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Abstract 
A data-driven, risk-based approach is being pursued by the Royal National Lifeboat Institution 

(RNLI) to guide the selection of beaches for new lifeguard services around the UK coast. In this 

contribution, life risk to water-users is quantified from the number and severity of life-threatening 

incidents at a beach during the peak summer tourist season, and this predictand is modelled using both 

multiple linear regression and Bayesian belief network approaches. First, the underlying levels of 

hazard and water-user exposure at each beach were quantified, and a dataset of 77 potential predictor 

variables was collated at 113 lifeguarded beaches. These data were used to develop exposure and 

hazard sub-models, and a final prediction of peak-season life risk was made at each beach from the 

product of the exposure and hazard predictions. Both the regression and Bayesian network algorithms 

identified that intermediate morphology is associated with increased hazard, while beaches with a 

slipway were predicted to be less hazardous than those without a slipway. Beaches with increased car 

parking area and beaches enclosed by headlands were associated with higher water-user numbers by 

both algorithms, and beach morphology type was seen to either increase water-user numbers 

(intermediate morphology in the regression model) or decrease water-user numbers (reflective 

morphology in the Bayesian network). Overall, intermediate beach morphology can be considered the 

most crucial contributor to water-user life risk, as it was linked to both higher hazard, and higher 

water-user exposure. The predictive skill of the regression and Bayesian network models are 

compared, and the benefits that each approach provides to beach risk managers are discussed.  
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1. Introduction 
The Royal National Lifeboat Institution (RNLI) is a registered charity that provides the majority of 

beach lifeguard services in the UK, as well as a 24-hour on-call search and rescue service out to 100 

nautical miles from the coast. In the UK there were 88 deaths on beaches recorded between 2009 and 

2011, and Greenstreet Berman (2013) further estimated with some acknowledged uncertainty, that the 

fatality rate was around two to four times lower on beaches with a lifeguard service in operation, 

compared to those without. In 2014, the RNLI provided 215 lifeguard ‘units’ (individual beach 

stations with equipment and lifeguards) and the organisation now has a strategic priority to expand 

their service to cover more beaches and further reduce the number of coastal fatalities. A data-driven, 

risk-based approach is being pursued by the RNLI to guide the selection of beaches for new lifeguard 

units; for this purpose, this paper aims to quantify the level of life risk at UK beaches where incident 

data are available, and develop a life risk model to inform the roll-out of future lifeguard services.  

The Office of the United Nations Disaster Relief Co-ordinator defines risk as “the expected losses 

from a particular hazard to a specified element at risk in a particular future time period” (Peduzzi et 

al., 2009). For beach risk management life risk can be defined in terms of the number of people that 

are exposed to life threatening hazards at a beach, and their vulnerability to those hazards (Kennedy et 

al., 2013). As a result, a beach with a relatively low hazard level could exhibit a high level of risk if 

the number of beach users is high, or if the beach users are particularly vulnerable to the hazards 

present (for example if they have a low competency in the surf-zone environment).  In the present 

study, which examines broad patterns of life threatening, water-related incidents at beaches, 

vulnerability will be considered homogenous and the conceptual definition of life risk simplifies to: 

𝐿𝑖𝑓𝑒 𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒        (1) 

Once the three components have been parameterised, the level of life risk, hazard, and exposure at a 

beach can be estimated from knowledge of the other two factors. Contrary to modelling life risk 

directly, this approach has the added benefit of enhancing strategic planning, as the mitigation 

required on a busy beach with few hazards would be different to that required for a quiet but 

hazardous beach with a similar level of life risk. As lifeguards are primarily concerned with the safety 

of people in the water, the present study only considers beach water-users, including bathers, 

swimmers, and surf craft users. 

1.1 Water-user hazards 

The UK coast is an extremely varied environment. Wave conditions range from oceanic swell to 

locally generated wind-sea, and mean spring tide ranges vary from 1.5 to 15 m (Scott et al., 2007). 

The geomorphological settings range from rocky coastline to embayments or open beaches, that can 

be backed by hard or soft rock cliffs, dunes, or anthropogenic development. These diverse 

environments pose a variety of hazards to beach water-users, including strong or offshore blowing 

winds, littoral currents, and tidal cut-off (Scott et al., 2007; 2008). Rocks and reefs pose an obvious 

hazard to water-users (Mase, 1989), while rocky platforms can expose anglers and beach-goers to 

deep and/or energetic water and have been attributed to causing an average of 12 drownings per year 

in Australia (Brighton et al., 2013), although have been studied little in the UK context.  
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Above all of these hazards, rip currents (Fig. 1) have been identified in a number of studies as the 

largest cause of surf-zone rescues and fatalities in developed countries (Scott et al., 2008; MacMahan 

et al., 2011; Scott et al., 2011; Brighton et al., 2013). A rip current occurs when water set-up by wave 

breaking in the surf-zone returns back out to sea in a concentrated offshore flow (Brander, 1999; 

MacMahan et al., 2006; Austin et al., 2010), and this fast moving water can carry water-users from 

the shallows out into deeper water. They are estimated to contribute 80-90% of all the surf-zone 

rescues conducted by United States and Australian lifeguards each year (Brewster, 2005; Short, 2007; 

Hatfield et al., 2012), while in the UK RNLI beach rescue statistics collected between 2005 and 2007 

indicate that the figure is around 70% (Scott et al., 2008).  

Rip currents are often associated with morphological depressions (rip channels) which drive 

alongshore gradients in wave breaking that generate offshore-directed rip current flows within the 

channels (Wright and Short, 1984). They are therefore intrinsically linked to the morphological state 

of the beach. A comparison of beach state observations and lifeguard rescue statistics revealed that 

some 78% of all incidents that lifeguards attended in the UK between 2005 and 2007 were associated 

with the intermediate low tide bar/rip and low tide terrace + rip beach states (Scott et al., 2008), 

which, as their names reveal, both feature conspicuous rip channels.  

