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Abstract 

The things you do: Implicit person models guide online action observation by 

Kimberley Caroline Schenke 

Social perception is dynamic and ambiguous. Whilst previous research favoured 

bottom-up views where observed actions are matched to higher level (or motor) 

representations, recent accounts suggest top-down processes where prior knowledge 

guides perception of others’ actions, in a predictive manner. This thesis investigated 

how person-specific models of others’ typical behaviour in different situations are 

reactivated when they are re-encountered and predict their actions, using strictly 

controlled computer-based action identification tasks, event-related potentials (ERPs), 

as well as recording participants’ actions via motion tracking (using the Microsoft 

Kinect Sensor). The findings provided evidence that knowledge about seen actor’s 

typical behaviour is used in action observation. It was found, first, that actions are 

identified faster when performed by an actor that typically performed these actions 

compared to another actor who only performed them rarely (Chapters Two and Three). 

These effects were specific to meaningful actions with objects, not withdrawals from 

them, and went along with action-related ERP responses (oERN, observer related error 

negativity). Moreover, they occurred despite current actor identity not being relevant to 

the task, and were largely independent of the participants’ ability to report the 

individual’s behaviour. Second, the findings suggested that these predictive person 

models are embodied such that they influenced the observers own motor systems, even 

when the relevant actors were not seen acting (Chapter Four). Finally, evidence for 

theses person-models were found when naturalistic responding was required when 

participants had to use their feet to ‘block’ an incoming ball (measured by the Microsoft 

Kinect Sensor), where they made earlier and more pronounced movements when the 

observed actor behaved according to their usual action patterns (Chapter Five). The 
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findings are discussed with respect to recent predictive coding theories of social 

perception, and a new model is proposed that integrates the findings. 
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Chapter One – Using person-specific models to make 

social action predictions  

Deciphering social interactions 

Being able to understand the actions of others is integral to social interactions. People 

rely on their ability to make sense of others’ actions to decide whether they want to 

cooperate or compete (e.g., Sartori, Becchio, & Castiello, 2011), to plan their own 

actions when interacting with them (Sebanz & Knoblich, 2009), and to learn new skills 

from observation (i.e., Paulus, van Dam, Hunnius, Lindemann, & Bekkering, 2011). 

Originally, this capacity may have developed as part of an adaptive evolutionary 

behaviour to distinguish threatening behaviour (that should be avoided for survival) 

from friendly or cooperative behaviour, where approach may be beneficial. Nowadays, 

where thousands of humans live within a small area, understanding others may be more 

instrumental in terms of being liked by others, or gaining a higher social standing.   

Yet, social interactions are extremely dynamic. People must constantly decipher not just 

the behaviours of interaction partners, but also the intentions and attitudes driving these 

behaviours, which are not directly observable and, in some cases, may be deliberately 

concealed. Additionally, social stimuli are highly ambiguous: the same action can have 

different meanings depending on the situation. For example, one might interpret a frown 

from a friend as feeling negatively about, or simply as assessing, the information we 

have just given them. Similarly, one could interpret a smile either as a positive reaction, 

or a mocking aside, to the conversation. This ambiguity is not well tolerated in those 

with social anxiety disorder (Kuckertz, Strege, & Amir, 2016), and may be part of the 

underlying causes of the social deficits typically seen in individuals with autism 

spectrum disorder (ASD) and schizophrenia (Koster-Hale & Saxe, 2013; Pellicano & 
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Burr, 2012). Therefore, an important question is how people resolve these ambiguities, 

and why making sense of others tends to come so naturally to people. 

 

The bottom-up approach to social perception; monkey see, monkey do. 

Mankind’s remarkable ability to fluently and effortlessly make sense of others’ 

behaviour is typically conceptualised as a bottom-up process (di Pellegrino, Fadiga, 

Fogassi, Gallese, & Rizzolatti, 1992; Gallese & Sinigaglia, 2010; Iacoboni, 2009a; 

Rizzolatti & Craighero, 2004). The assumption is that incoming sensory stimulation 

about observed actions is analysed in higher sensory areas, and matched to one’s prior 

knowledge about them. The dominant view is that this knowledge is primarily encoded 

motorically. Observed actions are assumed to be mapped onto one’s prior experience 

with the same action, such that the associated interoceptive and mental states can be re-

activated. For example, seeing someone move their arm in a certain way (e.g., towards a 

cup) would be ‘mapped’ onto one’s own motor system, which allows us to derive their 

internal states in terms of the goals, emotions and beliefs driving the behaviour 

(Becchio et al., 2012; Becchio, Sartori, Bulgheroni, & Castiello, 2008; Giacomo 

Rizzolatti & Craighero, 2004; Sartori et al., 2011; Sartori, Bucchioni, & Castiello, 

2012).  

 A large body of evidence has confirmed such an activation of “internal” aspects of 

observed actions. For example, many studies have shown that observing an action 

facilitates the execution of that same action (but inhibits the execution of a different 

action), implying an activation of the motor commands that would generate it (Brass, 

Bekkering, Wohlschlager, & Prinz, 2000; Kilner, Paulignan, & Blakemore, 2003), or at 

least the activation of the same effector (Bach & Tipper, 2007; Heyes & Leighton, 
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2007). These effects can be specific to certain parameters of actions only. For example, 

in a task where participants simply had to use their thumb and index finger to match the 

size of an object, the aperture between thumb and finger increased after observing 

power grasps, and decreased after observing precision grasps (Gianelli, Dalla Volta, 

Barbieri, & Gentilucci, 2008). It can even be found in real-life face to face interactions. 

For example, people have a tendency to “mimic” others’ behaviours such that if one 

person touches their face, the interaction partner may have a tendency to do the same 

(Chartrand & Bargh, 1999). Similarly, if one interaction partner uses certain words, the 

other may utilise the same specific terminology (see Lakin, Valerie, Cheng, & 

Chartrand, 2003) and syntactic constructions (“syntactic priming”, Branigan, Pickering, 

& Cleland, 1999). Even young infants show such mimicry behaviour (Meltzoff & 

Moore, 1994). Mimicry has been found to be beneficial in terms of enhancing social 

cohesion (e.g., Chartrand & Bargh, 1999), communicating similarity (e.g., Gueguen & 

Martin, 2009), increasing synchrony between interaction partners (Sebanz, Bekkering, 

& Knoblich, 2006), and enhancing the understanding of a situation by activating the 

same motor systems within the observer (Becchio et al., 2012; Becchio, Sartori, 

Bulgheroni, & Castiello, 2008; Giacomo Rizzolatti & Craighero, 2004; Sartori et al., 

2011; Sartori, Bucchioni, & Castiello, 2012), or as a communicative aid (e.g., 

demonstrating an understanding that a friend is in pain; Bavelas, Black, Lemery, & 

Mullett, 1986). 

On a neuronal level, motoric bottom-up matching views have received support from the 

discovery of ‘mirror’ neurons in monkeys, which fire both when the monkey performs 

an action and when it merely observes that same action whilst being completely passive 

(e.g., di Pellegrino et al., 1992; Gallese, Fadiga, Fogassi, & Rizzolatti, 1996). Mirror 

neurons may therefore provide the neuronal mechanism that matches observed actions 

to one’s own internal action representations (Rizzolatti & Craighero, 2004). Whilst it is 
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(ethically) more difficult to perform single cell recordings in humans, a few studies have 

demonstrated direct evidence of mirror neurons in humans (Keysers & Gazzola, 2010; 

Mukamel, Ekstrom, Kaplan, Iacoboni, & Fried, 2010). However, the vast majority of 

research testing mirror neurons in humans uses more indirect measures such as fMRI 

(Buccino et al., 2001; Chong, Cunnington, Williams, Kanwisher, & Mattingley, 2008; 

Newman-Norlund, van Schie, van Zuijlen, & Bekkering, 2007) and MEG  (Kessler, 

Gross, Schmitz, & Schnitzler, 2006; Kessler, Biermann-Ruben, et al., 2006), and 

therefore only suggests general brain structures in premotor and inferoparietal cortex 

being activated during both action observation and execution. Recently though there has 

been converging evidence from new fMRI imaging techniques such as multivoxel 

pattern classification or repetition suppression that common activations for action 

execution and observation may indeed emerge from the same underlying neuronal 

populations (Norman, Polyn, Detre, & Haxby, 2006; Oosterhof, Tipper, & Downing, 

2012; Oosterhof, Wiggett, Diedrichsen, Tipper, & Downing, 2010).  

The notion that mirror neuron activation reflects action understanding has received 

support from studies both in monkeys and humans. In humans, activation in mirror-

related regions in the parietal and premotor cortex has been shown to occur more 

strongly for biological motion (e.g., Buccino, Binkofski, & Riggio, 2004; Kilner et al., 

2003), and for actions within the motor repertoire of the observer (Calvo-Merino, 

Glaser, Grèzes, Passingham, & Haggard, 2005; Calvo-Merino, Grèzes, Glaser, 

Passingham, & Haggard, 2006). In monkeys, their firing is restricted to goal-directed 

actions, not the same kinematics when pantomimed without an object, and they fire 

even when the entire action is not performed within view, but becomes occluded half 

way through (Umiltà et al., 2001; for a review see Fabbri-Destro & Rizzolatti, 2008). 

This suggests that, once identified, the action is understood to the extent that it may be 
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mentally completed by the motor system (e.g., Sparenberg, Springer & Prinz, 2012; 

Wilson & Knoblich, 2005).    

Such ‘embodiment effects’ of action observation are not limited to performing actions. 

For example, people also automatically mirror others’ shifts in eye gaze (Frischen, 

Bayliss, & Tipper, 2007), and mirror neurons for eye gaze have recently been 

discovered in monkeys (Maranesi et al., 2013). Similarly, cortical representations of 

seeing and feeling pain overlap to a large extent (Morrison, Lloyd, di Pellegrino, & 

Roberts, 2004), and seeing others’ being touched can lead to illusory sensations of touch 

on one’s own body  (Bach, Fenton-Adams, & Tipper, 2014; Blakemore & C. Frith, 

2005; Morrison, Tipper, Fenton-Adams, & Bach, 2013). Even restrictions to others’ 

movements seem to be reflected in one’s own motor responses. Observing a ‘restrained’ 

finger and having to move that same finger oneself leads to slower response times, and 

decreased activation of motor-related ERP components (Liepelt et al., 2009).  

Whilst a large number of studies provide converging evidence for motor system 

activation during action observation, notably fewer directly show that this motor 

activation contributes to how the action is understood. However, there are now several 

studies showing that the link between motor system activation and action perception is 

bidirectional; action observation affects own motor behaviour, and own motor 

behaviour affects observation of others’ actions (for a review, see Avenanti, Candidi, & 

Urgesi, 2013; for a critical discussion, see Meier, Schnall, Schwarz, & Bargh, 2012). 

For example, increased fluency of one’s own responses during action observation 

influenced perception of the actions of others, such that the actor appeared more skilled 

in the seen action (Bach & Tipper, 2007). Similarly, the predictability of an occluded 

action was enhanced if participants had previously used that body part (Springer, 

Brandstädter, & Prinz, 2013). Casile and Giese (2006) blindfolded participants and 
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trained them in novel movements. When later asked to visually recognise these actions, 

performance positively correlated with how accurately they were able to execute the 

action during the learning phase (for similar findings see Reithler, van Mier, Peters, & 

Goebel, 2007; Thornton & Knoblich, 2006). Moreover, several studies (reviewed in 

Avenanti et al., 2013) now show that lesions to the parietal and premotor network – 

either real or virtual when induced via transcranial magnetic stimulation (TMS) – 

disrupt action perception, suggesting a causal role for these “mirror” regions in action 

understanding (Bach, Nicholson, & Hudson, 2014; Caramazza, Anzellotti, Strnad, & 

Lingnau, 2014).  

Together, these data provide converging evidence that the motor system is activated 

during action observation, and that this activation plays a causal role in the 

understanding process. These ideas of bottom-up activation of the motoric meaning of 

others’ actions have been incredibly influential. For example, mirror neurons are 

thought to be involved in several important social processes including empathy, theory 

of mind, mimicry and language understanding (for a review see Oberman & 

Ramachandran, 2007). However, more recently, doubts have been raised about whether 

these motoric bottom-up accounts can fully account for all the reported phenomena in 

the literature (e.g., Csibra, 2008; Kilner, Friston & C.D., Frith, 2007), and action 

understanding in general.  

 

Cracks in the mirror 

Even for low-level vision, where the challenge of deriving meaning from the stimulus is 

computationally much simpler, there is increasing evidence to suggest that bottom-up 

models cannot fully account for it. For example, bottom-up mechanisms alone cannot 
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even reliably extract simple image features from natural images (see Yuille & Kersten, 

2006 for a review). This is because different images on the retina can be created 

depending on aspects such as the viewpoint, light, shading, etc., which can make the 

same object look different, or different objects look the same on the retina. To then 

consider the complex nature of how objects interact in the real world (overlapping in 

location, partially occluding each other, etc.), it is unsurprising that recovering the 

generator of these images is incredible difficult.  

In social perception, these problems are further complicated because the reasons for 

others’ behaviour emerge from hidden states that influence behaviour non-

deterministically. Moreover, similar to object perception, there is not a one-to-one 

mapping of actions to goals or internal states (Bach, Knoblich, Gunter, Friederici, & 

Prinz, 2005; Kilner et al., 2007): the same motor behaviour can serve different goals in 

different contexts e.g., inserting a letter into a letter box and inserting a bank card into 

an ATM. Additionally, different motor behaviours can achieve the same goals. Thus, an 

action’s meaning, and the most likely intention driving it, is often determined by 

contextual cues (Press, Heyes, & Kilner, 2011), such as knowledge of the person and 

nearby objects.  

There are various other reasons to be sceptical of bottom-up motoric matching accounts 

to reliably create “understanding” of observed actions. For example, not all movements 

that can be understood can be mapped onto our motor systems. There are actions that 

we ourselves cannot perform both within our species (e.g., a complex ballet movement) 

and within other species (e.g., a bird flying), yet we still readily attribute goals to these 

actions (Buccino et al., 2004). 

Conversely, merely being able to perform an action does not necessarily enable 

understanding without specific knowledge of the goal (Hickok, 2013). For example, 
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people do not just grasp an apple to eat it; sometimes it is simply to move it from the 

grocery bag to the table, or to pass it to a friend. Thus, seeing someone grasping an 

apple does not lead to any further understanding unless further information about the 

goal is known. This is especially true when social intentions are relevant. Someone 

could perform the exact same action but for very different reasons, which may not be 

clear to an observer who does not have access to their internal states. Jacob and 

Jeannerod (2005, p.23) use the example of Dr Jekyll and Mr Hyde whereby both grasp a 

scalpel and make incisions into patients, but one performs the behaviour to operate to 

save the patient, and the other performs the behaviour for the pleasure of seeing another 

in pain. An observer would not know these ‘hidden’ intentions simply by motorically 

re-performing the actions (which look identical). 

Next to these theoretical arguments, there are various findings that have cast doubt on 

simple bottom-up motoric matching mechanisms as being key for social understanding. 

Foremost among them are demonstrations that motor activation during action 

observation reflects the (inferred) goal of the observed action, rather than the observed 

action itself.  For example, Liepelt, Von Cramon, and Brass (2008) demonstrated that an 

observer’s motor system responds to the goal of an actor rather than to what was 

actually observed. Participants saw a finger trying to lift up, but being held down by a 

clamp.  Motoric activation was found for the goal (finger lifting) not the observation 

(the finger restraint by the clamp). Similarly, participant responses are influenced by 

their action expectations for known actors (e.g., kicking for Wayne Rooney, tennis for 

Greg Rusedski; Bach & Tipper, 2006; Tipper & Bach, 2011) and objects (Bach, Bayliss, 

& Tipper, 2011; Bach et al., 2005; van Elk, van Schie, & Bekkering, 2009). This is not 

just apparent in adults, but also in children (e.g., Southgate, Johnson, El Karoui, & 

Csibra, 2010; Southgate, Johnson, Osborne, & Csibra, 2009). For example, infants were 

shown a grasping action, which elicited motor activation in their brain, but this 
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activation was only found once anticipation of that action was possible. This suggests 

that the motor activation was not a direct result of observing the action, but was 

primarily driven by the action they anticipated seeing. Finally, whilst mirror neurons 

were previously thought to be a bottom-up motor matching mechanism, even these 

neurons have now been shown to fire for expected rather than observed actions 

(Maranesi, Livi, Fogassi, Rizzolatti, & Bonini, 2014; Umiltà et al., 2001). Such 

evidence is increasingly guiding researchers towards the notion that action 

understanding (and social perception) cannot purely be a bottom-up process, but must 

also have some top-down involvement (Bach, Nicholson, et al., 2014; Csibra, 2008; 

Kilner et al., 2007). 

 

Flipping the mirror: social perception based on predictions 

Top-down models of perception seek to solve the computational problems in perception 

– social and non-social - described above (Hosoya, Baccus, & Meister, 2005; Lee & 

Mumford, 2003) by theorising that high level inferences cascade to lower level sensory 

areas to provide predictions which aid perception (Bubic, von Cramon, & Schubotz, 

2010; A. Clark, 2013; den Ouden, P. Kok, & de Lange, 2012; Friston & Kiebel, 2009). 

These frameworks hypothesise that (1) the brain is constantly making predictions, (2) 

based on prior knowledge, and (3) that these predictions propagate throughout the 

hierarchy to lower-level perceptual structures, and (4) act as a ‘best guess’ of what is 

perceived, which is continually updated as events unfold. When events mismatch 

expectation, prediction errors (5) propagate back up the system and the events are either 

explained away by adding additional guesses, or the best guess is revised to better 

reflect reality.  
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There is ample evidence for top-down influences on perception. Anecdotally, this has 

been seen in the mainstream media where some artists are thought to have ‘hidden’ 

messages in their songs that can be heard when playing the song backwards. Those 

hearing the ‘noise’ without any knowledge of what is alleged to be there are typically 

unable to decipher any lyrics, but those told the alleged lyrics ahead of time often report 

hearing them. This top-down influence on perception has also been shown in more lab-

based experiments. For example, when listening to distorted speech, participants learn 

to decipher it over the course of the experiment using top-down lexical feedback (Davis, 

Johnsrude, Hervais-Adelman, Taylor, & McGettigan, 2005). What was previously 

unintelligible noise, can now be split into words and sentences.   

