), Kazemi and Mosleh (2012), Orth (2013), Liu et

al. (2015), and references therein.

A popular and efficient tool in risk management is the copula function, introduced

by Sklar (1959). The advantage of copulas is the ability to obtain the joint multivariate

distribution embedding the variable’s dependence structure. Unfortunately, while there

is a wide range of possible alternative copula functions for the bivariate case, in the mul-

tivariate setting the use of families different from Normal and Student’s t is rather scarce,

due to computational and theoretical limitations. For this reason Joe (1996) introduced

Pair Copula Constructions (PCCs) to represent complex structures of dependence among

multivariate data. PCCs constitute a flexible and very appealing tool for financial analy-

sis, see e.g. Vaz de Melo Mendes et al. (2010), Min and Czado (2010), Allen et al. (2013),

Dißmann et al. (2013), Bernard and Czado (2013), and reference therein. A collection of

potentially different bivariate copulas is used to construct the joint distribution of interest

via PCCs, allowing to represent different types and strengths of dependence in an easy

way.
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In this paper we propose a novel approach for PD estimation, that combines features

of both structural and accounting based models. We consider a contingent claim model

based on balance sheet data, where the dynamic of the equity is described via a PCC and

calculated using Monte Carlo simulations. We apply Bayesian parametric mixture models

in the new context of vine marginal modelling, for balance sheet data of defaulted and

non-defaulted firms. The PD is obtained in a fairly straightforward way from the equity

distribution.

The outline of the paper is the following. In Section 2 we briefly present copula models

and PCCs. In Section 3 we introduce a novel balance sheet multivariate contingent claim

model for PD estimation based on PCCs. In Section 4 the model estimation methodology

is presented. Section 5 describes the application of the proposed methodology to the PD

estimation of defaulted and operative companies. Finally, concluding remarks are given

in Section 6.

2. Background and Preliminaries

2.1. Copula Function

Copulas are very popular and appealing statistical tools, that allow us to describe

complex multivariate patterns of dependence binding together the marginal distributions.

They are applicable to a wide variety of fields, such as economics, finance and marketing;

for a review see e.g. Jaworski (2010).

A copula is a multivariate distribution function with uniform marginals on the in-

terval [0, 1]. Once applied to the univariate marginals, it returns the multivariate joint

distribution, enclosing all the information about the dependence structure of the vari-

ables. Thus, the use of copulas allows us to split the distribution of a random vector into

its individual marginal components, and the dependence structure is modelled through

the copula function without losing information; for more details see e.g. Joe (1997) and

Nelsen (1999).

Sklar’s theorem is the most important result in copula theory. It states that, given

a vector of random variables X = (X1, . . . , Xd), with d-dimensional joint cumulative

distribution function F (x1, . . . , xd) and marginal cumulative distributions Fm(xm) with
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m = 1, . . . , d, there exist a d-dimensional copula C such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd);θ), (1)

where θ denotes the set of parameters of the copula. To simplify the notation, in the

remainder of the paper, we set

C(F1(x1), . . . , Fd(xd)) = C(F1(x1), . . . , Fd(xd);θ).

For an absolutely continuous joint distribution F with strictly increasing continuous

marginal distribution functions, the d-dimensional copula is uniquely defined. Conversely,

according to Nelsen’s corollary, the inversion method allows us to express the copula in

the following way

C(u1, . . . , ud) = F (F−11 (u1), . . . , F
−1
d (ud)),

where F−11 , . . . , F−1d are the generalised inverse functions of the marginals.

The joint density function is

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) · f1(x1) · · · fd(xd),

where c(F1(x1), . . . , Fd(xd)) is the d-variate copula density, provided its existence.

In this paper, we fit the data into a given model following a parametric approach.

Nonparametric methods for copula density estimation also exist, see e.g. Sancetta and

Satchell (2004), Shen et al. (2008) and Kauermann et al. (2013).

The existing literature on copulas mainly focuses on the bivariate case. In the multi-

variate case, Normal and Student’s t copula are the most popular, while the use of other

multidimensional copulas is rather limited, due to the complexity of their construction, see

e.g. Aas and Berg (2009). However, Normal and Student’s t copula are often not flexible

enough to represent the dependence structure of the data. Hence, multivariate extensions

of Archimedean copulas were proposed in the form of partially nested Archimedean cop-

ulas by Joe (1997) and Whelan (2004); hierarchical Archimedean copulas by Savu and

Trede (2006); and multiplicative Archimedean copulas by Morillas (2005) and Liebscher

(2006). Nevertheless, these multivariate extensions imply additional restrictions on the

parameters that limit their flexibility. A possible solution to this problem is provided by

PCCs, that will be described in the following section.
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2.2. Pair Copula Constructions

We now briefly introduce PCCs, the related notation and terminology; for more details

see e.g. Czado (2010). PCCs were originally proposed by Joe (1996), and later discussed

in detail by Bedford and Cooke (2001, 2002), Kurowicka and Cooke (2006) and Aas et al.

(2009). For some recent works in a parametric and nonparametric framework see e.g. Min

and Czado (2010), Bauer et al. (2012), Nikoloulopoulos et al. (2012), Weiß and Scheffer

(2012), Haff and Segers (2015).

A PCC represents the complex pattern of dependence of multivariate data via a cas-

cade of bivariate copulas, and permits to construct flexible high-dimensional copulas by

using only bivariate copulas as building blocks, see Aas et al. (2009). Therefore, the joint

distribution is obtained on the basis of bivariate pair copulas, that may be conditional on

a specific set of variables, allowing to model the dependence among the marginals.

In order to obtain a PCC we proceed as follows. First of all we factorise the joint dis-

tribution f(x1, . . . , xd) of the random vector X = (X1, . . . , Xd) as a product of conditional

densities

f(x1, . . . , xd) = fd(xd)× fd−1|d(xd−1|xd)× . . .× f1|2···d(x1|x2, . . . , xd). (2)

The factorisation in (2) is unique up to re-labeling of the variables, and it can be reex-

pressed in terms of a product of bivariate copulas. By Sklar’s theorem the joint distribu-

tion of the subvector (Xd, Xd−1) can be expressed in terms of a copula density

f(xd−1, xd) = cd−1,d(Fd−1(xd−1), Fd(xd))× fd−1(xd−1)× fd(xd),

where cd−1,d(·, ·) is an arbitrary bivariate copula (pair copula) density. Hence, the condi-

tional density of Xd−1|Xd can be easily rewritten as

fd−1|d(xd−1|xd) = cd−1,d(Fd−1(xd−1), Fd(xd))× fd−1(xd−1). (3)

Through a straightforward generalisation of equation (3), each term in (2) can be de-

composed into the appropriate pair copula times a conditional marginal density. More

precisely, for a generic element X of the vector X we obtain

fx|v(x|v) = cx,v`|v−`
(Fx|v−`

(x|v−`), Fv`|v−`
(v`|v−`))× fx|v−`

(x|v−`), (4)
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where v is the conditioning vector, v` is a generic component of v, v−` is the vector

v without the component v`, Fx|v−`
(·|·) is the conditional distribution of x given v−`,

and cx,v`|v−`
(·, ·) is the conditional pair copula density. The d-dimensional joint multi-

variate distribution function can hence be expressed as a product of bivariate copulas

and marginal distributions by recursively plugging equation (4) in equation (2). Such

decomposition is named PCC, as introduced by Joe (1996).