 

 

Fig. 1 RNLI lifeguards monitoring water-users at Perranporth beach, Cornwall, UK. Rip currents can be seen 

immediately to the left and right of the bathing area, and are revealed by the dark water and reduced wave breaking 

in the deeper rip channels 
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1.2 Water-user exposure 

The level of water-user exposure to beach hazards (i.e. the number of people using the water) has 

been studied very rarely. Conversely, beach user preferences (Prescient, 2002; South West Tourism, 

2005; Zhang and Wang, 2013; Stokes et al., 2014), and patterns of beach attendance (Kammler and 

Schernewski, 2004; Guillén et al., 2008; Balouin et al., 2014) have received more attention, and 

provide some insight into water-user exposure. For example, the quality and cleanliness of the beach 

environment were found to be important influences on beach choice (Prescient, 2002; South West 

Tourism, 2005; McKenna et al., 2011), and can be assumed to also influence water-user attendance. 

The same studies proposed that the presence of safety measures attracts beach users, although 

between only 3% (Prescient, 2002) and 7% (Oxford Economics, 2013) of questionnaire respondents 

stated that the presence of lifeguards would affect their choice of beach. More significantly, 79% of 

beach visitors who took part in a study conducted by South West Tourism (2005) were found to travel 

by car, and the availability of parking and quality of road links are therefore assumed to be influential 

on beach and water-user numbers.  

The proximity of a beach to an urbanised area and the presence of nearby facilities have been found to 

positively influence people’s choice of beach (Prescient, 2002; South West Tourism, 2005), and 

Prescient (2002) concluded that people often end up using their closest beach, supporting the notion 

that beaches near to urbanisation are likely to be busier. However, it is also likely that wild, scenic 

beaches away from urbanisation appeal to some water-users, as South West Tourism (2005) found 

that 78% and 98% of their questionnaire respondents decided to visit beaches that weren’t 

overcrowded, or were in a natural or wild environment, respectively. In either case, the availability of 

tourist accommodation is likely to have an influence on water-user numbers, and Oxford Economics 

(2013) indicated that this is more important at rural beaches than at urban beaches, as day-trippers 

were the majority on urban beaches (44% versus 21% on rural beaches), while people staying 

overnight were the majority on rural beaches (61% to 39%).  

Although the aforementioned questionnaire results may be generalizable in many cases, strictly 

speaking the results are only relevant to the 4 to 16 different beaches investigated in each study. As 

beach water-users were not specifically targeted by the studies, other variables were also considered 

in order to model water-user numbers in the present study. For example, water-users in Wales and 

Cornwall, UK, have been found to prefer wave conditions of  1-3 m significant height and 10-20 s 

peak period (Black, 2007; Phillips and House, 2009; Stokes et al., 2014), and three-dimensional, 

intermediate beach morphology is known to improve surfing amenity (Mead and Black, 2001a; Mead 

and Black, 2001b; Scarfe et al., 2009) and may also attract higher water-user numbers. 

1.3 Structure of paper 

Two different approaches were used to model life risk. Multiple linear regression (MLR) was used to 

separately model hazard and exposure using a selection of independent predictor variables, and a 

Bayesian belief network (BBN) was developed to provide an alternative model which examines 

hazard and exposure using Bayesian probability. In each case, the product of the hazard and exposure 

prediction was used to provide a final prediction of life risk at each beach, as per Eq. 1. Along with 

expert opinions, the literature described in Sections 1.1 and 1.2 was used to guide the collation of a 

predictor data set, described in Section 2, to train the models. In section 3 the results of the developed 

regression and Bayesian network models are presented. In Section 4, the comparative skill and merits 



4 
 

of each modelling approach are considered and their application to the modelling of beach life risk is 

discussed. 

2. Materials and Methods 

Guided by the literature reviewed in Section 1, and expert opinions from RNLI coastal safety 

managers, coastal scientists from Plymouth University, and a risk management scientist from 

Strathclyde University, a set of key hazard and exposure predictands were defined (Section 2.1) and 

related predictor variables (Section 2.2) were collated to provide a model training dataset. First, a 

comprehensive list of recognised UK beaches was created by combining data from the Marine 

Conservation Society’s ‘Good Beach Guide’ (www.goodbeachguide.co.uk/), The Department for 

Environment, Food and Rural Affairs’ list of Designated Bathing Waters 

(www.gov.uk/government/collections/bathing-waters), and the RNLI’s database of lifeguarded and 

risk-assessed beaches. 1484 individually recognised beaches were identified, and at each beach 

varying types and amounts of environmental, social, geographical, and safety related data were 

available. The Good Beach Guide provided information on physical beach characteristics, amenities, 

and facilities; the RNLI’s United Kingdom Beach Safety Assessment Model (UKBSAM) provided 

physical and environmental beach variables; and observations of beach user numbers and incidents 

were provided by RNLI lifeguard and lifeboat data. Geographical and environmental data were also 

collected from a number of Graphical Information System (GIS) data layers, or were manually 

digitised from satellite imagery using a GIS platform. As the peak summer season is of key interest to 

lifeguard managers and provides the greatest availability of lifeguard daily-logs, all temporally 

varying data used in this study were averaged across the months of July and August. 

