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ABSTRACT The present study aimed to investigate whether alternative dietary pro-
tein sources modulate the microbial communities in the distal intestine (DI) of Atlan-
tic salmon, and whether alterations in microbiota profiles are reflected in modifica-
tions in host intestinal function and health status. A 48-day feeding trial was
conducted, in which groups of fish received one of five diets: a reference diet in
which fishmeal (diet FM) was the only protein source and four experimental diets
with commercially relevant compositions containing alternative ingredients as partial
replacements of fishmeal, i.e., poultry meal (diet PM), a mix of soybean meal and
wheat gluten (diet SBMWG), a mix of soy protein concentrate and poultry meal (diet
SPCPM), and guar meal and wheat gluten (diet GMWG). Samples were taken of DI
digesta and mucosa for microbial profiling using high-throughput sequencing and
from DI whole tissue for immunohistochemistry and expression profiling of marker
genes for gut health. Regardless of diet, there were significant differences between
the microbial populations in the digesta and the mucosa in the salmon DI. Microbial
richness was higher in the digesta than the mucosa. The digesta-associated bacterial
communities were more affected by the diet than the mucosa-associated microbiota.
Interestingly, both legume-based diets (SBMWG and GMWG) presented high relative
abundance of lactic acid bacteria in addition to alteration in the expression of a
salmon gene related to cell proliferation (pcna). It was, however, not possible to as-
certain the cause-effect relationship between changes in bacterial communities and
the host’s intestinal responses to the diets.

IMPORTANCE The intestine of cultivated Atlantic salmon shows symptoms of com-
promised function, which are most likely caused by imbalances related to the use of
new feed ingredients. Intestinal microbiota profiling may become in the future a
valuable endpoint measurement in order to assess fish intestinal health status and
effects of diet. The present study aimed to gain information about whether alterna-
tive dietary protein sources modulate the microbial communities in the Atlantic
salmon intestine and whether alterations in microbiota profiles are reflected in alter-
ations in host intestinal function and health status. We demonstrate here that there
are substantial differences between the intestinal digesta and mucosa in the pres-
ence and abundance of bacteria. The digesta-associated microbiota showed clear
dependence on the diet composition, whereas mucosa-associated microbiota ap-
peared to be less affected by diet composition. Most important, the study identified
bacterial groups associated with diet-induced gut dysfunction that may be utilized
as microbial markers of gut health status in fish.
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The use of alternative plant-based protein sources to partially replace fishmeal in
diets for farmed Atlantic salmon (Salmo salar) is currently common practice in

commercial diets (1). However, the use of certain feed ingredients of plant origin is
restricted due to the presence of antinutrients that challenge function and health of the
gut of fish (2). A number of studies describe a range of responses, including inflam-
mation in the gut of carnivorous fish, especially when soybean meal and other legumes
are included in the diets (3–10). Some studies have also investigated modulatory effects
of different protein sources on the gut microbiota in salmonids (11–16), but general
knowledge regarding interactions between diets, gut microbiota, and fish gut function
and health is fragmentary and incomplete. There is little doubt regarding the impor-
tance of the gut microbiota for the host (reviewed in reference 17). For example, studies
in mammals using culture-independent techniques, including high-throughput se-
quencing (HTS), demonstrated that gut microbial dysbiosis might be closely related to
a number of health disorders, such as obesity and inflammatory bowel disease (18, 19).
High-resolution microbiota sequencing has also been used to evaluate the role of diet
in shaping the gut microbiota in fish (20, 21), including salmonids such as rainbow trout
(Oncorhynchus mykiss) (14, 22, 23) and Atlantic salmon (24, 25). However, only a few of
the studies conducted with salmon have investigated the mucosa-associated autoch-
thonous and the more transient or digesta-associated allochthonous microbial com-
munities separately. Our recent study of characteristics of the microbiota along the
intestine of Atlantic salmon demonstrated important differences between digesta and
mucosa (26), implying that dietary modulatory effects may be masked and therefore
overlooked if only digesta-associated microbiota is characterized or if a homogenate of
digesta and mucosal tissue is evaluated. In fish, investigations of functional aspects of
the gut microbiota have so far focused mainly on the modulatory effect of dietary
supplements such as pre- and probiotics. Possible links to variation in gut immune
functions and growth performance have been suggested (27–31) and, based on
experience from studies with mammals, gut microbiota profiling is expected to be
a valuable endpoint measurement in order to assess and understand fish gut health
status and the effects of diet.

The work presented here was part of a larger study evaluating the effects of practical
Atlantic salmon diets with high contents of alternative protein sources, i.e., soybean
meal, more highly processed soy protein concentrate, and guar meal, all from legumes
belonging to the Fabaceae family, as well as a relevant animal product poultry meal.
Results regarding growth performance, nutrient digestibilities, and intestinal histomor-
phology are reported elsewhere (32). The main aims of the work presented here were
to strengthen knowledge on digesta and mucosa-associated microbial composition in
the distal intestine using HTS and to evaluate whether high levels of currently used
alternative protein sources (i) modulate the microbial communities in the distal intes-
tine and (ii) modulate distal intestine health status and (iii) whether alterations in
intestinal microbiota profiles may cause alterations in host intestinal health status and
functionality.

RESULTS

The presentation and following discussion of the results given below focus on
differences observed between the reference diet and each of the experimental diets.
Differences between the experimental diets are avoided, since their composition was
not balanced for direct comparison.