Note that the PCC decomposition in (4) is based on the simplifying assumption that

the conditional copulas depend on the conditioning variables only indirectly through the

conditional distribution functions that constitute their arguments. However, as demon-

strated by Haff et al. (2010), the simplified PCC is a good approximation, even when the

simplifying assumption is far from being fulfilled by the actual model.

The PCC is order dependent. A different choice of the variable order leads to a

different PCC and to a different factorisation of the joint multivariate distribution.

Furthermore, given a specific factorisation there are still many different parameterisa-

tions. For high-dimensional distributions, the number of possible PCCs is very high, see

Czado (2010) and Morales-Napoles (2011). Hence a suitable representation of all of them

is necessary. For this reason, Bedford and Cooke (2001, 2002) introduced Regular vines

(R-vines) as a pictorial representation of PCCs.

R-vines are a particular type of graphical models, that use a nested set of trees to

represent the decomposition of the joint distribution into its bivariate components, in-

corporating the dependence structure of the variables of interest. Two special cases of

R-vines are Canonical vines (C-vines) and Drawable vines (D-vines), see Kurowicka and

Cooke (2006). Here we consider a four dimensional problem, for which R-vines are either

C-vines or D-vines. We concentrate on D-vines because, differently from C-vine, they do

not assume the existence of a particular node dominating the dependencies.

A vine V(d) on d variables is a nested set of trees T1, . . . , Td−1. The edges of tree Tτ

are the nodes of tree Tτ+1, τ = 1, . . . , d − 1. In a R-vine, if two edges of tree Tτ share a

common node, they are represented in tree Tτ+1 by nodes joined by an edge. A D-vine is

a R-vine where all nodes do not have degree higher than 2, that is each node is connected

to no more than two other nodes.

In a D-vine, each node corresponds to a variable or a set of variables. A pair-copula
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density is associated to any edge, with the edge label indicating the subscript of the pair-

copula density. An example of a 4-dimensional D-vine is provided by Figure 1. The first

tree is constructed ordering the variables according to their pairwise dependence, where

the first two nodes correspond to the variables with the strongest association, and so on;

the dependencies between nodes {1} and {2}, between {2} and {3}, and between {3} and

{4} are modelled using bivariate copula distributions. In the second tree, the conditional

dependencies between nodes {1, 2} and {2, 3}, and between {2, 3} and {3, 4} are modelled

via pair copula densities. In the third tree, the conditional dependence between nodes

{1, 3|2} and {2, 4|3} is modelled via a pair copula density.

1 2 3 4
12 23 34

12 23 34
13|2 24|3

13|2 24|3
14|23

T1

T2

T3

Figure 1: 4-dimensional D-vine graphical representation

Using the D-vine representation, the joint density can be decomposed in terms of

conditional copula densities (identified by the labels of the edges in the considered trees)

times the marginal densities of the examined variables. The joint density for the D-vine

represented in Figure 1 is given by

f(x1, . . . , x4) =
4∏

τ=1

fτ (xτ )× c12 × c23 × c34 × c13|2 × c24|3 × c14|23,

where cab = cab(F (xa), F (xb)).

More generally, the density of a D-vine of dimension d takes the form

f(x1, . . . , xd) =
d∏

τ=1

fτ (xτ )×

d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1(F (xi|xi+1, . . . , xi+j−1), F (xi+j|xi+1, . . . , xi+j−1))

which is the product of d marginal densities fτ and d(d − 1)/2 bivariate copulas

ci,i+j|i+1,...,i+j−1(·, ·) evaluated at the conditional distribution functions F (·|·).
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If marginal or conditional independence between pairs of variables holds, the corre-

sponding pair copulas are equal to one and hence the PCC and joint density simplify

accordingly. The case of independence is depicted in the corresponding vine by missing

edges between nodes, obtaining a forest vine, as shown in Figure 2. Here, conditional in-

dependence between variables 2 and 4 given 3 is represented by the missing edge {2, 4|3},

which reduces the number of levels of the PCC.

1 2 3 4
12 23 34

12 23 34
13|2

13|2

T1

T2

T3

Figure 2: Forest vine

3. A Balance Sheet Multivariate Contingent Claim Model

In this paper we propose a novel contingent claim model for PD estimation via PCCs

on balance sheet data, that refines and improves Merton’s analysis. Our approach allows

us to evaluate, at any time t, the company ability to service its debts, and consequently

to efficiently predict its PD in a flexible way. In the following Section we describe the

main characteristics of Merton’s model, and introduce our approach.

3.1. Merton’s Model

According to Merton (1970, 1974, 1977), the evaluation of the firm total assets At is

based on the structural variables equity Et and bond Bt,

At = Et +Bt.

A very common assumption is that the value At of the firm follows a geometric Brownian

motion

dAt = µAAt dt+ σAAt dWt,
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where µA is the instantaneous expected return of the asset, σA is the volatility, and Wt is

a Wiener process. Under the assumptions of market efficiency, no arbitrage opportunity

and continuous hedging, the market value of equity satisfies

Et = AtN(d1)− e−rTDN(d2), (5)

where r is the risk free interest rate, N(·) is the cumulative standard Normal distribution

function, D is the face value of bond at maturity T , d1 is given by

d1 =
log(At/D) + (µA + 0.5σ2

A)T

σA
√
T

and d2 = d1 − σA
√
T . Furthermore, the volatility of the equity is

σE =
At
Et
N(d1)σA. (6)

The asset value and its volatility, At and σA respectively, cannot be directly observed;

however they may be obtained solving equations (5) and (6), see e.g. Ronn and Verma

(1986). Consequently we can easily obtain d2, and PD = Pr[AT ≤ BT ] = N(−d2).

This model has some drawbacks. Its structure implies that equity and asset values

are non negative in trading markets, whereas negative asset and equity are possible in

accounting, see e.g. Peterkort and Nielsen (2005). Furthermore, only part of the total

debt is traded and observable at specific accounting periods. Finally, Merton’s model

might underestimate failure probability, see e.g. De Giuli et al. (2008) and Su and Huang

(2010). One possible solution to these issues is proposed in the following Section.