 Such top-down influence is also evident in visual processing. For example, one shot 

learning studies show how, after people have identified a certain object or pattern in 

noisy stimuli once, they cannot ‘un-see’ it (for a recent account see Ishikawa & Mogi, 

2011). Top-down accounts also explain how surrounding illumination can be ‘explained 

away’ to enable perception of the ‘true’ colour of a surface (Bloj, Kersten, & Hurlbert, 

1999). This has recently been seen for objects too in relation to the ‘blue dress illusion’; 

where the same photograph of a dress was perceived to be blue/black by some observers 

and white/gold by others (see Chetverikov & Ivanchei, 2016). Top-down accounts can 

also explain perception of object properties (e.g., whether an object is perceived to be 

concave or convex; Adams, Graf, & Ernst, 2004), and it has been argued that the switch 

between bi-stable figures could reflect the test of an alternative top-down hypothesis 

(Hohwy, Roepstorff, & Friston, 2008). 

On a neuronal level, research has shown that prior top-down knowledge influences 

perception as early as 50-150ms (see Gamond et al., 2011), and that expectations 

influence processing at early stages of the cortical hierarchy for both visual processing 
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(e.g., Alink, Schwiedrzik, Kohler, Singer, & Muckli, 2010; den Ouden, Friston, Daw, 

McIntosh, & Stephan, 2009; P. Kok, Jehee, & de Lange, 2012), and auditory processing  

(Todorovic, van Ede, Maris, & de Lange, 2011). For example, in the latter study, 

participants listened to auditory blocks with either expected or unexpected tone 

repetitions. There was evidence of a greater repetition suppression (i.e., neuronal 

attenuation the second time a stimulus is presented) in the auditory cortex for expected 

compared to unexpected repetitions. 

Inspired by predictive coding models, several theorists now consider social perception 

to be similarly predictive in nature. As aforementioned, when first discovered mirror 

neurons were thought to implement a bottom-up mechanism, matching kinematic input 

to motor knowledge and thereby to the associated higher level goals. Csibra (2008; for a 

similar model see Kilner et al., 2007)  now argues that mirror neurons might instead 

have a top-down function, predicting the most suitable action for the observed goal, by 

relying on the observer’s knowledge about the action they would perform. Motor 

knowledge is, thus, not used to infer the goal of an observed action, but, instead, to find 

an action that would achieve a previously hypothesized goal, and to test whether this 

action corresponds to what is, indeed, perceived. Thus, in a similar way to having the 

top-down expectation that an object in the air will fall because of the laws of gravity, 

these neurons provide knowledge of the kinematics of what is required to achieve a 

goal. This “emulation” (Csibra, 2008) is compared to the event currently unfolding; 

corresponding visual input indicates that the goal has been correctly inferred, but a 

mismatch requires its re-assessment and a new resulting emulation. 

Such predictive processes would not only allow people to check their understanding of 

others’, but would be extremely useful for anticipating coordination of social interaction 

(e.g., Sebanz & Knoblich, 2009). Rapid decisions are needed for how to behave based 
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on how an interaction partner is currently behaving, how they have behaved previously, 

and how they are likely to behave throughout the interaction. Predictions would enable 

fast and efficient categorization of events (e.g., Hoffmann & Sebald, 2005) by using 

available cues, or previously acquired knowledge, for example to judge whether a hand 

is being extended in greeting or threat. If a potential interaction partner smiles or has 

open/passive body language we may predict they are more likely to approach, or be 

more approachable, than a frowning individual who has closed/aggressive body 

language.  Moreover, if we know that John is generally helpful and George is generally 

selfish, we would be more likely to approach John to help us with a problem. Thus, 

these predictions can help us to have more successful social interactions, and enable the 

rapid adaptation of behaviour to suit the current situation as events unfold. 

Several pieces of research evidence are emerging to support this predictive view of 

social perception. For example, Flanagan and Johansson (2003) demonstrated similar 

predictive eye movements (i.e., looking at the object before the movement had been 

completed) both when the participants executed an action themselves, and when they 

merely watched an actor perform the same action. This demonstrates how, during action 

observation, participants were demonstrating their goal knowledge in much the same 

way as if they were actually performing the movement themselves. Similarly, Eshuis, 

Coventry, and Vulchanova (2009) showed that predictive eye movements are guided by 

inferred goals  (from verbal statements), not kinematics, and several others have now 

confirmed that implied goals through eye gaze (Teufel, Fletcher, & Davis, 2010), 

matching of hand grips to target objects (Ambrosini et al., 2013; Ambrosini, Costantini, 

& Sinigaglia, 2011), and other cues allow people to guide gaze towards the goal even if 

the action is not yet completed.  
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Other evidence comes from studies demonstrating motoric involvement during action 

observation (neuronally e.g., di Pellegrino et al., 1992; for a review see Oosterhof, 

Tipper, & Downing, 2013; and behaviourally e.g., Bach, Peatfield, & Tipper, 2007; 

Fadiga, Fogassi & Rizzolatti, 1995; Naish, Houston-Price, Bremner, & Holmes, 2014). 

As reviewed above, these activations have recently been shown to be predictive, 

reflecting the actions that are expected, rather than those that are observed (Bach & 

Tipper, 2006; Bach et al., 2005; Bach, Nicholson, et al., 2014; Csibra, 2008; Kilner et 

al., 2007; Liepelt et al., 2008; Maranesi et al., 2014; Southgate et al., 2010, 2009; Tipper 

& Bach, 2011; Umilta et al., 2001; van Elk et al., 2009).  

As hypothesised by predictive coding accounts, even low-level perception of observed 

action can be influenced by top-down information in the form of implied goals. For 

example, Kourtzi and Shiffrar (1999) presented participants with static images of the 

beginning and end of an action in an apparent motion paradigm, and found that 

participants tended to report seeing the intermediate stages of the action. This finding 

suggests that participants were representing these intermediate stages even though they 

were not actually shown. Earlier research by these authors demonstrated that such 

intermediate ‘sightings’ abide by biomechanical and physical constraints (i.e., when 

seeing a human acting, they only ‘see’ actions that are possible for a human to perform; 

Chatterjee, Freyd, & Shiffrar, 1996; Shiffrar & Freyd, 1990, 1993). 

Similar evidence of top-down goals influencing perception has been provided more 

recently. For example, when participants were shown heads rotating towards the viewer, 

they perceived a greater rotation when the eye gaze appears to ‘lead’ the rotation 

(implying a goal for looking in the predicted direction) compared to a gaze that was 

‘lagging’ (as though it wanted to look in the opposite direction; Hudson, Liu, & Jellema, 

2009; see also Hudson & Jellema, 2011; Hudson, Nijboer, & Jellema, 2012). Whilst 
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these findings could be due to visual biases caused by integrating head and gaze into 

one percept, more recent studies suggest evidence more towards perceptual biases 

reflecting top-down goal information (Hudson, Nicholson, Ellis, & Bach, 2016). Here, 

participants first heard an actor goal (“I’ll take it”, “I’ll leave it”), then they saw reaches 

toward, or withdrawals away from, objects, and reported the sudden disappearance point 

of the movements. The intent to ‘take’ the object led to an increased perception of a 

reach being near the object, and an intention to ‘leave’ led to an increased perception of 

a withdrawal being further away.  

Together, these findings suggest that social perception has a predictive component, 

where abstract higher level information elicits predictions about what other people will 

do. However, most of the research to date has focused on the use of social cues to make 

predictions. For example, emotional expressions have been shown to influence 

behavioural predictions (a smile for approach, a frown for avoidance; R. B. Adams, 

Ambady, Macrae, & Kleck, 2006). Similarly, ‘enjoyment’ smiles predict 

trustworthiness and cooperative behaviours compared to ‘non-enjoyment’ smiles 

(Johnston, Miles, & Macrae, 2010). Action kinematics and how they match available 

tools and goal objects (e.g., a hammer is for hitting nails) have also been used as social 

cues in predictions (Bach et al., 2011; Bach, Nicholson, et al., 2014; Hunnius & 

Bekkering, 2010; Stapel, Hunnius, & Bekkering, 2012; Stapel, Hunnius, van Elk, & 

Bekkering, 2010; for a review see Bach, Nicholson et al., 2014). Even simply observing 

someone gazing at an object elicits similar activation as observing them grasping the 

object, suggesting that object-directed gaze creates actor intentions in the form of 

predictions about others’ behaviour (Pierno et al., 2006). What is often neglected, 

however, is that people may also make predictions from the knowledge they have about 

the acting individuals, recalling their previous encounters or the general knowledge they 

have about them.  
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Towards a person-specific approach 

Humans have a remarkable ability to recognise other people, with evidence for 

dedicated cognitive and neuronal systems for identifying and storing knowledge about 

others (e.g., C. D. Frith & U. Frith, 2012; Quinn & Macrae, 2011; Tempini et al., 1998; 

Todorov, Gobbini, Evans, & Haxby, 2007). Such knowledge includes descriptive 

information that can be used to categorise others (e.g., sex, race, general appearance), as 

well as information about their behaviour, which may be represented in internal models 

of others (e.g., Barresi & Moore, 1996; Hassabis et al., 2013; Newen, 2015; Park, 1986; 

Yomogida, Sugiura, Akimoto, Miyauchi, & Kawashima, 2014; see Meltzoff & Moore, 

1994 for an example in infant imitation). It has been argued that such models represent 

the specific “intentional relations” (Barresi & Moore, 1996) that describe others’ 

behaviour towards objects (John typically eats chocolate), but also the mental states 

implied by these behaviours (John likes chocolate). If such internal models exist, then 

they may be re-activated automatically when the individual is re-encountered to inform 

predictions about their most likely behaviour, reflecting person-specific behaviour 

within the given situation (see also Smith & DeCoster, 1998). For example, we might 

learn that when in the lounge John likes to read a book, but George will watch 

television, and, thus, we would predict that John will reach out and grasp his book 

rather than the remote control, and vice versa for George.  

This thesis aims to investigate the influence of such person-specific prior knowledge on 

predictions, in other words, how knowing how someone typically behaves in a given 

situation influences our predictions of how they will behave when we see them in a 

similar situation again. Establishing such an influence is crucial. As noted above, whilst 

predictive coding models of social perception assume that predictions emerge from 

high-level knowledge about the other person, the research to date is restricted to general 
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predictions about others based on social cues, such as smiles, gaze, or action kinematics 

(R. B. Adams, Ambady, Macrae, & Kleck, 2006; Bach et al., 2011; Hudson et al., 2016; 

Hunnius & Bekkering, 2010; Johnston, Miles, & Macrae, 2010; Hudson, Nicholson, 

Simpson, Ellis, 2015; Pierno et al., 2006; Stapel, Hunnius, & Bekkering, 2012; Stapel, 

Hunnius, van Elk, & Bekkering, 2010). These experiments therefore do not specifically 

test the hypothesis of whether predictions, indeed, reflect higher-level person 

information (their goals, beliefs, etc.), or whether they solely reflect action-level 

knowledge, where certain cues (e.g., a smile) directly predict certain behaviours 

(approach), without drawing upon person information at all.  

These hypothesised person-models must be able to cope with the stochastic rather than 

deterministic behaviour of humans. This is because we do not have access to the 

internal states, beliefs, and motivations of others (Zaki, 2013), unless they provide us 

with this information (but even then this may be deceptive), such that their behaviour 

can never fully be predicted from prior events. Furthermore, the same person’s 

behaviours may change across situations (e.g., Bach et al., 2014; Barresi & Moore, 

1996; Ham & Vonk, 2003; Lupfer, L.F. Clark, & Hutcherson, 1990; Todd, Molden, 

Ham, & Vonk, 2011). In personality psychology, it has been demonstrated that rather 

than stable traits describing behaviour, others’ behaviour is better accounted for as an 

interaction of predisposition and situation: one person may be outgoing with one person 

but not with the other, and vice versa for someone else. Allowing for these situational 

dependencies has been shown to provide a more robust behavioural description (e.g., 

being shy at school, but extrovert at home rather than shy all the time; Mischel & 

Shoda, 1995). Indeed, Barresi and Moore (1996) theorise that this situation-dependency 

is captured by people’s internal models about others, which describe the specific 

‘intentional relations’ between people and different objects they could interact with. 
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Similarly, Newen (2015) suggests that there are two types of internal models – person 

and situation, which jointly determine understanding of others.   

This importance of situation is highlighted by research on object-directed actions 

whereby objects indicate actor goals/intentions (see Bach, Nicholson et al., 2014 for a 

review). For example, evidence suggests that we only automatically compute reaches 

for actors within reaching distance of an object, showing such a situation dependency of 

action predictions (Ambrosini, Scorolli, Borghi, & Costantini, 2012). Thus, internal 

models need to integrate both person-knowledge (goals, intentions, etc.) and the current 

situational constraints because some situations will not be conducive to achieve a 

specific goal. For example, one can only show kindness and altruism if there is an 

option to do so such as helping a homeless person, donating to charity, or helping an old 

lady across the street with her shopping (e.g., Lupfer et al., 1990; Ham & Vonk, 2003; 

Todd et al., 2011; Bach et al., 2014). Indeed, adults only tend to imitate those actions 

that suit the situational constraints (Bach, Bayliss & Tipper, 2013). Thus, to more 

accurately predict behaviour one must be aware not just of knowledge about the 

individual and knowledge about the situational constraints, but also the ‘intentional 

relations’ that link the actor to the situation (Barresi & Moore, 1996). These internal 

person-models would be reactivated when that individual is re-encountered in a similar 

situation to enable predictions about their forthcoming actions. This would provide a 

powerful mechanism for social coordination and understanding, and a reference frame 

against which others’ behaviour can be judged (Stinson & Ickes, 1992; Hastie, 1984; 

Srull, Lichtenstein & Rothbart, 1985; Zaki, 2013; Barresi & Moore, 1996). 

Despite these theoretical considerations, there is very little research directly testing 

whether such internal models of other people are used during action observation and 

allow one to predict their behaviour. Some studies have shown that people re-activate 
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simple action knowledge about others when they see them. For example, we recently 

demonstrated how participants can (implicitly) ‘learn’ that one actor tends to look 

towards food objects, and the other tends to look towards drink objects, which then 

guides the participants’ own attention (Joyce, Schenke, Bayliss, & Bach, 2015). 

Similarly, Frischen and Tipper (2006) demonstrated gaze-cueing effects after a three 

minute delay suggesting a face’s prior gaze direction can be stored in memory and 

retrieved when a face is re-encountered. However, while these studies showed re-

activation of person-related information, they did not show that it plays a functional role 

during action observation, biasing action identification towards the expected behaviour 

in a predictive manner.   

Other studies have shown the embodied re-activation of others’ stereotypical 

behaviours, for example, the typical behaviours of black and white people (Dickter & 

Gyurovski, 2012), the body parts associated with famous athletes (Bach & Tipper, 

2006; Tipper & Bach, 2011), or people’s last seen emotional expression (Halberstadt, 

Winkielman, Niedenthal, & Dalle, 2009). Further evidence of this stems from a 

mimicry study in infants. Meltzoff and Moore (1989, 1994) first demonstrated mimicry 

of tongue protrusions or mouth openings with young infants. Then, when presented with 

the same experimenter (this time with a neutral expression) a day later, the same infants 

were more likely to perform the behaviour again as though they had remembered that 

this experimenter had previously performed a tongue protrusion (or mouth opening 

behaviour). 

 Whilst such findings capture action knowledge about the individuals, they do not show 

that this information is used for predicting their behaviour. Moreover, research to date 

has not directly tested the situational-dependency of human action as described above, 

where others’ behave differently in different situations, depending on the available 
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objects and their idiosyncratic preferences (Bach, Nicholson, et al., 2014; Barresi & 

Moore, 1996; Mischel & Shoda, 1995).  

One area that has focused on testing the role of person-specific behaviour descriptions 

for judgment is classic research in social psychology. “Spontaneous trait inferences” 

show that traits can be rapidly attributed to agents (see Chen, Banerji, Moons, & 

Sherman, 2014), and how mere behaviour observation can elicit personality judgements 

(Vonk, 1994). For example, several studies have shown that people establish person-

models from behavioural descriptions (Hastie, 1984; Srull, Lichtenstein, & Rothbart, 

1985; Srull, 1983; Stinson & Ickes, 1992). However, these person-models have only 

been shown to influence relatively abstract “offline” judgment processes, such as 

subsequent reading times for behavioural descriptions (Belmore, 1987), and explicit 

judgments and memories of these target individuals (Heider et al., 2007; Sherman & D. 

L. Hamilton, 1994; Stangor & McMillan, 1992 for reviews see D. L. Hamilton & 

Sherman, 1996; Srull & Wyer, 1989; Stern, Marrs, Millar, & Cole, 1984; Wyer, 2013). 

The online use of these person-models during action observation, which is assumed in 

predictive coding models in social perception, has not been tested. This thesis will make 

a first step towards filling this gap. 

 

Thesis overview 

The current thesis aims to directly test that person-specific internal models are used in 

action observation to predict other peoples’ forthcoming action. It uses a combination of 

classic “behavioural” measures from experimental psychology and embodied cognition, 

as well as electroencephalography (EEG)/event-related potentials (ERPs), methods to 



34 

 

capture more naturalistic behaviour using motion tracking (in a ball kicking task), and 

observer recording of mimicry in a face-to-face social interaction. 

First, the experiments in Chapter Two test the proposal of person-specific models for 

action prediction by investigating whether the frequencies with which actors act towards 

or away from objects influences response times when their actions have to be identified, 

even though actor identity is completely task-irrelevant and participants are not 

explicitly aware of the individual’s different behavioural tendencies. If person-specific 

internal models are used in action identification, responses should be faster for actions 

that the actor more frequently performs, compared to an action that they perform more 

rarely. Importantly, the final experiment in Chapter Two also directly investigated 

online action predictions where participants had to report which action (an act towards 

or turn away) would happen next for the actor with a given object. 

Second, Chapter Three tests whether the effects, indeed, reflect anticipation of action 

rather than mere stimulus and/or response learning, in two ways. First, by measuring 

ERPs, which also provides an investigation into the underlying neural components 

involved in the person-models, it tests whether unexpected actions of the individuals 

elicit EEG components associated with prediction errors in social perception (i.e., the 

observer-related mismatch negativity). Second, it investigates whether there is transfer 

from verbal statements about which behaviour the actors would like to do, to later 

action observation, which would suggest that action meaning rather than abstract 

perceptual cues are being encoded when people watch and identify others’ actions. 

