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1. M.B. PRIESTLEY: GIANT OF TIME SERIES

Today, it is clear that Maurice Priestley’s fascinating, lucid and encyclopaedic body of work was way ahead of
its time. Certainly, his path-breaking work on non-stationary time series provides the basis for a great deal of the
academic work carried out today: that in the scientific literature, that contained in modern software packages and
through into applications. Many were privileged to benefit from scientific interlocution with Professor Priestley.
In our case, this communication was not only about the then new field of wavelets but also about the ‘oscillatory
process’ idea, which was, and is, a key inspiration to all working in non-stationary time series.

This article is focused on a, maybe, little-explored part of Priestley’s panoply that can be summarized by the
following quote from Priestley (1983, p. 822), which refers to representations for non-stationary processes:

"Parzen (1959) has pointed out that if there exists a representation X.t/ D
R
�t .!/dZ.!/, then there is

a multitude of different representations of the process, each representation based on a different family of
functions."

and

"The situation is in some ways similar to the selection of a basis for a vector space."

and

"However, if the process is non-stationary this choice [complex exponential family] of functions is no longer
valid."

� Correspondence to: Alessandro Cardinali, School of Computing, Electronics and Mathematics, University of Plymouth, PL48AA, Drake
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152 A. CARDINALI AND G. NASON

The italics are ours. Probably, it is the case that, since those statements were published, apart from Priestley’s
abstract work on oscillatory processes, there has been little in the literature that diverges from local Fourier repre-
sentations. This changed for representations in the early 2000s by the introduction of the locally stationary wavelet
processes in Nason et al. (2000) and an early foray into statistical time series using smooth localized complex
exponentials (SLEX) basis libraries (the first multitude?) (Ombao et al., 2001; 2002; 2005). The representation
question might seem abstract, but it is, we believe, becoming of increasing practical importance.

Perhaps the best place where the benefits of the ‘multitude’ can be seen is in the area of stationarity testing.
Here too Priestley was a pioneer, constructing one of the first practical tests in the elegant Priestley and Subba Rao
(1969). Since then, there have been not only several excellent tests using Fourier-based quantities but also, more
recently, tests based on eliciting non-stationarities using wavelets in Cardinali and Nason (2010), Nason (2013)
and Walsh functions in Jin et al. (2015). With ‘a multitude of representations’ as possible underlying models
for non-stationary time series, one should be able to benefit from using SLEX libraries, or other libraries such
as wavelet packets, for testing stationarity. For example, Cardinali and Nason (2016) demonstrate the benefits of
using wavelet packets for stationarity testing using a mixture of theoretical and empirical arguments. The benefits
of the ‘multitude’ arise because the diversity of basis functions in libraries permit discovery of structure that one
basis alone cannot detect.

This article extensively elaborates on a suggestion in Nason et al. (2000, p. 276), to use non-decimated wavelet
packets (NDWPs) (a basis library), and not just wavelets (basis), for modelling of non-stationary time series and not
only testing for stationarity as in Cardinali and Nason (2016). A basis library is a collection of bases. The article as
follows is deliberately computational: we postulate some potentially useful models, fit them using computational
methods, obtain some useful illustrations via simulation and an analysis of the Standard and Poor’s 500 (S&P 500)
index. Our aim is to raise the profile further of the ‘multitude’ and stimulate future research in this area, not least
in terms of further expanding the mathematical underpinning.

2. INTRODUCTION

If a time series is stationary, then classical (Fourier) theory provides optimal and well-tested means for its anal-
ysis. Indeed, if the series, Xt ; t 2 Z, is stationary, then it is required by theory to possess the following well-
known decomposition:

Xt D

Z  

� 

A.!/ exp.i!t/d�.!/; (1)

where d�.!/ is a zero-mean orthonormal increments process and A.!/ is the amplitude function (for a process
with absolutely continuous spectral distribution function, see Priestley (1983) Section 4.11, for example). There are
several beautiful proofs that establish that the Fourier representation is the canonical one in the stationary situation.
See, for example, the nice expositions in Hannan (1960) and Priestley (1983) Section 4.11. We are interested in
the case where Xt might be locally stationary, that is, over short periods of time the series appears to be stationary
but it can change its statistical properties slowly over (longer periods of) time. The concept of non-stationary time
series has been appreciated for many years. The theory of non-stationary processes was significantly advanced by
a series of papers by M.B. Priestley and co-authors from the mid-1960s notably the RSS Read Paper: Priestley
(1965). A rigorous asymptotic framework for local stationarity modelling was introduced in Dahlhaus (1996a,
1997) within a framework that we call locally stationary Fourier processes.

Remark 1 (Rescaled time asymptotics and locally stationary Fourier processes). The locally stationary Fourier
model from Dahlhaus (1997) is a (triangular array of) stochastic process(es) represented by

XtIT D

Z  

� 

exp.i!t/A0t;T .!/d�.!/; (2)

wileyonlinelibrary.com/journal/jtsa Copyright © 2017 John Wiley & Sons Ltd J. Time Ser. Anal. 38: 151–174 (2017)
DOI: 10.1111/j a.12230ts



LOCALLY STATIONARY WAVELET PACKET PROCESSES 153

where d�.!/ is a zero-mean orthonormal increment process. The transfer function A0
t;T

satisfied
supt;! jA

0
t;T
.!/�A.t=T; !/j � KT�1, for all T , for some constantK and 2 -periodic functionA W Œ0; 1��R!

C satisfying A.u;�!/ D A.u; !/ and A.u; !/ is a continuous function in u 2 Œ0; 1�. The quantity u D t=T

was called rescaled time and ! 2 .� ; / the frequency. This definition permits the uniform convergence
A0
t;T
.!/ ! A.´; !/ to be well defined and therefore allows meaningful asymptotics for the locally station-

ary spectra. When the function At;T .!/ is constant with respect to t , then the locally stationary Fourier process
becomes stationary. (Dahlhaus’s definition is more detailed with more technical conditions that we omit here.)

Most locally stationary representations, up to and including Dahlhaus (1997), rely on the Fourier basis to furnish
‘oscillation’. One of the key messages that we wish to emphasize is that for non-stationary processes the Fourier
basis is no longer canonical. Silverman (1957) remarked on this predominance of ‘harmonizable processes’. How-
ever, Priestley (1988) (and others) already explicitly considered the possibility of using oscillatory functions other
than Fourier for the purpose of basis representation, and this observation constitutes one of the main inspirations
for the current article. For example, Nason et al. (2000) address this by introducing locally stationary time series
models based on wavelets that they call locally stationary wavelet processes. The remainder of this section focuses
on process definitions; more explicit definitions of the underlying bases of oscillatory functions is provided in the
next section.