Characteristics of the high-throughput sequence data. After sequence quality
filtering, trimming, filtering of the operational taxonomic units (OTU) and discarding
cyanobacteria reads, 1,191,799 sequences were retained for downstream analyses. The
alpha diversity metric Good’s coverage estimator was 0.9818 � 0.0007 (mean � the
standard error of the mean [SEM]), indicating adequate sequencing depth.

Gut microbiota in distal intestine (DI) digesta. Statistical analysis, permutation
multivariate analysis of variance (PERMANOVA), of unweighted and weighted UniFrac
matrices (Table 1) showed that all diets affected the unweighted UniFrac, indicating
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that the microbial communities in the digesta of fish fed the experimental diets differed
from those in the fishmeal (FM)-fed fish. On the other hand, the weighted UniFrac
showed that only fish fed poultry meal (diet PM) and a mix of soybean meal and wheat
gluten (diet SBMWG) differed significantly from that of FM-fed fish. The principal
coordinate analysis (PCoA) plots of unweighted and weighted UniFrac data (Fig. 1)
reflect the statistical analysis by showing clustering of samples by diet, especially in the
PCoA plot showing the results of the unweighted UniFrac.

Results from the linear discriminant analysis (LDA) effect size (LEfSe) analysis further
support the statistical results, with significant differences in microbial abundances
between the fish fed the experimental diets and the FM-fed fish (Fig. 2A). The
experimental diets resulted in enrichment of several OTU from different phyla. Com-

TABLE 1 PERMANOVA analysis of weighted and unweighted UniFrac data of DI gut
microbiota located in different compartments of Atlantic salmon fed diets with different
protein sources

PERMANOVA analysis
and diet(s)a

Unweighted UniFrac Weighted UniFrac

P Pseudo-F P Pseudo-F

Two way
Compartments 0.001 13.21 0.001 56.9
Diet 0.007 1.57 0.03 2.19
Interaction 0.213 1.11 0.582 0.83

Pairwise test (digesta)
FM, PM 0.008 0.046
FM, SBMWG 0.007 0.01
FM, SPCPM 0.013 0.254
FM, GMWG 0.008 0.086

Pairwise test (mucosa)
FM, PM 0.013 0.085
FM, SBMWG 0.025 0.07
FM, SPCPM 0.275 0.13
FM, GMWG 0.232 0.396

aFM, fishmeal diet; PM, poultry meal diet; SBMWG, soybean meal wheat gluten diet; SPCPM, soy protein
concentrate poultry meal diet; GMWG, guar meal wheat gluten diet.

FIG 1 PCoA of unweighted (A) and weighted (B) UniFrac data showing clustering of the digesta and mucosa compartments of the distal
intestine of Atlantic salmon fed various diets. Each dot represents one sample. Dotted lines represent the sample origin; the dark red
dotted lines indicate clustering mucosa samples, and the black dotted lines indicate clustering digesta samples. FM, fishmeal diet; PM,
poultry meal diet; SBMWG, soybean meal with wheat gluten diet; SPCPM, soy protein concentrate with poultry meal diet; GMWG, guar
meal with wheat gluten diet; D, digesta; M, mucosa.
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pared to all other dietary groups, fish fed SBMWG diet showed a higher abundance of
OTU belonging to class Bacilli, genus Bacillus, and the genera Weissella, Leuconostoc,
Lactobacillus, Pediococcus, Erwinia, and Sphingomonas. Fish fed PM presented signifi-
cantly higher abundances of the genera Sporosarcina, Pseudomonadales, Jeotgalicoccus,
Arthrobacter, and Brevibacterium. Fish fed a mix of soy protein concentrate and poultry
meal (diet SPCPM) presented significantly higher abundances of Streptococcus, Carno-
bacterium, Lactococcus, Shewanella, Ureibacillus, and Geobacillus, whereas fish fed guar
meal and wheat gluten (diet GMWG) presented higher abundances of Anaerococcus
and the order Rickettsiales.

Figure 3 shows the relative abundance of OTU at the phylum level. Irrespective of
diet, digesta OTU belong mainly to the phyla Firmicutes, Proteobacteria, Fusobacteria,
Bacteroidetes, OD1, and Actinobacteria. The digesta of FM-fed fish showed high abun-
dances of Firmicutes (38% � 17%), Proteobacteria (32% � 11%), and Fusobacteria
(21% � 9%). In comparison, fish fed the experimental diets presented higher abun-
dances of Firmicutes, from 41% � 11% in fish fed PM to 52% � 21% in fish fed GMWG,
and lower abundances of Fusobacteria, from 13% � 9% in fish fed GMWG to 16% � 5%

FIG 2 Circular cladogram reporting results from the LEfSe analysis for the identified OTU in the digesta (A) and mucosa (B), and the relative abundance of LAB
as percentage of the total OTU found for each diet in digesta and mucosa (C) of the distal intestine of Atlantic salmon fed various diets. In panels A and B, the
identified OTU are distributed according to phylogenetic characteristics around the circle. The dots closest to the center represent the OTU on phylum level,
whereas the outer circle of dots present the OTU on the genus level. The color of the dots and sectors indicate the compartment in which the respective OTU
are most abundant. The color explanation is given in the upper left corner. Yellow color indicates OTU that showed similar abundance in all compartments.
The colored sectors give information on class (full name in outermost circle, given only for class showing significant difference between compartments), family,
and genera are indicated by letter (explanation given to the right of the panels). Abbreviations are as defined for Fig. 1.
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in fish fed SPCPM and Proteobacteria, from 21% � 10% in fish fed GMWG to 30% � 5%
in fish fed SBMWG.

