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Abstract.—Eight years after DNA barcoding was formally proposed on a large scale, CO1 sequences are rapidly accumu-
lating from around the world. While studies to date have mostly targeted local or regional species assemblages, the recent
launch of the global iBOL project (International Barcode of Life), highlights the need to understand the effects of geographi-
cal scale on Barcoding’s goals. Sampling has been central in the debate on DNA Barcoding, but the effect of the geographical
scale of sampling has not yet been thoroughly and explicitly tested with empirical data. Here, we present a CO1 data set
of aquatic predaceous diving beetles of the tribe Agabini, sampled throughout Europe, and use it to investigate how the
geographic scale of sampling affects 1) the estimated intraspecific variation of species, 2) the genetic distance to the most
closely related heterospecific, 3) the ratio of intraspecific and interspecific variation, 4) the frequency of taxonomically rec-
ognized species found to be monophyletic, and 5) query identification performance based on 6 different species assignment
methods. Intraspecific variation was significantly correlated with the geographical scale of sampling (R-square = 0.7), and
more than half of the species with 10 or more sampled individuals (N = 29) showed higher intraspecific variation than 1%
sequence divergence. In contrast, the distance to the closest heterospecific showed a significant decrease with increasing
geographical scale of sampling. The average genetic distance dropped from >7% for samples within 1 km, to <3.5% for
samples up to >6000 km apart. Over a third of the species were not monophyletic, and the proportion increased through
locally, nationally, regionally, and continentally restricted subsets of the data. The success of identifying queries decreased
with increasing spatial scale of sampling; liberal methods declined from 100% to around 90%, whereas strict methods
dropped to below 50% at continental scales. The proportion of query identifications considered uncertain (more than one
species <1% distance from query) escalated from zero at local, to 50% at continental scale. Finally, by resampling the most
widely sampled species we show that even if samples are collected to maximize the geographical coverage, up to 70 indi-
viduals are required to sample 95% of intraspecific variation. The results show that the geographical scale of sampling has a
critical impact on the global application of DNA barcoding. Scale-effects result from the relative importance of different pro-
cesses determining the composition of regional species assemblages (dispersal and ecological assembly) and global clades
(demography, speciation, and extinction). The incorporation of geographical information, where available, will be required
to obtain identification rates at global scales equivalent to those in regional barcoding studies. Our result hence provides an
impetus for both smarter barcoding tools and sprouting national barcoding initiatives—smaller geographical scales deliver
higher accuracy. [Agabini; diving beetles; DNA barcoding; Dytiscidae; iBOL; identification methods; sampling; scale effect;
species monophyly]

“If we study a system at an inappropriate
scale, we may not detect its actual dynamics
and patterns but may instead identify pat-
terns that are artifacts of scale. Because we
are clever at devising explanations of what
we see, we may think we understand the
system when we have not even observed it
correctly.”

(J.A. Wiens 1989: Spatial Scaling in Ecology.
p. 390)

The vision of encyclopaedic and instant species-level
knowledge at the hands of every human being is enor-
mously attractive for the scientific and nonacademic
community alike. A testimony to this in the last few

years has been the tremendous increase in DNA barcod-
ing activity, engaging thousands of researchers and at
least 150 institutions in 45 countries around the globe
(Stoeckle and Hebert 2008). The official launch of the in-
ternational Barcode of Life (iBOL) project in late 2010
marks the beginning of a major production phase where
the goal is half a million barcoded species, or more
than a quarter of those described since Linnaeus, in 5
years (Vernooy et al. 2010; www.ibol.org). This effort
is spurred by the grand goal of a complete Life-on-
Earth barcode database, a resource that will answer any
query of species identification, be it for a part, product
or any life stage of an organism. The barcode library
promises to overcome the infamous “taxonomic imped-
iment” and democratize access to biodiversity and tax-
onomy (e.g., Holloway 2006; Larson 2007).
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As with any new grand idea the scientific commu-
nity was quick to scrutinize the feasibility and assump-
tions of this proposed panacea (e.g., Moritz and Cicero
2004; Will and Rubinoff 2004; Meyer and Paulay 2005;
Will et al. 2005; Cameron et al. 2006; Hickerson et al.
2006; Meier et al. 2006; Elias et al. 2007; Song et al.
2008; Dasmahapatra et al. 2009; Siddall et al. 2009). In
turn, the criticisms have been met with abundant case
studies showing fascinating new applications (Clare
et al. 2009; Cohen et al. 2009; Eaton et al. 2009; Holmes
et al. 2009; Jurado-Rivera et al. 2009; Marra et al. 2009;
Meiklejohn et al. 2009; Saunders 2009; Hajibabaei et al.
2011; Hrcek et al. 2011; Rougerie et al. 2011). However,
one criticism in particular is fundamental to determin-
ing the likely power and accuracy of any final database
used for species identification—the effect of sampling
(Moritz and Cicero 2004; Meyer and Paulay 2005; Meier
et al. 2006; Wiemers and Fiedler 2007; Zhang et al. 2010;
Hendrich et al. 2010; Virgilio et al. 2010). Early papers
demonstrating the success of barcoding identification
(e.g., Hebert et al. 2003, 2004; Ball et al. 2005; Hogg and
Hebert 2004; Barrett and Hebert 2005; Smith et al. 2005)
generally shared: (i) very few individuals sampled per
species, 2–3 on average, (ii) inclusion of a small frac-
tion of the global species richness of the target clade,
and (iii) samples came from a restricted geographical
area (but see Hebert et al. 2004, based on samples from
across North America). While recent studies have im-
proved on the first condition, most are still geograph-
ically restricted and include a small proportion of the
extant species belonging to the studied clade (e.g.,
Hebert et al. 2010; Janzen et al. 2009). Indeed, the fact
that the “barcoding gap” documented in such studies is
exaggerated due to poor sampling has been widely rec-
ognized (Meyer and Paulay 2005; Wiemers and Fiedler
2007). On the other hand, with improved algorithms, a
barcoding gap is not necessarily a prerequisite for cor-
rect species assignment of queries (Ross et al. 2008; Lou
and Golding 2010; Virgilio et al. 2010).

With the launch of the iBOL-project, the DNA barcod-
ing enterprise is now operating at a global scale, and
instead of targeting regional species assemblages, it is
targeting clades. The difference is significant and can be
compared with the traditional identification keys DNA
Barcoding intends to automate (Janzen et al. 2009; Packer
et al. 2009). A key to a regional species assemblage can
be made simpler and use superior characters than that
to the entire clade because many species of the clade
will be missing from a particular region and can be ex-
cluded from the key. Also, part of a species’ complete
phenotypic variation is regularly lacking from a certain
region, also facilitating the production of a diagnostic
key. Similarly, genetic distances between species will be
larger, and so delimitation easier, since some species of
the clade are missing from the assemblage. Likewise,
intraspecific variation in a given region will not repre-
sent the species total variation also facilitating DNA-
based delimitation. Therefore, we expect unambiguous
species-level identification to present a greater challenge
for DNA Barcoding on a global level. To date, there have

been limited tests of these theoretical expectations, al-
though several clade-targeted studies have given simi-
lar hints, for example, Agrodiaetus butterflies (Wiemers
and Fiedler 2007), Grammia moths (Schmidt and Sperling
2008), Protocalliphora blowflies (Whitworth et al. 2007),
Agelenopsis spiders (Ayoub et al. 2005), Sigaus grasshop-
pers (Trewick 2008), Sternopriscus beetles (Hendrich et al.
2010), Mantellidae frogs (Vences et al. 2005), and Crocus
flowers (Seberg and Petersen 2009).

