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INTRODUCTION
How the elevation of the Himalayan moun-

tain range, including the Mount Everest region, 
has evolved over Neogene time is of particular 
interest for understanding collisional tectonics, 
orogenic plateau and summer monsoon develop-
ment (e.g., Harrison et al., 1992; Boos and Kuang, 
2010), global climate change, and evolutionary 
and biotic changes in Central Asia (e.g., Liu et 
al., 2006). Quantifying the evolution of topogra-
phy provides a link among Earth surface changes, 
atmospheric processes, and orogen-scale tecton-
ics. Although paleoelevation reconstruction is 
challenging (Mulch and Chamberlain, 2007), 
stable isotope paleoaltimetry has emerged as a 
reliable method to gauge the evolution of topog-
raphy in eroded orogens (e.g., Garzione et al., 
2000; Poage and Chamberlain, 2001; Mulch et 
al., 2004; Rowley and Currie, 2006; Gébelin et 
al., 2012). Stable isotope paleoaltimetry relies on 
the systematic relationship between depletion in 
deuterium (D) and 18O of meteoric water and the 
elevation of an orographic barrier over which air 
masses rise and cool; as a result, oxygen (δ18O) 
and hydrogen (δD) isotope ratios of rainfall scale 
with elevation on the windward side of a moun-
tain range (e.g., Poage and Chamberlain, 2001; 
Rowley et al., 2001). In contrast, an orographic 
rain shadow commonly develops on the leeward 
side and promotes arid to semiarid conditions, 
where low δ18O and low δD precipitation, as 
well as above-ground and subsurface evaporation 
(e.g., Quade et al., 2011), result in δ18O and δD 
values of rainfall that no longer correlate directly 
with elevation. Here we reconstruct the Early 
Miocene paleoelevation of the Mount Everest 

region to better understand the impact of high 
topography on Himalayan erosional and defor-
mational processes and to evaluate the time at 
which the Himalayan belt was suffi ciently high 
to promote a leeward rain shadow.

None of the commonly used geologic materi-
als (paleosols, volcanic ashes, or lacustrine sedi-
ments) amenable to record the stable isotopic 
composition of Early Miocene meteoric water 
are preserved within the highly erosive Himala-
yan range. In the following we use an approach 
that was pioneered in the North American Cor-
dillera (Mulch et al., 2004) and is based on water-
rock interaction in crustal-scale shear zones that 
we reference to near-sea-level foreland rainfall 

records (e.g., Gébelin et al., 2012; Campani et 
al., 2012). We determine δD values of meteoric 
water that permeated the South Tibetan detach-
ment (STD) system in the Mount Everest region 
and exchanged isotopically with hydrous sili-
cates (mica, amphibole) during deformation. If 
mineral-water hydrogen isotope equilibrium was 
achieved during deformation and recrystalliza-
tion, δD values measured in synkinematic miner-
als likely refl ect 105–106 yr of isotopic exchange, 
and can be retrieved through experimentally cali-
brated isotope exchange parameters (e.g., Mulch 
et al., 2004; Gébelin et al., 2011). For our paleo-
altimetry reconstruction, we compare δD values 
from the high-elevation STD to age-equivalent 
δ18O values within pedogenic carbonate from 
near-sea-level Siwalik foreland basin paleosols 
that record Miocene rainfall conditions in the 
Himalayan foothills. The difference in δ18Owater 
obtained by these two approaches is consistent 
with late Early Miocene mean elevations of 
≥5000 m for the Mount Everest region.

GEOLOGICAL SETTING AND RESULTS
We collected oriented samples from the 

STD in the underlying mylonitic footwall in 
the Rongbuk Valley, north of Mount Ever-
est (Fig. 1; Figs. DR1–DR3 in the GSA Data 
Repository1). In this area, the STD consists of 
the upper (brittle) Qomolangma detachment 