Figure 4 shows the relative abundances of the main OTU at the genus taxonomic
level in the digesta. FM-fed fish showed a high abundance of Photobacterium (27% �

10%), Peptostreptococcus (14% � 7%), Clostridiales (13% � 7%), and Cetobacterium
(10% � 4%). In comparison, fish fed PM had lower relative abundances of Photobac-
terium (18% � 9%), Peptostreptococcus (8% � 4%), and Clostridiales (7% � 4%).
SBMWG-fed fish also showed lower relative abundance of Photobacterium (19% � 7%),
Peptostreptococcus (8% � 4%), and Clostridiales (6% � 3%) but higher abundances of
lactic acid bacteria (Fig. 2C) such as Weissella (6% � 1%), Lactobacillus (6% � 1%), and
Leuconostoc (5% � 1%) compared to FM-fed fish. Fish fed SPCPM showed a similar
relative abundance of Peptostreptococcus (16% � 6%) and a lower relative abundance
of Photobacterium (21% � 7%) and Clostridiales (11% � 2%) compared to FM-fed fish.
Similar to the SBMWG-fed fish, those fed the GMWG diet showed high abundances of
Weissella (5% � 2%), Leuconostoc (3% � 3%), and Lactobacillus (5% � 5%) and lower
levels of Photobacterium (15% � 9%) and Clostridiales (7% � 4%) compared to FM-fed
fish.

Gut microbiota in DI mucosa. The results of the PERMANOVA showed significant
differences (Table 1) in the unweighted UniFrac between the DI mucosa-associated
microbial communities of fish fed the PM and SBMWG diets compared to those fed the
FM diet.

LEfSe analysis (Fig. 2B) showed significantly higher abundance of Jeotgalicoccus for
fish fed PM compared to the fish fed the other diets. The class Bacilli was significantly
more abundant in the GMWG-fed fish than for the other diets. Weissella was more
abundant in fish fed SBMWG, and an unidentified OTU from the family Peptostrepto-
coccaceae was less abundant in fish fed the experimental diets than in the fish fed the
other diets.

FIG 3 Gut microbiota composition (relative OTU abundance) at the phylum level identified in the distal intestinal digesta and intestinal
mucosa samples of Atlantic salmon fed various diets. Abbreviations are as defined for Fig. 1.
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The dominant phyla in the DI mucosa-associated microbiota were Proteobacteria,
followed by the phyla Bacteroidetes, OD1, and Firmicutes. Proteobacteria represented
31% � 7% of the OTU in FM-fed fish and between 24% � 6% (PM) and 35% � 16%
(SBMWG) for the experimental diets (Fig. 3). The abundances of the other main phyla
varied with increases of Bacteroidetes from 15% � 5% in the FM diet to 20 � 6 (SBMWG)
and 25% � 6% (SPCPM) in the experimental diets and decreases in Fusobacteria from
11% � 12% in FM diet to 5 � 2 (PM) and 1% � 1% (GMWG) in the experimental diets.
Compared to the FM-fed fish, the relative abundance of the phyla OD1 and Firmicutes
varied depending on the experimental diet. Higher relative abundance was observed
for OD1 in SPCPM (23% � 4%) and lower relative abundance in GMWG (20% � 11%)
fed fish, PM (19% � 3%) and SBMWG (12% � 4%) fed fish compared with FM-fed fish.
Firmicutes were more abundant in SBMWG (8% � 1%), PM (12% � 7%) and GMWG
(16% � 29%) fed fish compared to FM-fed fish (4% � 2%). At genus level, the OTU
assigned to the mucosal samples (Fig. 5) also showed differences when the experi-
mental diets were compared to the FM diet, but the differences seemed to be smaller
than those observed for the digesta samples. The FM-fed fish showed high relative
abundance of ZB2 (18% � 8%; class, no lower taxonomic classification possible),
Cetobacterium (5% � 8%), and Flavobacterium (6% � 2%). Similarly, fish fed the
experimental diets showed a high relative abundance of ZB2 from 10% � 5% in
SBMWG to 16% � 2% in SPCPM but higher relative abundances of Flavobacterium from
8% � 2% in SBMWG to 9% � 3% in SPCPM-fed fish. For a detailed list of OTU, see Data
Set S2 in the supplemental material.

Digesta versus mucosa and core microbiota. The alpha diversity metrics for
richness, observed species, showed significant differences between the two investi-
gated compartments (Table 2), with lower numbers of observed species in samples of
mucosa compared to digesta. The observed species parameter of the alpha diversity

FIG 4 Gut microbiota composition (relative OTU abundance) at the genus level, or the lowest taxonomic level determined by the
analysis, of the 17 most abundant genera identified in the distal intestinal digesta samples of Atlantic salmon fed various diets.
Abbreviations are as defined for Fig. 1.
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metric presented higher values for fish fed PM and SBMWG than for FM. On the other
hand, the Shannon’s diversity index, which takes into account the richness and abun-
dance of the different OTU, did not show significant differences between fish fed the
various diets (Table 2).

Moreover, the statistical analysis of the unweighted and weighted UniFrac showed
that microbial communities differed significantly between the digesta and mucosa
compartments (Table 1). Supporting the previous statistical analysis, the PCoA plots of
the unweighted and weighted UniFrac (Fig. 1A and B) presented clear separation
between samples of digesta and mucosa origin.