Remark 2 (Wavelets and locally stationary wavelet processes). The locally stationary wavelet model from Nason
et al. (2000) represents the process (array) by

XtIT D

1X
jD1

1X
kD�1

wj;kIT  j;k.t/ �j;k; (3)

where ¹�j;kº is a collection of zero mean uncorrelated random variables, the vectors ¹ j;k.t/º is a set of non-
decimated discrete Daubechies wavelets (defined later in (6)) and ¹wj;kIT º is a set of amplitudes. The amplitudes
have further technical conditions imposed on them, but they are analogues of the quantities in the Fourier repre-
sentation in (2): ¹ j;k.t/º is the analogue of ¹exp.i!t/º, ¹�j;kº the analogue of d�.!/ and ¹wj;kIT º the analogue
of ¹At;T .!/º. As with the locally stationary Fourier model, the amplitudes wj;kIT are closely related to an ampli-
tude function Wj .t=T / and an underlying rescaled time asymptotic model. The evolutionary wavelet spectrum
Sj .´/ D Wj .´/

2. When wj;kIT is a constant function of k or, equivalently, Sj .´/;Wj .´/ are constant functions
of ´, then the associated locally stationary wavelet processes are second-order stationary.

The locally stationary wavelet framework has also been successfully used to model multi-variate time series as
in Sanderson et al. (2001) and Park et al. (2014) and references therein. However, rather than limit the choice to
wavelet or Fourier bases, a further alternative would be to select a basis from an overcomplete set of alternatives
that is commonly referred to as basis library. The benefits of basis libraries in statistical time series modelling
were first realized by Ombao et al. (2001; 2002; 2005) who used the SLEX functions from Wickerhauser (1994)
as follows.

Remark 3 (Basis libraries and SLEX processes). Ombao et al. (2002) introduce the locally stationary SLEX
processes ¹XtIT ºtD1;:::;T by

XtIT D
X

iW[Si�BT

M�1=2
i

Mi=2X
kiD�Mi=2C1

�Si ;ki ;T �Si ;!ki .t/ ´Si ;ki ; (4)

where BT is the SLEX basis, an adaptive dyadic segmentation of the time interval ¹0; 1; : : : ; T � 1º, Si 2 BT
are segments (of time points) from the SLEX basis, Mi D jSi j is the length of the segment Si , ki D �Mi=2C
1; : : : ;Mi=2, !ki D ki=Mi are radiant frequencies, �Si ;ki ;T and ´Si ;ki are respectively amplitude coefficients
and random increments for given time segments and frequencies. For ˛i D min.Si /, the SLEX basis functions
�Si ;!ki .t/ from Wickerhauser (1994) have the form

J. Time Ser. Anal. 38: 151–174 (2017) Copyright © 2017 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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154 A. CARDINALI AND G. NASON

�Si ;!ki .t/ D ‰C

�
t � ˛i

Mi

�
exp ¹2 i!ki .t � ˛i /º C‰�

�
t � ˛i

Mi

�
exp ¹�2 i!ki .t � ˛i /º ; (5)

where ‰C.t/; ‰�.t/ are two specially constructed smooth real-valued window functions. The SLEX time (time-
block)-varying transfer function can be computed as the inner product of XtIT with the respective SLEX basis
function.

Ombao et al. (2001) use this system for adaptive segmentation of a time series into piecewise stationary
processes and for spectral smoothing. Ombao et al. (2002) introduce the process, estimation theory and show
asymptotic equivalence to the Dahlhaus locally stationary Fourier model. Ombao et al. (2005) extend the idea
to multi-variate time series. Another example is Donoho et al. (2003) who are concerned with locally stationary
covariance estimation using penalized basis methods. A general review of locally stationary time series models
can be found in Nason and von Sachs (1999) and Dahlhaus (2012); see also Cardinali and Nason (2008) for an
additional recent set of references. There are many possible models (‘the multitude’), and not much is known about
how the respective process classes of locally stationary Fourier, locally stationary wavelet, SLEX and our model
overlap. From a more theoretical standpoint, these different models correspond to different tilings of the time-
frequency plane and, hence, have different characteristics in analysis mode extracting often very different aspects
of information from a time series. This article proposes the use of the overcomplete dictionary of NDWPs from
which we select a suitable basis. Non-decimated packets are preferred to decimated basis libraries so as to prevent
information ‘loss’ at scales coarser than the finest. Therefore, this article introduces the new class of locally sta-
tionary wavelet packet (LSWP) processes and a method to successfully fit these to time series data. We propose
a complete framework for process representation and inference for the associated time-frequency spectra, and we
provide theoretical results concerning the existence of an asymptotically unbiased spectral estimator in this setting.

A key conceptual difference between the SLEX model earlier and our wavelet packet models later is that we
use NDWP basis functions. For process representation and spectral estimation of many processes, we surmise
that probably both work similarly but SLEX, in not being non-decimated will possibly be more computationally
efficient for some processes. However, for other processes, especially for finite T , the non-decimation can pick
up structure that SLEX might miss. Although widely referred to in the signal processing literature, wavelet pack-
ets have not, until now, been extensively used within statistical time series. Exceptions using the non-decimated
version are Walden and Contreras Cristan (1998), Section 6 of Percival and Walden (2000), Nason et al. (2001),
Nason and Sapatinas (2002), Gabbanini et al. (2004), Cardinali (2009), Milne et al. (2009), Yang et al. (2009) and
Garcia et al. (2013).

There appears to be a misconception about locally stationary processes that use non-decimated transforms, for
example, Ombao et al. (2002, p. 173), who claim that it is not straightforward to simulate realizations. On the
contrary, Cardinali and Nason (2008) mention LSWsim, a fast O.T logT / function, that simulates any locally
stationary wavelet process. Similar fast functions have been constructed for our current work involving packets
with the same order of computation as the fast Fourier transform that SLEX makes use of.

Section 3 provides a quick review of wavelets, wavelet packets and basis libraries and introduces the relevant
notation. Section 4 presents our modelling framework and the relevant estimators for a fixed basis eventually
selected from an overcomplete basis library. Section 5 illustrates our methodology to select an appropriate basis
from a wavelet packet dictionary. Section 6 presents simulations of several LSWP processes for which we assess
the finite sample performances of our basis selection method. Section 7 presents an application of our inferential
methods on S&P’s 500 returns, and Section 8 concludes, outlining directions for future work. Proofs of the main
theoretical results are deferred to the appendix appearing on the Issue Information.

3. WAVELETS, WAVELET PACKETS AND BASIS LIBRARIES

Wavelets are locally supported functions that can be used to decompose signals across scales using localized time-
scale coefficients. The calculation of such coefficients is often performed by means of the Mallat (1989) discrete
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wavelet transform; see Daubechies (1992), Percival and Walden (2000) or Nason (2008) for alternative accounts.
Wavelets can be used as building blocks for a wide variety of non-smooth signals, in situations where the Fourier
functions would not be suited. There are many wavelets one might use. Daubechies (1992) provides an introduction
to the mathematical foundation of wavelets, including the Least Asymmetric (LA) bases, which were the first
compactly supported wavelets designed to be quasi-symmetric. As often emphasized, wavelets have a gender, that
is, the father wavelet is built from a low-pass linear filter designed to provide a local signal approximation, whereas
the mother wavelet is built from a high-pass filter identifying the local signal variation. The mother and father
wavelets can be dilated and translated to form a location-scale family that is used to produce a multiresolution
approximation for functions. From the mother wavelet  .t/, we can form daughters  j;k.t/ D 2�j=2 ¹2�j .t �
2j k/º for translates k 2 Z and scale parameter j 2 Z. For suitable choices of mother wavelet, the system
¹ j;k.t/ºj2Z;k2Z can become an orthonormal basis for functions f 2 L2.R/ for example. For non-decimated
wavelets, the 2jk is replaced by k, and then, we obtain a system of functions able to provide useful representations,
but no longer orthogonal. Possibly, the simplest example of a mother wavelet is the Haar wavelet defined by .t/ D
�2�1=2 for t 2 .0; 1=2/, 2�1=2 for t 2 .1=2; 1/ and zero elsewhere. However, to build discrete time series, we use
discretized versions of wavelets as described next. Nason et al. (2000) introduced discrete non-decimated wavelets
designed to represent discrete time series Xt ; t 2 Z as in (3). These are derived using the same ¹hkºk and ¹gkºk
low-pass and high-pass quadrature mirror (finite impulse response) filters that Daubechies (1992) used to build
her compactly supported continuous time wavelets. For example, for Haar wavelets, h0 D h1 D g0 D 2�1=2 and
g1 D �2