Here, we test the effect of the geographical scale of
sampling on species attributes affecting DNA Barcod-
ing and on different identification methods, asking how
will DNA Barcoding scale-up? We use the terms “scale
effect” and “scale dependency” in the sense of Wiens
(1989), that is, that “the [spatial] scale of a study may
have profound effects on the patterns one finds.” Our
focus is hence on changing patterns with spatial scale,
although likely underlying processes will be consid-
ered in the discussion. Although a few previous em-
pirical studies have addressed sampling (Meyer and
Paulay 2005; Wiemers and Fiedler 2007), these did not
investigate the effect of geographical scale explicitly.
We explore the effect of scale on: (i) intraspecific ge-
netic variation, (ii) interspecific divergence or genetic
distance to the closest heterospecific, and (iii) the ra-
tio of intraspecific variation and interspecific divergence
termed the “species differentiation” and indicative of
the identification success (Ross et al. 2008). In addition,
we assess the degree of species monophyly for increas-
ing geographical scales, which might not be essential for
identification of samples against a reference database (it
is algorithm dependent; DeSalle et al. 2005; Meier et al.
2006; Ross et al. 2008) but is certainly important if sin-
gle loci are used to delimit species as reciprocally mono-
phyletic clusters (see discussions in Sites and Marshall
2004; Hickerson et al. 2006; De Quieroz 2007; Knowles
and Carstens 2007). By resampling, we estimate how the
amount of intraspecific variation sampled depends on
different geographical sampling strategies. Finally, we
test how the geographical scale of sampling affects the
identification success of queries using a range of sug-
gested methods (see Meier et al. 2006; Ross et al. 2008).

We focus on diving beetles (family Dytiscidae),
aquatic predatory insects inhabiting a range of running
and standing water bodies from springs, streams and
rivers to temporary rainwater pools, bogs, ponds, and
lakes. The tribe Agabini comprises medium sized black
or reddish brown water beetles with some 360 species
distributed worldwide but most diverse in the northern
hemisphere (Nilsson 2001; Ribera et al. 2003). Agabini
are very uniform in morphology and color and therefore
often difficult to identify, male genitalia being routinely
required for correct identification (Nilsson and Holmen
1995; Foster and Bilton 1997). Three genera together con-
taining about 100 species are known from Europe and
North Africa (Nilsson 2003). Although species are su-
perficially very similar, it is not uncommon to find 6 to
10 different species in the same habitat and locality. Tax-
onomically, the Agabini are well studied in the west-
ern Palaearctic region (Larson and Nilsson 1985; Fery
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and Nilsson 1993; Nilsson 1994; Nilsson and Holmen
1995), and although some new species are still being dis-
covered in Europe, especially from the Mediterranean
peninsula (Foster and Bilton 1997; Millán and Ribera
2001), their ease of sampling and relatively well-known
taxonomy makes them an ideal group for testing the
effects of geographical scale on relevant parameters for
DNA Barcoding.

MATERIALS AND METHODS

Field Sampling and DNA Sequencing

Agabini beetles were collected in 96–99% ethanol with
an aquatic hand net. The sampling strategy aimed to col-
lect all species present within major running and stand-
ing water assemblages in a number of regions from
North Sweden via Germany, the UK, France and Spain
to Morocco in the south, and European part of Russia in
the east (Fig. 1). Samples were sorted and identified to
morphological species following the most recent world
and Palaearctic catalogs (Nilsson 2001, 2003). Identifi-
cations were rechecked using genitalia in light of the
molecular data, in particular if sister species showed a
nonmonophyletic pattern. For every locality, DNA was
extracted for up to 5 individuals per species. Genomic

DNA was extracted from muscle tissue in the protho-
racic region with Wizard SV 96-well plates according
to the manufacturers’ instructions (Promega, UK). An
825-bp region from the 3′ end of mitochondrial cy-
tochrome oxidase I (CO1) was amplified with primers
“Pat” and “Jerry” (Simon et al. 1994) “Ron Inosine,”
“Ron Dyt,” “Pat Dyt,” and “Patty” (Isambert et al. 2011).
Note that the 3′ end of CO1 is not the standardized
DNA Barcoding fragment of CO1 for animals officially
selected (Hanner 2009: see Roe and Sperling 2007 for
relative position), but the most commonly used part in
beetle systematics. Roe and Sperling (2007) found that
nucleotide changes were heterogenous across the CO1-
CO2 complex in a sliding window approach but no
difference in the overlap between intraspecific and in-
terspecific variation when comparing the 2 commonly
used CO1 fragments (LCO-HCO vs. Pat-Jerry). In fact,
they found the optimal 600-bp window to lie in be-
tween and overlapping with both. We therefore feel
confident that the results would be comparable in-
dependent of which of the 2 fragments are used. If
anything, the fragment used here would be a more
consistent divergence estimate due to its longer frag-
ment length, which was why Roe and Sterling pro-
posed a lengthening of the DNA Barcoding fragment

FIGURE 1. Geographical distribution of sampled localities including NCBI GenBank records.
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into the “Pat-Jerry” part. Amplification conditions used
with Bioline Taq were 94◦ for 2 min, 35 to 40 cy-
cles of 94◦ for 30 s, 53◦ for 60 s and 70◦ for 120 s,
and a final extension of 70◦ for 10 min. PCR products
were cleaned with a 96-well Millipore multiscreen plate,
sequenced in both directions using a Big Dye 3.1 ter-
minator reaction, and analyzed on an ABI 3730 auto-
mated sequencer. Only primers Jerry as forward, and
either PatDyt or Patty as reverse, were used as sequenc-
ing primers. Contigs were assembled and edited in
Sequencher 4.5. Sequences are deposited in GenBank
under accession codes JQ355008–JQ356531.

Sequences were aligned with clustal X version 2
(Larkin et al. 2007). The alignment was cropped to a 734-
bp matrix and 103 sequences lacking more than 25.6%
of this region were excluded from further analysis. An
additional 115 sequences of CO1 from Agabini bee-
tles originating in Europe (including the Canary Islands
and Madeira) Morocco, and Iran were also downloaded
from NCBI GenBank, origin determined with latitude
and longitude coordinates from the original publica-
tions and included in the analyses.

Data Analyses

Analyses of genetic and geographic distances were
carried out in R statistical software (http://www.
r-project.org) using the Ape library (Paradis et al.
2004). Genetic distances and neighbor-joining trees
were calculated using the Kimura 2-parameter model
(Kimura 1980), implemented in the Barcode of Life Data
System (Ratnasingham and Hebert 2007). To test if the
estimated proportion of nonmonophyletic species was
algorithm dependent, we also ran parsimony analyses
using TNT ver. 1.0 (Goloboff et al. 2008) and Bayesian
analysis using MrBayes 3.2 (Ronquist et al. 2012) on
the full data set. For the parsimony analysis, we used
heuristic search strategies developed for large data sets
(Goloboff 1999), in particular a “driven search” ap-
proach until minimum length was hit 10 times by means
of a combination of sectorial searches and tree fusing,
each under default settings in TNT. For the Bayesian
analysis, we used one of the most parsimonious trees
as a starting tree for the MCMC chain to shorten run
time (see Hunt et al. 2007). One million generations was
sampled every 1000th generation in each of 2 separate
runs with 4 chains (1 cold and 3 incrementally heated).
A partitioned GTR+I+G model was specified for each
of the codon positions. Partitions were given separate
rate multipliers and parameters were unlinked across
partitions except branch lengths and topology. Prior
and proposal settings were left as default. Convergence
was monitored with the PSRF and average deviation
of split frequency statistics. Results were summarized
with a majority-rule consensus after a burn-in fraction
of 25% had been removed. Intraspecific and interspecific
distances were calculated using taxonomic species
as units. The possible effects of cryptic diversity are
addressed in the Results and Discussion. We estimated
the age of divergence between 14 sister species pairs

based on an uncorrelated relaxed lognormal molecular
clock applied to a species level matrix of the CO1 data
set using BEAST v. 1.5.4 (Drummond and Rambaut
2007). Since interspecific coalescence events in the gene
tree must be older than the time at which gene flow
between the incipient species ceased (Wakeley 2000;
Degnan and Rosenberg 2009), the gene tree can be used
as a conservative age estimate of how young recent
sister species pairs are. The mean of the lognormal clock
rate was set to 3.54% divergence per million years after
the recent calibration of CO1 for a group of beetles (Pa-
padopoulou et al. 2010). This should be more accurate
for CO1 data sets than the generally used 2–2.3% insect
mitochondrial clock (Brower 1994), which is partly
based on more slowly evolving ribosomal genes. The
standard deviation (SD) of the clock rate was given an
uninformative prior (0 to infinity) thus allowing for the
deviation from a strict clock to be estimated. To derive
the posterior probability distribution of the sister species
divergence dates, we gave them uniform priors bound
between 0 and 1 billion years. An unlinked GTR+I+G
substitution model was used with separate rates for
each codon position. Two independent MCMC analyses
each ran for 50 million generations with parameters
sampled every 2000 generations. A burn-in of 20% was
removed from each run before combining the samples.
Tracer (Rambaut and Drummond 2007) was used to
check for convergence of the chain and effective sample
sizes of parameters.