2.1 Quantification of hazard, exposure, and life risk 

To quantify the level of life risk at each beach, the severity values (defined below) assigned to each 

incident that occurred over the peak summer tourist season at that beach were summed. Incident data 

came from three different sources: lifeguard logs, lifeboat return-of-service (ROS) data, and the UK’s 

WAter-Incident Database (WAID). Incident severity is quantified by the RNLI using an incident 

severity scale, which ranks the potential or actual severity of each incident attended by RNLI 

lifeguards or lifeboat crews from 0 to 1. A severity of 0 indicates no imminent risk and a severity of 1 

is equivalent to a fatality or a life saved (Table 1). As modelling ‘life risk’, rather than ‘injury risk’, is 

the priority for this particular study, incidents with a severity of 0.1 or less were disregarded from the 

analysis, meaning that only the most severe incidents - those with at least a ‘very high imminent risk 

of death’ - were considered. Incidents were assigned to each beach either by a lifeguard logging the 

incident at that beach, or by the incident having occurred within a 1 km radius of the closest beach’s 

given coordinates in the case of the ROS and WAID data. For each beach, life risk was calculated as 

the sum of such severities averaged by the number of years of available incident data, as some 

beaches have more years of data than others. The incidents considered were water or environmentally 

related, and did not include socially driven incidents such as violence or self-harm, incidents 

involving powered water craft, or falls from cliffs. 

  

http://www.goodbeachguide.co.uk/
file:///C:/Users/CStokes/AppData/Roaming/Microsoft/Word/www.gov.uk/government/collections/bathing-waters
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Table 1 RNLI Incident severity ratings and examples of the potential or actual casualty condition associated to that 

severity 

RNLI severity 

rating 

Severity of incident Example casualty condition 

1 Fatality or life saved Resuscitation & ventilatory 

support , drowning 

0.5 Very high imminent 

risk of death 

Chest injury, spinal injury, head 

injury, hypothermia 

0.1 High imminent risk 

of death 

Major first aid – minor disabling 

permanent injury 

0.05 Moderate imminent 

risk of death 

Heat stroke/ exhaustion, near 

drowning 

0.01 Low imminent risk 

of death 

Diabetes, epilepsy / fitting 

0.00001 Very minor first aid Weaver fish, small cut, 

reassurance only 

 

To quantify the level of exposure at each beach, the number of water-users during typical lifeguard 

operating hours (10 am till 6 pm) in the peak season was examined. The data came from bi-hourly 

head counts made by RNLI lifeguards, which were recorded in their daily logs. The data represent 

snapshot estimates of the number of people in the water (including bathers, swimmers, and surf craft 

users) at any given moment during lifeguarding hours, but do not represent the daily number of water-

users as this requires knowledge of how individuals come and go from the water which is impractical 

to quantify. The head counts have been validated in previous research and were found to provide 

statistically comparable estimates of water-user numbers to head counts made independently (Cottrell, 

2003). As the RNLI wishes to quantify the exposure on a typical busy day, the lifeguard head count 

data were averaged across bi-hourly observations made on the busiest 1/3
rd

 of days. This therefore 

provided a single representative value for the exposure level at each beach, considering only the busy 

peak season days of greatest interest to the RNLI. This exposure predictand will be referred to in the 

models as the In-Water Population (IWP).  

To estimate the underlying level of hazard at each beach, the life risk value was divided by the 

exposure, indicating the relative probability of a severe incident per water-user. The hazard level 

therefore attempts to capture the frequency and magnitude of incidents at a beach, but normalises by 

the exposure to account for beaches which have more water-users but are not necessarily more 

hazardous. This predictand will be referred to in the models as the Normalised Summed Incident 

Severity (NSIS). This parameterisation assumes a linear relationship between risk and exposure, 

presupposing that for a given beach the hazard level stays the same for all exposure levels, although 

this may not actually be the case. There may also be interaction issues that are not accounted for, for 

example if hazard were to be higher on busy rural beaches than at busy urbanised beaches. It is 

therefore acknowledged that there may be systematic skew in the hazard values as a result of this 

parameterisation. 

As the exposure and hazard predictands predominantly came from RNLI observations, data 

availability determined which beaches could be included in the model training set. Data from 113 

beaches were used, and these were chosen on the basis of having 3-6 years of RNLI lifeguard data 

available (collected between 2008 and 2014), and having witnessed at least one severe incident. The 
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models being developed therefore pose the question – ‘which factors explain life risk at beaches 

where severe incidents have been observed?’ The geographical spread of the model training beaches 

is demonstrated in Fig. 2. There were a considerable number of training beaches (72 out of 113) 

located in the south west of England, while there were other areas of the UK where insufficient 

training data were available (for example Scotland and northern England). It was therefore not 

possible to equally calibrate/validate the models for all UK regions, and they are likely to be 

unavoidably weighted towards the characteristics of beaches in south west England. 

2.2 Predictor variables 

A total of 77 predictor variables (listed in Appendix A), consisting of 22 continuous and 55 binary 

variables, were considered for inclusion in the exposure and hazard models and are briefly 

summarised as follows: 

 Proximity to urbanisation, parking, and transport  

Spatial variables including urbanised area and car parking area were gathered from GIS data 

layers (for example the Ordnance Survey’s Meridian 2 database) or were manually digitised 

from satellite imagery in a GIS platform. A manually nominated coordinate was assigned to 

each beach near the main beach access point, to enable proximities to be determined. 

 Cleanliness and quality of the beach environment 

Designated bathing water status was used as a proxy for environmental quality, as it can only 

be achieved by beaches that pass annual water quality checks.  

 Seasonal environmental conditions 

Mean wave height, period, and tide range were provided by the UKBSAM. Mean sea surface 

and air temperatures were obtained from National Oceanic and Atmospheric Administration 

(NOAA) Odyssea satellite measurements, and Met Office data, respectively. 

 Geographical characteristics 

Information on modal beach morphology, littoral material, beach size, geology, and man-

made structures were provided by the UKBSAM and the Good Beach Guide. 

 Amenities and facilities 

Binary variables indicating the availability of beach activities, food, and shops were provided 

by the Good Beach Guide.  

After gathering the 77 predictors, a reduced set of 15 predictors was selected for each of the hazard 

and exposure sub-models, based on the expert opinions gathered at the start of the project. This was 

performed by asking a focus group of experts to collectively list the top 15 variables they felt were 

most relevant to beach hazard level and exposure level. This sanitation of the predictor data set was 

carried out to reduce the degrees of freedom in the dataset and the possibility of overfitting. 