�1=2. At each scale j � 1, the associated discrete non-decimated wavelets  j D . j;0; : : : ;  j;Nj�1/

are vectors with up to Nj coefficients defined by

 1;k D
X
n

gk�2nı0;n D gk; k D 0; : : : ; N1 � 1;

 jC1;k D
X
n

hk�2n j;n; k D 0; : : : ; Nj�1 � 1;
(6)

where ı0;n is the Kronecker delta, Nj D .2j � 1/.N � 1/C 1 and N is the length of the filters ¹hkº. At heart, the
discrete wavelet vectors,  j , are oscillatory replacements of the Fourier vectors exp.i!t/, both of which satisfy
various internal orthogonality conditions. In the locally stationary wavelet process representation (3), the notation
 j;k.t/ actually refers to the basis (vector) element  j;k�t .

3.1. Wavelet Packets

Wavelet packets are an extension of wavelets whose basis functions,  j;i;k.t/, depend on an additional parameter
i that measures the number of oscillations of the function. The oscillation parameter i can take values ranging
from 0 to 2j �1 for each scale j D 1; 2; : : : ; J . See Wickerhauser (1994) or Percival and Walden (2000) for more
details. For discrete time series representation, we make use of discrete NDWPs, defined next.

Definition 1 (Discrete NDWPs). Discrete NDWP are constructed as in (6) except that the ¹gkº and ¹hkº can
both be replaced by of either ¹gkº or ¹hkº at each scale j . At each scale j � 1 and for i D 0; : : : ; 2j � 1, the
associated discrete wavelet packets  j;i D . j;i;0; : : : ;  j;i;Nj�1/ are vectors with Nj coefficients defined by

 1;0;k D
X
n

hk�2nı0;n D hk; k D 0; : : : ; N1 � 1;

 1;1;k D
X
n

gk�2nı0;n D gk; k D 0; : : : ; N1 � 1;

 jC1;2i;k D
X
n

hk�2n j;i;n; k D 0; : : : ; Nj�1 � 1;

 jC1;2iC1;k D
X
n

gk�2n j;i;n; k D 0; : : : ; Nj�1 � 1;m

(7)
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156 A. CARDINALI AND G. NASON

where Nj and N are as in (6). A wavelet packet  J;i is also written in short form as .J; i/. The value of i can
be obtained by constructing a binary number with 0/1 appearing at position j D 1; : : : ; J depending on whether
filtering hk�2n or gk�2n is applied at stage j using either the third or the fourth equation in (7).

See Example 1 for an illustration of the construction. As with wavelet vectors (earlier) the notation  j;i .t � k/
actually refers to the element  j;i;t�k . Figure 1 shows some examples of wavelet packet basis functions derived
from two different mother wavelets. The second column in each row corresponds to the wavelet; the other columns
correspond to other packets that offer greater oscillatory flexibility compared with just using wavelets alone.

Remark 4 (Frequency coverage). Hess-Nielsen and Wickerhauser (1996, p. 525) consider

an abstract two-dimensional signal representation in which time and frequency are indicated along the hor-
izontal and vertical axes respectively. A waveform is represented by a rectangle in this plane with its sides
parallel to the time and frequency axes. . . . Let is call such a rectangle an information cell. The time and fre-
quency of a cell can be read, for example, from the coordinates of its lower left corner. The uncertainty in
time and the uncertainty in frequency are given by the respective dimensions of the cell, it does not matter
whether the nominal frequency and time position is taken from the center or from a corner of a rectangle.

Both wavelets and wavelet packets can be seen to ‘cover’ certain portions of the time-frequency plane. At each
scale j D 1; 2; : : : ; J , wavelets can be associated with the frequency interval (and the vertical axis of the time-
frequency plane) of Ij D .2�.jC1/; 2�j �. Wavelet packets are associated with the interval Ij;i D .2�.jC1/i <

! � 2�.jC1/.iC1/� for j D 1; 2; : : : ; J and i D 0; 1; : : : ; 2j �1. Note that Ij D Ij;1: that is a wavelet packet
with index i D 1 is equivalent to the wavelet at that scale. Of course, a packet has a time extent as well and so a
wavelet packet basis, b 2 B, is a disjoint cover of the entire time-frequency plane (see Theorem 3 of Hess-Nielsen
and Wickerhauser (1996)).

3.2. Basis Libraries

A basis library is a redundant set of bases from which one can be chosen to represent a data generating process.
One example for locally stationary time series representation is provided by the SLEX processes from Section 1.
In that example, the SLEX library redundancy concerned multiple possible segmentations of the time dimension
in the time-frequency plane of those processes. The local cosine bases used in Mallat et al. (1998) provide another
example of redundancy in the time dimension. However, other basis libraries exist where redundancy characterizes
the frequency domain in the process representation. Typically, basis libraries are redundant (and allow adaptive
segmentation) only with respect to either the time or frequency domain. For example, local cosine and SLEX
libraries allow for adaptive segmentation of the time domain whilst looking at predefined frequencies. Here, we
consider libraries of NDWPs. Unlike the aforementioned examples, these libraries offer redundancy (and allow
adaptive segmentation) on the frequency interval .0; 1=2� whilst providing fixed resolution in the (rescaled) time
domain.