With the estimated ages of closely related sister-
species pairs, we categorized the probability of recipro-
cal monophyly following the work of Rosenberg (2003)
and the simulation study by Hudson and Coyne (2002).
The calculations are based on the assumptions of treat-
ing the 2 species as 2 separate panmictic populations
with a constant population size of 106 since the split
of a panmictic ancestral population. The estimations are
further calculated for a maternally inherited, selectively
neutral and nonrecombining, mitochondrial marker, as
we assume is the case for CO1. The life cycle is univol-
tine with one generation per year. Hudson and Coyne
(2002: their Table 1) give waiting times for probabili-
ties 0.05, 0.5, and 0.95 of reciprocal monophyly for a
mitochondrial marker whereas Rosenberg’s (2003: his
Table 1) equivalent waiting times need to be halved
for a maternally inherited marker with an effective
population size of 0.5 Ne.

Resampling

The most widely sampled species, Agabus bipustulatus,
was represented by 419 individuals in our data set, sam-
pled throughout Europe. It is also a species whose phy-
logeography has been extensively investigated by Drotz
(2003) and Drotz et al. (2001, 2010), and all CO1 sequences
from these studies were downloaded from GenBank. As-
suming that this combined data set covers the full genetic
variation of the species, this provides us with an opportu-
nity to test how many individuals need to be sampled in
order to sample all the genetic variation of a taxon, and
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TABLE 1. Studied Agabini species with number of individuals per
species, geographical extent of sampled individuals in kilometers,
maximum intraspecific variation and distance to closest heterospecific
(Kimura 2-parameter)

Intra, Inter,
Species Individuals Kilometers K2P K2P

Agabus affinis 35 2148 0.0117 0.0000
Agabus alexandrae 4 230 0.0000 0.0490
Agabus amoenus 1 0 NA 0.1019
Agabus arcticus 15 1858 0.0341 0.0277
Agabus aubei 3 27 0.0055 0.0785
Agabus biguttatus 47 3034 0.0499 0.0348
Agabus biguttulus 1 0 NA 0.0000
Agabus binotatus 4 68 0.0000 0.0034
Agabus bipustulatus 419 6135 0.0318 0.0000
Agabus brunneus 52 1677 0.0056 0.0000
Agabus cephalotes 5 0 0.0000 0.0382
Agabus clypealis 2 0 0.0000 0.0102
Agabus congener 17 2276 0.0102 0.0000
Agabus conspersus 10 230 0.0100 0.0603
Agabus didymus 92 2887 0.0116 0.0973
Agabus dilatatus 1 0 NA 0.0207
Agabus elongatus 1 0 NA 0.0865
Agabus faldermanni 1 0 NA 0.0492
Agabus fulvaster 2 159 0.0027 0.0137
Agabus fuscipennis 2 2073 0.0096 0.0567
Agabus glacialis 1 0 NA 0.0000
Agabus guttatus 55 2650 0.0654 0.0000
Agabus heydeni 11 937 0.0056 0.0277
Agabus labiatus 55 3256 0.0313 0.0000
Agabus lapponicus 13 3187 0.0211 0.0000
Agabus lineatus 3 153 0.0046 0.0171
Agabus maderensis 1 0 NA 0.0568
Agabus melanarius 7 2010 0.0027 0.0676
Agabus nebulosus 65 2492 0.0110 0.0453
Agabus nevadensis 2 1 0.0000 0.0000
Agabus paludosus 41 4070 0.0343 0.0636
Agabus psuedoclypealis 5 0 0.0017 0.0102
Agabus ramblae 1 0 NA 0.0000
Agabus rufulus 1 0 NA 0.0068
Agabus serricornis 4 78 0.0034 0.0746
Agabus sturmii 123 3393 0.0107 0.0277
Agabus uliginosus 1 0 NA 0.0171
Agabus undulatus 28 2974 0.0120 0.0783
Agabus unguicularis 9 3231 0.0113 0.0746
Agabus wollastoni 3 10 0.0018 0.0206
Agabus zimmermanni 3 0 0.0027 0.0000
Ilybius aenescens 19 1878 0.0032 0.0685
Ilybius albarracinensis 6 0 0.0056 0.0102
Ilybius angustior 4 264 0.0014 0.0000
Ilybius ater 24 2245 0.0057 0.0867
Ilybius chalconatus 30 4881 0.0297 0.0000
Ilybius cinctus 2 0 0.0000 0.1384
Ilybius crassus 5 103 0.0043 0.0867
Ilybius dettneri 6 306 0.0000 0.1031
Ilybius erichsoni 7 85 0.0062 0.0604
Ilybius fenestratus 27 2212 0.0082 0.0822
Ilybius fuliginosus 81 3451 0.0186 0.0000
Ilybius guttiger 42 1897 0.0061 0.0034
Ilybius hozgargantae 1 0 NA 0.1031
Ilybius meridionalis 25 1418 0.0130 0.0000
Ilybius montanus 32 1686 0.0189 0.0000
Ilybius neglectus 12 1502 0.0035 0.0000
Ilybius opacus 1 0 NA 0.0000
Ilybius picipes 7 469 0.0000 0.0000
Ilybius quadriguttatus 45 3061 0.0208 0.0034
Ilybius satunini 26 155 0.0071 0.0000
Ilybius similis 2 41 0.0000 0.1139
Ilybius subaeneus 35 3450 0.0298 0.0906
Ilybius subtilis 1 0 NA 0.0604
Ilybius wasastjernae 5 759 0.0123 0.0000
Ilybius vittiger 1 0 NA 0.1384
Platambus lunulatus 1 0 NA 0.0723
Platambus maculatus 46 2809 0.0132 0.0723
Mean 24 1234 0.0115 0.0384

what is the most cost effective way of sampling. To ex-
amine this, the A. bipustulatus data set was resampled ac-
cording to 3 main strategies; (i) “Random sampling,” (ii)
“Local sampling,” where additional samples are taken as
geographically close as possible to any previous sample,
and (iii) “Maximum distance sampling” where addi-
tional samples are taken as geographically distant as pos-
sible from an original random starting point. This last
approach was conducted in 2 ways. First, by maximiz-
ing the geographical distance between each additional
sample and the geographically closest previous sample
and secondly, by maximizing the sum of geographical
distances to all previous samples. Thirty different sample
sizes between 2 and 350 were repeated 100 times for each
of the 4 sampling strategies. This analysis was also re-
peated on all species with more than 55 individuals in the
entire data set: Agabus labiatus, A. nebulosus, A. sturmii, A.
didymus, and Ilybius fuliginosus. In each case, we recorded
the sample size at which 95% of the total genetic variation
in the complete sample was recovered, a measure of the
sample size needed to estimate genetic variation.