Third, Chapter Four, extends the proposal of person-models to consider both pre-

existing knowledge about well-known individuals (not just information established 

within the experiment), and tests whether person-knowledge is measurable not in action 

identification, but as “embodied effects” during action observation, showing activation 
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of one’s own motor system driven by the anticipated (but not observed) action. Here, 

based on a previously used experimental paradigm (Bach & Tipper, 2006; Tipper & 

Bach, 2011), famous tennis and football players are identified using either hand or foot 

responses. This tests whether having prior knowledge that someone is a football player 

primes or inhibits observer responses with a foot compared to a hand response, and 

whether this, again, depends on the situation in which they are encountered (in the 

athlete’s sporty environments or in neutral situations), even though this information is 

not required for the athlete-identification task. 

Fourth, the use of person-models for action prediction is investigated in a more 

naturalistic environment whilst testing the potential use of a novel measurement tool – 

the Microsoft Kinect Sensor (Chapter Five) by removing artificial responses (keyboard 

presses) and, instead, monitoring more realistic movements. Here, participants observe 

actors kicking a ball towards them each with, unbeknownst to participants, different 

behavioural tendencies (one tended to kick towards the right, and the other towards the 

left). Participants respond by ‘blocking’ the ball by stepping left or right, tracked by the 

Microsoft Kinect Sensor.   

Fifth, predictive person-models are investigated by adapting a mimicry paradigm 

(Chapter Six). Here, participants interact with two individuals, one of whom tends to 

perform one behaviour (face touching), and the other tends to perform a different one 

(foot tapping). These individuals are then encountered a second time, but this time they 

do not make the respective movements. This allows a test of whether participants 

continue making the movements associated with the two individuals, which, if found, 

would suggest that participants (implicitly) ‘learn’ that one person tends to be a foot 

tapper and the other a head toucher, and reactivate this when re-encountering them 

again, leading to predictive mimicry. 
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Finally, a general model is proposed which is discussed in light of both the research 

carried out in this thesis, and prior literature (Chapter Seven). Limitations and open 

questions are also discussed here.  
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Chapter Two - Implicit integration of object and actor 

information for behavioural prediction  

The previous chapter highlighted the importance of predictions for dynamic social 

interactions, specifically noting the lack of research about the influence of prior 

knowledge about the acting individuals’ behaviour. The current chapter develops a first 

paradigm to investigate how person-specific internal models for how our interaction 

partners tend to behave in specific situations guide action observation.  

Prior work has shown that observers re-activate general action-related information about 

others, such as the body parts used in the sport of famous athletes (Bach & Tipper, 

2006; Tipper & Bach, 2011), people’s last emotional expressions, or the direction of 

their gaze (Frischen & Tipper, 2006; Halberstadt et al., 2009). However, for efficient 

prediction, such general knowledge about others – such as someone’s last seen 

expression or the body part they use most – is not sufficient. Efficient internal models 

for behaviour prediction need to capture the situation dependency of people’s behaviour 

(Bach et al., 2014; Barresi & Moore, 1996; Mischel & Shoda, 1995), for example, that 

John typically reaches for chocolate but ignores peanuts, whilst Claire shows the 

opposite pattern (Barresi & Moore, 1996). Predictive internal models must, therefore, 

store – and re-activate – action knowledge in both a person- and situation-specific 

manner, predicting a reach in one situation and a withdrawal in others.  

The current studies used a simple action identification task to test whether such prior 

knowledge about an individual’s most likely actions in a given situation is used during 

action observation, and biases action identification towards these predictions. The 

paradigm involved two actors (John, Claire) and two objects (computer, football), and 

participants merely had to identify (via a button press) whether the actor acted with the 

object or turned away from it. Unbeknownst to participants, the frequencies with which 
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the two actors made these actions with the two objects varied. One actor (e.g., John) 

would typically (in 80% of cases) act with the ball and rarely (in 20% of cases) turn 

away from it. In contrast, he would typically turn away from the computer (in 80% of 

cases), and rarely interact with it. The other actor (Claire) showed the opposite pattern.  

As both the identity of the current actor as well as the current situation was completely 

irrelevant for the participants’ task of action identification, the automatic use of the 

actor’s behavioural tendencies to predict their most likely forthcoming action in a given 

situation can be tested. If participants form internal models that describe the two 

individuals’ behaviour in the two situations and use these models to make predictions 

about their forthcoming actions, then it should be reflected in their action identification 

times. Participants should be faster in identifying an action when it is typically carried 

out by the given actor, compared to the same action when carried out by the other actor. 

In the above example, participants should be faster when identifying kicking a football 

than typing at the computer for John, and vice versa for Claire, even though the overall 

action likelihoods – across individuals and situations – were exactly equivalent.  

This paradigm, therefore, tests not only whether participants incidentally acquire 

internal models of how the individuals behave in the different circumstances, but, more 

importantly, whether these internal models are accessed, fluently and routinely, 

whenever these individuals are seen again, even though neither situation nor actor are 

task-relevant. Such data would go beyond prior research by showing that (1) observers 

represent behavioural tendencies in a person-specific manner as theorised by Barresi 

and Moore (1996), (2) which is routinely activated during re-encounters with these 

individuals, and (3) is utilized to predict and facilitate identification of forthcoming 

actions. Note (4) that in this task, there is no simple relationship between individuals 

and response-relevant actions (e.g., withdrawals vs. interactions). Instead, it captures the 
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required situation dependency of other’s actions, such that the expected actions in each 

trial depended on both the current actor and the situation they are in, such that one actor 

typically interacts with one object and turns away from the other, and vice versa for the 

other individual. 

An important benefit of this design is that such complex interdependencies, where an 

event depends on the interaction of two factors, especially when task-irrelevant (as in 

the current case), are typically learned by participants in a largely implicit manner (see 

Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Maddox & Ashby, 2004). For 

example, in causal/statistical learning in the non-social domain, second-order 

relationships between instances are implicitly ‘learned’ (as demonstrated by faster 

responses to stimuli in line with these relationships compared to violations of these 

rules), but are often not able to be explicitly verbalised (Shanks & Stjohn, 1994). Even 

if such knowledge can be verbalised, it is rarely diagnostic of prediction effects seen in 

the response time task (e.g., Batterink, Reber, Neville, & Paller, 2015; Shanks & 

Perruchet, 2002). Rather than implying that there are distinct implicit and explicit 

learning systems, such findings may demonstrate that acquired internal models about 

the causal relationships between events can be used in two ways. First, during the 

response time task, the predictions can speed up perceptual and motor processing of the 

predicted events, leading to response time benefits when events follow the established 

relationships. In contrast, participants can also attempt to extract information from their 

internal models to make explicit judgments.  This attempt to reactivate the internal 

models in both situations may be imperfect and influenced by different individual 

differences, much like general memory, leading to the lack of clear relationships (e.g., 

Cleeremans & Destrebecqz, 2003; Jamieson & Mewhort, 2009; Shanks & Perruchet, 

2002).  Evidence supportive of this view shows that being able to report the underlying 

rules is enhanced when the same cues are used during encoding and retrieval, and if 
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they equate to the same knowledge gained in the response time task (Shanks & Stjohn, 

1994). Similar dissociations are seen in social psychology for explicit judgments about 

others (Hastie & Park, 1986; Tormala & Petty, 2001), which may also be showing this 

ad-hoc ‘reading’ of internal models such that judgements were not made during the 

task, but post-hoc by drawing conclusions based on simulation/imagining/memory from 

what was observed.  

Experiment 1a establishes the basic paradigm, showing that participants access internal 

models of others’ likely behaviour in the given situation during action observation, even 

though actor and situation are task-irrelevant. Experiment 1b replicates this using a 

further direct measure of explicit awareness. Experiment 1c investigates the prediction 

effects when the behavioural tendencies of the actors are explicitly given to participants. 

Experiment 1d dissociates such explicit and implicit knowledge. Finally, Experiment 1e 

provides a more direct measure of action predictions based on this person-knowledge.1 

 

Experiments 1a and 1b – prediction based on person-specific 

behaviour tendencies 

Experiments 1a and b test whether action observation automatically draws upon internal 

models that describe an individual’s typical behaviour in different circumstances. In a 

simple action observation task, participants reported whether an actor acted towards or 

away from an object, while both the situational context (in front of a computer, in front 

of a football) and the identity of the actor (Claire, John) varied. Unbeknownst to 

participants, the two actors were differentially likely to perform each action in each 

situation, such that one actor would typically act towards one object and away from the 

                                                 
1  

Note, Experiments 1a, b and d have recently been published in a peer-reviewed journal (see Appendix). 
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other, and the other actor would perform the opposite behaviours. It was hypothesized 

that actions would be identified more quickly when carried out by an individual that 

typically performs this action in this situation, compared to an individual that carries it 

out more rarely.  

Such an effect of actor identity (and their prior behaviour) on action identification 

would show, first, that observers establish internal models of other’s behavioural 

tendencies towards different objects. Second, and more importantly, because actor and 

object were completely task-irrelevant, they would show that these internal models are 

accessed automatically and used to make action predictions. Third, they would show 

that these predictions bias action identification towards the most likely actions of the 

individuals to facilitate their identification compared to other actions (which are, 

overall, equally frequent, but typically carried out by someone else).  

Pilot testing established that participants typically remain unaware of the experimental 

manipulation (only 3.61% of participants explicitly detected the pattern), probably 

because both person and situation are task-irrelevant, and because the actors’ behaviour 

depended on the interaction of situation and actor factors, which is harder to detect and 

verbalise than more straightforward contingencies (Ashby et al., 1998; Maddox & 

Ashby, 2004). This lack of explicit awareness was further investigated in Experiment 1a 

by testing, (1) in a funnel debrief, whether participants noticed any patterns in the 

stimuli, as well as (2) by testing for more tacit information by asking participants to rate 

which objects they thought the two individuals “liked” to interact with more.  

Both questions measure potentially dissociable components of participants’ explicit 

knowledge. Question one tests for spontaneous detection of the manipulation that could 

have guided strategic responses of participants. Question two tests whether participants 

could, in principle, access their internal person models, if effectively probed. The latter 
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question therefore does not reflect explicit knowledge about the global co-variation 

patterns, but the generation of such knowledge at the time of probing, perhaps by 

bringing to mind remembered instances of the seen stimuli (Shanks & Stjohn, 1994). 

Both questions therefore allow us to investigate, first, whether any predictive effects 

during action observation depend on such explicit knowledge (via regression analyses), 

and, second, whether the implicitly formed internal models can be accessed 

retrospectively to make judgements about the individuals. 

Experiment 1b replicated Experiment 1a, but now half the participants were asked the 

liking questions (as before) and the other half were asked how frequently they 

remembered that the actors had interacted with each object. In this way, the questions 

capture both components of person representations assumed by Barresi and Moore 

(1996), allowing us to test whether people can derive explicit knowledge both about 

which actions others typically carry out in different situations (frequency), and which 

mental states these behaviours imply (liking). 

 

Method 

Participants  

Forty-two undergraduates from Plymouth University took part in Experiment 1a (31 

females, 37 right handed, mean age = 20.40 years, SD = 3.71 years), and fifty-seven in 

Experiment 1b (49 females, 51 right handed, mean age = 20.39, SD = 5.56 years), in 

exchange for course credit. Sample sizes were determined with G-Power (Erdfelder, 

Faul, Lang, & Buchner, 2007) on pilot data from different participants (n = 42), which 

indicated that a sample size of at least 36 was required to reliably detect a main effect of 

Expectancy (dz = .625) with .95 power. Participants were excluded from further 
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analysis if they detected the experimental manipulation (Experiment 1a, n = 3, 

Experiment 1b, n = 2), or made more than 10% errors (Experiment 1a, n = 2). All 

experiments within this thesis were approved by the faculty ethical committee prior to 

data collection, and all measures, manipulations and exclusions are reported. In this, and 

all further experiments in the thesis, all reported p values are two-tailed. 

 

Materials and apparatus  

The autism quotient scale (AQ; Baron-Cohen, Wheelwright, Skinner, Martin, & 

Clubley, 2001) contained 50 questions to measure the presence of autism-like traits in 

neurotypical individuals. No correlations were found between these traits and any of the 

effects in the experiments so these data will not be discussed further. 

The experiment proper was controlled by Presentation (Neurobehavioral systems, Inc; 

version 14.9, Build 07.19.11) using a Windows XP SP3 1280x1024 32 bit colour 17” 

display. The stimuli consisted of 16 different two-frame sequences, which first show a 

neutral image of one of the two actors (John, Claire) in one of the two situations (next to 

a computer, next to a football), for 500 ms. This image was identical for both actions 

that might follow (interact, turn away), and served as a prime for the activation of 

person- and situation-specific internal models. The second image then showed the actor 

either interacting with this object (typing on the computer, kicking the football) or 

turning away from it, either until the participant made a response or for 2000 ms. The 

two images were presented without an inter-stimulus interval, creating the impression of 

apparent motion (Wertheimer, 1912). Static images were used rather than video clips to 

enable the removal, via photo-editing, of all cues for context such that only the object 

and actor were influential, and to provide unambiguous onset times for the action 

judgments (the second image in the sequence). To reduce Simon-like response effects 
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(Simon, 1969), in one half of the sequences, the object was presented on the left of the 

individuals, and in the other half it was on the right (see Figure 2.1).  

  

Figure 2.1. Schematic of the trial sequence.  

Each trial started with a fixation cross (400 ms) and a brief blank screen. Each action started with an 

image showing one of the two individuals (left, John; right, Claire) in one of the two situations (at a 

computer, top; near a football, bottom). They then either interacted with the object or turned away from it, 

with one individual typically interacting with one object and turning away from the other, and vice versa 

for the other individual. 

 

In the first exit questionnaire, participants in Experiment 1a, and half of participants in 

Experiment 1b, rated how much each actor liked each object on a Likert scale from -4 to 

4 with no zero point (e.g., “How much do you think John liked the ball?”). The second 

half of participants in Experiment 1b rated how much each actor interacted with each 

object using the same scale.  

The second exit questionnaire consisted of five questions identifying any evidence of 

explicit knowledge of the experimental manipulation that could guide strategic 

responses. They were first asked “How easy did you find the task of identifying whether 

the actors interacted with the object or turned away from the object?” by circling a 

number between 1 “really difficult” and 10 “really easy”. They were then asked: “Did 

you find one actor easier to identify than the other? If so please state which one.”, “Did 
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you find one action easier to identify than the other? If so please state which one.”, “Did 

you notice anything unusual about any of the actors or objects?”, and “Did you notice 

any patterns in the stimuli?” 

 

Procedure 

Participants completed the AQ, before receiving written and verbal instructions for the 

computer task. When the experimenter was satisfied that the task was understood, 

participants completed the computer task, which contained 240 trials. Both actors (John, 

Claire) were shown equally often in each situation (in front of the computer or football), 

but the frequency of how often they interacted or turned away from each object varied. 

In 80% of the trials, the actors would perform their typical action, while in 20% they 

would perform their atypical action. Thus, for one participant, John would interact with 

the computer in 80% of cases and turn away from it in 20% of cases, while he would 

turn away from the football in 80% of cases and interact with it in 20% of cases. Claire 

would show the reverse contingences (interact with the football in 80%, and the 

computer in 20%, of the cases). These contingency mappings were counterbalanced 

across participants. The trials were presented in implicit blocks of 40 (four repetitions of 

the eight regular trials and one set of the oddball trials) to ensure an equal distribution of 

oddball trials across the experiment.  

Each trial started with a blank screen followed by a fixation point in the centre of the 

screen (400 ms). After a blank screen of 400 to 800 ms (randomly chosen), one of the 

two-frame sequences was presented. Stimulus onset asynchronies (SOAs) between the 

first and the second frame of the action sequences was either 150 ms or 850 ms in 

Experiment 1a but, because no effects depended on SOA, in Experiment 1b the 

sequences followed each other with a fixed SOA of 500 ms. Participants pressed the 



46 

 

“UP” arrow key to identify that the actors were interacting with the objects (either 

typing or kicking), and the “DOWN” arrow key to identify that the actors were turning 

away from the objects. Participants were asked to respond as quickly and as accurately 

as possible. If they took longer than 2000 ms or responded incorrectly, an error message 

reminded them of the correct button assignment. After the experiment, participants 

completed the two exit questionnaires, were thanked and fully debriefed. 

 

Trial exclusions 

The first twelve trials of each experiment were considered training trials and excluded. 

Additionally, trials were excluded if they fell within any of the following criteria: (1) 

trials with RTs greater than 2000 ms (maximum duration of the response interval), (2) 

trials with anticipations (i.e., responses before the critical second frame), (3) trials where 

Presentation timing was uncertain (measurement uncertainties larger than 10 ms), and 

(4) trials with RTs over three standard deviations from this participants’ condition 

mean. For the analysis of RTs, error trials were additionally excluded. 

 

Results 

Funnel debrief 

The average overall ease of the task was perceived to be 7.79 (out of 10) for Experiment 

1a, and 7.61 for Experiment 1b. The actors and actions/objects were equally salient with 

neither perceived as being easier to identify conclusively (see Table 2.1).  
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Table 2.1.   

Data showing which actor and action/object participants rated as easier to identify for Experiments 1a 

and b  

Character Ex1a Ex1b Action Ex1a Ex1b 

Claire 7 18 Ball/kick 10 19 

John 9 11 Computer/type 17 24 

Neither  23 22 Interacting with an object 0 1 

   Turning from an object 2 3 

   None 8 8 

 

Participants’ responses to the funnel debriefing were examined. Thirty-six participants 

(85.71%) for Experiment 1a, and forty-six participants (80.71%) for Experiment 1b, did 

not identify anything unusual about the stimuli. Thirty-two participants (76.19%) for 

Experiment 1a, and forty-three participants (75.44%) for Experiment 1b, did not 

identify any patterns in the stimuli, and the remaining participants suggested a series of 

unrelated points such as differences with the direction the characters faced, or 

differences with clothing. Some participants suggested they could identify when an 

acting towards vs. turn away action would happen, or the direction the characters would 

face (which is unlikely given that the order of the stimuli was randomly assigned). 

Three participants (7.14%) in Experiment 1a, and two participants (3.51%) in 

Experiment 1b, guessed the correct pattern and were removed from further analyses.   