Remark 5 (Wavelet packet libraries and underlying wavelets). Any given wavelet packet basis library depends on
an underlying Daubechies’ mother wavelet. Hence, there are different libraries corresponding to different mother
wavelets, and each of those will have different pros and cons. Different mothers could be incorporated into our
scheme, but, for simplicity of presentation, we restrict ourselves to a wavelet packet basis computed with respect
to a single given compactly supported Daubechies’ mother wavelet. Our framework will, however, be valid for
all wavelet packet libraries built from any of Daubechies’ wavelets. Our computational examples consider smooth
wavelet packets built from least asymmetric filters of length N D 8, or LA.8/, which are particularly well suited
for time series analysis. See Figure 1 for an illustration.

wileyonlinelibrary.com/journal/jtsa Copyright © 2017 John Wiley & Sons Ltd J. Time Ser. Anal. 38: 151–174 (2017)
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LOCALLY STATIONARY WAVELET PACKET PROCESSES 157

Figure 1. From left: wavelet packets  j;i for scale j D 2 and oscillations i D 0; : : : ; 3 built from Haar wavelets (top row),
and from LA(8) filters (bottom row). [Colour figure can be viewed at wileyonlinelibrary.com]

J. Time Ser. Anal. 38: 151–174 (2017) Copyright © 2017 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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158 A. CARDINALI AND G. NASON

To establish notation, let B denote a particular basis library and jBj denote the number of bases it contains.
Let jbj define the number of packets in each basis b. In the following, B will be the (non-decimated) wavelet
packet library built from a given Daubechies’ wavelet (Coifman and Wickerhauser, 1992; Wickerhauser, 1994;
Hess-Nielsen and Wickerhauser, 1996), which includes the wavelet basis as a particular entry in the library. Our
methodological aim is to devise an approach to identify such a basis that best fits the data with respect to some
statistical criterion. This corresponds to a process representation where the time-frequency plane is segmented by
a sequence of intervals ¹Ijp;ipºp2b , where Ij;i was defined in Remark 4.

Example 1 (Wavelet packet libraries notation). For J D 2, consider the following library of wavelet packet
bases B D ¹ba; bb; bc ; bd º where

ba D ¹.1; 0/; .1; 1/º

bb D ¹.1; 0/; .2; 2/; .2; 3/º

bc D ¹.1; 1/; .2; 0/; .2; 1/º

bd D ¹.2; 0/; .2; 1/; .2; 2/; .2; 3/º:

For example, basis bc contains three packets so jbcj D 3 and we can alternatively use the compact notation
bc D ¹.jp; ip/ºpD1;2;3 so that for p D 1 we have .j1; i1/ D .1; 1/, for p D 2 we have .j2; i2/ D .2; 0/ and
for p D 3 we have .j3; i3/ D .2; 1/. Hence, we can equivalently refer to a wavelet packet by either the doublets
.jp; ip/ or their briefer basis location index p D 1; : : : ; jbj. The basis bc is also the discrete wavelet basis (up
to J D 2) since this is given in general by packets ¹.j; 1/; .J; 0/ºjD1;:::;J . Figure 1 shows the wavelet packets
forming the basis bd with jbd j D 4.

Remark 6. In general, the size of any basis b is finite for finite T . This is because the set of all possible packets
is of size T � log2 T . We typically refer to bases b of finite size. However, whenever appropriate, we specify which
results refer to infinite dimensional bases b, which correspond to the limit case T !1.

4. LOCAL STATIONARITY AND WAVELET PACKET PROCESSES

This section introduces locally stationary processes constructed using a wavelet packet basis using a data-driven
basis selection strategy from a library of packet bases. First, for a given fixed basis, b, we introduce the LSWP
processes. Elements of the basis b are called packets and denoted by p.

Definition 2 (LSWP process). Given wavelet packet basis b 2 B, the LSWP processes are a sequence of doubly
indexed stochastic processes ¹XtIT ºtD0;:::;T�1, T D 2J � 1 having the following representation in the mean-
square sense

XtIT D
X
p2b

X
k

wjp;ip;kIT  jp;ip;k.t/ �jp;ip;k ; (8)

where �jp;ip;k and wjp;ip;kIT are respectively a collection of orthonormal random variables and amplitude coef-
ficients with location index k D 0; : : : ; T � 1 and packets .jp; ip/ for p 2 b. The set ¹ jp;ip;k.t/ºjp;ip contains
discrete NDWPs that have support length Njp and are based on a mother wavelet  .t/ of compact support with
lengthN , as earlier. Moreover, for ´ 2 .0; 1/, there exist functionsWjp;ip .´/ that satisfies the following conditions:

i There exists a sequence of constants Cp such that for each p 2 b and T

sup
k

ˇ̌
wjp;ip;kIT �Wjp;ip

�
T�1k

�ˇ̌
� Cp=T;

wileyonlinelibrary.com/journal/jtsa Copyright © 2017 John Wiley & Sons Ltd J. Time Ser. Anal. 38: 151–174 (2017)
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where Cp fulfils
P
p2b

Cp <1.

ii Let
P
p2b Vp <1. Then, for p 2 b, the total variation norm of W 2

jp;ip
.´/ is bounded by Vp

jjW 2
jp;ip

.´/jjTV D sup
¹aiº

´
DX
dD0

ˇ̌̌
W 2
jp;ip

.ad / �W
2
jp;ip

.ad�1/
ˇ̌̌
W 0 < a0 < � � � < aD < 1

μ
� Vp;

where the sup is over all partitions ¹aiº of .0; 1/.

For a non-trivial theory, we require some further tools and notation. First, we define two operators that generalize
the autocorrelation wavelet and associated inner product from Section 2.3 and Section 2.4 of Nason et al. (2000).

Definition 3 (Cross-correlation wavelet packets). For p; p0 2 b, define the cross-correlation wavelet packet by
the convolution:

‰p;p0.�/ D
X
k

 p;k  p0;k�� ; (9)

where  p;k are NDWPs from Definition 1. When the convolution is taken over the same wavelet packet, that
is, when p0 D p, then ‰p;p.�/ D ‰p.�/ is also called autocorrelation wavelet packet. We also define A D
.Ap;p0/p;p0D1;:::;jbj as the inner product operator having entries

Ap;p0 D
X
�

‰2p;p0.�/ D
X
�

‰p.�/ ‰p0.�/: (10)

The two derivations are equivalent, but the latter can be implemented in a more computationally efficient way. For
finite samples (T < 1), the operator becomes a square matrix of finite dimensions jbj � jbj. For both finite and
infinite dimensional cases, we also define the inverse operator A�1 D .A�1p;p0/p;p0 . Conditions for the existence
of this operator in both finite and infinite dimensional cases will be discussed in the following of this section.

Remark 7 (Spectra and autocovariances for LSWP processes). Analogously to the locally stationary wavelet
model, we define the evolutionary wavelet packet spectra (EWPS) as Sp.´/ D jWjp;ip .´/j

2 and the marginal
EWPS as NSp D

R
Sp.´/d´. In what follows, we refer to their whole sets of values respectively as S.b/ D

¹Sp.´/ºp2b and NS.b/ D ¹ NSpºp2b . The time localized covariance is given by

C.´; �/ D
X
p2b

Sp.´/‰p.�/; (11)

where‰p.�/ is the wavelet packet autocorrelation function from Definition 3. In the following, we also refer to the
whole set of T observations from model (8) as XT . As suggested in Fryzlewicz et al. (2003), for t; s D 0; : : : ; T�1,
we can approximate the entries of † D E.XT X0T /, as †.t; s/ D C.t=T; t � s/ C O.T�1/. Because the only
unknown quantities in † are the spectral entries, we will also refer to it as †S.b/.