Test of Identification

To test the effect of the geographical scale of sampling
on identification success, we defined multiple local, na-
tional, and regional subsets of the entire continental
data set. Each sequence from each data set was used
as a query against the remaining data set using differ-
ent identification criteria. For distance-based methods,
we used the “best match,” “best close match,” and “all
species barcode” method of Meier et al. (2006; also used
by Virgilio et al. 2010) as well as the clustering thresh-
old (1%) approach of Meier et al. (2006; their Table 5)
using TaxonDNA/SpeciesIdentifier 1.7.7 software tool
(Meier et al. 2006). Under Best match, the query is identi-
fied by the reference sequence with the smallest genetic
distance to the query and for a correct identification no
heterospecific sequence(s) must have an equally small
distance. Best close match adds a threshold condition
for the closest match to be granted identification priv-
ileges. Under all species barcode, all conspecific refer-
ence sequences have a smaller genetic distance to the
query than any heterospecific sequence for identifica-
tion. The clustering method clusters sequences into pro-
files in which all sequences are less than a threshold
value from at least one other sequence in the profile
but can be more than the threshold value from other
sequences in the profile (Meier et al. 2006). The query
was considered correctly identified if grouped in a pro-
file of only conspecific sequences. We also calculated
for each geographic range category the proportion of
nonmonophyletic species and implemented 2 tree-based
identification methods for queries differing in their sen-
sibility to nonmonophyly of species. Our strict tree-
based method (called “tree-based identification sensu
Hebert” by Meier et al.) requires the query to cluster
with all conspecific barcodes in a monospecific clade
(i.e., requiring monophyly of species). Our liberal
tree-based method follows Ross et al. (2008) and
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considers a query to be successfully identified if nested
within, or sister to, a mono- and conspecific clade but
does not require species monophyly. Singletons were
not used as queries (but were part of the reference
data sets) in order to not confound the effect of spa-
tial scale with the issue of singletons and when the
correct species is not present in the reference data set.
Singletons anyhow represent only a small fraction of the
data set (<1%) and would have a minor effect. We used
1% as a threshold in accordance with the official iden-
tification engine at BOLD (www.boldsystems.org), for
the best close match and “clustering threshold” distance
methods. Tree-based methods used NJ (ties broken ran-
domly) and a K2P model as described above. For each
method, we recorded the proportion of correctly iden-
tified queries. To get a relevant measure of uncertainty,
independent of whether the identification was correct or
not, we calculated the proportion of queries with more
than one reference species within the threshold value of
1%. Basically, the best close match together with this am-
biguity measure, both at a threshold of 1%, imitates the
algorithm and presentation of identification results by
the official BOLD identification engine (Ratnasingham
and Hebert 2007).

RESULTS

DNA was extracted from 2082 individuals, of which
1524 individuals (73%) were successfully sequenced for
CO1 with a high-throughput protocol. The sample rep-
resented 52 different taxonomic species, which gives an
average of 29 sequences per species. The number of in-
dividuals per species varied from 1 up to 419 in the
commonly occurring A. bipustulatus, dispersed through-
out Europe (Table 1). GenBank sequences added another
16 species not previously represented in the matrix and
together the 68 species represent about 70% of the
known Agabini fauna of West Palearctic.

Intraspecific Genetic Variation

Maximum intraspecific distances were found in
Agabus guttatus (6.5%) and Agabus biguttatus (5.0%).
These 2 species are part of a taxonomically difficult
species complex with very little character variation (the
guttatus-group sensu Foster and Bilton 1997) that re-
mains in need of revision. For example, Agabus nitidus
(Fabricius 1801), a synonym of A. biguttatus in recent
catalogs (Nilsson 2001, 2003) is sometimes treated as a
separate species (e.g., Sanchez-Fernandez et al. 2004).
Our COI data for both species contain 3 distinct haplo-
type clusters, which may represent cryptic species, and
we therefore report values both treating each as a single
species (T1) and as 3 candidate species (T2).

Mean intraspecific variation across all species with
multiple sequences were: T1: 1.04%, (N= 53), T2: 0.83%,
(N = 57) which increased to T1: 1.63%, (N = 29), T2:
1.28%, (N = 31) for species with >10 individuals and
to T1: 2.12%, (N = 17), T2: 1.58%, (N = 17) for species

with>30 individuals. Twenty species or 35–38% (T1-T2)
had intraspecific variation of >1%. Linear regressions
of maximum intraspecific distance as a function of the
number of sampled individuals were significant (T1:
P = 0.0295, T2: P = 0.00327) but had a low explanatory
power (T1: Adjusted R-square = 0.0717, T2: 0.131), and
the intraspecific variation was much more strongly de-
pendent on the geographical extent of sampled individ-
uals (T1: Adjusted R-square =0.384, P= 4.49× 10−7, T2:
0.626, P = 1.46× 10−13, Fig. 2a,b). Note that treating A.
guttatus and A. biguttatus as a single species results in
the 2 outliers in the upper part of Figure 2a and that a
much better fit (R2=0.63 vs. 0.38) is observed when they
are treated as multiple taxa (Fig. 2b).

Interspecific Genetic Divergence

Minimum interspecific divergence ranged from 0 to
14%. Thirty species, or 44% (T1, T2: 31 species or
43%), had less than 1% divergence from the closest het-
erospecific sequence. Intra- and interspecific distances
overlapped substantially (Fig. 3a,b). The effect of the
geographical scale of sampling on the distance to the
closest heterospecific was investigated by creating 5 ge-
ographical distance categories <1, <10, <100, <1000,
and <10000 km. For each distance category, all inter-
specific genetic distances were calculated and the mini-
mum recorded for each species. Genetic distance to the
closest heterospecific declined from an average of 7.08%
to 3.45%, as the geographic range of sampling was in-
creased from <1 to <10000 km (Fig. 4). Geographical
distance categories differ significantly in the minimum
genetic divergence between species (analysis of vari-
ance, F= 20, degrees of freedom = 1.256, P < 0.01).

Intraspecific Variation/Interspecific Divergence

The combined scale effect of the above can be
measured as species differentiation sensu Ross et al.
(2008)—that is, the ratio between intra- and interspecific
distances (Fig. 5). This ratio more than doubles from 0.11
for the smallest geographic distance category to 0.26 for
the highest (Fig. 5a). This predominantly results from
rapid declines in the distance to the closest heterospe-
cific as more closely related taxa are encountered in the
geographically expanding data set (Fig. 5b).

Species Monophyly

The data set was subdivided into a set of geo-
graphically restricted data sets representing local,
national, regional, and finally continental scales
(Table 2). The proportion of nonmonophyletic species in
each data set was recorded with a neighbor-joining tree
under a K2P model. The number of nonmonophyletic
species increased drastically as the geographic extent
of sampling increased (Fig. 6). At local and national
levels 5% and 13%, respectively, of species showed
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FIGURE 2. Maximum intraspecific variation (K2P) against maximum geographic extent (km) of sampled individuals. (a) Agabus guttatus
and Agabus biguttatus treated as one species each (linear regression, Y = 5.25 × 10−6x + 2.05 × 10−3, Adjusted R-square = 0.384, P < 0.001).
(b) Outliers A. guttatus and A. biguttatus each subdivided into 3 species candidates (linear regression Y= 4.45× 10−6x + 1.52× 10−3, Adjusted
R-square= 0.626, P < 0.001).

para- or polyphyletic patterns. However, at 3 regional
levels representing North Europe (including Great
Britain), Central Europe and Southwest Europe (in-
cluding North Morocco), 22% of species showed para-
or polyphyletic patterns. In the complete European
data set, 19 of 53 multiply sampled species, or 36%,
were nonmonophyletic (Supplementary Fig. 1, doi:
10.5061/dryad.2rg92p5v). A similar but slightly higher
proportion of nonmonophyletic species were derived
from the parsimony analysis (Supplementary Fig. 2:
40%, 21 of 53, estimated from the strict consensus
of 43 MPT at length 2459) as well as with Bayesian

analysis (Supplementary Fig. 3: 38%, 20 of 53, estimated
from the majority-rule consensus of 2 × 750 sampled
trees).