4.58% of trials were excluded in Experiment 1a based on the exclusion criteria, and 

1.28% from Experiment 1b. The remaining data were analysed with a repeated 

measures ANOVA with the factors Observed Action (act with object, turn away from 

object) and Action Typicality (typical, oddball), separately for response times (RTs) and 

Error rates. 
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Response times  

The analysis of Experiment 1a revealed no main effect of Observed Action, F[1,36] =  

2.233, p = .144, ηρ²  = .058, but a marginally significant main effect of Action 

Typicality, F[1,36] = 3.140, p = .085, ηρ² = .080, which was further qualified by an 

interaction between both factors, F[1,36] = 6.378, p = .016, ηρ² = .151. As can be seen 

in Figure 2.2, actions towards objects (kicking the football, typing on the computer) 

were identified more quickly when they were typical for the actor compared to when 

they were atypical, t[36] = 3.330, p = .002, Cohen’s d = .16, but no such effect was 

found when actors turned from the objects, t[36] = .518, p = .607, d = .04.  

The analysis of Experiment 1b fully replicated these findings. There was a marginally 

significant main effect of Observed Action, F[1,51] = 3.070, p = .086, ηρ² = .057, and 

the predicted effect of Action Typicality, F[1,51] = 12.314, p = .001, ηρ² = .194, with 

faster responses to actions that were typical of that actor compared to actions that were 

atypical. As in Experiment 1a, this effect was qualified by an interaction of both factors, 

F[1,51]= 12.773, p = .001, ηρ² = .200. Follow-up t-tests replicated that the RT 

advantage for typical relative to atypical actions was only present when the actors acted 

towards the objects, t[51]= 4.620, p < .001, d = .29, but not when they turned from 

them, t[51] = .379, p = .707, d = .021. Entering group (liking questions, frequency 

questions) as a between subjects factor did not reveal any further effects, all F ≤ 1.146. 
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Figure 2.2. Response time and exit questionnaire data for Experiments 1a and 1b 

Top panel: average response times in Experiment 1a (left panels) and 1b (right panels). In each panel, 

the left bars show identification of actions towards objects (typing on a computer, kicking the football), 

and the right bar shows actions away from objects. The black bars reflect actions expected of this 

individual in the given situation, and white bars show the action expected of the other individual. Error 

bars show the standard error of the mean.  

Middle panel: correlation between prediction effects in the RTs for actions towards objects and the 

corresponding differences in perceived object liking and interaction frequency for individuals who either 

identified (unfilled diamonds) or did not identify (filled diamonds) the behavioural pattern in Experiment 

1a (left panels) and 1b (right panels). 

Bottom panel: correlation between prediction effects and differences in perceived action frequency. 
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Error rates 

In Experiment 1b there was a main effect of Observed Action, F[1, 49] = 5.155, p 

= .028, ηρ² = .095, with more errors in the acting towards than turning away trials, but 

this was unrelated to the hypotheses. As seen in Tables 2.2 and 2.3, there were no other 

significant effects in either experiment (Fs ≤ 2.124).  

  

Table 2.2.  

Mean and SD for the proportion of errors for Experiment 1a 

  Likely for this actor – Mean 

(SD) 

Unlikely for this actor – Mean 

(SD) 

Acting towards objects .04 (.03) .05 (.05) 

Turning away from objects .05 (.05) .04 (.04) 

 

 

Table 2.3. 

Mean and SD for the proportion of errors for Experiment 1b 

 Likely for this actor – Mean 

(SD) 

Unlikely for this actor – Mean 

(SD) 

Acting towards objects .03 (.02) .04 (.04) 

Turning away from objects .04 (.04) .03 (.04) 

 

Liking and frequency ratings 

Post experiment, participants rated how much the two actors liked the two objects (in 

Experiment 1a, and group 1 of Experiment 1b), or how much each actor had interacted 

with them (group 2 of Experiment 1b). Objects that were typically acted upon by the 

given actor were rated as more liked by this actor (Experiment 1a; M = 1.79, SE = 1.52, 

Experiment 1b; M = 1.74, SE = 1.21) than objects they typically turned away from 

(Experiment 1a; M = -0.17, SE = 1.89, Experiment 1b; M = 0.40, SE = 1.82), for 

Experiment 1a (t[36] = 3.818, p = .001, d = 1.05) and group 1 of Experiment 1b (t[26]= 
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2.498, p = .019, d = .80). Likewise, when the objects were typically acted upon they 

were rated as being interacted with more (M = 2.20, SE = 1.06) than when they were 

turned away from (M = 0.50, SE = 1.49) for group 2 of Experiment 1b (t[24] = 4.332, p 

< .001, d = 1.30). 

Having established that participants could access some explicit information about the 

two actors’ behaviour, a regression analysis then measured the relationship between 

apparent explicit awareness of actors’ behaviours as seen in the liking and frequency 

ratings, and the response time effect for actions towards objects (the difference between 

likely and unlikely actions for the actor), for each of the three participant groups 

separately. Thus, those five participants that explicitly detected the contingencies 

between actors, objects and actions were also included in this analysis.  

None of the three participant groups showed a significant correlation between 

awareness and liking/frequency ratings, (Experiment 1a, r = .187, n = 40, p = .248; 

Experiment 1b liking, r = .252, n = 28, p = .195; Experiment 1b frequency, r = .210, n = 

26, p = .304). However, in each, the intercept was different from zero (Experiment 1a, t 

= 3.325, p = .002; Experiment 1b liking, t = 1.710, p = .099; Experiment 1b, frequency, 

t = 2.117, p = .045), indicating that even those with no apparent explicit awareness in 

the liking or frequency ratings still showed significant RT prediction effects. The same 

pattern is seen when the participants who detected the manipulation were excluded, with 

the exception that the intercept for the liking ratings in Experiment 1b now failed to 

reach marginal significance (t = 1.519, p = .142).   

To attain enough power to detect weaker correlation effects, the data from all three 

subgroups were pooled. These analyses, indeed, revealed a marginally significant 

correlation between the post-experiment ratings and the response time effects (all 

participants, correlation; r = .186, p = .073; unaware participants only, correlation; r 
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= .181, p = .089). In addition, they confirmed the significant intercept (all participants, t 

= 4.957, p < .001, unaware participants only, t = 4.544, p < .001), indicating that even 

those who were unable to explicitly recall the actors’ behaviour still showed reliable 

response time prediction effects. 

 

Anticipations 

Whilst the response time data revealed that participants anticipate the actors’ typical 

actions across situations, it is important to identify whether this implicit behavioural 

knowledge of the actors also causes participants to anticipate their response, and 

identify the expected action even though it is not yet presented (i.e., during presentation 

of the neutral image). Due to the low number of anticipations (6.46% across both 

experiments), the data from both experiments were combined to increase power for a 

repeated measures ANOVA with the factors Expected Action (act with object, turn from 

object) and Response (typical action identified, atypical action identified), with 

Experiment (Experiment 1a, Experiment 1b) as a factor of no interest, for those 

participants who made at least one anticipation, n = 31. There was a trend towards 

significance for the main effect of Response, F[1,30] = 3.214, p = .083, ηρ² = .097, with 

more anticipations for typical actions (M = .011, SE = .003) than atypical actions (M 

= .008, SE = .003). However, there was no main effect of Expected Action (F = 2.059), 

nor an interaction between the two (F = .145), and the factor Experiment did not interact 

with the other two factors, all F ≤ 1.136. Thus, the anticipations show that others’ 

behavioural tendencies not only affect the speed of action identification, but also 

sometimes caused participants to anticipate the forthcoming response while the neutral 

image was still onscreen. 
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Discussion 

Experiments 1a and b provided first evidence that action observation draws upon 

knowledge of how others act in different situations. Participants identified actions more 

rapidly if they were typical for the given actor, compared to the same action when 

executed by an actor for which they were atypical. These effects were found even 

though actor and situation were task-irrelevant, and even though the overall frequency 

of actions was controlled across actors and situations. The effects therefore provide a 

first indication that participants are learning the behavioural tendencies of the actors 

with the different objects, and reactivating this knowledge in a person-specific manner, 

such that their most likely actions are predicted and are easier to identify in a given 

situation. This supports the theory that we store information about people in terms of the 

‘intentional relations’ they have in given situations (Barresi & Moore, 1996). 

In both experiments action typicality predominantly affected identification of actions 

towards objects (kicking, typing) rather than actions away from them. Although not 

directly predicted, this fits with research that action prediction specifically occurs for 

meaningful actions towards objects (for a review see Bach et al., 2014), whereas object 

avoidance is coded as an inhibition of approach (Friedman & Leslie, 2005; Leslie, 

German, & Polizzi, 2005). Indeed, even though there are neuronal populations for 

representing intransitive action (Fadiga et al., 1995; Press et al., 2012), the majority of 

mirror neurons, one of the proposed core mechanisms of action understanding and 

prediction, only fire for actions towards objects (for a review see Fabbri-Destro & 

Rizzolatti, 2008, see also Enticott, Kennedy, Bradshaw, Rinehart, & Fitzgerald, 2010). 

Furthermore, such object-directed actions in humans have been shown to be represented 

in dedicated neuronal populations (Agnew, Wise, & Leech, 2012), with further evidence 

that, in humans, afforded interactions with an object are perceived and predicted more 
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readily than non-afforded actions (Bach et al., 2005; van Elk et al., 2009). Similarly, 

even high level predictions of what other people will do (e.g., in theory of mind tasks) 

occur for approach-related behaviours, but not for avoidance (Friedman & Leslie, 2005; 

Leslie et al., 2005). Thus, the current results are in line with the ‘special status’ assigned 

to object-directed action within action observation. Similarly, the current results support 

the theory that ‘intentional relations’ between people and situations are only formed for 

goal-directed behaviours (Barresi & Moore, 1996). 

The present effects are unlikely to result from strategic responses by participants with 

explicit awareness of the experimental manipulations for several reasons. First, only 

five participants explicitly recognized the experimental manipulation when probed after 

the experiment (and these were removed from analysis). Second, effects reflecting 

strategic response preparation should have been found irrelevant of action type (act 

towards, turn away) rather than primarily for actions towards objects, especially as 

overall response times between these conditions did not differ. Finally, strategic 

response preparation effects should be seen not only in response time, but specifically in 

error rates (Dale, Duran, & Morehead, 2012; Duran & Dale, 2009; Marcus, Karatekin, 

& Markiewicz, 2006), yet no such effects were found. Of course, the anticipation data – 

the responses that participants made during the neutral image before the action was seen 

– could be considered a form of error data because participants responded before the 

action had been seen. Whilst power was low due to the reduced sample size (which 

limits the potential conclusions that can be drawn), the data replicated the prediction 

effect seen in the response times as there were more anticipations responding that the 

action would be ‘typical’ than ‘atypical’.  

Importantly, despite an inability to identify the experimental manipulation, participants 

could make reliable judgments about which objects the two actors liked more, and 
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which they tended to interact with more. Thus, if John was typically seen interacting 

with the computer but turning away from the football, he was later judged to like 

computers more than footballs. This implies that such person-knowledge is not fully 

opaque, but can be accessed – in an offline, retroactive fashion – to generate 

behavioural information, perhaps by playing through, in one’s mind, relevant instances 

in memory. Interestingly, this ability to access such knowledge was not strongly related 

to the prediction effects in response times as even those participants that did not show 

any effects on the liking ratings still showed significant prediction effects in response 

times. Therefore, prediction effects in explicit ratings and action identification are at 

least partially dissociable, further highlighting that the facilitated action identification 

responses were not due to strategic anticipatory processes of participants that “saw 

through” the experimental manipulation. 

This data is therefore consistent with the notion of person-specific models, which learn 

the behavioural tendencies of how individuals act in certain situations, and reactivate 

this knowledge when the specific individual is seen again in a similar situation. 

However, the data cannot fully reject other potential alternative hypotheses such as 

stimulus response learning for example, that participants simply learn which motor 

responses (button presses) are most likely required when seeing a person in a given 

situation. Such accounts would also hypothesise facilitated responses to the more 

frequent stimuli. However, stimulus response learning would not hypothesise the 

interaction between action type and expectancy, instead it would hypothesise that 

independent of action type (act towards or turn away from the objects), response times 

should be faster when participants see the most frequent pairings (e.g., John kicking the 

ball, John turning from the computer). Thus, there is tentative evidence against these 

alternative accounts, but the current findings must be replicated, and further evidence is 

required, to more conclusively support the person-model hypothesis.                                          
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Experiment 1c – making the behavioural tendencies explicit 

The previous experiments suggested an implicit effect to the facilitated response times 

seen for typical compared to atypical actions for specific actors in specific situations. 

Experiment 1c investigated the influence of explicitly providing participants with the 

behavioural tendencies of the two actors. Whereas previously participants ‘chose’ which 

information to pay attention to, here the behavioural tendencies of both actions towards 

and away from the objects were highlighted. Thus, it was hypothesised that there would 

be facilitated response times for both action types when they were typical rather than 

atypical for the actor, and that such explicit effects would affect error rates as well (Dale 

et al., 2012; Duran & Dale, 2009; Marcus et al., 2006).  

 

Method 

Participants 

40 participants (28 females, mean age = 29.98 years, SD= 14.44; 33 right handed) took 

part in the study in exchange for £4 or course credit.  

 

Materials, procedure and apparatus 

The computer task was identical to Experiment 1b but, before it began, participants 

were told that one actor would mostly kick the football and turn away from the 

computer, and that the other actor would do the opposite. Furthermore, there were no 

post-experiment questionnaires.  
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Results 

 Response times 

12.18% of trials were excluded in total (5.72% for error trials, 2.67% for scores greater 

than 3 SD from the mean, and 3.79% for responses that were either too slow, involved a 

double response from the participant, were an anticipatory response, or where 

Presentation timing was uncertain). The remaining data were analysed with a repeated 

measures ANOVA with the factors Observed Action (act with object, turn away from 

object) and Action Typicality (typical, oddball).  

This analysis revealed a main effect of Observed Action, F[1,34] = 4.915, p = .033, ηρ² 

= .126, with faster response times for actions towards (M = 471.09, SE = 13.60) than 

away (M = 486.45, SE = 11.90) from objects. There was also the predicted main effect 

of Action Typicality, F[1,34] = 29.979, p < .001, ηρ² = .469, with faster responses to 

typical (M = 469.37, SE = 11.92) relative to atypical (M = 488.21, SE = 12.90)  actions. 

However, there was no interaction between the two factors, F[1,34]= 2.306, p = .138, 

ηρ² = .064. Follow-up t-tests revealed that the RT advantage for typical relative to 

atypical actions was not only present when the actors acted with the objects (kicking a 

football, typing at a computer), t[34]= 5.356, p < .001, d = .28, but also when they 

turned away from them, t[34]= 3.467, p = .001, d = .21. 
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Figure 2.3 Response time and proportion of error data for Experiment 1c.  

The left panel shows average response times, and the right panel shows the average proportion of errors. 

The black bars reflect actions typical of this individual in this situation, and the white bars show the 

action typical of the other individual. The error bars show the standard error of the mean. 

 

Errors 

The same ANOVA on the error data revealed a main effect of Observed Action, F[1, 

33] = 6.051, p = .019, ηρ² = .155, with more errors in the acting towards (M = .05, SE 

= .01) than turning away (M = .029, SE = .004) trials. There was also a main effect of 

Action Typicality, F[1, 33] = 4.857, p = .035, ηρ² = .128, with more errors for atypical 

(M = .05, SE = .01) than typical (M = .03, SE = .01) trials. However, there was no 

interaction between Observed Action and Action Typicality, F[1,33] = 1.774, p = .192, 

ηρ² = .051. Follow-up t-tests revealed more errors for atypical relative to typical actions 

when the actors acted with the objects (kicking a football, typing at a computer), t[33]= 

2.026, p = .051, d = .37, but not when they turned away from them, t[33]= .794, p 

= .433, d = .00. 
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Discussion 

Experiment 1c replicated the effect of faster response times for typical than atypical 

actions, when typicality was explicitly provided to participants. Again, supporting the 

hypothesis that we store information about people in terms of the ‘intentional relations’ 

they have in given situations (Barresi & Moore, 1996). However, in this case the 

facilitated response occurred irrespective of action type (acting towards or turning 

away). In contrast, during the previous (implicit) tasks, a predictive bias was seen more 

strongly for acting towards trials. This difference likely results from the fact that, here, 

the behavioural tendencies of each actor were explicitly stated for both action types, in 

other words, that one actor would interact with one object, but turn away from the other. 

This highlights a dissociation between explicit and implicit awareness - when no 

explicit information is given, the focus is on goal-directed actions towards objects, but 

when explicit information is given, predictions are made more equally to both actions 

towards and away from objects.  

Other aspects of the data support this dissociation. For example, a comparison of the 

effect size for the main effect of Action Typicality for Experiment 1c (.469), and 

Experiment 1a (.058) and Experiment 1b (.057) shows a larger effect when participants 

are explicitly told the pattern than during the more implicit tasks. Moreover, this is the 

first study in this series to show a significant difference in error rates for typical and 

atypical actions. This error data is therefore in line with the idea that explicit awareness 

allows participants to prepare a response ahead of time, which then leads to erroneous 

responses if the actor does not behave according to predictions. Indeed, in other non-

social predictive coding paradigms just such an error effect is typically reported when 

participants make explicit behavioural wagers for what will happen in a given situation 

(Dale et al., 2012; Duran & Dale, 2009; Marcus, Karatekin, & Markiewicz, 2006).  
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Whilst the potential for at least partially separable implicit and explicit awareness of the 

person-models was not a main aim of the thesis, it does fit in with prior research. 

COVIS models (COmpetition between Verbal and Implicit Systems; e.g., Ashby et al., 

1998; Maddox & Ashby, 2004) suggest that there are two learning systems; verbal 

categorisation (for when the rules of learning can be easily verbalised), and implicit 

categorisation (when the rules are more complex such that they cannot be verbalised). 

Thus, it could be argued that the previous experiments (1a and 1b) used the implicit 

categorisation data as the person-models were not easily verbalisable to participants. 

However, in the current experiment, the person-models were verbalised to participants 

and so they were able to use the explicit verbal categorisation learning system. This link 

is, of course, tentative for the time being as COVIS models are typically based on very 

basic, non-social stimuli and this is, to my knowledge, the first time these models have 

been applied to more higher level, social situations.  

Thus, the current evidence suggests that there is a greater focus on object-directed 

actions unless attention is explicitly drawn to the turning away trials too (as in the 

current experiment). However, this act of bringing person-models into explicit 

awareness, as in Experiment 1c, is a much more artificial task – often in social 

interactions we are not told which information to focus on, but must make that decision 

(implicitly or explicitly) ourselves.  Also, the current experiment cannot yet differentiate 

the person-model hypothesis from simple stimulus response learning accounts. 