1GSA Data Repository item 2013220, Figure DR1 (north-south cross section across Mount Everest), Figure 
DR2 (sampling sites), Figure DR3 (DEM from which modern mean elevations have been calculated), and Table 
DR1 (hydrogen isotope results and methods), is available online at www.geosociety.org/pubs/ft2013.htm, or on 
request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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ABSTRACT
The Neogene elevation history of the Mount Everest region is key for understanding the 

tectonic history of the world’s highest mountain range, the evolution of the Tibetan Plateau, 
and climate patterns in East and Central Asia. In the absence of fossil surface deposits such as 
paleosols, volcanic ashes, or lake sediments, we conducted stable isotope paleoaltimetry based 
on the hydrogen isotope ratios (δD) of hydrous minerals that were deformed in the South 
Tibetan detachment shear zone during the late Early Miocene. These minerals exchanged iso-
topically at high temperature with meteoric water (δDwater = −156‰ ± 5‰) that originated as 
high-elevation precipitation and infi ltrated the crustal hydrologic system at the time of detach-
ment activity. When compared to age-equivalent near-sea-level foreland oxygen isotope (δ18O) 
paleosol records (δ18Owater = −5.8‰ ± 1.0‰), the difference in δ18Owater is consistent with mean 
elevations of ≥5000 m for the Mount Everest area. Mean elevations similar to modern suggest 
that an early Himalayan rain shadow may have infl uenced the late Early Miocene climatic 
and rainfall history to the north of the Himalayan chain.
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Figure 1. Simplifi ed geological map of Mount Everest region and Rongbuk Valley (after 
Searle, 2003; Jessup et al., 2006, 2008).

 as doi:10.1130/G34331.1Geology, published online on 24 May 2013



800 www.gsapubs.org | July 2013 | GEOLOGY

and the lower (ductile) Lhotse detachment shear 
zone that merge northward (Carosi et al., 1998) 
and collectively separate upper plate, nonmeta-
morphosed Ordovician limestone from high-
grade metamorphic rocks and syntectonic leu-
cogranite below (Carosi et al., 1998; Searle et 
al., 2003) (Fig. DR1). The shear zone includes 
marble, calc-silicate, leucogranite, and biotite-
sillimanite schist and gneiss. All rocks contain 
a strong, shallowly northeast dipping foliation 
(5°–20°N) and NNE-SSW–trending stretching 
lineations. Kinematic criteria (C-S microstruc-
tures, mica fi sh, and asymmetric porphyroclast 
tails) indicate top-to-the-north shearing (Burg et 
al., 1984; Law et al., 2004). Quartz microstruc-
tures and c-axis fabrics suggest that rocks in the 
shear zone deformed at temperatures >500 °C 
(Law et al., 2004, 2011) (Fig. 2; Table DR1 
in the Data Repository). Based on radiometric 
dating of mylonitic and undeformed leucogran-
ite, the maximum age of ductile shearing is 
ca. 17 Ma, while brittle faulting on the Qomo-
langma detachment was likely younger than 
16 Ma (Hodges et al., 1998; Murphy and Harri-
son, 1999; Searle et al., 2003); in the following, 
we refer to the timing of shearing on this part of 
the STD as late Early Miocene. Together with 
quantitative data on strain and vorticity of fl ow 
(Jessup et al., 2006), microstructures and quartz 
c-axis fabrics are interpreted to have developed 
during top-to-the-north high-temperature shear-
ing associated with southward-directed extru-
sion of the Himalayan crystalline core (Burg et 
al., 1984; Law et al., 2004, 2011).

At Rongbuk Valley, we analyzed δD val-
ues of biotite and hornblende in 17 samples 
of sheared leucogranite, pegmatite, biotite 
schist and/or gneiss, and calc-silicate collected 
across ~200 m of structural section from the 
STD into the underlying mylonitic footwall 
(Fig. 1; Figs. DR1 and DR2; Table DR1). Bio-
tite shows very low δD values of −126‰ to 
−182‰ within 0–100 m of section, while the 
base of the section (130–177 m) is character-
ized by higher biotite δD values (−97‰ to 
−85‰), typical for δD values in metamorphic 
rocks (Fig. 2). Similarly, hornblende separates 
at 24 m and 98 m in the section yield very low 
δD values of −181‰ and −183‰, respectively. 
The low δD values within the uppermost 
100 m of the section require the presence of 
low δD meteoric water (Fig. 2) during high-
temperature deformation in the STD footwall.