A list of the OTU representing the core microbiota, i.e., those present in 80% of the
samples irrespective of diet, is shown in Data Set S3 in the supplemental material. In the
digesta, 60 OTU (of a total of 143; Fig. 6A) were observed in all diets groups, showing
a dominance of Firmicutes (24 OTU) and Proteobacteria (19 OTU). The core microbiota
present in the mucosa was both numerically and proportionally smaller than the core
microbiota of digesta, with 37 OTU (of a total of 106) shared by all diets (Fig. 6B). In
mucosa, the core was dominated by OTU belonging to Proteobacteria (15 OTU) and
Bacteroidetes (9 OTU). The core microbiota for both digesta and mucosa across all
samples comprised 19 shared OTU: 6 Bacteroidetes, 5 Proteobacteria, 3 Firmicutes, 3
Fusobacteria, 1 OD1, and 1 Armatimonadetes.

Tissue gene expression. The results regarding gene expression of markers for DI
tissue function and health are presented in Table 3. Fish fed SBMWG and GMWG
showed the greatest modulation in expression levels compared to the FM-fed fish, with
a clear increase in pcna (proliferating cell nuclear antigen), whereas frim (ferritin), and
cat (catalase) gene expressions were significantly reduced. The SBMWG diet also
increased expression of hsp70 (heat shock protein 70), and a similar trend was seen for
fish fed the GMWG diet. In SPCPM-fed fish, the only significant finding was reduced
levels of cat, whereas no significant changes were observed for fish fed the PM diet.

FIG 5 Gut microbiota composition (relative OTU abundance) at the genus level, or the lowest taxonomic level reached by the analysis,
of the 19 most abundant genera identified in the distal intestinal mucosa samples of Atlantic salmon fed various diets. Abbreviations
are as defined for Fig. 1.
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None of the experimental diets caused significant changes in the expression of
immune-related genes compared to the FM-fed fish.

PCNA immunohistochemistry. The results of the proliferating cell nuclear antigen
(PCNA) staining analysis are shown in Table 4 and Fig. 7. The results of the one-way
analysis of variance (ANOVA) (Table 4) showed that, with the exception of the PM diet,
all of the experimental diets containing legume products increased the PCNA staining
height along the mucosal folds in the DI. The SPCPM-fed fish presented a moderate
increase, whereas SBMWG and GMWG diets caused a substantial increase in the
number of immunopositive cells along the length of the mucosal folds toward the apex.

DISCUSSION

The results from the present study demonstrated that regardless of diet, significant
differences between the microbial populations in the digesta and the mucosa were
observed in the salmon DI, which is in agreement with similar investigations charac-
terizing the gut microbiota in fish (11, 14, 16, 20, 26, 33, 34). Furthermore, in agreement
with Gajardo et al. (26), the alpha diversity metric observed species in the present study
showed lower values in mucosa samples than in digesta samples, suggesting that not
all bacteria present in the digesta are able to colonize the mucosa of the gut of salmon.
Differences observed in the microbial populations between digesta and mucosa have
also been reported in terrestrial animals, including humans (35, 36).

In addition, the lower relative abundance of Firmicutes in mucosa compared to the

TABLE 2 Alpha diversity results of DI gut microbiota located in different compartments of
Atlantic salmon fed diets with different protein sources

Analysis and parametera

Richness (observed species) or
diversity (Shannon index)b

Richness (observed species)
Two-way ANOVA model
P (model) 0.0002
Pooled SEM 13
P values from two-way ANOVA

Segment �0.0001
Diet 0.004
Interaction 0.283

Mean of significant observations
Diets

FM 269B

PM 348A

SBMWG 329A

SPCPM 320AB

GMWG 307AB

Sections
Digesta 344A

Mucosa 285B

Diversity (Shannon index, nonparametric test)
P (model) �0.0001
Pooled SEM 0.2
Mean for each diet/section studied

Digesta
FM 5.4
PM 6.6
SBMWG 6.3
SPMPM 6.0
GMWG 6.0

Mucosa
FM 6.7
PM 7.0
SBMWG 6.3
SPCPM 6.9
GMWG 6.5

aDiet abbreviations are as defined in Table 1, footnote a.
bMean values with different superscript letters within a column are significantly different (P � 0.05).
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digesta samples was in agreement with observations made in our previous study (26).
In line with these results, the OTU reported as core microbiota for all samples belonged
mainly to three phyla: Proteobacteria, Firmicutes, and Bacteroidetes. Several of the
reported shared OTU, such as Fusobacterium, Microbacterium, Peptostreptococcus, Psy-
chrilyobacter, Pseudomonas, Weissella, Photobacterium, Delftia, and Bradyrhizobium,
have been previously reported as members of the gut microbial communities of salmon
(16, 26, 34, 37–40). Together, these results suggest that certain bacterial species of
some phyla may be more capable of inhabiting the salmon gut despite changes in
external environmental factors such as geographical location and diet. It is not yet clear
to what extent the host actively plays in selecting or promoting the presence of these
core microbes.