Therefore, the next experiment tests the influence of explicit knowledge in a more 

ecological way. Rather than simply giving the behavioural tendencies of the actors, 

Experiment 1d gives a hypothesis for how actors tend to behave in much the same way 

as gossip occurs.  
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Experiment 1d – the effects of an explicit hypothesis for the person- 

model when trials match or mismatch the hypothesis 

Experiment 1d rests on the idea that learning by observation is not our only information 

source. People love to gossip (Beersma & Van Kleef, 2012), so mutual acquaintances 

can provide further information about other individuals, for example, using gossip. With 

gossip, people communicate their (first-hand or second-hand) experiences with the 

individual and the ‘gossipee’ is then left to assess this when they interact with this 

individual themselves. For example, John might say to Claire that George is usually 

very cheerful. When Claire meets George for the first time she will likely compare his 

demeanour with John’s ‘cheerful’ hypothesis. George may be cheerful during their 

encounter or he may not. Thus, Experiment 1d provides a first test of what happens 

when observers are given both accurate and inaccurate information about the 

behavioural tendencies of two actors. 

The current study attempted to capture this explicit social knowledge, and test whether 

similar internal models are established when given such explicit knowledge about 

individuals, and how such explicit knowledge interacts with (potentially conflicting) 

information provided by the real-world action likelihoods of the individuals. Indeed, 

social psychology has already shown the influence of explicit person descriptions on 

subsequent person-memory and reading times (C. E. Cohen, 1981; Heider et al., 2007; 

Srull & Wyer, 1989; Stangor & McMillan, 1992; Stern et al., 1984). Experiment 1d 

goes further to test the person-specific nature of these internal models. 

At the start of the experiment, participants were given information on how the actors 

typically behaved (“John typically kicks the ball, but rarely types on the computer”). 

They performed the same action identification task as in the previous experiments, but 

were asked to assess, after observing these actors across a block of trials, their level of 

agreement with the person-description. Across blocks, the actual behavioural tendencies 
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could either follow the explicitly provided information (in 75% of the cases), contradict 

the explicit information (the actors perform the opposite action in 75% of the cases), or 

the actors could show no preference for any action (all actions were displayed an equal 

number of times).  

This task pits implicitly derived internal models of other people from those derived by 

explicit information. It tests, first, whether explicit information about others leads to 

similar biases in identifying their actions as the implicit information, and leads to a 

“social confirmation bias” where people judge actions based on what they expect to 

happen rather than what is perceived. Second, it tests the extent to which explicit and 

implicit predictions interact.  

It is hypothesized that independent of explicit information, statistical regularities within 

the observed stimuli will still influence response times such that responses are 

facilitated for more frequent actions. In contrast, the explicit information should exert a 

stronger influence on the error data. As suggested in Experiment 1c, and prior research 

in non-social predictive coding (Dale et al., 2012; Duran & Dale, 2009; Marcus et al., 

2006) participants may use the explicit information to begin preparing their responses. 

 

Method 

Participants 

49 participants (39 females, mean age = 20.92 years, SD = 6.06; 44 right handed) took 

part in the study in exchange for course credit. One participant was excluded for making 

more than 10% errors. 
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Materials and Apparatus 

Stimuli and the course of each trial were identical to the previous experiments. The 

experiment was controlled with E-Prime 2.0 (Psychology Software Tools, Pittsburg, 

PA), and responses were recorded with button boxes. 

The only questionnaire used was the social intelligence scale (Silvera, Martinussen, & 

Dahl, 2001). The scale consists of 21 questions each on a 7-point Likert scale. Examples 

of questions are “I can predict other peoples’ behaviour”, “I often feel uncertain around 

new people who I don’t know” and “I can often understand what others mean through 

their expression, body language, etc.”. However, there were no significant correlations 

between this scale and the effects seen so this will not be discussed further. 

 

Design and Procedure 

Participants received detailed instructions and then underwent 16 practice trials of the 

action identification task with a third actor who did not appear in the main experiment. 

Participants were then informed of the secondary task of assessing the hypotheses, and 

were given a practice hypothesis that the actor typically kicked the ball, but turned away 

from the computer. This was followed by 12 practice trials in which 8 of the trials 

supported the hypothesis and 4 contradicted it. Participants then rated their agreement 

with the hypothesis on a 4-point scale (1 = “completely disagree”, 4 = “completely 

agree”). Practice trials consisted of a neutral photograph for 500 ms and then the action 

photograph for a maximum of 2000 ms. Feedback was given for slow or erroneous 

responses. 

Once the task was understood, participants were given an explicit description about the 

actors’ typical behaviour (e.g., John typically kicks the ball, but turns away from the 
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computer, and Claire typically types on the computer, but turns away from the ball), and 

told that they had to evaluate the appropriateness of this behaviour description after 

seeing the actors’ actual behaviour in each of the experiments’ nine blocks (32 trials 

each). At the start of each block participants were reminded of the explicit person 

description (which remained the same throughout the experiment), told that this was a 

new set of trials and to ignore what they had previously seen. They then performed the 

action identification task of Experiment 1b. Unbeknownst to participants, blocks 

conformed to the prior person description (75:25), contradicted it (25:75), or showed no 

preferred behavioural tendencies (all actions were equivocal; 50:50). After each block, 

participants rated the extent to which they agreed that the actors’ behaviour 

corresponded to the person descriptions at the start of the experiment.  

After the computer task, the social intelligence scale was administered.  

 

Results 

Response times 

7.26% of trials were excluded in total (5.33% errors and 1.93% for RTs greater than 3 

SD from the mean). The remaining data were analysed with a repeated measures 

ANOVA with the factors Action-Description Match (the observed action follows/does 

not follow the person description), Block-Description Match (observed statistics in the 

current block matches the person description, are equivocal, contradicts the description), 

and Observed Action (act toward object, turn from object).  

The analysis of RTs (Figure 2.4, left panels) revealed no main effect of Block-

Description Match, F[2,44] < 1, nor Action-Description Match , F[1,47] < 1, nor 

Observed Action, F[1,47] < 1, providing no evidence that actions that matched the 
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explicit information were generally identified more quickly than mismatching actions. 

However, there was an interaction between Block-Description Match and Action-

Description Match, F[2,46] = 5.062, p = .010, ηρ² = .180. Whilst actions that matched 

the hypothesis sped up response times when this was supported by statistical regularities 

(t = 2.260, p = .029, d = .66), this effect was eliminated when the action likelihoods 

were equal (t < 1), and reversed when the action that matched the hypothesis was 

actually the infrequent alternative (t = 2.060, p = .045, d = .60). This is direct evidence 

that action identification times are not affected by explicit information about the actors, 

but – replicating Experiment 1a and 1b – follows the prior action frequencies, speeding 

up the identification of frequent actions, and slowing down the identification of 

infrequent actions. There were no other effects (Fs ≤ 2.391).  

In previous “implicit” experiments, action likelihood specifically affected actions with 

objects, but not withdrawals from them. Therefore, planned comparisons were 

conducted with the Block-Description Match and Action-Description Match factors 

separately for actions towards objects and withdrawals. As expected from previous 

experiments, for the withdrawal trials there were no significant effects (all Fs ≤ 1.376), 

although, numerically, they showed the same pattern as actions towards objects. The 

acting towards trials, however, revealed the relevant interaction between Block-

Description Match and Action-Description Match, F[2,46] = 4.471, p = .017, ηρ² 

= .163. This confirms that, as previously found, the effects of statistical regularities on 

response times were primarily driven by actions towards objects, but not withdrawals. 
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Figure 2.4. Response time and proportion of error data for Experiment 1d 

The left panel shows the response times and the right panel shows the proportion of error rates. The black 

bars represent trials which followed the hypothesis and the white bars represent trials which are the 

opposite of the hypothesis. The top panels indicate actions towards objects and the bottom panels indicate 

turn away actions. 

 

Error rates 

Error rates were analysed with the same ANOVA model, and revealed no main effect of 

Block-Description Match, F[2,46] = 1.099, p = .342, ηρ² = .046, nor of Observed 

Action, F[1,47] = .360, p = .552, ηρ² = .008, but a main effect of Action-Description 

Match , F[1,47] = 7.404, p = .009, ηρ² = .136. Participants made more errors, and 

identified the wrong action, when actions conflicted with the explicit expectation. This 

was qualified by an interaction of Action-Description Match and Observed Action, 

F[1,47] = 6.385, p = .015, ηρ² = .120, showing that the increase of errors for non-

expected actions was stronger for actions towards objects than withdrawals. There was 

also an interaction of Block-Description Match and Observed Action, F[1,47] = 3.790, 

p = .030, ηρ² = .012. 
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Planned comparisons for acting towards objects revealed a main effect of Action-

Description Match, F[1,47] = 15.740, p < .001, ηρ² = .251, and a main effect of Block-

Description Match, F[1,47] = 6.348, p = .004, ηρ² = .216, but no interaction between the 

two, F = 1.178. Pairwise comparisons revealed a higher proportion of errors for 

frequent (M = .035, SE = .005) compared to infrequent (M = .021, SE = .003) actions, 

and a higher proportion of errors for mismatching (M = .038, SE = .004) compared to 

matching (M =. 021, SE = .002) trials, p < .001. 

However, there were no significant main effects or interactions for withdrawals (F ≤ 

1.265). As such, participants tended to judge actions towards objects (but not 

withdrawals) in light of the prior hypotheses irrespective of the actual statistical 

regularities.  

 

Behaviour ratings 

Data from the ratings indicating to what extent the individuals followed the predicted 

behaviour was analysed with a one-way ANOVA with the factor Block-Description 

Match (Blocks either matched the hypothesis, mismatched the hypothesis, or showed 

each action equally). This analysis revealed a main effect of Block-Description Match, 

F[1, 143] = 72.053, p < .001, showing that participants were well able to extract the 

actual behavioural statistics of the individuals in each block.  Participants tended to 

agree more with the hypothesis when what they saw matched what was hypothesised 

compared to when they saw equivocal trials (where actions were performed equally 

often for each actor with each object) or trials which opposed the hypothesis. Further 

post hoc t tests showed that participants were more likely to agree with the hypothesis 

when what they saw matched the hypothesis than when they saw either equal actions for 

both actors on both objects, t[47]= 8.201, p < .001, or when what they saw was 
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completely the opposite to what was hypothesised, t[47]= 10.391, p < .001. Moreover, 

participants were more likely to agree with the hypothesis when they saw equal actions 

for both actors on both objects compared with actions that completely went against the 

hypothesis, t[47]= 6.096, p < .001. 

  

Figure 2.5. Experiment 1d behavioural ratings 

The graph depicts average agreement with the behavioural ratings across blocks that either matched or 

mismatched the hypothesis, or showed each actor interacting with each object equally. The error bars 

show the standard error of the mean. 

 

Discussion 

Experiment 1d provided further evidence for person-specific internal models which 

predict how interaction partners behave in different situations. It demonstrated that such 

internal models can originate from two different sources, implicit information about 

others’ action likelihoods and explicit knowledge about how others will behave, each 

reflecting different mechanisms. Again, it provided support for COVIS hypotheses of 

two different learning systems (explicit verbal categorisation and implicit non-

verbalisable categorisation; Ashby et al, 1998; Maddox & Ashby, 2004) within more 

social stimuli. 
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As in the previous experiments, implicit information about others’ action tendencies 

provided by their prior behaviour affected action identification times, specifically for 

actions towards objects, but not withdrawals. Actions were identified more quickly 

when they were more frequently carried out by an actor in the given situation, compared 

to actions that this actor carried out less frequently. In contrast, explicit information 

about others’ behaviour did not affect action identification times; instead it affected 

error rates. Participants made more errors, and identified an action incorrectly, 

whenever it was not the action explicitly expected for this actor. This reveals that while 

action identification times follow the statistical regularities, the error data follow 

participants’ explicit knowledge. Participants sometimes classified an action as an 

action towards an object even though it was a withdrawal, simply because this reflected 

the explicit information they had received. For example, if the explicit hypothesis was 

that John will mostly kick the ball and turn away from the computer, they would be 

more likely to make an error response when he turned away from the ball or typed at the 

computer.  

This unique effect of explicit information on error rates is consistent with Experiment 

1c where, similarly, explicit information affected error rates. In addition, it matches 

other research on predictive coding in the non-social domain. Implicit information about 

statistical regularities often affects response speed, perhaps due to perceptual (or 

motoric) anticipations of forthcoming events (Dale et al., 2012). Explicit information, in 

contrast, might induce a tendency of participants to make behavioural “wagers” about 

what will be observed, which allows them to overtly test their hypotheses about the 

regularities guiding the events’ (or other people’s) behaviour (Marcus et al., 2006; see 

also Duran & Dale, 2009.). Indeed, in a recent study, it was exactly these explicit 

behavioural wagers that were associated with the explicit (rather than implicit) 

recognition of the underlying rules that governed the event sequences (Dale et al., 
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2012). Thus, even though it must be confirmed in future studies, the present 

dissociations are in line with predictive coding work that sees explicit behavioural 

wagers as key learning mechanisms for explicit learning and verification of hypotheses. 

This experiment has shown, first, that statistical regularities of how someone typically 

acts in a given situation informs ones’ knowledge about them, which is then reactivated 

when that person is re-encountered in that situation. Second, however, they have 

provided evidence for a parallel stream of predictions emerging from high-level explicit 

information that directly affects decision making of participants. This, again, provides 

support for the hypothesis of ‘intentional relations’, and how these can be formed for 

both concrete and abstract behaviours (Barresi & Moore, 1996). They also provide 

evidence against a simple stimulus learning account. Such an account would 

hypothesise that, as in Experiment 1c, response times should be faster when participants 

see the most frequently paired stimuli (e.g., John kicking, John turning from the 

computer) irrelevant of any higher-level information (such as the explicit hypothesis 

given to participants).  

However, the experiments so far only provide an indirect measure of prediction (by 

assessing response times and error rates), therefore, Experiment 1e investigates the 

influence of person-models on actual predictions by partially replicating the paradigm, 

but with intermittent ‘online’ prediction trials where participants must say what the 

actor will do next with a specific object. 
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Experiment 1e: online social action prediction  

For Experiment 1e the paradigm was adapted to include ‘prediction’ trials whereby the 

participants see the neutral photographs of the actors next to the object and must report 

what they believe happens next: whether the actor will interact or turn away from the 

object. If internal models are being used to make action predictions, and if participants 

can access this knowledge during the experiment, there should be more responses in 

line with typical than atypical actions within these trials.  

First, results in the ‘normal’ trials should reflect the previously seen response time 

facilitation towards typical than atypical actions. Second, there should, again, be 

evidence that participants can relay information from the person-models post hoc when 

asked specifically and directly about this information. Finally, in the ‘prediction’ trials 

there should be evidence of using the information from the person-models to make the 

predictions. If, as hypothesised, the previous findings reflect prediction effects based on 

these person-models, performance on these ‘prediction’ trials (i.e., responding in line 

with the person-models) should be better than chance. However, if these models are as 

implicit as Experiment 1a and b suggest then these responses should not be made in 

100% of the ‘prediction’ trials. Thus, if John typically kicks the ball, participants should 

be more likely to say that he will kick the ball during the prediction trials at a rate that is 

more often than chance, but less often than if they had complete awareness of the 

experimental manipulation (i.e., in 80% of trials).  However, if the previous results are 

due to a simple stimulus-response mapping, then the prediction trials should show 

explicit awareness because participants will just press the button they have learned to 

press with that stimuli.  
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Method 

Participants 

46 participants (38 females, mean age = 19.59 years, SD = 2.80; 39 right handed) took 

part in the study in exchange for course credit. Three participants were excluded for 

making more than 10% errors, and a further three were excluded for identifying the 

critical manipulation within the funnel debrief. 

 

Materials, apparatus and procedure  

The social intelligence scale (Silvera et al., 2001) was administered, but did not 

correlate with the principal task so will not be discussed further. 

The main computer task was identical to Experiment 1b except that interspersed within 

the normal trials (288 in total) were 48 ‘prediction’ trials where only the neutral 

photograph was shown, and participants had to indicate whether the actor would interact 

or turn away from the object. Whilst participants saw one fluid block of trials, the trial 

order was pseudo-randomised to more equally spread the prediction trials throughout 

the experiment. As such, the first 16 trials depicted the typical actions (e.g., John 

kicking the ball and turning away from the computer) followed by blocks with a ratio of 

40 ‘normal’ trials (with the same typical: atypical ratio of Experiment 1b) to 8 

prediction trials. The exit questionnaires were identical to previous experiments. 
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Results 

Funnel debrief 

The average overall ease of the task was perceived to be 6.28 (out of 10). The actors and 

the actions/objects were equally salient with neither being easier to identify 

conclusively (see Table 2.4).  

Table 2.4  

Data showing which actor and which object/action participants rated as easier to identify for 

Experiment 1e 

Character Easiest to identify Object/Action Easiest to 

identify 

Claire 15 Ball/kick 14 

John 8 Computer/type 13 

Neither Claire nor 

John 

23 Interacting with an 

object 

6 

  Turning away from 

an object 

3 

  None 9 

 

For Experiment 1e, thirty-six participants (78.26%) did not identify anything unusual 

about the stimuli, thirty-two (69.57%) did not identify any patterns in the stimuli, and 

the remaining gave similar proposed patterns as in previous experiments. As 

aforementioned, one participant correctly gave the manipulated pattern, and two said 

they had spotted a pattern, but did not specify what it was; all were removed from 

further analysis (6.52%).   

7.80% of trials were excluded in total (3.28% for error trials, 0.88% for scores greater 

than 3 SD from the mean, and 3.64% for Presentation uncertainties). For the response 

time data, erroneous responses were also excluded. The remaining data were analysed 
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with a repeated measures ANOVA with the factors Observed Action (act towards, turn 

away) and Action Typicality (typical, oddball), separately for response times (RTs) and 

Error rates. 

 

Response times  

The analysis revealed a main effect of Action Typicality, F[1,39] = 14.797, p < .001, 

ηρ² = .275, with faster RTs for typical (M = 519.73, SE = 11.00) than atypical (M = 

538.08, SE = 12.02) trials. However, there was no main effect of Observed Action, 

F[1,39] = 2.412, p = .128, ηρ² = .058, and no interaction between these factors, F[1,39] 

= 1.646, p = .207, ηρ² = .040. As can be seen in Figure 2.6, actions towards objects 

(kicking a football, typing on the computer) were identified more quickly when they 

were typical than atypical for the actor, t[39] = 3.741, p = .001, d = .32, and, 

numerically, the same pattern was present for the turn away trials, t[39] = 1.568, p 

= .125, d = .15.  