3.2. The Default Probability Model

In order to solve the asset observability issue, we model the firm value via a contingent

claim on the underlying securities (equity and debt). We use balance sheet data as a proxy

of market data, and we apply PCCs to model the equity dynamic. For a recent work on

PCCs in contingent claim analysis see Bernard and Czado (2013).

The value of a contingent claim at maturity T can be written in a general form

as G(S1(T ), S2(T )), where G(·) is the pay-off function, and S1(T ) and S2(T ) are the

underlying securities at maturity T . In this framework the final value of the firm is given

by AT = G(ET ,BT ;T ) where ET and BT denote, respectively, equity and debt at maturity
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T . In a similar way we can express the equity as ET = G1(AT ,BT ;T ) = (AT − BT ) where

G1(·) is the pay-off function with density g1(·). The equity value at time t is computed as

Et = G1(At,Bt; t) = P (t, T )

∫ ∞
0

∫ ∞
0

G1(AT ,BT ;T )g1(AT ,BT )dATdBT , (7)

where P (t, T ) is the risk free discount factor.

The firm value and its return volatility are not directly observable, hence we use

balance sheet data, denoted by AT (asset) and BT (liability), as reliable proxy of the

market data, see e.g. Eberhart (2005). Assets represent what a firm owns, whereas

liabilities are debts arising from business operations. We decompose AT and BT in current

(CT ) and long term components (LT ) on the basis of the considered time period; that

is AT = ACT
+ ALT

and BT = BCT
+ BLT

. Current assets will be converted into cash

within one year, whereas long term assets will be converted after more than one year.

In a similar way, the firm expects to pay off current liabilities within one year; whereas,

the firm expects to settle long term liabilities after one year. Comparing current/long

term assets with current/long term liabilities we can obtain a quick gauge of the financial

status of the firm. In fact, standard accounting ratios commonly used to investigate the

financial strength and efficiency of a firm are based on these quantities.

Equation (7) can be rewritten in terms of balance sheet data as follows

Et = G2(ACt , ALt , BCt , BLt ; t) =

= P (t, T )

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

G2(ACT
, ALT

, BCT
, BLT

;T )×

× g2(ACT
, ALT

, BCT
, BLT

)dACT
dALT

dBCT
dBLT

,

where G2(·) and g2(·) are respectively the pay-off function and its density for the decom-

posed data.

By using Sklar’s theorem the 4-dimensional density function

g2(ACT
, ALT

, BCT
, BLT

) can be expressed via a copula, and the equity becomes

Et = P (t, T )

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

G2(ACT
, ALT

, BCT
, BLT

;T )×

× c(FAC
, FAL

, FBC
, FBL

)fAC
fAL

fBC
fBL

dACT
dALT

dBCT
dBLT

, (8)

where c(·) denotes the 4-dimensional copula density function, FAC
, FAL

, FBC
, FBL

are

the marginal cumulative distribution functions, and fAC
, fAL

, fBC
, fBL

are the marginal

probability density functions.
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In order to improve the flexibility of the model, allowing the dependence pattern of

each pair of variables to be represented by a different copula, we reexpress the previous

equation via PPCs. The 4-dimensional copula density function c(FAC
, FAL

, FBC
, FBL

) is

decomposed in terms of a sequence of bivariate copulas, not necessary belonging to the

same family of distributions, via a D-vine decomposition. The specific decomposition

depends on the particular data structure under examination; see Section 5 for the details.

Simulating from the D-vine decomposition we can approximate the equity function in

equation (8) via Monte Carlo method as follows

Ẽt = P (t, T )
1

N

N∑
k=1

G2(ÃCTk
, ÃLTk

, B̃CTk
, B̃LTk

;T ),

where N is the number of simulations, Ẽt, ÃCTk
, ÃLTk

, B̃CTk
and B̃LTk

are the simulated

values of equity, current and long term assets and liabilities. We then estimate the PD

at time t as (PD)t = Pr(Ẽt ≤ 0). More details about simulating from a D-vine can be

found in Aas et al. (2009).

4. Model Estimation

The dynamic of the equity value in equation (8) depends on the parameters of the

copula and those of the marginal distributions. We denote with θ the parameter vector

of the copula function c(FAC
, FAL

, FBC
, FBL

), and with δm the parameter vector of the

marginal distribution m, m ∈ {AC , AL, BC , BL}. The vector ∆ = (δAC
, δAL

, δBC
, δBL

)

contains the parameters of the marginals, and Ψ = (∆,θ) represents the full set of

parameters associated to (8).

In order to estimate Ψ we follow the Inference Functions for Margins (IFM) procedure

proposed by Joe and Xu (1996). The IFM method estimates the marginal parameters ∆

in a first step, and then estimates the copula parameters θ, given ∆̂IFM , in a second step.

4.1. Marginal Parameter Estimation

In order to model the marginals we adopted a parametric approach based on a two-

component Normal mixture. This approach was motivated by extensive tests and simu-

lation studies, that are described in Section 5.1.
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The use of mixture distributions to model multimodal phenomena is a popular techni-

que, which has attracted the interest of several authors in the literature, see e.g. McLach-

lan and Peel (2000). Peel and McLachlan (2000) use the ECM algorithm to fit mixtures

of Student’s t distributions to data containing groups of observations with heavy tails or

atypical observations. Komarek and Lesaffre (2008) propose to model the random effects

of generalised linear mixed models by a mixture of Gaussian distributions, estimating the

parameters in a Bayesian context using MCMC techniques. Escobar and West (1995)

use mixture of Dirichlet processes for density estimation. For a review of Bayesian non-

parametric methods for density estimation see e.g. Müller et al. (2015). Benaglia et al.

(2009) provide a set of R functions, based on EM algorithms, for analysing a variety of

finite mixture models, such as mixtures of regressions, multinomial mixtures, nonpara-

metric and semiparametric mixture models. Schellhase and Kauermann (2012) represent

unknown densities, allowed to depend on covariates, by a mixture of basis densities, using

penalised splines.

The current and long term assets and liabilities present bimodal distributions. This

behaviour can find an explanation in the effect of the managerial actions and decisions

performed to improve the status of the firm. These actions and decisions directly impact

the dynamic of current and long term assets and liabilities, and this can intuitively explain

the presence of two separated clusters of data.