Dating and Tests of Lineage Sorting

We inferred a gene tree of CO1 with a relaxed molec-
ular clock and estimated the posterior probability distri-
bution of divergence times for 14 recent sister species
pairs using a molecular clock rate (Fig. 7). The SD of
the clock rate indicated that the data depart significantly
from a strict molecular clock (SD = 0.36, 95% highest

FIGURE 3. Histogram of maximum intraspecific variation (black) and minimum interspecific divergence (grey) for complete data set. (a)
Agabus guttatus and A. biguttatus treated as one species each. (b) A. guttatus and A. biguttatus each subdivided into 3 species candidates.
Note that closest interspecific divergence is recorded for each species so that sister species divergences are recorded twice in the frequency
distribution.
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FIGURE 4. The effect of geographic scale of sampling on the clos-
est interspecific divergence. Minimum interspecific divergences across
species in 5 distance categories. In each category, all interspecific dis-
tances between individuals with a pairwise geographical distance of
less than the category value was calculated and the minimum was
recorded for each species. Genetic distance is significantly smaller in
the 10 000 km category compared with 1, 10, and 100 km category
(one-way ANOVA, Tukey HSD, P < 0.01).

posterior density [HPD] = 0.19–0.52). The used mean
rate of 0.0177 substitutions per site per million year used
as a calibration with an uninformative prior on the SD
resulted in a 95% HPD clock rate interval of 0.0162–
0.0192 substitutions per site per million year. Mean di-
vergence age between sister species pairs ranged from
0.099 to 1.16 Ma, with the highest upper bound of the
95% HPD at 2.02 Ma (Table 3). Based on these age esti-
mates, we categorized the pairs into probability classes
of reciprocal monophyly (Table 3). None of the 14 sister

species pairs or triplets had a probability of being re-
ciprocally monophyletic >0.95. Nine of the 14 pairs had
a probability of being reciprocally monophyletic <0.5
even when using the upper bound of the 95% HPD. Six
of the pairs had a probability of <0.05 of being recip-
rocally monophyletic, if calculated with the estimated
mean ages. In addition, 2 of the recent sister species
pairs that were monophyletic but included few sampled
individuals are predicted to become nonmonophyletic
with more sampling, as the probability of reciprocal
monophyly for these were <0.5 (<0.05 with mean age)
(Table 3). A low probability of reciprocal monophyly
indicates that the nonmonophyly is likely due to incom-
plete lineage sorting.

Sampling Strategies

In A. bipustulatus, with random sampling, the median
of 100 resampling iterations reached 95% of the com-
plete genetic variation after 250 individuals (Fig. 8a).
The best sampling strategy to capture genetic variation
in the species was to maximize the geographic distance
between the new sample and the closest previous sam-
ple. With this strategy, 95% of the genetic variation was
recovered with 70 individuals (Fig. 8a). The generality
of this pattern was tested with all species sampled for
more than 55 individuals (Fig. 8b–f). Although it may
be unlikely that our samples of these species represent
their total genetic variation, it is clear that any sam-
pling strategy is highly unlikely to adequately repre-
sent the intraspecific variation with sample sizes of <20
individuals.

Identification of Queries

All methods showed a decline in identification suc-
cess with increasing geographical scale of the reference

FIGURE 5. The effect of geographic scale of sampling on the intraspecific × interspecific interaction. (a) Relationship between log geographic
distance categories and the species differentiation, that is, the ratio between intraspecific variation and interspecific divergence. (b) Interspecific
and intraspecific distances across 5 geographical distance categories separated by species. Each line represents a different species. gray =
minimum interspecific distance, black =maximum intraspecific distance.
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TABLE 2. Data sets of increasing geographic inclusiveness and the effect on species monophyly

Area Individualsa Sppb Spp >1 Indc N-M Sppd Prop N-M Sppe Prop N-M, Spp. >1 Indf

Local
1 Albacete 61 9 8 0 0 0
2 Alentejo—Algarve 83 3 3 0 0 0
3 Ávila—Cáceres—Toledo 55 6 6 0 0 0
4 Azrou Talass 18 6 3 0 0 0
5 Bavaria 95 13 12 0 0 0
6 Beira Alta 75 11 9 1 0.0909 0.1111
7 Brandenburg—Mecklenburg 27 9 5 0 0 0
8 Carrick—Cumbria 276 13 13 0 0 0
9 Cataluña 54 6 6 0 0 0

10 Cornwall 88 10 8 0 0 0
11 Corse 23 6 5 0 0 0
12 French Alps 41 9 7 0 0 0
13 Hebrides 65 7 6 0 0 0
14 Latvia 39 14 8 1 0.0714 0.125
15 Norfolk 78 13 10 2 0.1538 0.2
16 Öland—Småland 121 19 15 0 0 0
17 Västerbotten—Ångermanland 127 27 17 3 0.1111 0.1765
18 Viana do Castelo 34 6 5 1 0.1667 0.2
19 Volgograd—Astrachan 141 19 15 2 0.1053 0.1333

Mean 79 10.8 8.47 0.53 0.0368 0.0498

National
France (11, 12) 65 14 11 0 0 0
Germany (5, 7) 123 15 12 1 0.0667 0.0833
Portugal (2, 6, 18) 197 14 13 2 0.1429 0.1538
Spain (1, 3, 9) 187 15 11 3 0.2000 0.2727
Sweden (16, 17) 294 36 30 6 0.1667 0.2000
UK (8, 10, 13, 15) 514 23 21 2 0.0870 0.0952

Mean 230 19.5 16.33 2.33 0.1105 0.1342

Regional
C Europe 228 27 22 2 0.0741 0.0909
N Europe 851 41 34 9 0.2195 0.2647
SW Europe—Morocco 409 21 17 5 0.2381 0.2941

Mean 496 29.7 24.33 5.33 0.1772 0.2166

Continental
Europe (+Morocco, Iran) 1638 68 53 19 0.2794 0.3585

aInds, number of individuals in each data set.
bSpp, number of species.
cSpp >1 Ind, number of species with multiple individuals.
dN-M Spp, number of nonmonophyletic species.
eProp N-M Spp, proportion of nonmonophyletic species.
fProp N-M Spp >1 Ind, proportion of nonmonophyletic species, calculated only for species with multiple individuals.

data set (Fig. 9a; Appendix A1). The distance-based best
match and best closest match decreased form a median
value of 100% correct species assignments in 19 local data
sets, to 91% in the continental data set. There was no sig-
nificant difference between BM and BCM because sin-
gletons were not used as queries in the test. The stricter
all species barcode and clustering threshold method de-
creased more radically from 95% to 100% at local scale,
84–91% at national scale, 81% at regional scale, and 44–
45% at continental scale (Fig. 9a). The liberal tree-based
method showed a similar behavior to BM and BCM
with a smaller reduction from 100% of correct species
identification on local scale to 87% on continental scale.
Finally, the strict tree-based method showed a decline
similar to ASB and CT from 100% on local scale to
44% on continental. The independent measure of un-
certainty or ambiguity to the identifications was also
highly scale dependent (Fig. 9b). Ambiguity, measured

as the percentage of queries with more than one reference
species within the 1% threshold, increased from a me-
dian value of null at local scales via 16% at national and
regional scales to 50% at continental scale (Fig. 9b).

DISCUSSION

The most common metrics reported in DNA bar-
coding studies are intraspecific genetic variation, in-
terspecific genetic divergence to congenerics (mean or
smallest, see Meier et al. 2008), and the proportion
of monophyletic species or related measures on iden-
tifiable, diagnosable, or delimitable species. We have
shown that all 3 metrics significantly correlate with the
geographical scale of sampling, that is, are scale depen-
dent (Figs. 2–6). The dependency of intraspecific genetic
variation on geographical scale of sampling is to be ex-
pected based on widely recognized theory and concepts
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FIGURE 6. The effect of geographical scale of sampling on species
monophyly. Categories equal: local (N=19), national (N=6), regional
(N= 3), continental (N= 1) see Table 2. Species with a single represen-
tative was not included in the total when calculating the proportion
since they could not be nonmonophyletic.

such as distance decay (Nekola and White 1999) and
isolation by distance (Wright 1943), as well as from phy-
logeographic studies (Avise 2000). As a general rule,
a species sampled throughout its geographical range
will reveal greater genetic variation than if the varia-
tion was estimated from a single smaller region. Nev-
ertheless, several DNA barcoding studies have reported
that genetic and geographical distance was uncorre-
lated (Hebert et al. 2004, 2010), although these were ei-
ther based on smaller geographical scales than included
here or concerned more dispersive organisms such as
birds. That intraspecific variation is scale dependent is
not fatal for global DNA barcoding initiatives, since a
representative reference library will deliver close hits
to a query independent of geographical origin. How-
ever, such scale dependency does question whether ef-
fective identification can be achieved from whichever
geographic region with few barcodes per species and
without wide geographical coverage (Hebert et al. 2010).