 



7 
 

 

Fig. 2 Hazard level (symbol colour) and exposure level (symbol size) at the 113 model training beaches 

2.3 Regression model 

A forward and backward stepwise regression algorithm was used to select subsets of variables that 

had a significant relationship with the hazard and exposure predictand variables. This was chosen as it 

is a common, off-the-shelf approach to modelling and exploring datasets where many potential 

predictors are available. The data were pre-processed for the regression in two ways: Firstly, the 

hazard and exposure predictand variables were log transformed prior to analysis, to satisfy the 

assumption of normally distributed errors and secondly, inter-correlated predictor variables were 

removed to yield a set of independent predictors, as collinearity complicates the interpretation of 

regression estimates (Mason and Perreault Jr, 1991). For any two predictors that were strongly 

correlated, with a Pearson correlation coefficient R ≥ 0.6, the predictor with the weaker correlation to 

the predictand was dropped from further analysis. Having removed these initial collinear predictors, 

the Variance Inflation Factor (Marquardt, 1970) was then assessed to indicate if any of the remaining 

predictors were significantly dependent on linear combinations of the other predictors. Further 

removal of variables was undertaken if the Variance Inflation Factor exceeded 10 for any single 

predictor.  

2.4 Bayesian belief network 

Bayesian belief networks (also called Bayesian networks, belief networks or BBNs) are directed 

acyclic graphs, consisting of nodes and arcs, where nodes represent uncertain or random variables 

which can be either continuous or discrete, and the arcs represent the causal or influential link 

between these uncertain variables (Pearl, 1988). Bayes theorem is then used to quantify the 

relationship between connected nodes. For those wanting a deeper understanding of BBN, we 
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recommend Pearl (1988), Lauritzen (1996), Cowell et al (1999) and, in particular, Jensen (1999). A 

key feature of BBNs is that they can be developed using expert judgement when data are sparse 

(Roelen et al., 2003; Qazi et al., 2015), or using machine learning algorithms when data are plentiful 

(Kafai and Bhanu, 2012), or a mixture of both data and expert input (Bandyopadhyay et al., 2015). 

Where data are sparse, expert judgement can be used to encode experience. Where data are available, 

the purpose of constructing a BBN is typically to identify the associations between variables and 

assess the strength of the identified dependencies. From a modelling perspective, there are different 

reasons why we would use each approach to developing a BBN. In some situations, we may have no 

observations and so may wish to harness available expert judgement.  At the other extreme, we may 

have observational data for a situation for which either no expert is available or the cognitive burden 

of eliciting expert judgement is too great. In practice, a mixed-method approach of expert judgement 

and observed data is often used.  

Where data are available, as in the case of this problem, a range of algorithms are available to support 

structure learning. These algorithms fall into three broad categories: constraint-based, score-based, 

and hybrid algorithms (Nagarajan et al., 2013). For each category, a plethora of algorithms exist, 

some of which have been developed in open source software statistical package R (R, 2016) while 

some have been developed in commercial software such as Hugin (Madsen et al., 2003).  For most of 

these algorithms, it is necessary for the variables to be either all continuous or all discrete. Where 

datasets contain both continuous and discrete variables, as is often the case in practice, an additional 

restriction may be placed on the learning process that ensures that discrete variables can only have 

discrete parents - a constraint which enables the use of efficient inference procedures (Lauritzen and 

Jensen, 2001; Kjaerulff and Madsen, 2008). This approach was taken in the present study, where a 

Bayesian belief network of hazard and exposure was constructed using the statistical package R 

v3.2.4 (R, 2016) and the bnlearn package (Scutari, 2009). The BBN structure was learned from the 

data using a Tabu greedy search algorithm, without using any domain knowledge to place restrictions 

upon the edges, or their orientation (for comparability with the stepwise regression). 
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3. Results 

The life risk models generated by the MLR and BBN are described in Sections 3.1 and 3.2, 

respectively, and their levels of predictive skill are assessed in Section 3.3. Having developed the 

models, their predictive skill was assessed via a validation phase, using data from beaches previously 

unseen during the model development. The performance of each model was measured by the root 

mean squared error (RMSE), the coefficient of determination
1
 (R

2
), and Spearman's rank correlation 

(Rs), between the observed life risk and the model predictions (on the natural log scale). These were 

evaluated both in-sample, and using 10-fold cross-validation, to examine how each model will 

perform on an independent dataset to assess any overfitting. 10-fold cross-validation involves the data 

being randomly divided into 10 partitions; model fitting is then performed using nine-tenths of the 

data (i.e. 90% of the beaches in the data set), while the remaining one-tenth of the data is retained in 

order to provide previously unseen data to test the model against. This process is repeated 10 times 

using a different division of the data set each time, until each division has been used once for 

validation. The validation from each division is then averaged to produce a single estimate of the 

model skill, assuming the final model is produced using all of the data. 

3.1 Regression models 

The stepwise regression algorithm retained four predictor variables for the hazard sub-model, each of 

which was significant at the 5% level. Observed and predicted hazard values are plotted in Fig. 3, 

middle left panel. The model coefficients in Table 2 indicate that hazard was higher at beaches with 

intermediate morphology, lower at beaches with headland bench geology or a slipway, and decreased 

as the amount of urbanisation local to the beach increased. The inverse relationship between hazard 

and urban area can be assumed to be indicative of a demographic effect, whereby a large local 

population (indicated by a higher urban area) reduces hazard through increased water competency and 

awareness of coastal hazards. Intermediate morphology is intuitively linked to higher hazard due to its 

association with rip currents, while slipways may be associated with lower hazard due to typically 

being located at sheltered beaches with decreased wave energy and currents. It is surprising that 

headland benches were associated with lower hazard, as they potentially expose beach users to deep 

and energetic water. A t-test of the difference in mean hazard at beaches with and without headland 

benches showed no difference in hazard levels.  Due to the dependency between headland beaches 

and other model predictors, particularly urban area and intermediate type, headland benches reduce 

hazard in the model, rather than intuitively increase it. 