Example 2 (Haar moving average (MA) packet processes). To familiarize the reader with locally stationary
wavelet processes, Nason et al. (2000) introduced the Haar MA processes. Recall that the first-order Haar MA
process was X1t D 2�1=2.�t � �t�1/ and the second order was X2t D 2�1.�t C �t�1 � �t�2 � �t�3/ for t 2 Z,
where ¹�tº is an i.i.d. zero mean unit variance process. These can be written in the locally stationary wavelet form
in (3) by setting (for X1t ) S1.´/ D 1, �1;k D �k and  j;k.t/ being non-decimated Haar wavelets, similarly for X2t
and more generally Xrt .
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For any given packet, p 2 b, a similar kind of MA process can be defined. For example, at scale j D 1, the
process X1t earlier is one process and, in wavelet packet notation, its scale jp D 1 and index number ip D 2, that
is, X .1;2/t . The other packet process at scale jp D 1 is X .1;1/t D 2�1=2.�t C �t�1/. At the second scale, there
are four packets denoted X .2;i/t for i D 0; : : : ; 3 of the same form as X2t earlier but with the signs of each of the
coefficients (in the same order) are .C;C;C;C/; .C;C;�;�/; .C;�;�;C/ and .C;�;C;�/. The second in this
list corresponds to the X2t process earlier.) From this, we can define the MA wavelet packet process by selecting
a particular packet (and underlying wavelet) but using wavelet packets instead of wavelets. For an illustration of
these wavelet packets derived from the Haar and least-asymmetric LA(8) wavelets at scale J D 2, see Figure 1.

4.1. Inference for a Fixed Basis

Given a fixed wavelet packet basis, b 2 B, we can use results analogous to those in Nason et al. (2000) to derive
an estimator for the EWPS.

Definition 4 (Unbiased wavelet packet periodogram). For a given packet p 2 b 2 B with packet vector  p ,
define the wavelet packet process as the empirical wavelet packet coefficients of XtIT :

dp;k D
X
t

XtIT  p.t � k/: (12)

The quantity dp;k is a process rather than just a set of coefficients because local stationarity of XtIT is conferred
onto the process dp;k through a time-invariant linear filtering. Also define the (raw) wavelet packet periodogram
by Ip;k D jdp;kj2. As in Nason et al. (2000), the raw wavelet packet periodogram is a biased estimator of the
spectra since it can be proved that EIp;k D

P
p02b Ap;p0Sp0.´/CO.T

�1/ for p 2 b, whereAp;p0 was introduced
in Definition 3. However, the estimator can be ‘corrected’ to make it asymptotically unbiased. Therefore, the
(asymptotically) unbiased wavelet packet periodogram is defined as

Lp;k D
X
p02b

A�1p;p0Ip0;k (13)

for p 2 b, where A�1p;p0 was introduced in Definition 3. From these definitions, it follows that ELp;k D Sp.´/C
O.T�1/.

Obtaining a consistent estimator of Sp.´/ can be achieved using similar methods to those described in
Nason et al. (2000). The R package LSWPPlib will be available on CRAN to compute the quantities defined in
this section.

4.2. A Note on the Theory of Locally Stationary Wavelet Packet Processes

A number of theoretical properties of LSWP processes are based on the existence of the (bounded) inverse operator
A�1 introduced in Definition 3. For example, the existence of an unbiased spectral estimator for LSWP processes
directly depends on the existence of such operator as can be appreciated by looking at equation (13). Moreover, an
invertible representation between the evolutionary spectra Sp.´/ defined in Remark 7 and local autocovariances
defined in equation (11) is only possible if this (bounded) operator exists since for all p 2 b the inverse formula
of (11) is

Sp.´/ D
X
p02b

A�1p;p0
X
�

C.´; �/‰p0.´/: (14)
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The existence of this positive definite operator and its bounded inverse when b is the wavelet basis and when  .�/
is either the Haar or Shannon wavelet was proved in Theorem 2 of Nason et al. (2000), who also conjectured the
existence of general results for all Daubechies’ compactly supported wavelets.

We now show that this result extends not only to all Daubechies’ compactly supported wavelets but also to
operators A constructed from wavelet packet bases. We use several results from Goodman et al. (1995), and we
will refer to specific parts of that paper as GMRS-page number. The proof of the following theorem can be found
in the appendix appearing on the Issue Information.

Theorem 1 (Boundedness of A inverse). Let b be a basis of packets. Let A D .Ap;p0/p;p02b for jbj ! 1,
where Ap;p0 is defined in equation (10). Furthermore, let b such that not all packets belong to the same scale, that
is, jp ¤ jp0 , for some p; p0 2 b. Then, the inverse of the semi-infinite A operator for wavelet packets is bounded.

5. LOCALLY STATIONARY WAVELET PACKET PROCESSES BASIS SELECTION

In the previous section, the ‘true’ wavelet packet basis is assumed known. However, in practice, the basis is
not known and the goal is to find, at least, a good basis. Previous work with adaptive representations in signal
processing, for example, Coifman and Wickerhauser (1992) and time series, for example, Ombao et al. (2001)
or Mallat et al. (1998), for function and process representation has concentrated on using basis libraries, that is,
libraries of orthonormal `2 bases. These studies concentrated on selecting the best basis, Ob 2 B where ‘best’ can
have several different meanings; see Percival and Walden (2000, Section 6.3 p. 221) for a nice example.

Strictly speaking, the basis concept is identified with decimated wavelet packets: for non-decimated wavelets,
the equivalent collection of packets is termed a frame – which, mathematically, has the same representative power
but within an overdetermined system and so not technically a basis. To simplify our exposition, we will keep using
the notion of basis even if we will be referring to NDWP frames derived from the associated decimated wavelet
packet basis. More details on frames can be found in Mallat (2009).

Given an appropriate objective function to be optimized, our goal is to reconstruct the, possibly sparse, true
representation from a dictionary of `2 frames, that is, a collection of linearly independent vectors that are almost
(but not exactly) orthogonal; see Daubechies (1992) for more details.

This task turns out to be significantly harder than selecting from a dictionary of orthogonal bases. In fact,
representations based on `2 frames account for a significant number of redundant and correlated coefficients;
therefore, it is crucial to understand how to make good use of these. In our setup, the main challenge is therefore the
derivation of an appropriate objective function that can ensure good model fitting and the derivation of appropriate
cost functionals that can be associated with each packet to ensure successful optimization/basis selection.

5.1. Suggestion: Cost Functionals Based on Profile Likelihood

Inference for locally stationary time series for a fixed (Fourier) basis has been the object of a number of papers
such as Dahlhaus (1996b, 1997). However, from the point of view of theoretical inference, the problem of finding
an adaptive frequency tiling can be seen as the problem of estimating a number of unknown packet indices p 2 b,
which are the parameters of interest, given the presence of nuisance parameters (the level of the spectra for p 2 b).
Profile likelihood provides a common approach to inference in the presence of nuisance parameters. The use
of profile likelihoods for semi-parametric models was discussed in Kauermann (2002), where it was established
that, as in classical parametric models, profiling leads to systematic bias. For locally stationary processes built on
Gaussian innovations, the negative log-likelihood based on representation (8) can be written as follows.

Proposition 1. Let XtIT be defined as in (8) and having Gaussian innovations. Then, the negative log-likelihood
for a basis b 2 B is proportional to

LT ¹b;S.b/º D .2T /�1
X
p2b

X
t

²
logSp.t=T /C

Lp;t

Sp.t=T /

³
CO.T�1/; (15)
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where Lp;t is the (asymptotically) unbiased wavelet packet periodogram as defined in (13).