δD values of meteoric water that exchanged 
with hydrous minerals during STD shear-
ing can be calculated if the hydrogen isotope 
mineral-water fractionation and the associated 
exchange temperatures are known (Figs. 2 
and 3; Table DR1). Using a deformation and 
isotopic exchange temperature of ~581 ± 50 °C 
inferred from the opening angles of quartz 
c-axes girdles (Law et al., 2011), combined 
with the calibration of biotite-water hydrogen 
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Figure 2. Hydrogen isotope values (δD) of biotite and hornblende from mylonitic rocks 
in footwall of South Tibetan detachment (STD), lithologic section through STD, and 
recrystallization temperatures (T) based on opening angle of quartz c-axes girdle pat-
terns (Law et al., 2011). Fields for meteoric and metamorphic waters are indicated. 
SMOW—standard mean ocean water.

Figure 3. A: Modern δ18Owater (standard mean ocean water, SMOW) values (Quade et al., 2011) 
along elevation profi le (V/H = 6) across Mount Everest (location in Fig. DR3 [see footnote 1]). 
North-south topographic section (27.00°N, 86.925204°E to 29.00°N, 86.925204°E) is based 
on unfi ltered digital elevation data (90 m accuracy) from Shuttle Radar Topography Mission 
(SRTM-V4; Farr et al., 2007). Gray area represents elevation of 20-km-wide swath along sec-
tion with  clear δDwater-elevation relationship. Modern δ18Oprecipitation values in Rongbuk-Tingri 
and Hermits Gorge areas (~−21‰; Quade et al., 2011) are similar to lowest δ18Owater values 
calculated from Miocene biotite and hornblende. B: Miocene paleoaltimetry reconstruction 
of Mount Everest (this study) compared to oxygen isotope record in Siwalik foreland basin 
(FB; Quade and Cerling, 1995; Quade et al., 1995; Leier et al., 2009). Calculated 7.0–17.5 Ma 
δ18Owater values for carbonate in foreland are from δ18Ocarbonate data (Quade and Cerling, 1995; 
Quade et al., 1995; Leier et al., 2009), using surface temperature of 29 °C (Quade et al., 2013). 
White hexagon is calculated δ18Owater from lacustrine carbonate in Thakkhola graben (TG; 
Garzione et al., 2000). Difference in δ18Owater of ~15‰ between high elevation (South Tibetan 
detachment) and low elevation (Siwalik foreland basin) is consistent with Miocene paleoel-
evation of Everest region in excess of 5000 m. Bt—biotite; Hbl—hornblende.
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isotope exchange (Suzuoki and Epstein, 1976), 
δDbiotite values between 0 m and 100 m of the 
STD footwall yield δDwater values as low as 
−150‰ +5‰/−4‰. Similarly low δDwater val-
ues of −156‰ ± 5‰ can be reconstructed from 
δDhornblende = −183‰ in sheared calc-silicate 
rocks using an exchange temperature of 555 
± 50 °C (Law et al., 2011).

Because single-site paleoaltimetry recon-
structions frequently lack adequate knowledge 
of changes in atmospheric circulation patterns, 
paleoclimate, and paleoenvironmental condi-
tions, we recast our δDwater values as δ18Owater by 
means of the global meteoric water line (δD = 8 
× δ18O + 10; Craig, 1961; Table DR1) and then 
compare the high-elevation STD record to age-
equivalent δ18O values measured within pedo-
genic carbonate from Siwalik foreland paleosols. 
These paleosols record Miocene near-sea-level 
rainfall conditions in the Himalayan foothills 
(Quade and Cerling, 1995; Quade et al., 1995; 
Leier et al., 2009) (Fig. 3B). The relative differ-
ence in δ18O between late Early Miocene mete-
oric water in the low-elevation Siwalik foreland 
basin (δ18Owater = −5.8‰ ± 1.0‰ based on δ18O 
of pedogenic carbonate and mean annual tem-
peratures of Quade et al., 2013) and the high-
elevation precipitation that infi ltrated the STD 
(δ18Owater = −20‰ ± 1‰ to −21‰ ± 1‰ based 
on δD of biotite and hornblende, respectively) 
yields Δδ18Owater = 14.2‰ ± 1.0‰ (calcite-bio-
tite) and 15.0‰ ± 1.0‰ (calcite-hornblende) 
(Fig. 3B; Table DR1). Because stable isotopes 
in precipitation systematically scale with eleva-
tion (~2.8‰/km in δ18O or ~22‰/km in δD; 
e.g., Poage and Chamberlain, 2001; Quade 
et al., 2011), this Miocene Δδ18Owater between 
Rongbuk Valley (STD) and the Siwalik basins is 
consistent with an elevation difference of ~5100 
± 400 m and ~5400 ± 350 m, respectively (error 
estimate includes isotopic analysis and tempera-
ture [Table DR1], but excludes uncertainty in the 
isotopic lapse rate, which for model elevations of 
~5000 m is ±700 m; Rowley, 2007).