Let F (xmt) be the cumulative distribution function of the marginal m at time t. We

estimate each marginal distribution F (xmt) via a two-component Normal mixture model,

assuming different means but equal variances (location-shift model)

F (xmt) =
2∑
p=1

ηpΦ(xmt|µp, σ2). (9)

In (9) ηp is the classification probability for component p (with ηp ≥ 0 and
∑2

p=1 ηp =

1), and Φ(xmt|µp, σ2) is the Normal cumulative distribution function with mean µp and

variance σ2. The likelihood is given by

L(xm) =
n∏
t=1

2∑
p=1

ηpφ(xmt |µp, σ2),

where n is the number of balance sheet observations, and φ is the probability density

function of the Normal distribution.
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Although based on standard distributions, mixture models pose highly complex com-

putational challenges. In particular, one major difficulty is parameters estimation. The

literature about mixture models offers various solutions both in the classical and in the

Bayesian framework. Considering the classical approach, the most popular method is

the EM algorithm, which is a numerical optimisation procedure allowing to calculate the

maximum likelihood estimator. However this algorithm may fail to converge to the mode

of the likelihood, see e.g. Marin et al. (2005). The Bayesian approach constitutes a more

flexible and computationally convenient solution to the estimation of mixture models,

allowing complex structures to be decomposed into a set of simpler structures through

the use of latent variables. Moreover, the Bayesian approach permits, via the use of prior

distributions, to incorporate into the model available additional information coming from

different data sources. Furthermore, differently from the classical approach, the Bayesian

one provides reliable parameter estimates even for sample sizes of limited dimension.

For the previous reasons, we use the Bayesian approach to model the dynamic of

current and long term asset and liability data. The posterior distribution of the m-th

marginal is given by

π(δm,η|x) ∝

(
n∏
t=1

2∑
p=1

ηpφ(xt|δm)

)
× π(δm,η),

where x is the balance sheet data vector, π(δm,η) is the joint prior distribution of δm and

the vector of classification probabilities η. The posterior π(δm,η|x) is computationally

intractable to work with; hence, the data augmentation MCMC algorithm is used to

estimate the parameters of the mixture distributions, see Tanner and Wong (1987). The

data augmentation algorithm introduces a vector of latent variables z = (z1, . . . , zn), that

represents the allocations associated to each observation xt. Hence, the posterior density

can be expressed as

π(δm,η|x) =

∫
Z

π(δm,η|z,x)π(z|x)dz,

where π(z|x) denotes the predictive density of the latent data z given x, with z =

(z1, . . . , zn), and π(δm,η|z,x) is the conditional density of the parameters given the aug-

mented data. Moreover, π(δm,η|z,x) = π(δm|η, z,x)π(η|z,x), and π(η|z,x) = π(η|z),

since the distribution is independent of x. The data augmentation algorithm uses an iter-

ative procedure simulating z first, then generating η from π(η|z) and finally generating
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δm from π(δm|η, z,x). The densities π(η|z) and π(δm|η, z,x), are easier to sample than

the original posterior.

Assuming independency between parameters a priori, we specify the following prior

distributions

zt ∼ Bernoulli(η1)

(η1, η2) ∼ Dirichlet(α1, α2)

µp ∼ Normal(bp, Bp)

σ2 ∼ Γ−1 (ν/2, νS/2) ,

where a convenient choice of hyperparameters α1, α2, bp, Bp, ν, S leads us to vague prior

distributions. A sensitivity analysis was carried out proposing different hyperparameter

values; however, the high similarity of all results suggested that the model is insensitive

to prior parameter choice.

We need to point out that the simulations were implemented using the software JAGS

(Just Another Gibbs Sampler; Plummer (2003)), where the risk of unidentifiability of the

model due to label switching was avoided specifying the constraint of unique ordering of

the segments, with ascending means of the segment distributions.

4.2. Copula Parameter Estimation

To estimate the copula parameters θ we apply the following five phases procedure.

In the first phase a suitable D-vine decomposition is selected to model the copula

c(FAC
, FAL

, FBC
, FBL

;θ). We select as a first tree the one maximizing the pairwise depen-

dencies between the considered variables. As a measure of pairwise dependence we use

the Kendall’s τ , calculated for each edge connecting two nodes. The problem of finding

the maximum weighted sequence of the variables can be transformed into a travelling

salesman problem instance and solved accordingly, see Brechmann (2010). The structure

of remaining trees is completely determined by the structure of the first one. There-

fore, the strongest dependencies are captured in the first tree, allowing to obtain a more

parsimonious model, with more stable parameter estimates.

In the second phase suitable pair copulas are chosen. For each pair of variables we

select the best fitting pair copula using the Akaike Information Criterion (AIC), which is

chosen among other criteria (i.e. the Vuong and Clarke goodness-of-fit test developed by
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Vuong (1989) and Clarke (2007), and Bayesian Information Criterion (BIC)) for its good

performance in simulation studies. However, before calculating the AIC, the Genest and

Favre bivariate asymptotic independence test (Genest and Favre (2007)) is performed to

check for independence on each pair of variables of the D-vine. If conditional independence

between variables is observed, the number of levels of the pair copula decomposition is

reduced, and hence the construction is simplified, as discussed in Section 2.2.

In the third phase, the parameters of the copulas in the first tree are estimated. For

each copula there is at least one parameter to be determined. The number of parameters

depends on which copula type is selected in the previous phase. To estimate the copula

parameters we employ the maximum likelihood estimation method, using the sequential

updating parameter estimates as starting values, see Aas et al. (2009) for more details.

In the fourth phase, given the results of the first tree, we compute pseudo-observations

via the conditional distributions F (x|v). These values are then used as input for the next

trees of the D-vine.

In the fifth phase, the procedure illustrated from phase 2 to phase 4 is repeated for all

trees of the D-vine.

5. Empirical Analysis

We consider four fraudulent bankruptcy cases, related to well known financial scan-

dals: Cirio (1993-2002), Enron (1997-2000), Parmalat (1990-2003), Swissair (1988-2000).

To test the behaviour of our methodology, we also examine the Sysco company, a firm

operating in the same period of time of the previous ones, with a strong financial reputa-

tion, and presenting some characteristics in common with some of the examined defaulted

firms. For comparative purposes, for this last firm we consider balance sheet data of the

years 1990-2003. With the exception of Enron, the other defaulted firms are now operating

under the direction of a different leadership group.

We use semestral balance sheets data downloaded by the “Thomson Reuters” and

the “Bloomberg” databases. The data have been converted into monthly observations

assuming uniform distribution in the semesters. For Swissair and Enron the complete

balance sheets for the year of failure are not available.

We now briefly describe the profile of each examined firm, outlying the events that
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lead to the bankruptcy of the defaulted firms.

Cirio is an Italian food company founded in 1856. Its bankruptcy in 2002 was the

consequence of the fraudulent financial policy of its managerial group.