 

Figure 2.6 Response time and exit questionnaire data for Experiment 1e 

Left panel: average response times, the left bars show identification of actions towards objects (typing on 

a computer, kicking the football) and the right bar shows actions away from objects. The black bars 

reflect actions typical of this individual in the given situation, and the white bars show the action typical 

of the other individual. Error bars show the standard error of the mean.  

Right panel: correlation between prediction effects in the RTs for actions towards objects and the 

corresponding differences in perceived object liking, for individuals who either identified (unfilled 

diamonds) or did not identify (filled diamonds) the behavioural pattern.  
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Error rates 

The analysis revealed no main effect of Observed Action, F[1,38] = .236, p = .630, ηρ² 

= .006, nor of Action Typicality, F[1,38] = 3.122, p = .085, ηρ² = .076, and no 

interaction between the two factors, F[1,38] = .736, p = .396, ηρ² =.019. As can be seen 

in Table 2.5, actions towards objects (kicking the football, typing on the computer) led 

to a (numerically) higher proportion of errors when they were typical for the actor 

compared to when they were atypical, t[38] = .781, p = .439, d = 0. The same pattern 

was seen for turn away trials, but here the difference was statistically significant, t[38] = 

2.059, p = .046, d = .28.  

 

Table 2.5 

Means and SDs for the proportion of errors for Experiment 1e 

  Typical trials – Mean 

(SD) 

Oddball trials – Mean 

(SD) 

Acting towards objects .04 (.03) .04 (.04) 

Turning away from 

objects 

.04 (.04) .03 (.04) 

 

Prediction trials – number of anticipations  

For the prediction trials, the responses were converted into an ‘expectancy’ percentage 

(hereafter expectancy score). First, the same exclusion criteria as previous analyses (z 

scores, etc.) were applied to the prediction trials. Second, all prediction trial responses 

were separated into whether they had responded in line with prior behaviour (i.e., were 

expected) or whether they went against prior behaviour (i.e., were unexpected). Third, 

the expectancy scores were divided by the total number of responses. These scores were 



76 

 

then compared to chance (50%) and to explicit expectancy (80%) using one sample t 

tests.  

Participants performed significantly better than chance (M=.54, SD=.11), t[36] = 2.597, 

p = .013, but significantly worse than explicit expectation, t[36]= 15.012, p < .001. 

Thus, participants were predicting that the actors would behave as they had done in 

prior trials (i.e., if they mostly saw John kicking the ball then they were more likely to 

say that he would kick the ball than turn away from it in these trials), but this 

information did not reach explicit levels of expectation.  

There was a positive correlation between the anticipation expectancy data and the 

anticipation response time effect (i.e., when the typical trials were subtracted from the 

atypical trials; r = .532, n = 40, p < .001). Those participants who took more time to 

respond were more likely to respond in line with the (typical) prior behaviour of the 

actor. 

 

Liking 

As before, objects that were typically acted upon by an actor were rated as more liked 

(M = 1.98, SD = 1.38) than objects they typically turned away from (M = .44, SD = 

1.94), t[36] = 3.344, p = .002, d = .91. A regression analysis measured the relationship 

between apparent explicit awareness as seen in the liking ratings, and the response time 

effect for actions towards objects. Here, explicit awareness did not predict RTs (r 

= .190, n = 43, p = .223), however, as in previous experiments, the intercept was 

significantly different from zero (t = 2.719, p = .010). This indicates that even those 

participants with no apparent explicit awareness in the liking ratings still showed 

significant RT prediction effects. The same analysis was performed for the prediction 
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trial RT data. Here, explicit awareness did not predict RTs (r = -.006, n = 40, p = .971) 

and the intercept was not significantly different from zero (t = .944, p = .513). However, 

the same analysis was carried out with the expectancy scores from the prediction trials, 

and here explicit awareness did predict expectancy (r = .327, n = 40, p = .039) and the 

intercept was significantly different from zero (t = 28.411, p < .001). This shows, first, 

that those with more explicit awareness gave responses in line with typical behaviours 

for each actor during the online prediction trials. Second, those participants who rated 

the typically acted upon objects as more liked had a higher expectancy score (i.e., 

responded more in line with the person models during the online prediction task). 

 

 

Discussion 

Whilst the previous experiments in this chapter demonstrated that action observation 

draws upon internal models of how others typically act in different situations, 

Experiment 1e investigated whether participants could access their internal models to 

perform an explicit ‘online’ version of the task to make predictions about how the two 

individuals would behave. Thus, at various intervals the actor was shown neutrally with 

the object and participants reported what they expected them to do next. As before, 

typical actions were responded to faster than atypical actions. However, whilst the 

pattern was numerically the same, the interaction between Observed Action and Action 

Typicality did not reach significance.  

In the discussion of Experiment 1d it was proposed that internal models are created 

relatively implicitly, but that they can be tested in the form of explicit wagers (Marcus 

et al., 2006; see also, Duran & Dale, 2009) against incoming information. As the 

explicit prediction task in this experiment was online, such processing was ongoing 
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throughout the task. Thus, the act of having to make explicit predictions at forced 

intervals rather than in the natural way that explicit wagers occur (when sufficient 

evidence is deemed to have been acquired) may have disrupted the implicit learning 

mechanism by the increased attention interfering with implicit learning. This may also 

be responsible for the trend towards a higher proportion of errors for typical than 

atypical trials suggestive of a speed-accuracy trade-off. Indeed, previous explicit studies 

also elicited effects in the errors (see Experiments 1c and d). However, the speed-

accuracy trade-off here may simply reflect an increased confidence in participant 

responses, or an influence of their explicit predictions during the ‘prediction’ trials 

affecting the ‘normal’ trials.  

For the explicit prediction trials, participants were better than chance at identifying 

which actions come next (based on prior actor behaviour), but were much worse than 

explicit expectation.  This provides further evidence that participants are forming 

person-specific internal models, which are activated when the actor is re-encountered in 

that situation, and against the argument that the response time advantage for typical 

trials reflects a mere strategic response bias. If the results really were just a strategic 

response bias (or even the result of stimulus response learning) then, during these trials, 

responses should have been close to (or even beyond) expectancy levels as participants 

should just have seen John with the ball and been primed to press the UP arrow key. 

However, this was not the case.  

Strikingly, even though now there was an explicit prediction task, participants were still 

unable to identify the experimental manipulation during a funnel debrief, but they could 

make reliable judgments about which objects the two actors liked more based on which 

objects they more frequently interacted with. This, again, highlights at least a partial 

dissociation between implicit and explicit knowledge. Interestingly, those people with 
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more explicit awareness (indicated by a higher expectancy score) took longer to 

respond, and were more likely to respond in line with the prior behavioural tendencies 

during the liking questions. This suggests evidence of the prediction effects being based 

on social learning rather than on a mere stimulus response bias. 

 

General discussion 

The experiments in this chapter provided a first test of whether observers are sensitive 

to the likelihood that an actor carries out a given action in a given situation, and then re-

activate this knowledge whenever they are seen again. Indeed, the experiments showed 

that actions were identified faster if they were, in previous encounters, typical of the 

particular individual in that situation, compared to actions that were typical of another 

actor. Thus, kicking a football, for example, was identified more quickly if carried out 

by an actor who typically kicks the football compared to another actor who typically 

turns from it. These effects of actor identity on action identification were found even 

though the overall likelihood of the actions was controlled across actors, and both actor 

and situation were completely task-irrelevant. These findings therefore show that people 

identify actions not only based on the available kinematic information, but that they 

routinely take into account who is acting and how they behave in different situations.  

The effect of actor identity on action identification is in line with the notion that 

watching others can give rise to person-specific internal models of how they behave in 

different situations, and that this knowledge is re-activated whenever these individuals 

are seen again. The existence of such internal models of others’ typical behaviour has 

been theoretically predicted (Barresi & Moore, 1996; Newen, 2015), and the current 

data now suggest that they influence action observation and bias it towards the typical 
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actions so that they can be identified more readily (compared to less typical actions). 

Whilst previous research has shown that person-models provide a reference frame 

against which others’ behaviour can be judged (Hastie, 1984; Srull et al., 1985; Stinson 

& Ickes, 1992), these studies have typically used explicit information and measures that 

were far removed from online action observation, such as reading times or memory 

about individuals (C. E. Cohen, 1981; Heider et al., 2007; Srull & Wyer, 1989; Stangor 

& McMillan, 1992; Stern et al., 1984). Other studies have shown that people re-activate 

general action-related information about others whenever they are seen (e.g., the body 

parts used in the sport of famous athletes, Bach & Tipper, 2006; Tipper & Bach, 2011; 

prior emotional expression or the direction of gaze, Frischen & Tipper, 2006; 

Halberstadt et al., 2009; Joyce et al., 2015). The current data expands these findings by 

demonstrating how knowledge of the behavioural tendencies of actors in specific 

situations facilitates the identification of forthcoming action in a predictive manner. As 

such, they provide initial evidence for a sophisticated mechanism for action predictions 

based on both, who does the action, and what they are acting upon, in line with the idea 

that humans represent others, at least in part, in terms of their likely behaviour towards 

objects in their environment (Barresi & Moore, 1996). 

These findings also support recent predictive coding theories that social perception is 

not simply a bottom-up mechanism matching incoming kinematic information to own 

action knowledge (Iacoboni, 2009b; Rizzolatti & Craighero, 2004; Rizzolatti & 

Sinigaglia, 2010), but that action observation is guided by prior knowledge (Bach, 

Nicholson, et al., 2014; Csibra, 2008; Kilner et al., 2007). In such models, top-down 

information about the person (e.g., action tendencies, goals, beliefs) and their behaviour 

in different situations (e.g., objects available for goal achievement) are used to predict 

the most likely actions, which facilitates processing of expected actions and/or disrupts 

it when predictions mismatch reality (e.g., Bach, Nicholson, et al., 2014; Csibra, 2008; 
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Kilner et al., 2007). The current experiments expand prior research demonstrating that 

such expectancies are derived from social cues such as object information, emotional 

expressions or gaze (e.g., R. B. Adams et al., 2006; Bach et al., 2005; Bach, Peelen, & 

Tipper, 2010; Pierno et al., 2006), to include prior knowledge held about the individual 

and their behavioural tendencies. It suggests, therefore, that action observation 

combines evidence from multiple sources. This is similar to the argument made for 

more general models of predictive processing in social and non-social perception alike, 

which are assumed to combine different sources of top-down information with bottom-

up input to identify the most likely incoming stimulus (Kanai et al., 2015; Zaki, 2013).  

 

The implicit-explicit dissociation 

A key finding of the current experiments is the highly implicit and automatic nature of 

the person-models. Speeded up response times for predicted actions are present even in 

those participants that were unaware of the manipulated behavioural tendencies 

(Experiments 1a and b). Moreover, participants could relay information from these 

person-models when given direct and specific questions about the underlying 

manipulation after the experiment, such that they accurately reported which actor 

“liked” an object more, or interacted with it more. Importantly, however, regression 

analyses showed that even those who could not provide any explicit information about 

the manipulation still showed the prediction effect in the response times. This suggests a 

dissociation between the use of implicit and explicit knowledge in the present tasks and, 

particularly, that explicit knowledge is not necessary for the internal models to guide 

action observation.  

As with Shanks and Stjohn (1994) these findings do not mandate that the underlying 

internal models are fully implicit and cognitively impenetrable, or that they result from 
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a learning system that is qualitatively different from explicit learning. It is well 

established that participants may be able to access even highly implicit knowledge, if 

(1) post-experiment probes provide the same cues as the performance situation, and (2) 

if they tap into the same kind of knowledge as the response time task (see Shank & 

StJohn, 1994). Indeed, as noted, across the five experiments, there was clear evidence 

that participants could access these internal models to answer questions about the acting 

individuals – what they like and dislike, and how they typically respond in the different 

situations – when prompted in such a manner after the experiment. Thus, while (most) 

participants appear to be unable to spontaneously detect the manipulated statistical 

regularities to strategically control their responses, they are still able to access, in a 

retroactive fashion their person-knowledge after the experiment. In a similar way to 

artificial grammar learning (e.g., Reed & Johnson, 1994), the complex rules may not be 

explicitly articulated, but the output from these (e.g., knowing when a sentence is 

grammatically correct, or knowing which action someone typically performs in a given 

situation) is explicitly available.  

Similar findings are available from social psychology. The explicit judgments that 

people make about others are typically represented separately, or abstracted away from 

the behaviours that were actually observed, leading to a similar lack of strong 

correlational relationships as observed here (Hastie & Park, 1986; Tormala & Petty, 

2001; Klein, Loftus, Trafton & Fuhrman, 1992). It has, therefore, been argued that 

participants might not make explicit judgments during the action identification task at 

all. It is only when explicitly asked after the experiment, that they form such 

impressions in an ad-hoc manner, by relying on their (imperfect) memory of what was 

previously observed. Similarly, in the present experiments, the action identification 

effect without explicit post-hoc knowledge might, therefore, emerge because some 
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people might be less able than others to access their memory of the observed 

behaviours, and may not be able to recall the differences in the individual’s behaviour.  

This interpretation is also in line with research on causal or statistical learning. People 

can learn complex second-order relationships between events, and respond faster to 

expected stimuli, compared to unexpected ones. Typically, this knowledge cannot be 

explicitly verbalised by participants and, even if they can, it is not diagnostic of the 

prediction effects in the response time task (e.g., Batterink et al., 2015; Shanks & 

Perruchet, 2002; for a critical view see Shanks & Stjohn, 1994). As argued above, this 

does not necessarily mean that there are two separate systems for implicit and explicit 

learning (unlike in the COVIS models; Ashby et al., 1998; Maddox & Ashby, 2004). 

Instead, it might suggest that participants solve explicit tasks by trying to re-activate 

their internal models based on the cues provided, but that this re-activation is imperfect 

and differentially effective in different individuals (e.g., Cleeremans & Destrebecqz, 

2003; Jamieson & Mewhort, 2009; Shanks & Stjohn, 1994; Zaki, 2013). 

Experiment 1d further supported the idea that the effects of actor identity on action 

identification do not reflect explicit information, showing that dissociable effects are 

evoked when participants are indeed given explicit information about the actors. In this 

experiment, participants evaluated behavioural hypotheses about the actors – that one 

actor might typically type, but rarely kick, or vice versa – while different blocks varied 

the extent to which the actors followed these patterns. Whilst statistical behavioural 

regularities again sped up identification times, as in previous experiments, the explicit 

behavioural hypotheses affected error rates, causing participants to respond according to 

the explicit behavioural predictions, instead of what was perceived. This finding 

suggests that explicit knowledge about others’ typical behaviour may, therefore, induce 

an involuntary “social confirmation bias” towards the expected actions, irrespective of 
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the actual behavioural patterns. This supports the previously discussed suggestion that 

predictions are implicitly formed through learned behavioural patterns, and then 

explicitly tested through “behavioural wagers” (Dale et al., 2012; Duran & Dale, 2009; 

Marcus et al., 2006).  

 

The goal-directed bias 

An unpredicted but robust finding was that across the ‘implicit’ experiments (1a & b) 

the effects of action identification were largely restricted to goal-directed actions. That 

is, the prediction effects present in the response times are primarily seen for the acting 

towards, but not the turning away trials.  

One reason for this bias towards acting towards objects might be that objects provide 

cues to intentions (Bach et al., 2014). Whilst there are many reasons one might turn 

from an object (dislike for the object, boredom, attention drawn elsewhere, etc.), acting 

on an object implies a clear intention (Bach et al., 2014). As such, the findings are in 

line with the suggestion of Barresi and Moore (1996) that intentional relations are only 

created for goal-directed behaviours, which are diagnostic about future behaviour and 

underlying mental states. Objects, with their well-known functions, provide such goals 

that can guide action observation (for a review see Bach et al., 2014). Indeed, as 

aforementioned, the majority of mirror neurons (one of the proposed core nodes of 

action observation networks) fire for the afforded actions towards objects, but not 

intransitive or pantomimed actions, for example (e.g., Enticott et al., 2010; for a review 

see Fabbri-Destro & Rizzolatti, 2008). Similarly, several studies show that such 

afforded interactions with an object are perceived more easily than non-afforded actions 

(Bach et al., 2005; van Elk et al., 2009), and that objects and actions are “bound” 

together, even to the extent that visual extinction after brain lesions can be overcome 
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(Riddoch, Humphreys, Edwards, Baker, & Willson, 2003). The current data may, 

therefore, provide preliminary evidence that social prediction may act on the same 

action observation system, specifically predicting those actions that can be linked to 

such a goal. 

An alternative - but related - explanation may be that the acting towards and withdrawal 

trials may be processed differently. For example, there is evidence that children find 

false belief tasks more difficult when it involves an avoidance compared to an approach 

goal, such as when Billy must avoid the box containing the frog, compared to when 

Billy must approach the box (Friedman & Leslie, 2005). Based on findings like these, 

Friedman and Leslie (2005 p. 222) suggest that this difficulty results from “double 

inhibition”. Generally, such reasoning judgments involve several potential beliefs 

competing, and one emerging as the ‘best’ belief via selection-by-inhibition (Friedman 

& Leslie, 2004). However, making an action prediction based on a desire for avoidance 

requires further inhibition (Leslie et al., 2005). Thus, whilst object-directed actions are 

easily accessible to prediction (see above), the additional processing of the avoidance 

stimuli could also explain the current findings of longer response times, and fewer 

differences, between typical and atypical withdrawals.  

 

More than just a strategic response 

One potential argument is that the prediction effects found in the current experiments 

may simply reflect that participants are explicitly aware of the manipulation and are 

making strategic responses based on this. However, the current experiments provide 

evidence against this explanation. 
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First, the dissociation between implicit and explicit knowledge suggests that the 

prediction effects seen are unlikely due to strategic responses because participants show 

the effect even when there is no evidence that they have explicit knowledge of the 

behavioural tendencies of the actors.  

Second, the prediction effects were primarily found for goal-directed actions with 

objects (kicking a ball, typing on a computer), but not for withdrawals from the objects. 

If participants really were making strategic responses based on their explicit knowledge 

of actor behavioural tendencies (or had simply learned some simple stimulus response 

mapping) then the ‘prediction effects’ should have been seen across both action types 

equally. Thus, explicit awareness of John tending to kick the ball and turn away from 

the computer should lead to preparation of these responses as soon as the neutral image 

is shown. As such, responses times should be faster for John kicking the ball and 

turning from the computer, and slower when he acts differently. Instead, for all 

experiments without explicit instruction there was a marked facilitation for response 

times only when John kicks the ball compared to when he types at the computer, but 

these differences based on action typicality are minimal when the action is to turn away 

from the object irrelevant of whether it is predicted (John turns from the computer) or 

mismatches predictions (John turns from the ball).Yet, explicitly providing the 

manipulation (Experiment 1c) does result in this strategic response anticipation for both 

action types, and an associated effect in the error data. This effect is replicated in 

Experiment 1d where participants are asked to test behavioural hypotheses.  