So how extensive would sampling need to be to
cover most of the existing intraspecific variation of a
species? Agabus bipustulatus, a very widespread and ex-
tensively studied species in Europe (Drotz et al. 2001,
2010; Drotz 2003) provided an opportunity to test this
question by resampling. The empirical resampling ex-
ercise gave very similar results to a recent simulation
study that asked the same question (Zhang et al. 2010).
With a sampling strategy where the geographical loca-
tion of additional samples is randomized, a sample size
of 150 would still on average retrieve less than 90% of
the total variation. Zhang et al. (2010) likewise found
from their simulations that if at least 95% of the ge-
netic variation were to be discovered, a sample size
of 156–1985 would be necessary. Slightly more encour-
aging was the sampling strategy that maximizes the
geographical spread of additional samples (Fig. 7). Here,
we found that 70 samples would on average retrieve

the full genetic variation. The coinciding results from
empirical data and simulations offer a note of caution
for barcoding studies. For example, the iBOL project tar-
get is 5 million barcodes from 500 k species, that is, 10 in-
dividuals per species—far below the level at which the
majority of the variation is sampled (this study; Zhang
et al. 2010). What is an acceptable error rate and at what
sample sizes this is generally achieved remain to be clar-
ified: the choice of identification algorithm will also play
an important role (Ross et al. 2008; Austerlitz et al. 2009;
Virgilio et al. 2010). The good news is that sampling of
intraspecific variation will constantly improve with the
addition of barcodes.

What might be more of a problem is the decrease
of genetic divergence to closest heterospecific with
increased geographical scale of sampling (Fig. 4). This
effect has been discussed in theory before (e.g., Meyer
and Paulay 2005) but not previously quantified with em-
pirical data. However, this effect also comes as no sur-
prise since allopatric speciation is thought to be the most
common mode of divergence (Barraclough and Vogler
2000; Coyne and Orr 2004), whereas the frequency of
sympatric speciation is controversial (Fitzpatrick and
Turelli 2006). If allopatric speciation is most common
then we expect a species’ closest relative not to co-
occur in the same area but to enter a data set as the
geographical scale of sampling expands. In fact Kisel
and Barraclough (2010) found that geographical scale
was significantly correlated with the probability of in
situ island speciation across a wide range of groups
from mammals, birds and lizards to flowering plants,
butterflies, moths, and snails. This directly predicts that
the pattern we found, of decreasing interspecific diver-
gence with increased scale of sampling, is general, and
not taxon specific.

The combined scale effect leads to a decrease in
species differentiation, that is, the ratio between in-
traspecific variation and interspecific divergence to clos-
est heterospecific. The fact that the 2 measures overlap
broadly (Fig. 3) and that a barcoding gap does not exist
(see also Meyer and Paulay 2005; Wiemers and Fiedler
2007) is not a major concern as the degree of overlap
is a poor predictor of identification success (Ross et al.
2008). However, the degree of species differentiation is
a better predictor and moreover at low levels of dif-
ferentiation the sampling becomes crucial (Ross et al.
2008). The scale effect found therefore confirms our ex-
pectations that as DNA barcoding goes global, species
identification becomes more of a challenge.

Finally, we find a highly significant effect of geo-
graphical extent of the data set and the proportion of
monophyletic species. This reconciles the apparent con-
tradiction between early DNA barcoding studies and
the phylogeography literature (Funk and Omland 2003).
In 19 locally restricted data sets, the mean proportion
of nonmonophyletic species was less than 5%, similar
to many early barcoding studies showing monophyly
of >95%. These numbers seemed to conflict with the-
ory on speciation and lineage sorting time (Hudson and
Coyne 2002; Rosenberg 2003; Hickerson et al. 2006), the
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FIGURE 7. Calibrated gene tree with a single representative terminal per species using a lognormal relaxed clock. Scale is in millions of
years. Node values are posterior probability clade support. Bars represent the 95% HPD interval around the dated nodes (only for nodes > 0.5
in posterior probability).

abundance of Pleistocene speciation (e.g., Ribera and
Vogler 2004) and not least animal mitochondrial DNA
studies in which 23% of all species studied were non-
monophyletic (Funk and Omland 2003). In our complete

European data set, 36% of multiply sampled species
were nonmonophyletic. The tribe Agabini is distributed
through the whole Holarctic, and although most lin-
eages are geographically restricted (Ribera et al. 2003)
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TABLE 3. Closely related sister species pairs or triplets and probability of reciprocal monophyly

Sister species pair RMa Mean age 95% HPDb Probability RM

Ilybius fuliginosus—I. meridionalis No 0.53 0.18–0.97 <0.5 (<0.95)
Ilybius quadriguttatus—I. guttiger No 0.47 0.15–0.87 <0.5 (<0.5)
Ilybius angustior—I. picipes No 0.099 0.0026–0.25 <0.05 (<0.05)
Ilybius opacus—I. wasastjernae No 0.42 0.11–0.80 <0.5 (<0.5)
Ilybius montanus—I. chalconatus No 1.16 0.44–2.02 <0.95 (<0.95)
I. neglectus—I. satunini No 0.33 0.055–0.66 <0.05 (<0.5)
Agabus brunneus—A. ramblae—A. rufulus No 0.42 0.14–0.76 <0.5 (<0.5)
Agabus affinis—A. biguttulus No 0.35 0.078–0.70 <0.05 (<0.5)
Agabus bipustulatus—A. nevadensis No 0.56 0.10–1.21 <0.5 (<0.95)
Agabus congener—A. lapponicus No 1.03 0.38–1.71 <0.95 (<0.95)
Agabus labiatus—A. zimmermanni No 0.16 0.011–0.37 <0.05 (<0.05)
Agabus guttatus1—A. glacialis—A. dilatatus No 0.60 0.23–1.04 <0.5 (<0.95)
Agabus guttatus2—A. binotatus Yes 0.22 0.031–0.48 <0.05 (<0.5)
Agabus clypealis—A. pseudoclypealis Yes 0.37 0.11–0.70 <0.05 (<0.5)

Note: Estimated mean age in million years, 95% highest posterior density interval around the estimated age, and probability of reciprocal
monophyly at Ne = 106, given a number of assumptions (see Materials and Methods); first probability given the mean age, probability in
parenthesis given the upper bound of the 95% HPD.
aRM, reciprocal monophyly.
bHPD, highest posterior density.

some of the closest relatives of European species have
Asian or North American distributions. The number of
nonmonophyletic species in our study could therefore
even be an underestimation, especially in some groups
with wide distributions (e.g., the Ilybius angustior com-
plex, Nilsson and Ribera 2007; or the subgenus Agabus
(Acatodes), Ribera et al. 2003).

Even though the species attributes here shown to be
significantly affected by spatial scale, have been central
in the DNA Barcoding debate, the effects cannot be di-
rectly translated to identification performance since the
response may be method dependent (Meier et al. 2006;
Ross et al. 2008; Virgilio et al. 2010). We found how-
ever that all tested methods had a decreasing success of
query identification but fell in 2 quite distinct groups.
The most severely affected methods here labeled the
“strict group” plummeted to less than 50% correct query
identifications as spatial scale increased from local to
continental and this group included all species barcode,
“cluster threshold” and “strict tree-based” method. The
second group we label the “liberal group” of methods
and include the best match, best close match, and “lib-
eral tree-based” method. With the less stringent require-
ments to assign a unique species name to a query, these
methods only declined to between 87% and 91% of cor-
rect assignment at the continental scale from 100% at
local scale. The results are in close agreement with the
study by Virgilio et al. (2010) that compared the perfor-
mance of DNA Barcoding across 6 insect orders and 4
identification criteria. They also found the all species
barcode and a strict tree-based method to be outper-
formed by best match and best close match methods
and, importantly, that identification success decreased
significantly with an increase in the reference database
size (in their case not directly linked to spatial scale
but to the number of included species). Likewise, Ross
et al. (2008) found a different version of the strict tree-
based method to be conservative with lower rate of cor-
rect identification relative to distance and BLAST-based

methods. On the other hand, the strict tree-based
method was the only method relatively immune to mak-
ing false positive identifications when the query species
was not represented in the reference database. Ross
et al. (2008) therefore proposed that the strict tree-based
method was suitable to use during the build-up phase
of a reference library, with the less conservative meth-
ods appropriate and more efficient once the genetic
variation of the clade had been well sampled and
characterized.