For LSWP processes, the parameters of interest for selecting a basis are the packet indices p 2 b, where b is
a basis (or, more precisely, an NDWP frame). Here, the nuisance parameters are the vectors S.b/ of the spectra
associated with each frame. A profile log-likelihood for b can therefore be derived based on (15) so that we have
the following result.

Proposition 2. Let XtIT be defined as in (8) having Gaussian negative log-likelihood proportional to (15).
Define logLp D T�1

P
t logLp;t , where Lp;t is defined by (13). Furthermore, define the negative profile log-

likelihood for b 2 B as eLT .b/. Then, we have

1.

eLT .b/ D 1

2

24jbj CX
p2b

logLp

35 ;
2.

E
�eLT .b/ � LT ¹b;S.b/º

�
< 0:

These results show that the profile (negative) log-likelihood is a negatively biased estimator for the negative log-
likelihood. Moreover, Proposition 2 shows that the profile likelihood is characterized by a nonlinear relationship
with respect to the nuisance parameters estimates, which are also strongly correlated at fine scales. Simulation
experiments confirm that the basis selection based on the optimization of the profile likelihood leads to large
systematic errors in reconstructing known bases. Since the biased profile likelihood and its nonlinear dependence
with respect to nuisance parameter estimates leads to poor basis selection, we consider an alternative approach
aimed to improve the basis selection by removing the aforementioned nonlinearity. This is achieved by considering
an alternative objective function and alternative cost functionals.

5.2. Cost Functionals for Penalized Least Squares

The alternative approach that we adopt to overcome the difficulties of working in this highly irregular and nonlinear
setting is based on the use of an objective function that is still biased with respect to the log-likelihood but is now
linearly related to the nuisance parameter estimates. Among several possible alternatives, we will consider the
objective function

eL2;T .b/ D 1

2

242J CX
p2b

p̨
NLp

35 ; (16)

where, for p D .jp; ip/, J D max
p
¹jpºp , NLp D T�1

P
t Lp;t and Djp D

P2jp

ip
NLp , the weights are defined by

p̨ D
ajp

J � 1

 
1 �

DjpPJ

jp
Djp

!
; (17)

for some a 2 .0; 1/ and b 2 B. The functional form of (17) is based on two main arguments. First, we note thatPJ

jp p̨ a
jp D 1, so one component of the weights is self-normalizing. This component is then multiplied by ajp ,

which compensates for the increasing dependence among NLp for different packets at finer scales. It is worth noting
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that for p̨ D 1 we have that EeL2;T .b/ D 0:5.2J C N	2
T
/ where N	2

T
D
R
C.´; 0/d´ is the marginal variance for

the LSWP process. Since 2J is constant for all b 2 B, the maximization of (16) coincides with the maximization
of the fitted marginal variance, and therefore, this approach to basis selection can be interpreted as using penalized
marginal least squares. This is because by maximizing the variance of the fitted model we minimize the residual
variance not captured by the selected basis and the corresponding spectral estimates. Conditionally on the weights
p̨ ,eL2;T is a consistent estimator for L2;T ¹b;S.b/º D 0:5.2J C

P
p p̨

NSp/. This is a consequence of the consis-
tency for the marginal periodogram ¹Lpºp as estimator of the marginal spectra ¹Spºp . Under the assumptions of
Definition 2, this latter proof is a direct consequence of Theorem 3 from Cardinali and Nason (2010) that proved
the same result for locally stationary wavelet processes.

5.3. Basis Selection

The optimization of (16) necessary to implement basis selection of LSWP needs to be carried out over non-
overlapping tiling of the frequency interval .0; 1=2�. This can still be achieved by using the best basis algorithm
where, for each packet, we will consider the cost functionals � p̨

NLp . Here, negative signs are used because the
best basis algorithm will instead minimize �eL2;T .b/ over b 2 B. Our algorithm for basis selection is very fast
and is based on the following steps:

1. Calculate NL.jp;ip/ for jp D 1 and ip D 1; 2; : : : ; 2jp . This is carried out by calculating a bias matrix A for the
scale jp D 1 and then calculating the unbiased periodogram;

2. Repeat step 1 for scales jp D 2; 3; : : : ; J , where J is the maximum level of the NDWP transform that we
consider in the analysis;

3. Calculate the whole set of weights ˛.jp;ip/ from (17);
4. Apply the best basis algorithm to the set of cost functionals as �˛.jp;ip/ NL.jp;ip/;
5. Select Ob D arg

b2B
min

®
�eL2;T .b/¯, where eL2;T .b/ is defined in (16).

5.4. Practical Advice for Parameter Settings

Our basis selection method based on penalized least squares requires three parameters to be set. The first choice to
be made is which (mother) wavelet filter to use to build the wavelet packets library. We mainly refer to Daubechies
filters here and have used both LA.8/ and Haar wavelets in our simulations. Generally, LA.8/ filters performed
better than Haar filters in our experiments; therefore, we recommend their use. Further work would be required to
investigate the performance of other wavelets and provide recommendations for their use in specific situations.

The second parameter that needs to be set is the depth of the wavelet packet library, represented by the maximum
scale J . This parameter should be selected by taking into account the wavelet filter used to build the library. Filters
of greater length allow smaller values of J to be set. If N represents the filter length, then a recommended choice
for the library depth is to set J D Œlog2 T �� Œlog2N��g, where Œx� is the integer part of x and g D 3 is an integer
that reduces the computational boundary of J further. This is to avoid overfitting due to large positive correlation
of wavelet packet coefficients at large scales. In our examples, we used this setting but even for g D 2 we obtained
good results.

The third parameter to be set is the (penalty) rate of aj from equation (17). Penalties are parameterized by
a geometric progression that allows us to interpret the penalty in terms of compensation for increasing positive
correlation of the wavelet packet periodogram coefficients at large scales j . We mainly used a penalty of rate
a D 0:98, but our experiments suggest that values larger than 0.95 perform similarly. It should be also noted that
the penalty rate should be set in regard to the wavelet filter used and, for Haar filters, setting a D 0:95 provides
better results than larger values. Our experiments show that this rate should be proportional to the filter length
N : the larger is the latter, the larger should be the rate. This implies that cost functionals at large scales should
be penalized more for shorter filters. The need of larger penalization for Haar filters seems also because of the
frequency leakage that characterizes filters with shorter length.
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6. SIMULATION EXAMPLES

This section simulates several LSWP processes and empirically evaluates our basis selection methodology. We
simulate processes using representation (8) with wjp;ip;kIT D S

1=2

p;k
for k D 0; : : : ; T � 1 and independent draws

�jp;ip;k from the standard Gaussian distribution. We consider both stationary and locally stationary processes with
fixed bases and energy distributions and compare the estimated bases with the truth.