  

                                                             
1
 Computed as: 1 − ∑(𝑦 − 𝑓)2 / ∑(𝑦 − 𝑦)2, where 𝑦 = observed values, 𝑓 = predicted values, and 𝑦 = mean of 

observed values 



10 
 

 

Table 2 Regression model with log transformed normalised summed incident severity (hazard level) as the predictand. 

Effect estimates with 95% confidence intervals, and p-values are reported together with standardised coefficients, to 

indicate the relative importance of each predictor. To generate the standardised coefficients, the predictand and 

predictor terms were transformed to have zero means, and standard deviations of one 

Model Term  Estimate (95% CI) Standardised β p-value 

Urban area within 10 km
1
 per 1km

2
 -0.02 (-0.03, -0.01) -0.42 <0.0001 

Intermediate morphology presence vs. non 0.79 (0.38, 1.19) 0.35 0.0002 

Headland Bench
2
 presence vs. non -0.73 (-1.15, -0.31) -0.32 0.0008 

Slipway presence vs. non -0.41 (-0.79, -0.04) -0.18 0.0313 

Model intercept  -4.91 (-5.48, -4.34) 0.00 <0.0001 
 

1 The amount of urbanised area within a 10 km radius of the chosen beach coordinate 
2 Headland bench describes the presence of a rocky platform situated beneath a headland at or around sea level 

 

The exposure sub-model selected by the stepwise algorithm retained five significant predictor 

variables. Observed and predicted exposure values are plotted in Fig. 3, top left panel. Table 3 shows 

that the number of water-users at a beach increased with car parking area, was higher at beaches with 

intermediate morphology, at designated bathing waters, and at beaches enclosed by headlands. 

Conversely, the number of water-users decreased with increasing latitude. These predictors are, for 

the most part, intuitive: the warmer and sunnier climate of lower latitude beaches is likely to attract 

more water-users, intermediate morphology can enhance the surfing amenity and would therefore 

attract certain types of water-user, car parking area relates to the accessibility and usage of a given 

beach, and designated bathing waters are assigned on the basis of water-user numbers. It is possible 

that headland enclosed beaches are linked to higher exposure for aesthetic reasons, but it may also be 

a result of water-users being more concentrated on enclosed beaches than on open beaches.  

 

Table 3 Regression model with log transformed in-water population (exposure level) as the predictand. Effect 

estimates with 95% confidence intervals, and p-values are reported together with standardised coefficients, to 

indicate the relative importance of each predictor. To generate the standardised coefficients, the predictand and 

predictor terms were transformed to have zero means, and standard deviations of one 

Model Term  Estimate  (95% 

CI) 
Standardised β p-value 

Latitude of beach per 1 degree -0.20 (-0.30, -0.10) -0.35 <0.0001 

Intermediate morphology presence vs. non 0.52 (0.24, 0.80) 0.33 0.0003 

Car Park area within 1 km
1
 per 100m

2
 0.11 (0.05, 0.17) 0.32 0.0002 

Enclosed by headlands yes vs. no 0.39 (0.12, 0.66) 0.25 0.0052 

Designated bathing water yes vs. no 0.41 (0.03, 0.78) 0.18 0.0339 

Model intercept  14.08 (9.16, 18.99) 0.00 <0.0001 
 

1 The amount of open-air parking area within a 1 km radius of the chosen beach coordinate 

 

3.2 Bayesian belief network 

Similar, in part, to the result of the regression model, the BBN (Fig. 4) shows that hazard has direct 

edges from intermediate beach type and slipway, with an additional association observed with the 

indicator of a south west beach location. Exposure has direct edges from the enclosed beach, wave 

height, reflective beach morphology, car parking area, and hazard nodes.  Due to the number of 
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interactions, the number of model coefficients is large for a network of this size, so they are omitted 

for brevity. However, the coefficients show a pattern of increased hazard with intermediate 

morphology and lower hazard at beaches with a slipway. Population is predicted to increase with car 

parking area and at enclosed beaches, and decrease with increasing hazard and at reflective (steep) 

beaches. The effect of south-west location on hazard, and wave height on population, varied 

depending on the value of the other predictors. Many of these relationships are intuitive and agree 

with the results of the regression model. However, the link between hazard and population is 

intriguing, and may indicate a non-linear relationship between the predictands, as exposure and life 

risk were used to compute the hazard value at each beach. Fig. 4 also indicates potential influences 

within the holistic system described by our variables. Many of the identified relationships between the 

predictors are intuitive and logical (such as the influence of urbanised area on car parking area), while 

some are highly questionable (the influence of reflective beach morphology on sea surface 

temperature) and result from interdependencies not captured by our model.  

3.3 Assessment of model skill 

From the R
2
 values shown in Table 4, the MLR sub-models were able to explain 37% and 31% of the 

variance in the log-transformed exposure and hazard values, respectively. In comparison, the BBN 

explained 53% and 29% of the variance in the log-transformed exposure and hazard values (Fig. 3 

upper and middle right panels). To yield predictions of life risk, hazard and exposure were multiplied, 

as per Eq. 1, and thus log transformed life risk was calculated by summing the log transformed 

predictions of exposure, and hazard level. The MLR model was then able to capture 48% of the 

variance in life risk in the training data set (Fig. 3, lower left panel), while the BBN captured 27% 

(Fig. 3, lower right panel).  