The most relevant method in practice, due to the im-
plementation in the official BOLD identification engine,
is the best close match genetic distance approach com-
bined with an ambiguity measure (www.boldsystems.
org: Ratnasingham and Hebert 2007). BOLD uses 1%
as threshold value and determines the query as the ID
of the closest match, conditional on that it is <1% in
genetic distance from the query, but if more than one
species have a distance of <1% then all species are listed
(Ratnasingham and Hebert 2007). The latter is basically
a warning of uncertainty or ambiguity—a single species
may still have the closest match and deliver a correct
identification but with several species within 1% dis-
tance to the query, the certainty of the identification
is reduced. We found that the proportion of queries
which will give similar warnings of uncertainty in-
crease substantially with the geographical scale of sam-
pling. At local scale, the average reference data set will
give 100% unequivocal identifications of queries with-
out uncertainty warnings. At continental scales, half of
all query identifications will come with the uncertainty
warning that multiple species match the query at <1%
(Fig. 10). So while a number of DNA Barcoding ap-
plications might find a 90% correct-and-unique species
identification rate acceptable, the 50% uncertainty taga-
long rate might not be. Note, however, that were we to
link an online faunistic database, say Fauna Europaea
(www.faunaeur.org), to the barcode identification en-
gine, we could in a single step reduce this uncertainty to
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FIGURE 8. Proportion of total intraspecific genetic variation as a function of sample size. (a) Agabus bipustulatus, (b) A. sturmii, (c) A. didymus,
(d) Ilybius fuliginosus, (e) A. nebulosus, (f) A. labiatus. Each data point is the median of 100 randomizations. Solid circle = random, open circle =
maximum sum of geographic distances, square =maximum distance to closest geographical neighbor, triangle =minimum distance to closest
geographical neighbor.
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FIGURE 9. The effect of spatial scale on query identification success and ambiguity. (a) proportion of correctly identified queries using 6
different methods and given as the median value for each range category. Range category: local (N = 19), national (N = 6), regional (N = 3),
continental (N = 1). Methods: BM, Best match; BCM, best close match; ASB, all species barcode; CT, clustering threshold; TBS, tree based strict;
TBL, tree based liberal. (b) Proportion of ambiguous query identifications defined as more than one reference species matching the query within
the 1% threshold.

almost half (27%) by simply collecting the information
that A. nevadensis only occurs in Spain. This would pre-
vent all A. bipustulatus sequences from the rest of Europe
from being unidentified or identified with a warning

FIGURE 10. Schematic representation of relative importance of
processes as spatial (and temporal) scale increases, and the effect on
DNA barcoding parameters as found from this study. Note that the
linear slopes are simplifications and that nature of the scale effects can
be noncontinuous and chaotic across different domains of scale (e.g.,
see Wiens 1989). The small red and yellow graphs in the figure are
originally from Meyer and Paulay (2005).

flag of uncertainty. Such “smart barcoding tools”
combining genetic and distributional data is likely one
way forward to cope with spatial scale effects, although
for a few applications, like invasive species control,
geographically restricted searches are not an option.

An exhaustive evaluation of all suggested methods
to date was beyond the scope of the present study
hence the effect of spatial scale on Bayesian (Nielsen
and Matz 2006; Munch et al. 2008a, 2008b), artificial in-
telligence (Zhang et al. 2008), decision theoretic (Abdo
and Golding 2007), or other approaches to species as-
signment were not investigated. Neither did we test
different threshold values the calculation of which has
seen various proposals (e.g., Hebert et al. 2003, 2004)
but used the threshold of 1% following the official iden-
tification engine of BOLD (Ratnasingham and Hebert
2007). As seen by the similar behavior of the best match
(no threshold) and best close match (threshold) method
(Fig. 9a), a threshold is most relevant if the reference
data sets may lack the species represented by the query,
which was not the case in our test where singletons
were excluded as queries. The treatment of singletons
is otherwise of significant importance when evaluating
methods (Lim et al. 2012; see Ross et al. 2008, for an
evaluation of the effect of singletons in Meier et al.’s
2006, data), since a global reference database is pre-
dicted to be lacking many species for a long time to
come.

The effects of scale on DNA barcoding mirror those on
local and regional diversity patterns in ecology, where
it has been identified that different processes operate
at different scales (Ricklefs and Schluter 1993), and that
understanding from local scales is rarely enough to ex-
plain patterns at larger scales (Wiens 1989). The genetic
structure of local and regional assemblages is mainly
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governed by contemporary ecological processes respon-
sible for which species coexist and how closely related
they are (Webb et al. 2002). If closely related species
share similar ecological traits, then competitive exclu-
sion will tend to lead to phylogenetic overdispersion,
whereas environmental filtering will lead to phyloge-
netic clustering. Empirical community data have re-
vealed both phylogenetic overdispersion and clustering
and more importantly that the outcome itself is highly
scale dependent (Kembel and Hubbell 2006; Swenson
et al. 2006, 2007). In contrast, the processes involved in
shaping the genetic structure of global clades are histor-
ical, namely the relative rates of past speciation, extinc-
tion, and demographic changes. The degree to which in
situ speciation is a factor for regional assemblages de-
pends on the size and location of the region. In Ontario
(Hebert et al. 2003), for example, or the Area de Conser-
vación Guanacaste (Janzen et al. 2009) in situ speciation
plays a minor role, since these regions either encompass
a biota assembled from recent Pleistocene recolonists or
are part of a much larger ecological mosaic, respectively.
In contrast, in endemic hotspot regions like Madagascar,
Australia or Melanesia, in situ speciation is highly sig-
nificant (e.g., Monaghan et al. 2006; Hendrich et al. 2010;
Isambert et al. 2011). The key point here is that the rela-
tive importance of processes responsible for the patterns
we observe (e.g., the genetic variation in DNA barcod-
ing data sets) change with scale. As we increase the
spatial scale, historical processes increase and ecological
processes decrease in importance (Fig. 10). This is not
in conflict with the notion that ecological determinants,
like habitat permanence in the case of aquatic beetles,
can drive microevolutionary adaptations (e.g., dispersal
capacity) with likely implications for clade evolution
(Ribera and Vogler 2000)—speciation can certainly be
ecologically driven (Schluter 2000, 2001).

Of course one possible reason for nonmonophyly, or
mismatch between molecular and morphological data,
is that nonmonophyletic species might in fact be syn-
onyms of the same species (Funk and Omland 2003;
Meyer and Paulay 2005) and that the taxonomy of the
group is in need of revision and an iterative reexami-
nation of specimens (Hendrich et al. 2010). Many such
cases have, and thanks to molecular tools, will continue
to be discovered, meaning that it is worthwhile to ex-
amine our focal taxa in this light. While the majority
of the cases of nonmonophyly reported here comprise
taxa whose status has not previously been questioned,
the status of some of the species pairs in Table 3 has in-
deed been challenged in the past. One of these is the
A. congener–A. lapponicus pair, which due to previous
doubts was investigated with quantitative morphomet-
rics (Nilsson 1987) as well as with allozymes (Nilsson
et al. 1988). Quantitative analyses of the apical shape
of the male penis showed that there was a bimodal
rather than continuous distribution, upheld even when
the 2 taxa occurred in sympatry (Nilsson 1987; see also
Foster 1992), and allozymes supported the recognition
of 2 gene pools and hence 2 species (Nilsson et al.
1988). A second much doubted case is the status of

A. nevadensis, restricted to the Sierra Nevada moun-
tains in Spain, in relation to the very common, variable
and widespread A. bipustulatus with which Ribera et al.
(1998) suggested A. nevadensis might be synonymous.
However, recent allozyme studies of the complex sup-
ports the hypothesis of reproductive isolation between
the species (Drotz et al. 2010), even though A. nevaden-
sis is deeply nested within A. bipustulatus based on CO1
(this study; Drotz et al. 2010). The species of the Agabus
brunneus group (A. brunneus, A. ramblae, and A. rufulus)
have only been recognized as distinct in recent years
(Millán and Ribera 2001), although their status is now
generally accepted, and they have been shown to differ
markedly in thermal physiology (Calosi et al. 2008). The
status of the Russian Ilybius satunini in relation to I. ne-
glectus remains to be tested as it has not been treated in
any modern revision. We are not aware of doubts about
the remaining species pairs, although there may be cryp-
tic taxa present in some groups; chromosome variation
suggesting multiple species has been found within what
is currently considered as I. montanus (Aradottir and
Angus 2004) and our COI data suggest that the A. gutta-
tus group might be hiding more species than presently
recognized.