Enron was an American energy, commodities, and services company created in 1985

through the merger of two natural gas companies. Before its collapse in 2001 it was one of

America’s leading companies with a solid reputation, and it was one of the highest-rated

companies of Wall Street. At the end of 2001 it was made public that its apparently

solid financial conditions were substantially sustained by an institutionalised, systematic,

accounting fraud. The company declared bankruptcy in December 2001.

Parmalat was created in 1961 as a small pasteurisation plant in Parma (Italy). It

subsequently became a multinational corporation in the 80’s with different food product

lines, and expanded further in the 90s. It was listed for the first time in the Milan stock

exchange in 1990. Parmalat collapse in 2003 was the biggest case of financial fraud and

money laundering perpetrated by a private company in Europe. It was the first Italian

corporate crash with international implications.

Swissair presents a different story from the previous defaulted firms. It was formed in

1931 from the merging between Balair and Ad Astra Aero and it was one of the major

international airlines with a strong financial stability. It rapidly declined from one of the

major international airlines with the strongest balance into bankruptcy in 2001. This

rapid decline was the consequence of inefficient alliance policies, management inability

and economic turndown following the terroristic attacks of “September 11”.

Sysco is an American marketer and distributor of foodservice products. It was founded

in 1969 and became public in 1970. Nowadays, it is a solid company with a very good

reputation.

In the following Section we report a detailed analysis of the four defaulted companies,

and we present the main important results of the Sysco company.

5.1. Mixture Models for Asset and Liability Data

We modeled the current and long term assets and liabilities of the considered compa-

nies employing the two-component Normal mixture model described in Section 4.1. The

choice of this model was determined by extensive tests and simulation studies.

First, in order to identify the best model for the marginals, we assessed the fit to
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the data of classical parametric models, such as the Normal, the left-truncated Normal

in zero, the log-Normal, the Gamma, the Exponential and the Weibull distribution. We

implemented a bootstrap version of the univariate Kolmogorov-Smirnov test, with 1,000

Monte Carlo simulations. The bootstrap Kolmogorov-Smirnov tests for the hypothesis

that the actual data were generated by the corresponding theoretical distribution. Table

1 shows the results of the bootstrap Kolmogorov-Smirnov tests for the marginals of the

Enron dataset. We obtained very similar outputs for the other datasets considered in this

paper. For each theoretical distribution being tested the average p-value over the 1,000

simulations and the percentage of times the null hypothesis is not rejected are displayed.

Since the null hypothesis was always rejected at the 0.05 level, we concluded that none of

the classical parametric model tested was suitable for our data.

Table 1: Bootstrap Kolmogorov-Smirnov tests for the marginals of the Enron dataset. The columns list

the four marginals and the rows display the average p-values and the percentages of times when the null

hypothesis is not rejected, for the six classical parametric models considered.

Distributions Marginals ACT
ALT

BCT
BLT

Normal Average p-value 0.00000 0.00032 0.00000 0.00002

% non-rejected H0 0.00 0.00 0.00 0.00

Left-Truncated Normal in 0 Average p-value 0.00000 0.00055 0.00000 0.00000

% non-rejected H0 0.00 0.00 0.00 0.00

Log-Normal Average p-value 0.00425 0.00173 0.00184 0.00021

% non-rejected H0 0.01 0.00 0.00 0.00

Gamma Average p-value 0.00000 0.00157 0.00000 0.00004

% non-rejected H0 0.00 0.00 0.00 0.00

Exponential Average p-value 0.00000 0.00000 0.00000 0.00000

% non-rejected H0 0.00 0.00 0.00 0.00

Weibull Average p-value 0.00000 0.00023 0.00000 0.00000

% non-rejected H0 0.00 0.00 0.00 0.00

Due to the poor fit of classical models to our marginals, and since the current and

long term assets and liabilities present bimodal distributions, we opted for two-component

parametric mixture models. We tested several families of parametric mixture distribu-

tions for the marginals of all the considered datasets, and the Normal mixture always

outperformed other models. In particular, we selected the Normal, the log-Normal and

the Gamma mixtures, since many other models are related to them: the truncated Nor-
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mal is related to the Normal and the Exponential and Weibull are related to the Gamma

distribution. Figure 3 depicts the histogram of Enron current assets (in EUR) fitted with

three different mixture models and the Normal mixture (solid line) clearly shows the best

fit. Similar results were obtained for the remaining marginals and datasets.

Figure 3: Histogram of Enron current assets (in EUR) fitted with Normal (solid line), log-Normal (dotted

line), and Gamma (dashed line) mixture models.

Before choosing to model the marginals with a two-component Normal mixture model,

we estimated the number of components p using Bayes factors, as suggested by Kass and

Raftery (1995), Richardson and Green (1997), and Marin et al. (2005). We calculated

Bayes factors for all the marginals of the considered companies, comparing the model

with two components with all models with a number of components p = 1, 3, 4, . . . , 10.

Placing the model with two components in the numerator of the Bayes factors, the results

we obtained were greater than one for all the marginals, showing that the two-component

Normal mixture is the most strongly supported model by the data. For illustration, Table

2 lists the Bayes factor results for the Enron current assets data. BFr,s denotes the Bayes

factor of model r against model s. The results are not surprising, since inspection of the

histograms of the marginals clearly reveals bi-modal distributions.

In addition, we tested the fit of the two-component Normal mixture with the sym-
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Table 2: Bayes factors for Enron current assets data. Each Bayes factor compares the model with two

components against models with a number of components p = 1, 3, 4, . . . , 10.

Competing models Bayes factor

BF2,1 2.7979

BF2,3 2.8601

BF2,4 3.0305

BF2,5 3.1008

BF2,6 3.1558

BF2,7 3.1926

BF2,8 3.4840

BF2,9 2.9698

BF2,10 2.9564

metric location-shifted semiparametric model of Bordes et al. (2006) and Hunter et al.

(2007), which is based on a mixture of unspecified densities, assumed symmetric about

zero, see Benaglia et al. (2009). Figure 4 shows the histogram of Enron long term li-

abilities (in EUR) fitted with the two-components Normal mixture (solid line) and the

semiparametric model (dashed line). In the first row plot the semiparametric model was

obtained with no specification of the initial mean values of the mixture components, while

in the second row plot the semiparametric model was obtained specifying the initial mean

values of the mixture components. In the former case, the semiparametric model shows a

worse performance than the Normal mixture, adding a new unnecessary component to the

mixture. In the latter case the performance of the semiparametric model is very similar

to the Normal mixture and does not improve the fit to the original data. The application

of the semiparametric model to the remaining marginals of the other considered datasets

yields very similar results.