When assessed with 10-fold cross validation (CV) the MLR life risk model was still able to capture 

38% of the variance in the data (Table 3), suggesting that the sub-models are not over-fitted to the 

data. A Spearman's correlation of 0.68 (CV 0.58) between the observed and predicted life risk rank 

(Fig. 5, left panel) shows that the model may be useful in ranking beaches by life risk and thus in 

identifying those which are high risk. While the BBN had a reasonable in-sample predicted R
2
 for life 

risk, the results of the CV indicate that the model will have a poor out-of-sample performance in 

predicting the realised value of the outcome. The rank correlation (Fig. 5, right panel) was, however, 

fairly stable between the in-sample and CV, indicating that while the BBN may have poor 

performance in accurately predicting the outcome, it may be useful for identifying, or ranking, high 

risk beaches - high predictions are correlated with high observations.  
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Fig. 3 Regression model (left panels) and Bayesian network (right panels) predictions compared to observed data. 

Top panels: log-transformed exposure level (IWP). Middle panels: log-transformed hazard level (NSIS). Bottom 

panels: the combined life risk model (𝒍𝒏(𝐈𝐖𝐏) + 𝒍𝒏(𝐍𝐒𝐈𝐒)).  Dashed lines in each panel show a 1:1 relationship for 

reference 
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Fig. 4 The developed Bayesian belief network of beach life risk, showing potential influences between predictor 

variables (blue) and the hazard and exposure predictands (red). The variables are (from top to bottom and left to 

right), reflective and intermediate = beach morphology types (binary), headland = headland bench geology (binary), 

facility = good facilities Vs no facilities (binary), fishing = frequented by anglers (binary), enclosed = beach enclosed 

by headlands (binary), geology = intertidal rocks present (binary), rocky = rocky outcrops (binary), submerged = 

submerged at high tide (binary), sw = located in south west UK (binary), urban 10k = urbanised area within 10 km, 

modified = modified by man-made structures (binary), bathing = designated bathing water (binary), Hs = significant 

summer wave height, shingle = intertidal shingle (binary), sst = summer sea surface temperature, slipway = presence 

of a slipway (binary), food =  nearby food vendors (binary), urban 1k = urbanised area within 1 km, B road = natural 

logarithm of distance to nearest B road, shops = presence of shops (binary), carpark = natural logarithm of car 

parking area within 1 km, hazard = natural logarithm of normalised summed incident severity (NSIS), exposure = 

natural logarithm of the in-water population (IWP) 
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Fig. 5 Observed Vs Predicted life risk rank using the combined life risk model (𝒍𝒏(𝐈𝐖𝐏) + 𝒍𝒏(𝐍𝐒𝐈𝐒)) from the 

regression models (left panel) and the Bayesian belief network (right panel). The Spearman rank correlation for the 

left and right panels is 0.68 and 0.54, respectively. The beach ranked at number 1 has the highest life risk. The 

Dashed lines show a 1:1 relationship for reference 

 

 

Table 4 Comparison of multiple linear regression and Bayesian belief network model performance. The values in 

parenthesis are the results of the 10-fold cross validation for each statistic 

Model Predictand R
2
 (10-fold R

2
) RMSE (10-fold 

RMSE) 

Rank Correlation, Rs (10-fold 

Rs) 

Multiple   linear  

regression 
𝑙𝑛(exposure) 0.37 (0.27) 0.64 (0.66) 0.61 (0.55) 

𝑙𝑛(hazard) 0.31 (0.24) 0.95 (0.95) 0.47 (0.44) 

𝑙𝑛(life risk) 0.48 (0.40) 0.91 (0.92) 0.68 (0.58) 

Bayesian belief 

network 
𝑙𝑛(exposure) 0.53 (0.22) 0.54 (0.70) 0.75 (0.66)  

𝑙𝑛(hazard) 0.29 (0.19) 0.94 (1.00) 0.51 (0.40)  

𝑙𝑛(life risk) 0.27 (0.06) 1.08 (1.22) 0.54 (0.45)  
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4. Discussion 

Exposure, hazard, and life risk are subject to a plethora of influences, and, as is often the case when 

modelling human processes, it has not been possible in this study to capture the majority of the 

variance in each predictand. Additionally, measurement errors in the predictands impart noise and 

reduce model skill. Exposure level is measured by means of head counts made by lifeguards, and 

human error is inevitable using this method especially at beaches with large in-water populations 

(Cottrell, 2003). This source of noise in the exposure data affects the training of both the exposure and 

hazard models (as exposure is used in the parameterisation of hazard), and therefore has a large 

overall effect on the prediction of life risk. This could be improved in future studies by collecting 

automated head count data from camera images (Kammler and Schernewski, 2004; Guillén et al., 

2008; Balouin et al., 2014). Hazard and life risk are quantified from incident data collected within 1 

km of each beach; in some cases this may result in WAID and ROS incidents being incorrectly 

assigned to an adjacent beach. There is also subjectivity in the severity rating assigned to each 

incident, for instance when lifeguard managers have to decide whether an incident is classed as a 

rescue (severity rating of 0.1) or a life saved (severity rating of 1). Finally, the definition of hazard as 

the quotient of life risk and exposure is an assumption that may skew the hazard values, as the 

relationship between the predictands may not be linear as is assumed by this approach.  

Despite the aforementioned sources of noise in the data, it was possible to capture almost half of the 

variance in life risk with the regression model, and a quarter of the variance with the Bayesian 

network. Although these levels of model skill are not sufficient to provide answers to beach 

management decisions on their own, they do provide a data-driven means with which to aid decision 

making. For instance, when selecting beaches for future lifeguard services, the predicted life risk 

ranking, for which both models performed favourably, can be used to narrow down a subset of 

potentially high-risk beaches, which can then be subjected to a thorough risk assessment process. Fig. 

6, right panel, shows life risk predictions from the regression model at 618 UK beaches where 

sufficient predictor data were available. Beaches where the predicted life risk is high that do not 

currently have an operational lifeguard service would naturally be the top priority for the RNLI when 

making further risk assessments and potentially proposing new lifeguard units. Furthermore, the 

predictions of exposure and hazard in Fig. 6, left panel, can be used to guide different mitigations at 

beaches with a high exposure but relatively low hazard level, or vice versa.  