Similarly, the prediction effects were only found in response times, not error rates. Yet, 

if participants had just strategically anticipated the forthcoming actions, one would 

expect error rates to be affected as well, where participants press the incorrectly 

anticipated key. Indeed, in Experiment 1c where participants were given the explicit 
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information, and in Experiment 1d, where participants were given such (valid or 

invalid) information about the individuals’ behavioural tendencies, just such an error 

rate effect was observed. As explained above, explicit knowledge can enable 

participants to prepare their response in advance of seeing the action leading either to 

slower responses whilst they move to the other response button, or errors if they go too 

far in their preparation and actually press the button before they have realised the 

opposite action is being displayed.  

Finally, Experiment 1e adapted the paradigm to include ‘online’ prediction trials 

whereby the participants see the neutral photographs of the actors next to the object and 

must say what happens next. If the previous results are due to a stimulus-response 

mapping, then the prediction trials should show close to, or beyond, explicit awareness 

levels because participants will just press the button they have learned to press with that 

particular stimuli. However, this is not the case. Instead, participants show better than 

chance, but not close to full expectancy level responses towards typical actions.  

 

Limitations and open questions 

The current series of experiments provides initial evidence that, once established, 

internal models of other people’s behaviour are accessed fluently during action 

observation and bias the identification of the action towards these predictions, both 

when given explicitly and implicitly. However, given that this was the first foray into 

these processes, several questions remain unanswered. 

One issue is that the variability in situations and actors in the present experiments was, 

necessarily, restricted. In contrast, everyday life is a much richer, more dynamic 

experience with many driving forces on behaviour rather than simple binary options 
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(kick the ball or turn away from it). As such, further research needs to establish whether 

results generalise to real-life situations, including investigating the effects of multiple 

different individuals across a variety of more loosely connected, and less distinct 

situations. Neither social nor experimental psychology can currently provide substantial 

evidence to answer this question.  

Linked to this, it still remains to be seen how ‘social’ such predictions really are. It may 

be argued that there is continuity between the learning mechanisms for physical and 

social causality based on similarities between the internal models one builds of other 

people and for physical systems (Goodman, Baker, & Tenenbaum, 2009; Meltzoff & 

Gopnik, 2013). It is likely that the social system ‘piggybacks’ on the physical system 

(see Buchsbaum, Bridgers, Skolnick Weisberg, & Gopnik, 2012; Goodman et al., 2009; 

Meltzoff & Gopnik, 2013). Therefore, future studies need to establish to what extent 

uniquely social mechanisms underlie the current effects, or whether the social biases 

merely guide attention towards the relevant elements in the stimulus display, such as the 

actor, the object, and the action which connects them. For example, in the current 

paradigm it may be that, rather than learning about the behavioural tendencies of the 

actors, participants merely learn which button to press in which situation. 

Whilst not the focus of the current chapter, the findings here suggest a reliance on, at the 

very least, action-specific information. First, the prediction effect was seen 

predominantly for object-directed actions rather than withdrawals. Such findings would 

not be expected by abstract stimulus learning accounts where all stimulus types should 

be treated equally. Second, in Experiment 1d the explicit person descriptions were given 

in a social format which would require effortful conversion into non-social 

contingencies, which is counterintuitive especially given the evaluation required for 

these descriptions at the end of each block. Finally, there was a (weak) relation between 
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prediction effects and post-experiment person ratings which, again, suggests social, or 

at least action-based, stimulus encoding. 

Finally, how long-lasting are the effects? Typically, action prediction experiments tend 

to investigate short-term effects or are completely online just investigating RTs, but 

would the same results occur if the participants returned a few hours, days or weeks 

later? Certainly, there is some evidence that even simple priming effects can still be 

seen well over a decade later (Mitchell, 2006). To an extent, Chapter Four provides an 

exploration into this by using pre-existing knowledge to investigate person-specific 

action predictions. However, D.A. Smith and Graesser (1981) suggests that atypical 

information is more remembered during short testing times, but over longer periods of 

time, typical information is more remembered (though this is based on person-memory 

research, which typically tests more abstract information). Thus, future research should 

explore these memory effects using the more concrete actions typical of action 

prediction paradigms to compare the two ends of the behavioural hierarchy. 

 

Conclusion 

Five experiments demonstrated that observers routinely access ‘learned’ knowledge 

about the behavioural tendencies of individual actors across two situations to predict 

their forthcoming actions. This effect seemed to rely on largely implicit and automatic 

mechanisms; despite participants being unable to verbalise the underlying behaviour 

patterns, they formed person-specific knowledge about the individuals’ behavioural 

tendencies, which were observable in response times.  

These data provide first evidence for a person-specific Social Prediction System, which 

tracks the intentional relations that others exhibit towards the environment, and uses 
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them to predict their forthcoming actions. The data are consistent with the idea that 

action identification – as measured by response times and error rates here – emerges 

from an interaction of bottom-up cues and such top-down expectations derived from 

prior knowledge about the individuals. 

In addition, the data suggest that humans learn about the action tendencies of others in a 

similar manner as they learn about the causal structure of the non-social world (Gopnik 

et al., 2004). Highly implicit learning mechanisms have been described that allow 

people to use complex algorithms or rules in a procedural manner without being able to 

articulate them (e.g., Day & Goldstone, 2011). The current data suggests that 

behavioural tendencies of others are derived in a similar manner, and may allow one to 

conceptually link social perception to other fields of implicit learning and tacit 

knowledge, such as the rules of complex sequences (Nissen & Bullemer, 1987) or 

artificial grammars (Reber, 1967). The current data suggests that, in a similar manner, 

people implicitly track the relationship between interaction partners, objects, and their 

most likely behaviours, to predict their forthcoming actions. Actions that match these 

expectations can be processed effectively, while deviations are “flagged up” and attract 

cognitive resources, such that one’s preconceptions can be revised or their behaviour re-

interpreted (A. Clark, 2013). 
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Chapter Three – person-specific internal models vs. 

stimulus-response learning 

Chapter Two demonstrated the use of person-specific internal models for action 

observation, which were re-activated when the same individual was re-encountered in 

the same situation. Action identification was faster when actors acted upon an object 

they typically acted upon compared to an object that was typically acted upon by the 

other actor. Thus, participants learned how actors tended to behave, and predicted this 

action would occur when the actors were encountered in that situation again. Several 

different tests for explicit knowledge indicated at least a partial dissociation between 

implicit and explicit knowledge of these person-models. These findings support the 

predictive coding viewpoint (e.g., Bubic et al., 2010; A. Clark, 2013; den Ouden et al., 

2012; Friston & Kiebel, 2009) that perception is influenced by predictions based on 

prior knowledge, and reveals such an influence for knowledge about the actor’s prior 

behaviour. 

 One outstanding question is whether the findings really are evidencing prediction of 

forthcoming action rather than mere stimulus-response learning. For example, rather 

than participants learning the behavioural tendencies of the actors, they could simply be 

learning to associate the stimuli with a specific button press. Whilst, the previous 

chapter details some aspects of the findings that make the latter explanation less likely, 

the current chapter aimed to more directly investigate this alternative explanation for the 

data with two different methods. First, Experiment 2a additionally recorded event 

related potentials (ERPs) to provide evidence for underlying components typically seen 

in prediction (e.g., P3b) and action error monitoring/prediction errors (e.g., N2/oERN; 

observer error related negativity), which would not be the expected neuronal pattern 

based on a simple stimulus-response bias or motor learning explanation. Second, 
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Experiment 2b investigated whether verbal intentions for action associated to each actor 

in a given situation (e.g., “Yeah, I’ll have a go”, “Nah, I’ll leave it”) transferred to 

action identification causing prediction effects, even when their actual behaviour does 

not show any such pattern. Evidence for such transference would provide evidence that 

the effects result from learning the ‘meaning’ of the actions (i.e., the behavioural 

tendencies of the actors), rather than simple stimulus or motor learning. Yet, if the 

previous data merely reflect motor learning/a stimulus-response bias then the verbal 

information should not influence action identification because participants would 

simply be learning which stimuli are associated with which button press. As such, any 

evidence that this verbal information influences action identification would provide 

further support for a predictive coding explanation for the prior effects.  

 

Experiment 2a: The underlying neural components involved in social 

action predictions 

Experiment 2a was primarily conducted to, first, provide further evidence for a 

prediction effect of actions rather than mere stimulus-response learning and, second, to 

investigate the underlying neural networks involved in creating and reactivating person-

models for action observation using electroencephalography (EEG). The key 

components implicated in such a predictive coding mechanism are P3b and N2/(o)ERN. 

The P300 component - a positive deflection typically seen between 250 and 500 ms - is 

thought to be involved in attentional resources, reallocating attention and memory, and 

evaluating and updating representations (for a review see Polich, 2007). One of its 

components, P3b, primarily originating in the parietal lobe (see A. Kok, 1997; Polich, 

2007), is thought to be involved in integrating top-down and bottom-up processing, as 

well as attentional processing. For example, P3b activation is larger for unexpected 
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compared to expected stimuli (Balconi & Canavesio, 2015). This supports the context 

updating hypothesis commonly associated with the P3 component i.e., that it represents 

the revision of a hypothesis (Donchin & Coles, 1988; Duncan-Johnson & Donchin, 

1982) and, more recently, that P3b is thought to reflect a behavioural adjustment based 

on explicit rules (Chase, Swainson, Durham, Benham, & Cools, 2011).  

The N2 component - a negative deflection typically seen between 200 and 350 ms post-

stimulus - is thought to primarily originate from the anterior cingulate cortex (ACC; for 

a review see Folstein & Van Petten, 2008). Both the N2 and ACC are typically activated 

during conflict resolution, and are commonly linked to processing prediction errors (N2; 

Kopp, Mattler, Goertz, & Rist, 1996; Van Veen & Carter, 2002, ACC in rats; Bryden, 

Johnson, Tobia, Kashtelyan, & Roesch, 2011, ACC in humans; for a brief review see 

Bush, Luu, & Posner, 2000).  

A larger negative ERP (“oddball” N2) has been demonstrated both for low probability 

action effects, as well as when more conflict is present (Azizian, Freitas, Parvaz, & 

Squires, 2006; Band, van Steenbergen, Ridderinkhof, Falkenstein, & Hommel, 2009). 

This supports predictive coding assumptions (e.g., Bubic et al., 2010; A. Clark, 2013; 

den Ouden et al., 2012; Friston & Kiebel, 2009) of increased processing when 

predictions mismatch reality. Furthermore, N2 may indicate a cue for subsequent goal-

directed processes (Dockree, Kelly, Robertson, Reilly, & Foxe, 2005), and has been 

suggested to indicate detection of, or inhibition of, inappropriate responses (Kopp et al., 

1996). This would explain why N2 and P3b often coincide in the N2-P3b complex - N2 

represents the detection of an error, and P3b represents the subsequent updating of the 

hypothesis. Indeed, Knolle, Schröger, and Kotz (2013) have shown increased N2 and 

P3b activation indicative of prediction errors and updating respectively in relation to 

self-generated sounds. 
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N2 and feedback ERN – negative activation which typically follows negative feedback, 

such as after an action error, on a task – have a large overlap, which research has yet to 

satisfactorily separate, and which are sometimes argued to reflect the same component 

(see Holroyd, 2004). The ERN, which, as its name suggests, is heavily involved in error 

detection, is also thought to stem from the ACC (for a review see Walsh & Anderson, 

2012; see also Bush et al., 2000). The ERN is thought to be reflective of a generic error-

detection mechanism, which can relate to different types of errors (time, action, choice, 

etc.) depending on task goals (Miltner, Braun, & Coles, 1997).  

An early negative fronto-central activation indicative of ERN has recently been 

suggested to reflect an action prediction error (Balconi & Canavesio, 2015). 

Specifically, the ERN has been suggested to compare actual responses with 

representations of the correct response (Bush et al., 2000). Moreover, the ERN tends to 

be larger when correct and incorrect responses are very similar (Gehring & Fencsik, 

2001). This supports the frequent attribution that the ACC anticipates cognitively 

demanding tasks (Bush et al., 2000). From a predictive coding viewpoint, this increased 

activation when predictions closely mismatch reality reflects the increased precision 

(and thereby attention or cognitive resources) needed to detect such mismatches. 

Indeed, the ACC has also been found to receive feedback in decision-making tasks 

(Bush et al., 2002), and to signal conflicts to higher-level areas for example the lateral 

prefrontal cortex, (J. D. Cohen, Botvinick, & Carter, 2000) and the basal ganglia 

(Falkenstein et al., 2001; for a review see Van Veen & Carter, 2002).  

Such views fit well with the general role of the medial prefrontal cortex (mPFC), 

particularly the ACC, in performance monitoring predominantly to adjust high level 

goals (e.g., Bush et al., 2000). Moreover, Oliveira, McDonald, and Goodman (2007) 

demonstrated that the ACC could be seen as a more general performance monitoring 
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system, rather than mere error detection and poor performance evaluation. The recent 

Predicted Response Outcome (PRO) model by Alexander and Brown (2012) implicates 

the mPFC, and specifically the ACC, as a learning centre heavily involved in action 

outcome predictions. Accordingly, the mPFC learns to predict action outcomes, and 

compares actual and predicted outcomes irrelevant of the valence of the outcome 

(rewarding or aversive). Crucially, in line with Chapter Two, the PRO model is more 

concerned with mapping existing action plans into the stimulus context to predict 

outcomes and responses, rather than being for stimulus-response mappings per se. 

Multiple outcomes can be assessed simultaneously and are given a probability. 

Discrepancies result in a prediction error, which is used to update future predictions (for 

a similar model for signed prediction errors see Silvetti, Seurinck, & Verguts, 2011). 

Whilst much previous research focused on the ERN as a monitor for own action errors, 

recent evidence has demonstrated its activation during the observation of others’ errors 

(observer ERN; oERN). For example, van Schie, Mars, Coles, and Bekkering (2004) 

found evidence of the ERN for own and observed action errors, with very similar scalp 

distributions, supporting the theory that a similar neural mechanism is involved in 

monitoring both executed and observed actions. This oERN began around 90 ms after 

the error, and peaked around 250 ms. Similarly, Kobza and Bellebaum (2013) presented 

participants with an actor playing a game whereby participants had to select the correct 

box that a pea was hidden in. In some trials, the pea was moved without the observed 

actor knowing and thus enabled manipulation of what the participants expected the actor 

to choose. They found greater negative fronto-central activation for unexpected 

compared to expected actions, thus suggesting oERN reflects an action prediction error 

with the ACC monitoring predictions. Similar findings are also found for error-related 

negativity found after negative feedback to a stimulus (feedback-related negativity; 

FRN). For example, Koban, Pourtois, Bediou, and Vuilleumier (2012) found an 
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increased FRN, and related P3b activation, for both own and observer actions (observer 

feedback-related negativity; oFRN) for unpredicted compared to predicted stimuli. 

Interestingly, there is some evidence to suggest a social modulation of both the oERN 

and oFRN activation. For example, Carp, Halenar, Quandt, Sklar, and Compton (2009) 

found evidence for an oERN and related positivity (oPe) during a flanker task, but, 

interestingly, this was modulated by how similar the observer felt in relation to the 

observed. Higher interpersonal similarity was related to a larger oPe, but smaller oERN 

suggesting the influence of social factors in this error monitoring of observed 

behaviours. Similarly, activation of the ACC (where the ERN is thought to originate 

from) is modulated by observer empathy and liking for the observed; ACC activation 

towards others pain was higher for those with higher empathy, or when liking for the 

observer was higher (for a brief review see Singer, 2006). Similarly, the oFRN had 

smaller amplitudes for competitive rather than cooperative observers. The source of 

these FRNs and oFRNs were estimated to be in the mPFC (with additional activity in 

dorsolateral and ventral PFC for oFRN).  

These ‘observer’ error- and feedback-related negativity components provide evidence 

for an overlap in the framework for action prediction for own and others’ actions (see 

Chapter One). This is in line with the notion that mirror neurons fire both during action 

execution and action observation (e.g., di Pellegrino et al., 1992; Rizzolatti, Fadiga, 

Gallese, & Fogassi, 1996), and during action prediction (Lamm, Fischer, & Decety, 

2007) and monitoring (Bach et al., 2014).  

In terms of the hypothesised person-models, a review by Lavin et al. (2013)    supports a 

context and agent specific centre within the ACC for high level processing of other 

people (though here agent was assessed by an in-group/out-group differentiation rather 

than individual specificity per se.). More recently, Welborn and Lieberman (2014) 
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demonstrated evidence of person-specific Theory of Mind via increased activation of 

the mPFC for more well-known than lesser-known politicians. Taken together, these 

studies highlight the mPFC as a centre for processing person-knowledge. Indeed, when 

trying to understand others, the mPFC, superior temporal sulcus (STS), orbitofrontal 

cortex (OFC), amygdala and anterior insula form a network of activation (C. D. Frith & 

U. Frith, 2006). Thus, the mPFC is likely to be heavily involved in the creation and use 

of person-models, particularly in relation to updating these models. Indeed, the ACC 

has been shown to be involved in transforming intentions to actions, and to align errors 

with goals (Holroyd, Nieuwenhuis, Mars, & Coles, 2004). 

The current experiment replicated the prior behavioural work of Chapter Two whilst 

additionally measuring ERPs. It was, therefore, hypothesised, in line with the predictive 

coding evidence described above, that there would be evidence for both the P3b and 

oERN during atypical actions towards objects. Specifically, it was hypothesised that the 

P3b component would be more positive for the atypical compared to typical trials, in 

line with previous research suggesting that the P3b is more active for prediction errors 

than correct predictions (updating internal models based on actual events; see Donchin 

& Coles, 1988; Duncan-Johnson & Donchin, 1982). Crucially, however, if the 

prediction effects for the acting towards trials reflect attribution of goal-directed action, 

and if oERN reflects monitoring of such actions of other people, the oERN should 

primarily be found in the act towards rather than turn away trials. This would support 

numerous experiments demonstrating that only goal-directed actions activate the mirror 

system (e.g., Agnew et al., 2012; Enticott et al., 2010; for a review see Fabbri-Destro & 

Rizzolatti, 2008), and Barresi and Moore's (1996) notion that intentional relations 

between people, actions and situations are only established for goal-directed behaviours. 