To evaluate our fits, we derive a measure of the chance of correctly selecting increasing proportions of true
packets in the estimated basis. We aim to construct a measure that accounts for the different portions of the spectra
that are represented by each packet within a given basis, so we define jIpj as the length of the frequency intervals
associated with a generic packet p and defined by Ij;i from Remark 4. Therefore, the ‘portion’ of the true spectrum
b that is correctly fitted by Ob can be expressed as

jI Ob;bj D 2
X
Op2 Ob

I. Op 2 b/jI Opj; (18)

where I.A/ is the usual indicator function. Hence, I.¹ Op 2 bº/ is one if Op is contained within the true basis b and
zero otherwise. Hence, the quantity jI Ob;bj is larger when more of the estimated packets are contained within the
true basis. Indeed, if the estimated basis is equal to the true basis, then the complete frequency interval .0; 1=2�
is covered and the portion is one. (Since all the separate jI Opj add up to 1=2 and then multiplying by two gives a
portion of 1.)

When we runM separate simulations, indexed bym D 1; 2; : : : ;M , the portion for simulationmwill be written
as jI Obm;bj 2 Œ0; 1�. Define

R.q/ D RM;b.q/ DM
�1

MX
mD1

I
�
jI Obm;bj � q

	
(19)

to be the empirical proportion of bases that correctly fit at least 100q% of the true spectra for q 2 .0; 1/, b 2 B and
M some positive integer. For clear axes labels in figures, in the succeeding sections, w we suppress the dependence
of b;M on the RM;b.q/, but it should be remembered that R.q/ depends on M and b.

We next exhibit our simulation results on six different process types labelled LSWP1 to LSWP6. Here
LSWP1;LSWP2;LSWP3 and LSWP5 are stationary and LSWP4 and LSWP6 are locally stationary. In all cases,
M D 1000.

6.1. Simulating Stationary LSWP1 Processes

Example LSWP1 uses the basis

ba D ¹.1; 0/; .4; 8/; .4; 9/; .4; 10/; .4; 11/; .4; 12/; .4; 13/; .4; 14/; .4; 15/º: (20)

The frequency design implied by this basis gives high resolution to the highest frequencies and minimum
resolution to the first half of the spectra. The EWPS for our simulation is

LSWP1 ! Sp D 2
�.jp�1/=2 I.p 2 ba/: (21)

This spectrum does not depend on ´, the rescaled time, and hence, the process specified by (8) is stationary and the
amplitudes wjp;ip;k � S

1=2
p . Figure 2 shows a single realization and the marginal spectra for this process. For the

.1; 0/ basis element, we have S.1;0/ D 2�.1�1/=2 D 1, and this element’s tile occupies .0; 0:25/ of the marginal
spectrum. For the remaining basis elements that cover the upper half of the spectrum, we have, for example,
S.4;8/ D 2

�.4�1/=2 � 0:353 as indicated in the marginal spectrum for each of the scale 4 basis packets. Figure 3
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Figure 2. Top: realization of LSWP1 process. Bottom: marginal spectra of process. Vertical lines show the tiling Ip , for
p 2 ba. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 3. Survival probabilities, R.q/, for proportion of true spectra correctly fitted for processes LSWP1 over 1000
realizations. Clockwise from top left: T D 128; 256; 512; 1024

shows the performance of our basis fitting estimator assessed by the metric R.q/ over M D 1000 simulations for
different sample sizes. So, for example, for T D 1024, the bottom-right graph of Figure 3, approximately 80% of
the simulations achieved just under 80% of the true basis packets. The figures indicate statistical consistency as
the area under the curve increases with sample size.

6.2. Simulating Stationary LSWP2 Processes

Example LSWP2 uses the basis

bb D ¹.4; 0/; .4; 1/; .4; 2/; .4; 3/; .4; 4/; .4; 5/; .4; 6/; .4; 7/; .1; 1/º; (22)
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with spectrum given by

LSWP2 ! Sp D 2
�.jp�1/=2 I.p 2 bb/: (23)

The frequency tiling implied by bb is the opposite to that of the process LSWP1, as it gives the highest resolution
to the lower frequencies and minimum resolution to the second half of the spectra. A single realization and the
marginal spectra for this process are illustrated in Figure 4. Figure 5 displays the survival probabilities for the
LSWP2 model and the conclusions are broadly the same as for the LSWP1 process discussed earlier.

Figure 4. Top: one realization of LSWP2 process. Bottom: marginal spectra for the process LSWP2. The vertical lines show
the tiling Ip , for p 2 bb . [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 5. Survival probabilities, R.q/, for proportion of true spectra correctly fitted for processes LSWP2 over 1000
realizations. Clockwise from top left: T D 128; 256; 512; 1024
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6.3. Simulating LSWP3 and LSWP4 Processes

Examples LSWP3 and LSWP4 both use the basis

bc D ¹.1; 1/; .2; 1/; .3; 1/; .4; 0/; .4; 1/º; (24)

which corresponds to a wavelet basis, and hence, the process will be a locally stationary wavelet process introduced
by Nason et al. (2000). The frequency resolution is low at high frequencies and progressively better for lower
frequencies. Unlike the previous two examples, we will now consider both stationary and time-varying energy
distributions. The two distributions correspond to different processes that we will refer to as

LSWP3 ! Sp D 2
�jp=2 I.p 2 bc/;

LSWP4 ! Sp.´/ D 2
�.jp�2/=2 cos2.4 ´/ I.p 2 bc/´ 2 .0; 1/:

The processes are chosen to have identical marginal spectra. This decision is motivated by our desire to see
how the time-varying nature affects the fit (irrespective of the marginal spectrum). Single realizations of the two
processes and their true marginal spectra are illustrated in Figure 6, where it is shown the typical discrete wavelet

Figure 6. Top: realization of LSWP3 process. Center: realization of LSWP4 process. Bottom: marginal spectra for both
processes. Vertical lines show the tiling Ip , for p 2 bc . [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 7. Survival probabilities, R.q/, for proportion of true spectra correctly fitted for processes LSWP3 over 1000
realizations. Clockwise from top left: T D 128; 256; 512; 1024

Figure 8. Survival probabilities, R.q/, for proportion of true spectra correctly fitted for processes LSWP4 over 1000
realizations. Clockwise from top left: T D 128; 256; 512; 1024

transform spectral resolution, which increases dyadically moving towards lower frequencies. This property is
commonly known as adaptivity of the wavelet transform and implies that noisier signal components are averaged
over a wider frequency band, and those bands decrease for less noisy components. Figures 7 and 8 show the
goodness of fit for different sample sizes. The figures provide empirical evidence that our procedure is consistent
and is also invariant to the specification of the time-varying energy distribution since the shape of the curve R.q/
is very similar for the two processes.