Therefore, we modelled the current and long term assets and liabilities using a two-

component Normal mixture, since this was the best model to fit the marginals. For each

single firm we report the estimates of the parameters (posterior means) of the correspond-

ing mixture models in Table 3, together with the 95% credible intervals (in brackets).

The classification probabilities ηp are quite close to 0.5 for Cirio data, for the asset
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Figure 4: Histogram of Enron long term liabilities (in EUR) fitted with the 2-components Normal mixture

(solid line) and the semiparametric model (dashed line). The semiparametric model was estimated with

(second row) and without (first row) specifying the initial mean values of the mixture components.
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marginals of Parmalat data, for the current assets and long term liabilities of Swissair

data, and for Sysco data, denoting a balanced number of observations in the two mixture

components. On the contrary, Enron data, the liability marginals of Parmalat data,

long term assets and current liabilities of Swissair data show very different classification

probabilities η1 and η2. This means that different proportions of observations are allocated

to the components of the mixture and that one of the two components captures the

greatest number of data. The location parameters of the two Normal components of the

mixture µp are well separated, especially for Enron, Parmalat and Sysco, denoting that

the mixture model is able to express the mean difference between the two components.

The dispersion parameter σ2 is particularly high for Enron, Parmalat and Sysco, while it

is lower for Cirio and Swissair.

Enron and Parmalat have the most unbalanced mixture components, especially with

reference to the liability marginal data. The data of these two companies are characterised

by very different values of classification probabilities ηp, very different means µp, and

very high normal variance values σ2. The resemblance of the structure of assets and

liabilities in Enron and Parmalat may be explained by the similar behavior of these two

companies during the years before their default. Parmalat indeed has been referred to as

the “Europe’s Enron”.

We now present a graphical analysis of the results of Enron company. We have per-

formed a similar analysis for the remaining four companies, but we do not report it here

for lack of space.

Figure 5 shows the histograms of each marginal measured in EUR (grey bars), fitted

with the location-shift model of two Normal components (black and grey lines) described

in Section 4.1. FAC
is displayed in the top left panel, FAL

in the top right, FBC
in the

bottom left and FBL
in the bottom right. Let us consider the picture related to the current

assets marginal of Enron data (top left panel of Figure 5). The histogram shows a highly

bimodal distribution which justifies the use of a finite mixture model. Similar comments

arise from the analysis of the fitted histograms of the remaining marginals.

Figure 6 shows the sampled values of the µ1 parameter on the horizontal axis and of

the µ2 parameter on the vertical axis. FAC
is displayed in top left panel, FAL

in the top

right, FBC
in the bottom left and FBL

in the bottom right. It is interesting to note that

22



Current assets

Total current assets

D
en

si
ty

0 500 1000 1500 2000 2500 3000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Long term assets

Long term assets

D
en

si
ty

0 200 400 600 800 1000 1200

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

Current liabilities

Current liabilities

D
en

si
ty

0 500 1000 1500 2000 2500 3000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30

Long term liabilities

Long term liabilities

D
en

si
ty

0 500 1000 1500 2000 2500

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30

Figure 5: Enron data, measured in EUR, fitted with a mixture of two Normal components: FAC
(top

left), FAL
(top right), FBC

(bottom left) and FBL
(bottom right).
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Figure 6: Enron data: µ1 versus µ2. FAC
is in the top left, FAL

is in the top right, FBC
is in the bottom

left and FBL
is displayed in the bottom right panel.

our data are not affected by label switching, since the segments are rather well separated

for µ, as there are no points on the diagonal on the µ1 versus µ2 plots.

Focusing on the MCMC results, here we illustrate the outcomes of the Enron long

term assets data, since the results of the remaining marginals are very similar to those

presented. Figures 7, 8 and 9 depict MCMC trace plots and posterior densities, obtained

using kernel density estimation from the R package “bayesmix” of Grüen (2014), for the

parameters η, µ and σ2, respectively. We run the algorithm for 4,000 iterations, discarding

the first 1,000 iterations as burn-in period. The trace plots show that the chains are well

mixing, exploring freely the sample space and clearly reaching convergence to the target
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distribution. Moreover, the unidentifiability problem due to label switching, that may

lead to biased estimates, in our case does not occur. Finally, the posterior density plots

have regular forms and do not show multimodalities.

Figure 7: Enron long term assets data: MCMC traces (left panels) and posterior densities (right panels)

for η; with η1 on the first row and η2 on the second row.

5.2. PCC for Asset and Liability Data

Following the procedure described in Section 4.2 we select an appropriate pair cop-

ula decomposition for the D-vine. For each one of the defaulted firms the order of the

marginals that maximizes the pairwise Kendall’s τ indexes in the first tree is ACT
−

BCT
− BLT

− ALT
.

In Tables 4, 5, 6 and 7 we display, for the defaulted firms, the list of pair copulas for

each D-vine, the selected copula families, the copula parameters (one or two according to

the type of copula) and the corresponding Kendall’s τ . The results are obtained using the
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Figure 8: Enron long assets data: MCMC traces (left panels) and posterior densities (right panels) for

µ; with µ1 on the first row and µ2 on the second row.

Figure 9: Enron long term assets data: MCMC trace (left panel) and posterior density (right panel) for

σ2.
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R package “CDVine” by Brechmann and Schepsmeier (2013). From the selected copula

families, we see evidence of different types of asymmetric dependence. This demonstrates

that the choice of PCCs is appropriate, since it guarantees enough flexibility to model

the complex and asymmetric dependence structure of the data at hand. Note that only

the Cirio D-vine (Table 4) has none conditional independent variable pairs. For these

data the Genest and Favre (Genest and Favre (2007)) independence test rejected inde-

pendency for all the copulas involved. An independence copula has been selected instead

for cACT
,BLT

|BCT
in the second tree for Parmalat and Swissair (Tables 6 and 7), while

cALT
,BCT

|BLT
has been identified as an independence copula for Enron (Table 5). In these

cases the D-vine structure is simplified and we do not need to estimate the parameters of

the copula cACT
,ALT

|BCT
,BLT

in the third tree. The presence of conditional independence

in this last case suggests a weak relationship between the current and long term assets,

given the values of liabilities. From the unconditional pair copulas, we note an existing

dependence between current and long term assets or liabilities, and also a dependence

between the two different types of liabilities. A strong dependence in conditional copulas

instead may suggest imbalance, when current assets are financed by long term liabilities,

or a serious liquidity problem, when long term assets are financed by current liabilities.

These situations need particular attention, because they may prelude to the default of

the firm.