The standardised regression coefficients in Table 2 reveal that the amount of urbanisation has the 

strongest relationship with beach hazard, followed by intermediate morphology and headland bench 

geology.  Meanwhile, latitude, intermediate morphology, and car parking area have the strongest 

relationships with In-water Population. It is interesting that some of these highly significant 

relationships were not picked up by the BBN algorithm, but given that the stepwise and Tabu greedy 

search algorithms have inherent differences, increased confidence can be placed in the importance of 

variables that were selected by both algorithms. Both models identified that intermediate morphology 

is associated with increased hazard, while beaches with a slipway were predicted to be less hazardous 

than those without a slipway. Beaches with increased car parking area and beaches enclosed by 

headlands were associated with higher water-user numbers by both algorithms, and beach morphology 

type was seen to either increase water-user numbers (intermediate morphology - regression model) or 

decrease water-user numbers (reflective morphology - Bayesian network). Intermediate beach 

morphology can be considered the most crucial factor when it comes to water-user life risk, as it was 

linked to both higher hazard levels, and greater numbers of people in the water. 
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Fig. 6 Left panel: hazard predictions (NSIS) plotted against exposure predictions (IWP) for 618 UK beaches where 

predictor data were available. Contours show lines of equal life risk at (from bottom left to top right) the 1, 5, 10, 50, 

90 95, and 99 percentile levels. Magenta markers show predictions at the model training beaches. Right panel: life 

risk predictions for the 618 beaches, plotted at their location in the UK. The same colouring for life risk level is used 

in the left and right panels 

4.1 Comparison of regression and Bayesian network approaches 

In addition to identifying the key factors for modelling life risk at UK beaches, a secondary aim of 

this research was to evaluate the benefits to decision makers of using an alternative modelling 

approach to multiple linear regression.  Bayesian belief networks were chosen as they have some 

distinct advantages over regression that provide the decision maker with additional insight into a 

systems behaviour. As seen from Fig. 4, BBNs create a dependency structure for the entire dataset, 

not just on a single variable of interest. This graphical representation illustrates correlations beyond 

those found in a regression model. Those who regularly use BBNs believe it is an effective tool for 

communication between decision makers and analysts, particularly on the evaluation and validation of 

analysis (Howard, 1990). When communicating to a wide stakeholder group, BBN’s facilitate 

communication on the different influences and dependencies between variables in a more efficient 

manner than a regression equation.  As BBNs model the entire dataset, they can more easily address 

problems such as incomplete datasets, or missing observations when making predictions. For 

example, if car parking area was not observed for a given beach the regression model developed in 

Section 3.1 would not be able to make a prediction, whereas the BBN could still make a prediction as 

it would know the likely car parking area from the joint probability of its parent nodes. Finally, we 

could include subjective expert opinions in the BBN modelling, either by creating new variables 

based on expert judgement, or by modifying the probability distribution between variables.  
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From Table 3 we see that the predictive power of the BBN is surprisingly poorer than the regression 

model, and there are a number of potential reasons why this may be the case.  The models, as applied, 

utilise the data in subtly different ways. For example, the BBN minimises error over the entire 

network rather than focused on a single variable. Different learning algorithms could have been used 

to focus on individual variables, but we chose not to do this for two reasons: first, as regression is an 

‘off-the-shelf’ approach that is widely adopted, we wanted to compare it to the most commonly used 

BBN algorithms, and second, in this case there were two variables that were of particular interest in 

the BBN. Other challenges to the BBN emerged due to characteristics in the dataset, for example 

correlated categorical variables with only two states, coupled with a small dataset, created problems 

during cross validation. While a larger dataset (i.e. data from more beaches) is ultimately the best 

solution to this issue, statistical methods exist that could reduce the data requirements for learning the 

conditional probabilities within the network, and may have improved the CV model skill (for example 

Prime et al., 2016). 

Ultimately, decisions are not taken using a single approach, ignoring information available through 

other models or expert judgement. Using a complimentary approach, whereby the insight gained from 

different modelling approaches is likely to be applied in practice. For instance, the regression model 

could be used when making predictions, while the BBN provides additional understanding of the 

wider system and added flexibility, such as dealing with missing data and incorporating expert 

judgement into the process. As such, the two tools complement one another and a mixed-method 

framework is likely to yield the most useful results. For the RNLI, a mixed-method approach utilising 

both regression predictions and on site assessments is being utilised in the first instance, with the 

organisation also trialling the usefulness of Bayesian networks for ongoing analysis of risk on beaches 

around the UK coast.   

4.2 Future research 

For future research, the testing of alternative life risk modelling approaches should be continued. This 

could include testing of alternative Bayesian network manifestations, such as those where expert 

opinions are utilised when building the model structure, or where the error is minimised on life risk 

alone rather than all nodes in the structure. Machine learning algorithms such as neural networks may 

also improve model skill. Due to the availability of training data, the models developed here are 

potentially weighted towards the characteristics of beaches in south west England and it would 

therefore be prudent to further calibrate and validate the models as more non south west beach data 

become available. Where data does become available, the ability of the models to predict hazard, 

exposure and life risk for coasts not considered in this research (Scotland, Republic of Ireland, or 

France for example) should be verified, and if necessary, new, regionally specific life risk models 

should be developed. With this in mind, it is recommended as a minimum that multi-year datasets of 

incidents (recorded on as consistent and objective a scale as possible) and beach user numbers (ideally 

recorded using automated techniques to maximise accuracy) are collected with the aim of building a 

long term dataset.  