Regarding effects of diet composition on gut microbiota, the present results showed
the clearest differences between the SBMWG- and FM-fed fish for all studied variables.
The differences regarding the lactic acid bacteria (LAB), with the relative abundance
being 18 times higher in the digesta of fish fed SBMWG than in FM-fed fish, were
possibly the most interesting as these bacteria, with a few minor exceptions, are
generally considered to be beneficial for gut health. Lactic acid bacteria comprise
genera such as Weissella, Leuconostoc, Lactobacillus, Pediococcus, and Carnobacteria

FIG 6 Venn diagrams showing compartmental OTU distributions of the core microbiota identified in the distal intestine of
Atlantic salmon fed various diets. (A) OTU distribution in the digesta samples. Sixty OTU were identified as core microbiota
(80% of samples) for all diets in the digesta. (B) OTU distribution in the mucosal samples. Thirty-seven OTU were identified
as core microbiota (80% of samples) for all diets in the mucosa. Abbreviations are as defined for Fig. 1.

TABLE 3 Effect of diets with different protein sources on gene expression of distal intestinal tissue of Atlantic salmon

Parametera

P value, pooled SEM, or mean normalized expression value for various genesb

il-1�* cd4�* cd8�* gilt ifn-�* mmp13* muc2* frim pcna* cat hsp70* myd88* mhc1* tcr-�* il-6† il-17a† fabp2a1†

One-way ANOVA model
P value 0.17 0.12 0.40 0.09 0.40 0.20 0.26 0.0007 0.0001 �0.0001 0.006 0.02 0.06 0.62 0.32 0.21 0.12
Pooled SEM 0.0006 0.0005 0.0005 1.2 0.0005 0.004 0.97 3 0.03 0.0007 0.4 0.003 0.14 0.0002 0.0002 0.003 0.001

Mean normalized
expression values

FM 0.0036 0.0030 0.0011 31.0 0.0011 0.029 10.3 51A 0.16B 0.0078A 7.1B 0.045AB 0.78 0.0023 0.0012 0.004 0.013
PM 0.0030 0.0037 0.0014 30.8 0.0015 0.024 9.3 47AB 0.18B 0.0063AB 7.2B 0.046AB 0.90 0.0021 0.0009 0.009 0.013
SBMWG 0.0021 0.0040 0.0012 27.6 0.0012 0.037 6.9 35BC 0.31A 0.0031C 8.8A 0.052A 0.57 0.0018 0.0007 0.011 0.015
SPCPM 0.0016 0.0044 0.0024 31.1 0.0024 0.020 8.2 45ABC 0.24AB 0.0042BC 7.9AB 0.047AB 0.99 0.0021 0.0005 0.010 0.015
GMWG 0.0022 0.0028 0.0018 27.7 0.0018 0.024 7.3 32C 0.32A 0.004BC 8.4AB 0.037B 0.56 0.0021 0.0006 0.003 0.015

aDiet abbreviations are as defined in Table 1, footnote a.
bAs indicated in column 1. *, log-transformed data. IL-1�, interleukin-1�; CD4�, cluster of differentiation 4�; CD8�, cluster of differentiation 8�; GILT, gamma
interferon-inducible lysosomal thiol reductase; IFN-�, interferon �; MMP13, matrix metallopeptidase 13; MUC2, mucin-2; Frim; ferritin, middle subunit; Pcna,
proliferating cell nuclear antigen; CAT, catalase; Hsp70, heat shock protein 70; Myd88, myeloid differentiation factor 88; MHC1, major histocompatibility class 1; TCR�,
T-cell receptor �. Mean values with different superscript capital letters—A, B, and/or C—within a column are significantly different (P �0.05). †, calculated using a
nonparametric test.
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(41). The high abundance observed for Leuconostoc in digesta in the present study is in
line with results of our previous work (26), as well as the work of Zarkasi et al. (37).
Moreover, Schmidt et al. (25) suggested that LAB from the midintestine (pooled digesta
and mucosa) are highly modulated by the diets in a recirculation aquaculture system
(RAS) environment. Our results showed that the modulation in LAB observed in the
intestine of salmon fed alternative protein sources may be explained by the higher
relative abundance of LAB in digesta and not in the mucosa-associated microbiota
compared to fish fed fishmeal diets. Previous studies, some employing classical, culture-
based methods, have also reported Carnobacterium, another LAB and member of the
order Lactobacillales, as highly abundant in the gut of farmed salmon (11, 34, 42–44).
In the present study, as well as that of Zarkasi et al. (37) and Gajardo et al. (26),
Carnobacterium was only present in minimal abundance. The apparent abundance
differences reported between studies of these two related bacteria might be due to
differences in fish strains, diet composition, environmental conditions, or sensitivity of
the methodologies. A similar trend was observed in the relative abundance of LAB in
the mucosa-associated microbiota. LAB accounted for about 4% of the relative abun-
dance in the mucosa of fish fed SBMWG but only 1% in FM-fed fish.

The high abundance of LAB in DI digesta when soybean meal was added to the diet
of salmonids has been reported previously (14, 38). The higher level of indigestible fiber
and low-molecular-weight oligosaccharides, such as raffinose and stachyose, present in
soybean- and other plant-based diets may explain the higher abundance of LAB, known
to utilize such substrates for their metabolism and growth. Fish fed GMWG also
presented high relative abundances of LAB (14%) in the digesta. The substrate for these
LAB may be the water-soluble galactomannans present in guar meal (45). In line with

TABLE 4 Effects of diets with different protein sources on PCNA staining height analysis
of distal intestinal tissue of Atlantic salmon

Parametera PCNA measurementb

One-way ANOVA model
P �0.0001
Pooled SEM 0.18

Mean PCNA staining score
FM 1.81C

PM 2.00C

SBMWG 3.56A

SPCPM 2.81B

GMWG 3.09AB

aDiet abbreviations are as defined in Table 1, footnote a.
bMean values with different superscript letters (A, B, and/or C) within a column are significantly different
(P � 0.05).