A question that remains is whether incomplete
lineage sorting (see Funk and Omland 2003) is a reason-
able explanation for the majority of nonmonophyletic
species in this study. The probability of reciprocal mono-
phyly of incipient species is high (>0.9) only after they
have been isolated for 2–4 times the effective population
size X generations (Hudson and Coyne 2002; Rosenberg
2003; Hickerson et al. 2006). In our conservative age es-
timates of the 14 youngest sister species pairs among
European Agabini, only one had a confidence interval
that exceeded 2 million generations, the remaining 13
were younger (Table 3). This is in agreement with a
study that found most Iberian endemic diving beetles
to be of Pleistocene origin (Ribera and Vogler 2004). Our
calculations are based on a number of assumptions and
an arbitrary, but most likely too low (i.e., conservative),
effective population size. We used an effective popu-
lation size of 106 and it is likely that for most species
this should be significantly higher and conclusions even
more robust. Dehling et al. (2010) estimated the avail-
able lentic (standing) and lotic (running) water habitats
in Europe to 300 000 km of lake perimeter and 2 million
kilometer of river length. For a widespread European
species, a population size of 106 hence translates to
a density of 1 individual per 300 m of shore for a
lentic species or 1 individual per 2 km of river for a
lotic species, most certainly an underestimate. Even for
species with a more limited European distribution, for
example, 1/5th of the total surface, and more demand-
ing habitat requirements, for example, 9/10th consid-
ered unsuitable for other reasons (size of water body,
PH, vegetation, nutrition, substrate etc.) densities re-
main low (1/6 m, 1/40 m, respectively). Juliano and
Lawton (1990) estimated the population density of div-
ing beetles to an average of 5.5 individuals per species
and square meter at one site in England, although
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this concerned Hydroporus, species with smaller body
size and higher densities than Agabini. Perhaps the
most unrealistic assumption is treating species as sin-
gle panmictic populations. On the other hand, subdi-
vided populations would overestimate the divergence
time (Wakeley 2000) as well as increase the effective
population size according to island models (Nei and
Takahata 1993; but see Whitlock and Barton 1997 for
alternative models). This again would argue that our
estimates are conservative and conclusions realistic.
Incomplete lineage sorting is therefore the preferred de-
fault explanation for the observed nonmonophyly of
many species, although introgressive hybridization can-
not be excluded in all cases (Funk and Omland 2003).
Future studies could test these alternative hypothe-
ses by adding nuclear loci, test for Wolbachia infection
(Whitworth et al. 2007) and detailed geographic analy-
ses of haplotype distribution in relation to species range
overlap.

CONCLUSIONS

DNA barcoding is becoming an indispensable tool
for species discovery and specimen identification alike.
However, understanding the limits and scalability of
the technique is a prerequisite not only for its us-
age but to predict the deliverables of DNA barcod-
ing as a global enterprise. We have investigated the ef-
fect of increasing the geographical scale of sampling
on species attributes relevant for DNA barcoding per-
formance and on actual query identification. That the
intraspecific variation increases with the geographical
scale of sampling was expected as a result of isola-
tion by distance and phylogeographic structure. Previ-
ously less realized is the significant decrease in inter-
specific divergence with increasing geographical scale
of sampling due to encountering more closely related,
allopatrically distributed, species in a geographically ex-
panding data set. This also had the effect of increas-
ing the proportion of nonmonophyletic species with
spatial scale directly relevant for identification and de-
limitation methods assuming species monophyly. The
efficacy of methods for query identification declined
with increasing spatial scale but strict methods were
more severely affected than liberal methods. However,
the uncertainty of identifications showed a steep in-
crease with geographical scale. Linking the global bar-
code database with faunistic/floristic online databases
will therefore improve accuracy through geographi-
cally restricted query searches when the geographi-
cal origin of the query is known. We anticipate the
development of various “smart” barcoding tools in
this direction. For applications lacking a geographi-
cal context for specimens, limits of the precision with
which specimens can be identified will differ from
those estimated in local or regional contexts. The de-
gree of scale effects will certainly vary between organ-
ism groups (their vagility and speciation history) and ar-
eas (geological and climate change history). In addition,
some very useful applications of DNA Barcoding

are by necessity of global character and cannot
be geographically restricted, like the detection of in-
vasive species or border control/global trade of illegal
organism products. We also acknowledge that for many
applications of DNA Barcoding such as life-stage asso-
ciation and environmental monitoring of nonstandard
groups, identification to a pair, or small group of, closely
related species can still be of great value and a method-
ological improvement. Nevertheless, the scale depen-
dency gives an extra incentive for regional and national
barcoding initiatives striving for maximal identification
precision.
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APPENDIX

TABLE A1. Proportion of correctly identified queries by 6 different methods, and a measure of identification ambiguity, for data sets of
increasing geographic scale

Area BMa BCMb ASBc CTd TBSe TBLf AMBg

Local
1 Albacete 1 0.983 0.983 1 1 1 0
2 Alentejo—Algarve 1 1 1 1 1 1 0
3 Ávila—Cáceres—Toledo 1 1 0.964 1 1 1 0
4 Azrou Talass 1 1 0.867 1 1 1 0
5 Bavaria 1 1 0.883 1 1 1 0
6 Beira Alta 1 1 0.945 0.959 0.959 0.959 0.041
7 Brandenburg—Mecklenburg 1 1 0.913 1 1 1 0
8 Carrick—Cumbria 1 0.989 0.989 1 1 1 0
9 Cataluña 1 1 1 1 1 1 0

10 Cornwall 1 1 0.977 1 1 1 0
11 Corse 1 1 1 1 1 1 0
12 French Alps 1 0.974 0.974 1 1 1 0
13 Hebrides 1 1 0.969 1 1 1 0
14 Latvia 0.970 0.970 0.788 0.818 0.879 0.970 0.121
15 Norfolk 0.827 0.827 0.760 0.813 0.813 0.867 0.187
16 Öland—Småland 1 0.991 0.821 0.752 1 1 0.085
17 Västerbotten—Ångermanland 0.983 0.983 0.889 0.838 0.812 0.957 0.162
18 Viana do Castelo 0.970 0.970 0.909 0.879 0.879 0.970 0.121
19 Volgograd—Astrachan 0.985 0.971 0.635 0.693 0.693 0.788 0.299

Median 1 1 0.945 1 1 1 0

National
France (11, 12) 1 0.984 0.984 0.839 1 1 0.161
Germany (5, 7) 1 1 0.908 0.833 0.925 1 0.167
Portugal (2, 6, 18) 0.995 0.995 0.964 0.954 0.954 0.990 0.046
Spain (1, 3, 9) 0.989 0.978 0.694 0.694 0.699 0.978 0.224
Sweden (16, 17) 0.951 0.951 0.764 0.691 0.764 0.924 0.267
UK (8, 10, 13, 15) 0.953 0.951 0.906 0.949 0.949 0.957 0.051

Median 0.992 0.981 0.907 0.836 0.937 0.984 0.164

Regional
C Europe 1 0.996 0.843 0.865 0.857 1 0.135
N Europe 0.954 0.954 0.810 0.812 0.842 0.947 0.159
SW Europe—Morocco 0.985 0.983 0.622 0.528 0.528 0.970 0.383

Median 0.985 0.983 0.810 0.812 0.842 0.970 0.159

Continental
Europe (+Morocco, Iran) 0.915 0.907 0.451 0.436 0.435 0.872 0.501

aBM, best match. bBCM, best close match. cASB, all species barcode. dCT, clustering threshold. eTBS, tree-based strict. fTBL, tree-based liberal.
gAMB, ambiguous identifications.
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