DISCUSSION AND IMPLICATIONS
Our paleoelevation estimates (5100–5400 m) 

indicate that the late Early Miocene central 
Himalaya was at mean elevations similar to 
modern (5189 ± 390 m with present-day mini-
mum and maximum values of 4553 m and 
5982 m; see Fig. DR3). Furthermore, modern 
precipitation collected in the Rongbuk-Tingri 
area, to the northwest of our sampling transect, 
and the Hermit’s Gorge area (Fig. DR1) has 
δ18Owater values of −21.1‰ to −21.5‰ (Quade et 
al., 2011; Fig. 3A), almost identical to our cal-
culated Early Miocene δDwater (−156‰ ± 5‰) 
and δ18Owater (−21‰ ± 1‰). Documenting high 
elevations in the Himalaya since the late Early 
Miocene puts into perspective a series of obser-
vations: (1) the oldest known Siwalik sediments 
in Nepal (Dumri Formation; Ojha et al., 2009), 

(2) loess deposition in northern China ca. 22 Ma 
in a leeward rain shadow environment of the 
Tibetan-Himalayan orogen (Guo et al., 2002), 
(3) paleoelevation estimates of 4500 m ± 430 m 
and 6300 m ± 330 m obtained from carbonates 
deposited ca. 11 Ma in the Thakkhola graben 
(Garzione et al., 2000; Fig. 3), (4) low δD val-
ues in biotite from leucogranite in the Manaslu 
region ca. 20 Ma (France-Lanord et al., 1988), 
and (5) paleoenthalpy and stable isotope results 
suggesting that the elevation of the southern 
Tibetan Plateau has remained unchanged for 
the past 9–15 m.y. (Spicer et al., 2003; Saylor 
et al., 2009).

A consequence of the high topography of 
the central Himalaya is enhanced aridity on 
the Tibetan Plateau over most of the Neogene, 
resulting in high evaporative water fl ux over the 
plateau region. Strongly evaporative conditions 
may have shifted lake and near-surface ground-
water δ18O to higher values, which could lead 
to an underestimation of Miocene Tibetan Pla-
teau elevation when assessed through the stable 
isotopic record of surface deposits. In addition, 
a strong Himalayan orographic rain shadow 
causes isotopically D (and 18O) depleted pre-
cipitation over the plateau region, such that any 
freshwater stable isotope–based paleoelevation 
reconstruction from the plateau interior may 
be biased by rainout that occurred upstream 
along the Himalayan fl anks. Collectively, stable 
isotope records on the Tibetan Plateau register 
the combined effects of local evaporation and 
Himalayan rainout, resulting in paleo–meteoric 
water compositions that do not necessarily cor-
relate with plateau elevation.

The low biotite and hornblende δD values 
within the STD indicate that meteoric fl uids 
penetrated the ductile segment of the exten-
sional system during mylonitic deformation. 
Two conditions favor the downward fl ow of sur-
face fl uids to the brittle-ductile transition zone 

(Person et al., 2007): (1) upper crustal exten-
sion enhances porosity and permeability and 
permits fracture-dominated fl ow of meteoric 
fl uids down to the brittle-ductile transition; and 
(2) sustained high heat fl ow induces buoyancy-
driven fl uid convection. The latter condition 
was likely met when synmylonitization leuco-
granite bodies intruded the STD footwall. In 
addition, the hydraulic head generated in high-
relief areas may be an important driving force 
for hydrothermal fl uid circulation in detachment 
systems (Person et al., 2007). The interplay 
among surface topography, orographic rainfall, 
and heat advection makes the STD system an 
important orogen-scale structure for fault-con-
trolled hydrothermal activity. It is likely that the 
presence of meteoric fl uids affected the style 
and rates of normal faulting in the upper plate 
and ultimately governed the rates of extension-
related exhumation of high-grade metamorphic 
rocks (Fig. 4). Tracking the interaction of defor-
mational processes and surface-derived mete-
oric fl uids in such detachment systems provides 
a critical link between processes that character-
ize the internal dynamics of orogens and those 
that shape the Earth’s surface.
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