FIG 7 Representative images of the localization and distribution of immunohistochemically labeled PCNA protein
in the epithelial cells of the distal intestine of Atlantic salmon. (A) The lowest score in the study, a score of one, with
immunopositive cells mostly located in the basal areas of the mucosal folds. (B) The highest score in the study, a
score of four, with immunopositive cells reaching up to 75% of the mucosal fold height.
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these considerations, fish fed SPCPM, which does not contain low levels of molecular
carbohydrates, had low relative abundance of LAB. Whether ingredient processing or
other diet components, such as antinutrients, play a role in the way the diet modulates
the gut microbiota requires further investigations.

Results from the present study reported elsewhere (32) showed that the DI histo-
morphology was altered significantly by the SBMWG diet, including alterations typical
for soybean meal induced enteritis (SBMIE). The histomorphology appeared normal for
fish fed the other experimental diets. The degree of changes in fish fed the SBMWG diet,
including the immunological responses reported in the present study, were milder than
typically observed when salmon are fed SBM at the level used in the present experi-
ment (3–11, 46). The explanation for differences in responses to soybean meal between
experiments may be variations in levels of antinutrients in the batch of soybeans used,
in meal processing, diet composition, and processing, in strains of experimental fish,
and in feed intake, which may vary with temperature and several other environmental
conditions (10, 47, 48). The alterations observed in gene expression in fish fed the
SBMWG in the present study, all known to be associated with SBMIE, do indicate a
certain impairment of DI health status. Key indicators in this respect are increased cell
proliferation, as indicated by the increased PCNA staining and increased pcna gene
expression, and increased cellular stress, as indicated by induction of hsp70 gene
expression and suppression of frim and cat gene expression. The direction and mag-
nitude of change of these markers were in accordance with previous reports on SBMIE
in salmon (11, 49, 50). Fish fed GMWG and SPCPM showed alterations in some of the
functional indicators, however, the effects were small and overall morphology was not
altered (32). It is therefore likely that these changes were indicators of normal, physi-
ological adaptations to diet composition.

Since fish fed the SBMWG diet showed high LAB abundance and also showed signs
of impaired gut health, the present work might appear to challenge the general
understanding that certain bacteria among LAB have positive effects on gut health in
fish (reviewed in references 51and 52). On the other hand, the similar increase in LAB
observed in the GMWG-fed fish without the presence of signs of inflammation may
indicate that LAB increases were a dietary response rather than a cause of or response
to inflammation. However, no firm conclusions regarding cause and effect relationships
can be made from the current data. To further investigate the significance of LAB for
gut health in salmon, studies combining different omics techniques such as metag-
enomics, transcriptomics, metatranscriptomics, metaproteomics, and metabolomics, as
well as the use of gnotobiotic animals, would be expected to supply useful information
in this regard. Such techniques have been used successfully in other studies, throwing
light on the role of the microbiota and their modulation in disease and health in
terrestrial animals, including humans (53–56).

Conclusions. The present work confirms our previous work showing clear differ-
ences between the digesta and mucosa in the presence and abundance of bacteria. The
OTU found in both digesta and mucosa-associated microbiota belonged mainly to the
phyla Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes, and Actinobacteria. In ad-
dition, high relative abundance of the phylum OD1 was found in the mucosa-
associated microbiota. The diet composition also affected the richness of the gut
microbiota, although more so in the digesta-associated than the mucosa-associated
microbiota, with plant meals generally increasing abundance and diversity. Fish fed the
diet containing soybean meal showed mild distal intestinal enteritis and at the same
time a high relative abundance of LAB. Future research should focus on improving our
understanding of the functional role of LAB and whether LAB or other bacterial groups
may be of importance for the health of the salmon gut.

MATERIALS AND METHODS
Experimental fish. The feeding trial was performed at the RAS research facilities of BioMar in

Hirtshals, Denmark, and conducted in accordance with laws regulating experimentation with live animals
in Denmark as overseen by the Danish Animal Experiments Inspectorate. For each diet, duplicate,
mixed-gender groups of 22 to 23 postsmolt diploid Atlantic salmon mixed sex with an initial mean body
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weight of 314 � 2 g (mean � the SEM) were randomly distributed into 10 0.8-m3 fiberglass tanks
containing 1,000 liters of seawater. The temperature during the feeding trial was 15°C. Oxygen saturation
was above 85% throughout the experiment, and the salinity varied between 32 and 33 g/liter. Contin-
uous lighting of 24 h per day was provided for each tank during the experimental period.

Diets. Five diets were formulated, comprising one reference and four with commercially relevant
ingredient composition. Table S1 in the supplemental material shows the formulations and chemical
compositions of the diets. The reference diet (FM) contained fishmeal as the only protein source (72%).
The experimental diets contained one of four different alternative protein sources/mixes replacing a
proportion of the fishmeal: 58% poultry meal (PM), soybean meal (30%) mixed with wheat gluten (22%)
(SBMWG), soy protein concentrate (30%) mixed with poultry meal (6%) (SPCPM), and guar meal (30%)
mixed with wheat gluten (14.5%) (GMWG). Fish oil, rapeseed oil and tapioca were added as lipid and
carbohydrate sources to balance the nutrient composition. The diets were supplemented to fulfill the
fishes’ requirements for lysine, methionine, vitamins, and minerals.

The feeding trial lasted 48 days. Fish were fed continuously by automatic belt feeders during an 18-h
feeding period from 1 p.m. to 7 a.m. The uneaten pellets were registered daily to estimate feed intake.