For the Sysco company the order in the first tree is

ACT
− ALT

− BLT
− BCT

. In Table 8 we display the list of pair copulas for the D-

vine, the selected copula families, the copula parameters (one or two according to the

type of copula) and the corresponding Kendall’s τ . In this case, an independence copula

has been selected for cACT
,BLT

|ALT
. The D-vine structure is simplified and we do not need

to estimate the parameters of the copula cACT
,BCT

|ALT
,BLT

in the third tree. The presence

of conditional independence in this last case suggests a weak relationship between the

current asset and liabilities, given the values of the long term ones.

5.3. Probability of Default Estimation

To estimate the PD we follow the methodology described in Section 3.2. For each firm

we generate 10,000 simulations from the selected D-vine to obtain the equity distribution

and the PD. Figure 10 depicts the equity densities of Cirio, Enron, Parmalat, Swissair
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Table 4: Cirio: selected copulas and D-vine PCC parameters. SBB1, BB7 and BB8 are, respectively,

the Survival Clayton-Gumbel, the Joe-Clayton and the Joe-Frank copulas, that are Archimedean copula

families with two parameters.

Cirio: Pair Copula Parameters of the D-Vine

Copulas family parameter 1 parameter 2 Kendall’s τ

cACT
,BCT

SBB1 0.0010 3.3814 0.7044

cBCT
,BLT

BB8 1.2579 0.9902 0.1186

cBLT
,ALT

BB7 1.1195 4.7016 0.6985

cACT
,BLT

|BCT
Frank 7.2222 N/A 0.5718

cALT
,BCT

|BLT
Normal -0.0337 N/A -0.0214

cACT
,ALT

|BCT
,BLT

Frank -8.9557 N/A -0.6353

Table 5: Enron: selected copulas and D-vine PCC parameters. SBB8 and BB8 are, respectively, the

Survival Joe-Frank and the Joe-Frank copulas, Archimedean copula families with two parameters.

Enron: Pair Copula Parameters of the D-Vine

Copulas family parameter 1 parameter 2 Kendall’s τ

cACT
,BCT

Student’s t 0.9868 7.6539 0.8963

cBCT
,BLT

SBB8 6.0000 0.3924 0.2761

cBLT
,ALT

BB8 5.9831 0.9979 0.7208

cACT
,BLT

|BCT
Rotated Clayton -1.4730 N/A -0.4241

cALT
,BCT

|BLT
Independence N/A N/A 0

Table 6: Parmalat: selected copulas and D-vine PCC parameters. BB1 is the Clayton-Gumbel copula,

Archimedean copula family with two parameters.

Parmalat: Pair Copula Parameters of the D-Vine

Copulas family parameter 1 parameter 2 Kendall’s τ

cACT
,BCT

BB1 0.4325 4.2015 0.8043

cBCT
,BLT

Normal 0.9998 N/A 0.9898

cBLT
,ALT

Clayton 1.2256 N/A 0.3800

cACT
,BLT

|BCT
Independence N/A N/A 0

cALT
,BCT

|BLT
Frank -7.3657 N/A -0.5778
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Table 7: Swissair: selected copulas and D-vine PCC parameters. BB7 and SBB8 are, respectively, the

Joe-Clayton and the Survival Joe-Frank copula, Archimedean copula families with two parameters

Swissair: Pair Copula Parameters of the D-Vine

Copulas family parameter 1 parameter 2 Kendall’s τ

cACT
,BCT

BB7 2.4309 5.3880 0.7267

cBCT
,BLT

SBB8 1.0081 1.0000 0.0047

cBLT
,ALT

BB7 1.0010 2.9494 0.5959

cACT
,BLT

|BCT
Independence N/A N/A 0

cALT
,BCT

|BLT
Rotated Joe -2.3405 N/A -0.4222

Table 8: Sysco: selected copulas and D-vine PCC parameters. BB1 and BB6 are, respectively, the

Clayton-Gumbel and the Survival Joe-Gumbel copulas, that are Archimedean copula family with two

parameters.

Sysco: Pair Copula Parameters of the D-Vine:

Copulas family parameter 1 parameter 2 Kendall’s τ

cACT
,ALT

BB6 6 1.9387 0.8569

cALT
,BLT

Frank 298.314 N/A 0.9867

cBLT
,BCT

BB1 4.4714 1.7693 0.8253

cACT
,BLT

|ALT
Independence N/A N/A 0

cALT
,BCT

|BLT
Normal -0.0270 N/A -0.0172
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and Sysco, respectively on the top left, top right, middle left, middle right and bottom

panel. The Figure was obtained using kernel density estimation. The value of the PD is

written in the relevant plot and corresponds to the area under the curve where the equity

is zero or negative. The PD values are very high for all defaulted firms, lying in the range

0.4468 − 0.6892; in contrast, the Sysco PD is only 0.0026, as we expected for a healthy

company, where the probability of going bankrupt is very low. We notice that the PD

values of Enron and Swissair are slightly lower than the other defaulted firms. However,

the available balance sheet data did not include the last year of activity of Enron and

Swissair. This might have affected the final results, since the inclusion of the last year’s

data would certainly have increased the corresponding PD values.

For comparative purposes we contrasted our results with those obtained applying the

original Z-score proposed by Altman (1968), e.g. to the Enron company. Figure 11 shows

the line plot of Altman’s Z-score for the time horizon between 1997 and 2001. According

to Altman (1968), a company is considered to be in the “safe” zone (healthy) when

z > 2.99, it is in the “grey” zone (moderate risk of default) when 1.81 < z < 2.99, and

it is in the “distress” zone (high danger of default) when z < 1.81. Altman’s Z-score is

clearly not able to predict the failure of the Enron company, since it locates the firm in

the distress zone only until 1998; subsequently, from 1999 to 2000, it moves the firm to the

grey zone (erroneously suggesting an improved performance); and finally (when the actual

default actually occurred) places the firm in the safe area, with a z -score of 3.22. Besides,

in the considered period Altman’s Z-score is not decreasing, but even rising, leading to

completely misleading conclusions.

The Z-score’s inability of predicting the default is due to the fact that, unlike the PCC

model, it does not consider the dependence pattern among the different components of

the balance sheet data. On the contrary, the proposed PCC model allows us to measure

the dependencies and to detect in advance alarming situations, which are not identifiable

using other traditional models. Moreover, our PCC approach permits to adopt different

and more suitable marginal distributions, better reflecting the structure of the data at

hand.

Moreover, the calculation of Altman’s Z-score, unlike the PCC model, involves bal-

ance sheet data as well as economic and income data, without analysing the relationship
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Figure 10: Equity densities of Cirio (top left), Enron (top right), Parmalat (middle left), Swissair (middle

right) and Sysco (bottom). The value of the PD is written on the corresponding densities.
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Figure 11: Altman’s Z-score for Enron data

among these quantities. For this reason, the Z-score might mask dangerous default risks,

classifying a company as “safe”, when it is truly in distress.