6.4. Simulating LSWP5 and LSWP6 Processes

Examples LSWP5 and LSWP6 both use the basis

bd D ¹.1; 0/; .2; 2/; .3; 6/; .4; 14/; .4; 15/º: (25)

The frequency tiling implied by this basis is still an example of smooth change in frequency resolution, but cor-
responds to the opposite design in comparison with that of the discrete wavelets earlier. In fact, now the frequency
resolution is low at low frequencies and then increases for higher frequencies. Analogously to the previous section,
we will now consider both examples of stationary and time-varying energy distributions with spectra given by
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Figure 9. Top: one realization of LSWP5 process. Center: one realization of LSWP6 process. Bottom: marginal spectra for
the processes LSWP5 and LSWP6. The vertical lines show the tiling Ip , for p 2 bd . [Colour figure can be viewed at

wileyonlinelibrary.com]

Figure 10. Survival probabilities, R.q/, for proportion of true spectra correctly fitted for processes LSWP5 over 1000
realizations. Clockwise from top left: T D 128; 256; 512; 1024
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Figure 11. Survival probabilities, R.q/, for proportion of true spectra correctly fitted for processes LSWP6 over 1000
realizations. Clockwise from top left: T D 128; 256; 512; 1024

LSWP5 ! Sp D 2
2jp�8 I.p 2 bd /;

LSWP6 ! Sp D 2
2jp�7 cos2.4 ´/ I.p 2 bd /:

(26)

Single realizations from these processes and their (identical) marginal spectra are shown in Figure 9. The per-
formance of our estimator is again summarized by the plots in Figures 10 and 11. The results indicate that our
procedure is consistent also for these examples and is also invariant to the specification of the time-varying energy
distribution since the shape of the curve R.q/ is basically identical for the two processes. Overall, we can estimate
about 70% of the true basis with high probability and we have just below 50% chance to achieve about 80% fit.

7. TIME-FREQUENCY ANALYSIS OF STANDARD AND POOR’S 500 LOG-RETURNS

Figure 12 shows a series of 1024 S&P 500 log-returns from the period November 1999 to July 2002. These data
have been widely analysed in many different ways and GARCH models have been proposed by several studies.
Our simulations earlier indicated that LSWP models can reproduce heteroscedasticity even from a stationary
specification. In particular, LSWP5 realizations show that this can occur when the estimated marginal spectra
account for high-frequency resolution at highest frequencies. In these situations, the intensity of heteroscedasticity
is positively correlated with the energy level of the marginal spectra. In a similar setup, simulations of the LSWP6
process have also shown that time-varying energy can only reinforce or mitigate the intensity of heteroscedasticity.

Figure 12. Log-returns for S&P 500 index
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Figure 13. Estimated marginal spectra for S&P 500 log-returns. Vertical red dotted lines indicate frequency division of
associated best basis. [Colour figure can be viewed at wileyonlinelibrary.com]

We applied our basis selection methodology to the S&P 500 returns, setting J D 4, and estimated the basis

ObSP D ¹.1; 0/; .3; 6/; .3; 7/; .4; 8/; .4; 9/; .4; 10/; .4; 11/º: (27)

It is exciting that this basis is not a wavelet nor close to a Fourier basis. So using wavelet packets has really made
a difference here. In particular, the basis selection indicates that it is probably wasteful to use a traditional Fourier
spectral analysis that has too fine frequency resolution at the lower frequencies.

Our fitted basis accounts for higher resolution and (relatively) low energy at higher frequencies, and this seems
the characteristic time-frequency scenario for financial returns in an efficient market. The estimated marginal spec-
tra is illustrated in Figure 13. We have evidence that the lower frequencies account for (relatively) higher energy
than higher frequencies. We are therefore in an intermediate situation with respect to the simulated scenarios.

Remark 8 (Robustness of basis selection). An important question is ‘how robust is our basis selection to varia-
tions in the parameter settings discussed in Section 5.4?’ We conducted our analysis using wavelet packets built
from Daubechies LA.8/ filters since these performed better than Haar filters in our simulations.

However, the results presented for the S&P data have also been obtained using the other recommended settings
listed in Section 5.4. We have repeated our analysis using different values for both the library depth J and the
penalty rate a. When considering J D 5, only one packet from ObSP was omitted and was replaced by two child
packets from scale j D 5. The missing packet corresponds to the high-frequency end of the spectra, therefore to
the more noisy data component. For J D 6, we have the same basis than that selected for J D 5. For all those
values of J , we were able to select the packet corresponding to jp D 1, which in our basis corresponds to (low)
frequencies in the interval .0; 1=4�. As for the penalty rate a from equation (17), we have repeated our analysis for
rates 0:95 < a < 0:98 and have observed the same results in each of the cases J D 4; 5; 6.

Remark 9 (Interpreting evidence from time-frequency analysis). A wavelet packets basis represents the oscil-
latory components accounting for the most energy in a time series. The associated frequency intervals provide
twofold information both on a range of frequencies/periods characterizing each component and on their length
(which is inversely proportional to the precision of measuring the evolution of the (time-varying) amplitude and
variance). Therefore, wide frequency intervals correspond to more precise measurement of time-varying features
and should be of particular interest in applications focusing on precise measurements in the time domain such as
change-point analysis.
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Figure 14. Wavelet packet periodogram for S&P 500 log-returns. From top Lp;t , for p 2 ObSP and t D 0; 1; : : : ; 1023. Within
the green vertical lines, coefficients are free of boundary effects [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 14 shows the asymptotically unbiased wavelet packet periodogram from (13). Each line in Figure 14
(top to bottom) corresponds to the elements (left to right) in the selected wavelet packet basis given in (27).
The estimated basis ObSP is characterized by a wide packet at low frequencies I1;0 D .0; 1=4/ corresponding
to oscillatory dynamics with period larger than 4 days (since we analysed daily data). The relatively high energy
associated with this wavelet packet suggests that this asset could be of interest to investors looking for weekly
(or longer) investment horizons. The time-frequency periodogram does not show evidence of strong time-varying
effects apart from two packets that correspond to lower and medium frequencies. Those packets do not belong
to the classical discrete wavelet transform tiling; therefore, the identification of the time-varying effects could
be compromised if a non-adaptive tiling (such as that from the discrete wavelet transform) was imposed. The
overall limited presence of time-varying effects (apart the aforementioned episodes around February 2001) seems
to reflect the prevalent non-transitory nature of the heteroscedasticity that characterizes this particular dataset. The
two changes identified at the beginning of 2001 seems to mark the US recession (and the US stock market drop)
that started in that trimester.

8. CONCLUSIONS AND FURTHER WORK

This article introduces LSWP and shows how they can be used for modelling and analysis of locally stationary
time series. Unlike other locally stationary models based on orthonormal `2 bases, the LSWP model includes finite
sample stationary processes as particular cases. Furthermore, the LSWP family provides a very flexible framework
for analysing locally stationary time series by allowing the most important periodic components to be selected by
a data-driven criterion. However, basis selection for LSWP is a difficult problem: the `2 frame design of NDWP
potentially introduces over-parametrization and correlation in a standard best-basis selection. We are able to derive
a modified best-basis selection that uses functionals of the unbiased periodogram.

We also use a penalty to ensure that a sparse basis is selected and to compensate for the leakage that affects
NDWP designs, especially at fine scales. We show with a number of prototype simulation examples that LSWP can
represent a large variety of empirical features and provide a novel framework for analysing heteroscedastic time
series. Our simulations show that, by using different designs for energy distribution and frequency resolution, we
can represent many heteroscedastic features by using little or no time-varying spectral coefficients. Our empirical
analysis based on the S&P 500 returns confirms this finding and, in particular, that heteroscedastic time series
are better represented by a frequency tiling that is different from the one implied by the classical discrete wavelet
transform. These findings can lead to significant improvements in the accuracy of in-sample and out-of-sample
analysis of locally stationary time series.
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