Sampling. At termination of the feeding trial, fish were randomly selected for sampling, anesthetized
with benzocaine (20 ml/100 liters; Kalmagin, 20%; Centrovet, Santiago, Chile) and then euthanized by
cervical dislocation. All sampled fish presented digesta throughout the intestinal tract, considered
indicative of intestinal exposure to the diets. For analysis of microbiota, five fish per diet (two and three
fish from each of the replicate tanks) were cleaned ventrally with 70% ethanol. The abdominal cavity was
then opened at the ventral midline, and the whole intestine was aseptically removed. The DI was chosen
as the target region for all measurement, since it is the intestinal region that has shown the greatest
alterations when alternative protein sources are included in the diets of salmon. Samples for investiga-
tion of the digesta-associated bacteria of the distal intestine (DI) of salmon were collected individually by
carefully squeezing the digesta from the intestine into 1.5-ml sterile tubes. Samples for investigation of
the mucosa-associated microbiota were collected from DI sections after they were opened and rinsed
with sterile phosphate-buffered saline (PBS). Tissue segments of �1 cm were sampled from the middle
of the DI and subsequently transferred into 1.5-ml sterile tubes. All samples for microbiota analysis were
frozen immediately in liquid N2 and thereafter stored at �80°C. For RNA extraction, DI tissue samples
from nine fish, i.e., from four and five fish from each replicate tank, including the fish sampled for
microbiota analysis, were taken and placed in RNAlater (Ambion/Thermo Fisher Scientific, Waltham, MA)
at 4°C for 24 h and subsequently stored at �20°C. For immunohistochemical analyses, DI tissue samples
from four fish per tank were collected, placed in 4% phosphate-buffered formaldehyde solution for 24
h, and subsequently stored in 70% ethanol until further processing.

DNA extraction. DNA was extracted from 200-mg DI digesta samples and 200-mg DI mucosa
samples. The extraction was performed using the QIAamp Stool minikit (Qiagen, Crawley, United
Kingdom) according to the manufacturer’s specification with the following modifications: 1.4 ml of buffer
ASL was added to the tubes containing the samples along with 150 mg of glass beads (Merck, Darmstadt,
Germany). Then samples were homogenized using the FastPrep-24 instrument (MP Biomedicals, France)
at 6.0 m/s two times for 25 s, with a pause of 25 s between the runs. The temperature for the heating
incubation was increased from 70 to 90°C, and the incubation time after the addition of proteinase K and
buffer AL was increased from 10 to 15 min. DNA concentrations were determined using a NanoDrop 1000
spectrophotometer (Thermo Fisher Scientific, Wilmington, DE).

PCR amplification and high-throughput sequencing. To analyze the microbial population of the
distal intestinal digesta and mucosa, amplification of the variable regions V1 and V2 of the 16S rRNA was
performed. The PCR was conducted using the universal bacterial primers 27F (5=-AGA GTT TGA TCM TGG
CTC AG-3=), 338R-I (5=-GCW GCC TCC CGT AGG AGT 3=), and 338R-II (5=-GCW GCC ACC CGT AGG TGT-3=)
(57). The reactions were carried out in 50-�l volumes using 1 �l of DNA template, 25 �l of Phusion
high-fidelity PCR master mix (Thermo Scientific, CA) and 1 �l of forward and reverse (pooled 338R-I and
II) primers (5 �M). The PCR was run as follows: initial denaturation at 98°C for 3 min, followed by 35 cycles
of denaturation at 98°C for 15 s, annealing decreasing from 63°C to 53°C in 10 cycles for 30 s, followed
in turn by 25 cycles at 53°C for 30 s and an extension at 72°C for 30 s; followed by a final extension at
72°C for 10 min. PCR products were then analyzed in a 1.5% agarose gel and purified using the QIAquick
PCR purification kit (Qiagen). High-throughput sequencing of the purified PCR products was carried out
using the Ion Torrent Personal Genome Machine system (Life Technologies, California) as described
elsewhere (26) using a 318 chip (Life Technologies). Obtained sequences were grouped by sample and
filtered within an Ion Torrent Personal Genome Machine software to remove low-quality reads.

High-throughput sequence data processing. Bioinformatic analyses of sequence reads were
performed after the removal of low-quality scores (Q score � 20 in 80% of the sequences) with
FASTX-Toolkit (Hannon Lab). Sequences were concatenated and sorted by sequence similarity into a
single fasta file. Sequences were further analyzed using QIIME pipeline (58) as described elsewhere (26),
using a length threshold for the multiple alignments of 250 bp. The following software were used in the
data processing pipeline: USEARH quality filter pipeline (59), PyNAST (60), RDP classifier (61), phyloge-
netic tree (62), and UniFrac (63). The Greengenes database (v13.8) was used as a reference database (64).
Singletons and OTU with �0.005% abundance were filtered out in order to reduce spurious OTU (65).
OTU assigned as cyanobacteria were excluded from the final data set since they were considered to
originate from chloroplasts in the ingested content and were therefore not part of the microbiota of the
gut (66). QIIME was also used to identify the core microbiota, defined for this study as the OTU present
in 80% of the samples of each diet, and to rarefy the OTU tables to calculate alpha diversity metrics
(Good’s coverage, observed species, and Shannon index) and beta diversity metrics (unweighted and
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weighted UniFrac). The samples were rarefied to an even sequencing depth of 5,000 per sample since
this was the minimum number of reads presented in the samples. The results are generally presented at
phylum and genus taxonomic levels or at the lowest taxonomic level assigned for the OTU. The OTU
relative abundances for digesta and mucosa samples are given as means � the standard deviations for
each dietary group.