6. Summary and Conclusions

The aim of this paper was to propose a novel methodology for PD evaluation. Our

final goal was to calculate the PD of large firms using their balance sheet data. We

measured the firm value via a contingent claim, whose pricing function may be expressed

using copulas. The marginals are given by the current and long term assets and liabili-

ties. Hence, the equity function is expressed by a 4-dimensional D-vine copula. To test

the performance of our methodology we applied it to four fraudulent defaulted stocks

and to the data of a healthy firm. In order to estimate the marginals we employed a

Bayesian mixture model, able to model the presence of two clusters in the asset as well as

liability data. The structure of the marginals in defaulted firms reflects the choices of the

management, trying to balance high and low accounting items during the period before

the default. Considering the copula, we chose to employ PCCs, because they allow for a

great flexibility in modelling the dependence structure of the marginals. As demonstrated

by the results, the pair copulas selected in the D-vines belong to different families and

describe various types of dependence. The analysis of these dependencies in defaulted

firms data already reveals substandard loans and situations of serious imbalance due to

liquidity issues, especially when the firm tries to balance long term assets with current

liabilities. Finally, we calculated the PD of the five considered firms, simulating from the
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D-vines and obtaining the equity distributions. The final results show a high PD for the

defaulted firms, suggesting their forthcoming bankruptcy. The PD of the Sysco company

is instead much lower than those of the defaulted firms, denoting a good performance. A

traditional indicator like Altman’s Z-score may be incapable of predicting the risk of de-

fault, since it is not flexible enough and it does not incorporate the dependence structure

of the involved quantities. On the contrary, the proposed methodology has proven to be

successful in the evaluation of PD and would certainly benefit analysts and managers,

advising them to take actions against a potential bankruptcy.

Possible extensions of our work include the estimation of the whole model in a full

Bayesian framework, the application of nonparametric approaches for PCCs, the use of

balance indicators instead of accounting items and the use of a our methodology to analyze

the contagion in sectors of activity. Finally, it would be interesting to apply our approach

to Altman’s Z-score, to model the dependence between the different quantities involved.

Acknowledgements

The work of the second author was partially supported by MIUR, Italy, PRIN MISURA

2010RHAHPL. The authors are thankful to Michela Magliacani and Dennis Montagna for

helpful comments and suggestions. We are grateful to the Editor and the two anonymous

referees for valuable comments.

References

Aas, K., & Berg, D. (2009). Models for construction of multivariate dependence - a com-

parison study. The European Journal of Finance, 15, 639–659.

Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of mul-

tiple dependence. Insurance: Mathematics and Economics, 44, 182–198.

Allen, D. E., Ashraf, M. A., McAleer, M., Powell, R. J., & Singh, A. K. (2013). Financial

dependence analysis: applications of vine copulas. Statistica Neerlandica, 67, 403–435.

Altman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corpo-

rate Bankruptcy. Journal of Finance, 23, 589–609.

33



Altman, E., Fargher, N., & Kalotay, E. (2011). A Simple Empirical Model of Equity-

Implied Probabilities of Default. The Journal of Fixed Income, 20, 71–85.

Bauer, A., Czado, C., & Klein, T. (2012). Pair-copula constructions for non-Gaussian

DAG models. Canadian Journal of Statistics, 40, 86–109

Beaver, W. (1968). Market Prices, Financial Ratios, and the Prediction of Failure. Journal

of Accounting Research, 8, 179–192.

Bedford, T., & Cooke, R.M. (2001). Probability density decomposition for conditionally

dependent random variables modeled by vines. Annals of Mathematics and Artificial

Intelligence, 32, 245–268.

Bedford, T., & Cooke, R.M. (2002). Vines - a new graphical model for dependent random

variables. Annals of Statistics, 30, 1031–1068.

Benaglia, T., Chauveau, D., Hunter, D. , & Young, D. (2009). mixtools: An R Package

for Analyzing Finite Mixture Models. Journal of Statistical Software, 32, 1–29.

Bernard, C., & Czado, C. (2013). Multivariate option pricing using copulae. Applied

Stochastic Models in Business and Industry, 29, 509–526.

Bharath, S. T., & Shumway, T. (2008). Forecasting Default with the Merton Distance to

Default Model. Review of Financial Studies, 21, 1339–1369.

Bhimani, A., Gulamhussen, M.A., & da Rocha Lopes, S. (2014). Owner liability and

financial reporting information as predictors of firm default in bank loans. Review of

Accounting Studies, 19, 769–804.

Black, F., & Scholes M. (1973). The Pricing of Options and Corporate Liabilities. Journal

of Political Economy, 81, 637–654.

Bo, L., Tang, D., Wang, Y., & Yang, X. (2011). On the conditional default probability in

a regulated market: a structural approach. Quantitative Finance, 11, 1695–1702.

Bo, L., Li, X., Wang, Y., & Yang, X. (2013). On the conditional default probability in a

regulated market with jump risk. Quantitative Finance, 13, 1967–1975.

34



Bordes, L., Mottelet, S., & Vandekerkhove, P. (2006). Semiparametric Estimation of a

Two-Component Mixture Model. The Annals of Statistics, 34, 1204–1232.

Brechmann, E. C. (2010). Truncated and simplified regular vines and their applications,

Diploma thesis, Technische Universität München.

Brechmann, E.C., & Schepsmeier, U. (2013). Modeling Dependence with C- and D-Vine

Copulas: The R Package CDVine. Journal of Statistical Software, 52, 1–27.

Clarke, K.A. (2007). A Simple Distribution-Free Test for Nonnested Model Selection.

Political Analysis, 15, 347–363.

Czado, C. (2010). Pair-Copula Constructions of Multivariate Copulas. In Copula Theory

and its Applications, Lecture Notes in Statistics, 198, Springer, 93–109.

De Giuli, M.E., Fantazzini, D., & Maggi, M.A. (2008). A New Approach for Firm Value

and Default Probability Estimation beyond Merton Models. Computational Economics,

31, 161–180.

Dißmann, J., Brechmann, E., Czado, C., & Kurowicka, D. (2013). Selecting and estimating

regular vine copulae and application to financial returns. Computational Statistics &

Data Analysis, 59, 52–69.

Eberhart, A.C. (2005). A comparison of Merton’s option pricing model of corporate debt

valuation to the use of book values. Journal of Corporate Finance, 11, 401–426.

Escobar, M.D., & West, M. (1995). Bayesian density estimation and inference using mix-

tures. Journal of the American Statistical Association, 90, 577–588.

Genest, C., & Favre, A.C. (2007). Everything you always wanted to know about copula

modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 , 347–368.
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