5. Conclusions 

In this contribution, life risk to beach water-user during the peak summer season in the UK has been 

quantified and modelled at 113 lifeguarded beaches, enabling a beach’s absolute level of life risk or 

life risk ranking to be predicted with a limited amount of skill. In the process of modelling life risk, 



18 
 

the number of water-users (exposure) and the relative probability of a severe incident occurring to a 

water-user (hazard) at each beach was quantified and modelled, each of which can be used to assist 

different beach management decisions. A number of variables that have significant relationships with 

beach exposure and hazard were identified by both the stepwise regression algorithm and the Tabu 

Bayesian network algorithm. Both models identified that intermediate morphology is associated with 

increased hazard, while beaches with a slipway were predicted to be less hazardous than those without 

a slipway. Beaches with increased car parking area and beaches enclosed by headlands were 

associated with higher water-user numbers by both algorithms, and beach morphology type was seen 

to either increase water-user numbers (intermediate morphology in the regression model) or decrease 

water-user numbers (reflective morphology in the Bayesian network). Overall, intermediate beach 

morphology can be considered the most crucial factor when it comes to water-user life risk, as it was 

linked to both higher hazard, and higher water-user exposure. 

The regression model outperformed the Bayesian network in predictive skill, and was able to capture 

48% of the variance in life risk within the training data set. A high level of correlation (R = 0.68) was 

seen between observed and predicted life risk rankings, and both models are considered to be useful 

for identifying, or ranking, high risk beaches. Despite the lower in-sample and cross-validation 

predictive skill of the Bayesian belief network developed here, other Bayesian network manifestations 

(for instance those that attempt to minimise error on a single predictand) may provide comparable 

predictive skill to that of a regression model, and would provide other benefits to decision makers that 

cannot be provided by a regression model. Such benefits include facilitating efficient communication 

with stakeholders on the different influences and dependencies between variables, handling 

incomplete datasets or missing observations, and being able to include subjective expert opinions in 

the modelling where required. In reality, a mixed-method approach utilising both regression and 

Bayesian networks, as well as expert on-site assessments, may provide the most effective tools for 

beach risk managers. Due to the availability of training data, the models developed here are 

potentially weighted towards the characteristics of beaches in south west England and it would 

therefore be prudent to further calibrate and validate the models as more non south west beach data 

become available. 
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Appendix A. List of potential model predictors 

Data Name Data Type Data Source 

Facility level = 'none' Binary GBG 

Facilities level = 'basic' Binary GBG 

Facilities level = 'good' Binary GBG 

Facilities level = 'resort' Binary GBG 

Swimming Binary GBG 

Board Sports Binary GBG 

Beach is a Bay Binary GBG 

Presence of Shingle Binary GBG 

Presence of Rock Binary GBG 

Presence of Lifeguards Binary GBG 

Presence of Food Vendors Binary GBG 

Presence of Toilets Binary GBG 

Presence of Shops Binary GBG 

Beach in south west England Binary GBG 

Designated bathing water Binary GBG 

Cleaned by authorities Binary GBG 

Distance to Nearest Airport Continuous GIS 

Distance to Nearest Train Station Continuous GIS 

Distance to Nearest M Road Junction Continuous GIS 

Distance to Nearest M Road Continuous GIS 

Distance to Nearest A Road Continuous GIS 

Distance to Nearest B Road Continuous GIS 

Distance to Nearest Minor Road Continuous GIS 

Campsite Area Within 1 km Continuous GIS 

Carpark Area Within 1 km Continuous GIS 

Urban Area Within 1 km Continuous GIS 

Urban Area Within 10 km Continuous GIS 

Urban Area Within 30 km Continuous GIS 

Urban Area Within 60 km Continuous GIS 

Mean Summer Sea Surface Temp Within 2 km Continuous GIS 

Mean Summer Air Temp Within 2 km Continuous GIS 

Latitude Continuous GIS 

Longitude Continuous GIS 

Campsite Area Within 1km is ≤ 33%ile Binary GIS 

Campsite Area Within 1km is > 33%ile and ≤ 66%ile Binary GIS 

Campsite Area Within 1km is > 66%ile Binary GIS 

Urban Area Within 1km  is ≤ 33%ile Binary GIS 

Urban Area Within 1km is > 33%ile and ≤ 66%ile Binary GIS 

Urban Area Within 1km is > 66%ile Binary GIS 
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Significant Summer Wave Height (mean of highest 1/3
rd

 of wave 

heights, Hs) 
Continuous UKBSAM 

Summer wave height (mean of highest 1/10
th
 of wave heights, H10) Continuous UKBSAM 

Mean Summer Wave Period (Tm) Continuous UKBSAM 

Mean Spring Tide Range Continuous UKBSAM 

Beach Width (dune foot to mean low water level) Continuous UKBSAM 

Swell (Tm > 10 s) Binary UKBSAM 

Reflective Beach morphology Binary UKBSAM 

Intermediate Beach morphology Binary UKBSAM 

Dissipative Beach morphology Binary UKBSAM 

Enclosed Beach Binary UKBSAM 

Submerged at High Tide Binary UKBSAM 

Presence of Dunes Binary UKBSAM 

Intertidal Geology at High Water Binary UKBSAM 

Intertidal Geology at Low Water Binary UKBSAM 

Subtidal Geology Binary UKBSAM 

High Water Rocks Binary UKBSAM 

High Water Boulders Binary UKBSAM 

High Water Shingle Binary UKBSAM 

High Water Sand Binary UKBSAM 

High Water Mud Binary UKBSAM 

Intertidal Rocks Binary UKBSAM 

Intertidal Boulders Binary UKBSAM 

Intertidal Shingle Binary UKBSAM 

Intertidal Sand Binary UKBSAM 

Intertidal Mud Binary UKBSAM 

Presence of an Estuary Binary UKBSAM 

Presence of a River Binary UKBSAM 

Presence of a Stream Binary UKBSAM 

Presence of Groynes Binary UKBSAM 

Presence of a Breakwater Binary UKBSAM 

Presence of a Pier Binary UKBSAM 

Presence of a Slipway Binary UKBSAM 

Presence of a Seawall Binary UKBSAM 

Presence of a Marina Binary UKBSAM 

Seabed Object Binary UKBSAM 

Shore Platform Binary UKBSAM 

Rock Outcrop Binary UKBSAM 

Human Modified Binary UKBSAM 

 