RNA extraction and qPCR. RNA purification and quality control, DNase treatment, cDNA synthesis,
and quantitative real-time PCR (qPCR) assays were performed as described elsewhere (32). RNA integrity
numbers (RIN) were �8 for all samples, with an average RIN of 8.9. A selection of previously proposed
marker genes for gut health and metabolism was profiled in DI tissue samples. Primer details are shown
in Data Set S1 in the supplemental material. gapdh, rna polymerase II (rnapolII), and hypoxanthine
phosphoribosyltransferase 1 (hprt1) genes were evaluated for use as reference genes as described by
Kortner et al. (67) and were found to be stably expressed based on their total variation and inter- and
intraspecific variance. Thus, the geometric average expression of the gapdh, rnapolII, and hprt1 genes was
used as the normalization factor. The mean normalized expression of the target genes was calculated
from raw Cq values by relative quantification (68).

Immunohistochemistry. Immunohistochemistry was performed on fixed DI sections to detect the
distribution of the proliferating cell nuclear antigen (PCNA) as described elsewhere (11) with some
modifications. Briefly, intestinal tissues were dehydrated and embedded in paraffin. Paraffin-embedded
sections (5 �m) were transferred onto glass slides (Super-Frost; Thermo Scientific), dried overnight at
room temperature, and incubated for 1 h at 58°C prior to deparaffinization in xylene. The sections where
then rehydrated in graded alcohol baths (100, 96, and 70%) and placed in distilled H2O. Antigen retrieval
was undertaken by heat-treatment in 10 mM citrate buffer at pH 6.0 and 120°C for 15 min. Endogenous
peroxidases were blocked by incubating the sections for 40 min at 37°C in 0.05% phenylhydrazine
(Sigma-Aldrich, St. Louis, MO).

Nonspecific antibody binding was reduced by incubating the sections for 20 min at room temperature
with 5% bovine serum albumin in Tris-buffered saline (BSA/TBS) containing normal horse serum diluted 1:50,
followed by overnight incubation at 4°C with the primary antibody (mouse monoclonal anti-PCNA; M0879,
Dako Norge, Oslo, Norway) diluted 1:200 in 1% BSA/TBS (11, 69). The sections were then rinsed in PBS and
incubated with biotinylated horse anti-mouse secondary antibody diluted 1:200 in 1% BSA/TBS for 20 min at
room temperature. According to the manufacturer’s instructions, a Vectastain ABC-PO (mouse IgG) kit was
used to visualize immunoreactivity. Negative controls were prepared with 1% BSA/TBS instead of the primary
antibody. Mayer’s hematoxylin was used as a counterstain.

PCNA staining was evaluated blindly in two different distal intestinal sections for each fish using a
light microscope. Section evaluation was performed semiquantitatively, scoring the relative height of the
immunopositive cells along the mucosal folds between the base and the apex. Score 1 indicated that
positive cells were only observed at the base of the mucosal folds, whereas scores 2 to 5 reflect positive
cells observed up to ca. 25, 50, 75, and 100% of the total length of mucosal folds, respectively. The
average score was calculated from the two sections for each of the eight individual fish sampled per diet.

Statistical analysis of data. For sequencing data, the UniFrac distance matrices were analyzed by
permutation multivariate analysis of variance (PERMANOVA) with 999 permutations. For this purpose, the
dissimilarity matrix for unweighted and weighted UniFrac were exported to the software PRIMER7 with
PERMANOVA� (70). LDA effect size (LEfSe) (71) was used to characterize microbial differences of
biological relevance between the diets within the two different compartments. The LEfSe analysis was
performed using an alpha value of 0.01 for both the factorial Kruskal-Wallis rank sum test and the
pairwise Wilcoxon test and a threshold of 2.0 for the LDA. The approach used was an all-against-all
multiclass analysis. The alpha diversity metric Observed species was subjected to a two-way ANOVA
analysis with diet and compartment (digesta, mucosa) as class variables. Data were also analyzed by
one-way ANOVA with Tukey’s multiple-comparison test as post hoc test to aid in the interpretation of the
two-way ANOVA results. For gene expression and immunohistochemistry, data were tested for normality
and variance homogeneity using the Shapiro-Wilk W test and the Bartlett’s test, respectively. The data
were then subjected to one-way ANOVA, followed by Tukey’s multiple-comparison test using JMP
statistical software (v10; SAS Institute, USA). When necessary, the data were transformed to achieve
normal distribution (indicated by “*” in Table 3). Since some qPCR data and the Shannon’s diversity index
did not fulfill the requirement of normal distribution, the analysis was performed using the Wilcoxon/
Kruskal-Wallis test, followed by the post hoc Steel-Dwass method to compare the means. The level of
significance for all analyses was set at P � 0.05.

Accession number(s). Microbiota data were exported as individual FastQ files and has been
deposited in the Sequence Read Archive of the National Center for Biotechnology Information (SRA,
NCBI) under the accession no. PRJNA342252.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
AEM.02615-16.

DATA SET S1, XLSX file, 0.01 MB.
DATA SET S2, XLSX file, 0.12 MB.
DATA SET S3, XLSX file, 0.01 MB.
DATA SET S4, XLSX file, 0.01 MB.
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