Indeed, previous studies have found that afforded interactions with an object are 

perceived and predicted more readily than non-afforded interactions (Bach et al., 2005; 
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van Elk et al., 2009), and that action predictions occur for meaningful actions towards 

objects (Hunnius & Bekkering, 2010; Stapel et al., 2012), but not for avoiding an object, 

which is more likely to be coded as an inhibition of a potential approach (Friedman & 

Leslie, 2005; Leslie et al., 2005). Thus, the current hypotheses are in line with these 

studies (and those in Chapter Two) which suggest a ‘special status’ for object-directed 

actions during action prediction. 

 

Method 

Participants 

Thirty-one participants (21 females, mean age = 21.00 years, SD = 1.68 years; all right 

handed based on the Edinburgh Handedness Inventory) took part in the study in 

exchange for £16 or course credit. None had any history of neurological impairment and 

all reported having normal, or corrected-to-normal, vision. One participant was unable 

to continue due to technical difficulties, and two further participants reported awareness 

of the relevant manipulation in the funnel debrief so their data was not analysed further. 

Due to excessive eye and muscle movement artefacts (> 30% of the data), the data from 

one additional participant was removed. 

 

Materials, apparatus and procedure  

Two questionnaires were administered whilst the electrodes were being applied. The 

empathy quotient (Baron-Cohen & Wheelwright, 2004) consisted of sixty statements 

such as “I can easily tell if someone else wants to enter a conversation” and “I prefer 

animals to humans” that participants could either “strongly agree”, “slightly agree”, 

“slightly disagree” or “strongly disagree” with on a 4-point Likert scale. To assess 
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potential correlations with schizophrenic characteristics, the O Life questionnaire 

(Mason, Linney, & Claridge, 2005), measuring dimensions of schizotypy was 

administered. This questionnaire consisted of 43 statements such as “When in the dark 

do you often see shapes and forms even though there is nothing there?” and “Are you 

easily confused if too much happens at the same time?” to which participants had to 

respond either “yes” or “no”. However, there were no significant correlations between 

the prediction effect and either of these two questionnaires, so neither will be discussed 

further. 

Once the electrodes were in place, the participants then completed the computer task 

which contained 340 trials (20 practice trials and 320 critical trials), and was controlled 

by E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA). The computer task was 

identical to Experiment 1b except that correct responses were followed by a screen 

indicating that participants could blink “(-)(-)” without affecting the ERP data. Incorrect 

(or missed) responses were followed by a reminder of the task. 

Participants then completed the two exit questionnaires, as in the previous experiments. 

 

EEG recording and analyses 

Scalp voltages from 64 Ag/AgCl active electrodes (ActiCAP, Brain Products GmbH) 

were recorded using BrainVision Recorder (Version 1.10, Brain Products GmbH), 

configured according to the International 10-20 system, and mounted on an elastic cap 

(ActiCAP, Brain Products, Gilching Germany). A further two sensors (one below the 

eye and another at the corner of the eye) monitored eye movements. Electrodes were 

referenced to the left mastoid and re-referenced offline to the average of the left and 

right mastoid activity. An electrode at the AFz location provided a ground. 

Measurements of scalp electrode impedance were kept below 20kΩ. EEG data was 
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amplified using a BrainAmp amplifier (Brain Products), continuously sampled at 2500 

Hz. Offline the sampling rate was reduced to 200 Hz, and the data was filtered with a 

notch filter of 50 Hz, and a band-pass filter from 0.1- 40 Hz.  

For analysis, EEGs were time-locked to the onset of the second image (the image of the 

action), such that individual participant EEG data was divided into segments, each 

containing brain responses from the baseline (200 ms before the action image was 

presented) to 600 ms. This time window was chosen rather than an earlier time during 

the fixation point because the neutral image was always the same whether an act 

towards or turn away action was later observed. As such, participants could create the 

expectation of which action type (act towards, turn away) is more likely for this actor. 

However, due to the fully crossed design, the hypothesis-relevant main effect of 

expectancy (actor acts as expected, acts unexpectedly) cannot be affected by the neutral 

image as this would not provide violation to any prediction the participants may have. 

In other words, the neutral image simply showed the actor stood or sat with an object. 

Thus, whilst participants may start to predict what they think will happen, we cannot 

directly measure this because we do not yet have an ‘error’ for this prediction – this can 

only be measured once the actor has performed an action. Additionally, the EEG 

waveforms overlap directly with one another in the early components before the effects 

of interest, ruling out artefacts introduced through baselining (see Figures 3.5 and 3.7). 

Moreover, moving the baseline further away from the effects of interest would increase 

the signal-to-noise ratio, which would reduce power.  Further grouping of these 

segments occurred according to trial type (acting towards typical, acting towards 

atypical, turning away typical, turning away atypical). 

Data was discarded if the electrodes monitoring eye movement demonstrated a voltage 

change above 50 μv/200 ms, if any other electrodes showed a voltage change of more 
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than 250 Hz, or exceeded a value of ±100 μv relative to the baseline. Further segments 

were discarded if the incorrect response was given in the trial. Finally, ERPs were 

computed by averaging artefact-free EEGs (~80% = 7638 trials). 

Differences in waveforms across conditions were analysed using the Monte Carlo 

cluster randomisation analysis procedure designed to eliminate the multiple 

comparisons problem (Maris & Oostenveld, 2007). Here, individual paired sample t 

tests at each time sample identified significant differences at an alpha level of .05. Then, 

clusters containing a minimum of 20 samples (from 80 ms up to 600 ms) were identified 

based on significant t tests that were contiguous across time at adjacent locations 

(within 4mm of each other). Finally, a cluster-level t value was computed based on the 

sum of all single sample t values within each cluster. It was this t value for each of the 

16 clusters that was used for subsequent analysis rather than using the individual (highly 

non-independent) t values.  

To ascertain significance of these clusters, comparisons against a standard t distribution 

would not be reliable, so each t value was, instead, compared to a Monte Carlo 

distribution of cluster level t-values. This distribution contained the cluster with the 

largest t value to control the false alarm rate for all clusters at the expense of sensitivity 

for the smaller clusters (Maris & Oostenveld, 2007). 

The original paired samples t tests were repeated, but the data items were randomly 

assigned between the conditions. This was performed 1,000 times to generate a Monte 

Carlo distribution of 1,000 summed t-values corresponding to the null hypothesis. This 

provided a null distribution for comparison with the actual cluster-level t statistic of 

each of the observed clusters. Therefore, a Monte-Carlo p value was generated for each 

observed cluster, in proportion of the null distribution, which had a cluster-level t 

statistic that exceeded the actual cluster-level t-statistic. 
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Results 

Behavioural data 

Funnel debrief  

The average overall ease of the task was perceived to be 7.00 (out of 10). The data 

suggested that the actors and the actions/objects were equally salient with neither being 

easier to identify conclusively (see Table 3.1).  

Table 3.1:  

Data showing which actor and action participants rated as easier to identify for Experiment 2a 

 

Character Easiest to identify Action Easiest to 

identify 

Claire 9 Ball/kick 13 

John 5 Computer/type 8 

Neither Claire nor 

John 

16 Turning away 

from an object 

2 

  None 7 

    

 

Twenty-nine participants (93.55%) did not notice anything unusual in the stimuli, 

Twenty-three participants (74.19%) said they did not notice a pattern, and the rest 

mentioned similar proposed patterns as in previous experiments. As mentioned above, 

two participants (6.45%) mentioned the manipulation and were removed from analysis.  

 

Response times  

The same exclusion criteria as in Chapter Two were applied, with 4.76% of trials being 

excluded in total (3.42% for error trials, 1.34% for scores greater than 3 SD from the 

mean). The remaining data were analysed with a repeated measures ANOVA with the 

factors Observed Action (act towards, turn away) and Action Typicality (typical, 

oddball).  
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The analysis revealed a significant main effect of Observed Action, F[1,27] = 13.379, p 

= .001, ηρ² = .331 with faster response times for actions towards (M = 414.34, SE = 

17.71) than away (M = 438.44, SE = 15.87) from objects. There was also a significant 

main effect of Action Typicality, F[1,27] = 25.853, p < .0.001, ηρ² = .489, with faster 

response times for typical (M = 418.511, SE = 15.93) than atypical (M = 434.27, SE = 

17.17) actions. Importantly, replicating the studies from Chapter Two, this main effect 

was further qualified by a significant interaction between both factors, F[1,27] = 

15.161, p = .001, ηρ² = .360. As before, the prediction effect was larger for actions 

towards objects compared to turns away from objects. However, as can be seen in 

Figure 3.1, actions were identified more rapidly when they were typical compared to 

atypical for the actor for both the acting towards (t[27] = 5.901, p < .001, d = .25) and 

turning away trials (t[27] = 2.406, p = .023, d =.10). 
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Figure 3.1. Response time and exit questionnaire data for Experiment 2a  

The top left panel shows the average response times, and the top right panel shows the average proportion 

of errors. In each panel, the left bars show identification of actions towards objects (typing on a computer 

or kicking the football), and the right bar shows actions away from objects (turning away from the same 

objects). The black bars reflect actions typical of this individual in the given situation, and the white bars 

show the action typical of the other individual. Error bars show the standard error of the mean. The 

bottom panel shows a correlation between prediction effects in the RTs for actions towards objects and 

the corresponding differences in perceived object liking, for individuals who either identified (unfilled 

diamonds) or did not identify (filled diamonds) the behavioural pattern. 

 

Errors  

Error data were analysed with the same ANOVA. The analysis revealed a main effect of 

Observed Action, F[1,27] = 4.799, p = .037, ηρ² = .151 with higher error rates for 

actions towards (M = 0.039, SE = .006) than away from objects (M = 0.026, SE = .005), 

but there was no main effect of Action Typicality, nor an interaction between these two 

factors (both F < 1.542).  
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Liking 

When the objects were typically acted upon they were rated as more liked by the 

relevant actor (M = 1.46, SD = 1.50) than when they were turned away from (M = 0.52, 

SD = 1.70), which reached borderline statistical significance, t[27] = 1.958, p = .061, d 

= 0.59. Again, regression analyses tested whether this explicit awareness predicted the 

effects during action identification. There was no significant correlation (r = -.048, n = 

28, p = .999) between these factors, but the intercept was significantly different from 

zero (t = 5.563, p < .001) indicating that, as in Chapter Two, even those participants 

with no apparent explicit awareness in the liking ratings still showed significant 

prediction effects in the response times.  

  

ERP data 

Analyses were performed for the factors Action Typicality (typical, oddball) and the 

interaction between Action Typicality and Observed Action. The Bonferroni-corrected 

alpha level for all the ERP data based on the cluster analyses was .025 (see Maris & 

Oostenveld, 2007). 

For the main effect of action typicality, there was one significant cluster that survived 

cluster correction (see Figure 3.2) approximately between 440 and 600 ms post onset of 

the action stimulus (p < .001). There was greater positive activation in central, parietal 

and occipital regions for the atypical compared to typical trials. This is indicative of the 

P3b component, which is thought to involve updating of situation models during 

unexpected events (see Polich, 2007). 
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Figure 3.2. ERP data for the main effect of Action Typicality 

Mean averaged activation between 100-600 ms post-stimulus for the main effect of Action Typicality 

showing only clusters that survive thresholding with Monte Carlo analyses 

 

The analysis of the interaction between Observed Action and Action Typicality revealed 

two significant clusters that survived the cluster threshold (see Figure 4.3). The first was 

found approximately around 200-320 ms post action onset in the left frontal region (p 

= .008). Here, interactions towards objects elicited larger inflections when performed by 

an actor for whom this action was atypical, compared to an actor for whom it was 

typical. This is indicative of either the N2 component or the oERN. The second cluster 
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occurred between approximately 540-600 ms within the frontal region (p < .001). This 

is indicative of the P3b component, and thus of the model updating process. The data 

reflects that, in this time interval, unexpected events elicited larger negative inflections 

for actions towards compared to away from the objects.   

 

Figure 3.3. ERP data for the interaction between Action Typicality and Observed Action 

Mean averaged activation between 100-600 ms post-stimulus for the interaction between Observed 

Action and Action Typicality showing only clusters that survive thresholding with Monte Carlo analyses 
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Planned comparisons were conducted on the acting towards and turning away trials 

separately. For the acting towards trials, there were two significant clusters (see Figure 

4.4). The first occurred approximately around 200-320 ms (p = .006) in the left frontal 

and central regions, thereby coinciding with the first cluster in the analysis of the 

interaction between Action Typicality and Observed Action. There was greater negative 

activation in these areas for atypical compared to typical trials indicative of the 

N2/oERN component. The second cluster occurred approximately around 440-600 ms 

(p = .001) within central and parietal regions. There was greater positive activation in 

these areas for atypical compared to typical trials indicative of the P3b component. 

  

Figure 3.4. ERP data for the acting towards trials  
Mean averaged activation between 100-600 ms post-stimulus for atypical compared to typical actions for 

the acting towards trials showing only clusters that survive thresholding with Monte Carlo analyses 
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Figure 3.5. Waveforms for the acting towards trials 

Grand averaged waveforms for actions towards objects at electrodes FP1 (top left), FP2 (top, right), P3 

(bottom, left) and P4 (bottom, right). Solid lines represent typical actions, dashed lines represent atypical 

actions  

 

For the turning away trials, however, there was only one significant cluster (see Figure 

4.6) at approximately 320-600 ms (p < .001) in frontal, central, parietal and occipital 

regions. There was greater positive activation in these areas for atypical compared to 

typical trials indicative of a delayed P3b component. It coincided with the P3b 

difference revealed by the interaction analysis, showing that the P3b is stronger for 

turns away from, rather than actions towards, objects. 
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Figure 3.6. ERP data for the turning away trials 
Mean averaged activation between 100-600 ms post-stimulus for atypical compared to typical actions for 

the turning away trials showing only clusters that survive thresholding with Monte Carlo analyses 

 

 

    

 



111 

 

 

 

Figure 3.7. Waveforms for the turning away trials 
Grand averaged waveforms for turning away from objects at electrodes FP1 (top left), FP2 (top, right), P3 

(bottom, left) and P4 (bottom, right). Solid lines represent typical actions, dashed lines represent atypical 

actions.  

 

Discussion 

Experiment 2a aimed to replicate the prediction effect for typical compared to atypical 

actions seen in Chapter Two, and provide an initial test of the underlying components 

involved in action predictions based on an actors’ prior behaviour. The behavioural data 

replicated Chapter Two indicating that person-specific internal models are created and 

re-activated when the actor is re-encountered in the given situation, even though actor 
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identity was fully task-irrelevant. The data therefore provide further support for 

‘intentional relations’ between people and situations for goal-directed behaviours 

(Barresi & Moore, 1996). Again, the resulting response time bias was, at least partially, 

dissociated from explicit ability to respond to the liking questions using information 

from the models post hoc.  

Crucially, Experiment 2a provided clear evidence against this prediction effect 

reflecting simple stimulus-response learning, or general perceptual learning, which 

would apply to both stimulus classes – actions towards and away from objects - equally. 

As predicted, there were fundamental differences between the ERPs for typical than 

atypical actions, and actions towards and away from objects, which should not have 

been seen if the results stemmed from such general response biases. 

As is common in oddball tasks, there was evidence for the P3b component for 

unexpected actions. Irrelevant of whether an action towards or away from an object was 

observed, greater positive activation in tempero-parietal areas was seen when the action 

was atypical for the actor in that situation. As P3b is typically attributed to decision-

making and evaluation of a stimulus (for a review see Polich, 2007), and 

revising/updating hypotheses (Donchin & Coles, 1988; Duncan-Johnson & Donchin, 

1982), this indicates that during these atypical trials, information was being updated or 

added to the internal models in the event of mismatching predictions.   

Interestingly, and as predicted, there was evidence of an early negative activation in 

frontal regions, but only in the acting towards trials. This activation could be the N2 

component but, more likely, it is evidence of the oERN component, which is frequently 

seen when observing actors making errors (Bismark et al., 2013; Carp et al., 2009; 

Koban et al., 2012; Kobza & Bellebaum, 2013; van Schie et al., 2004). This activation 

was greater for atypical actions suggesting that participants code the atypical action as 
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an action error for that actor, and this information is then used to update the person-

model (demonstrated by the later P3b activation).  

The frontal location of the oERN indicates ACC and mPFC activity, which is heavily 

associated with both conflict monitoring, and integration of top-down and bottom-up 

information (e.g., Bush et al., 2000; Folstein & Van Petten, 2008). Such activation is 

also supportive of Welborn and Lieberman's (2014) assertion that this region is heavily 

involved in person-specific encoding. 

In contrast, for the turning away trials, only the later positive activation (P3b) was seen, 

which was, in fact, larger than for unexpected actions towards objects. This suggests 

that the participants are not processing the atypical turn away as an action error as such. 

This may be because participants process the act toward and turn away trials in a 

fundamentally different way. This would support the assumptions that intentional 

relations are only formed (Barresi & Moore, 1996), and mirror neuron firing (e.g., 

Enticott et al., 2010) only occurs, for goal-directed behaviours. It also supports the 

conclusion in prior chapters that the prediction effect in the response times is primarily 

driven by goal-directed behaviours. It could be that the processing for the turn away 

trials takes a simple category identification approach thus explaining why they still 

elicit the P3b (Azizian et al., 2006), or that participants simply do not focus on the turn 

away trials and so they do not create predictions for these trials. However, this is 

unlikely as instead the P3b effect was larger for the turning away trials than the act 

towards trials.  

As previously suggested (see Chapter One), predictive processing may be impaired in 

schizophrenia and ASD (Sinha et al., 2014; Teufel, Kingdon, Ingram, Wolpert, & 

Fletcher, 2010). Indeed, both P3b (Bestelmeyer, 2012; Ford & Mathalon, 2012) and the 

ACC (Carter et al., 2001; Van Veen & Carter, 2002), tend to be less active in those with 
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Schizophrenia, demonstrating impairments in conflict monitoring. There also tend to be 

more backwards connections, and increased neuronal sensitivity, compared to controls 

suggestive of differential top-down processing in terms of less adjustment to 

unpredicted stimuli (Fogelson, Litvak, Peled, Fernandez-del-Olmo, & Friston, 2014). 

Further research highlights how P3b is typically delayed for predictable stimuli in those 

with schizophrenia in comparison to control participants (Fogelson et al., 2014). The 

same reduced P3b activation has also been found for ASD (Townsend et al., 2001). 

Thus these studies may explain the potential impairments in predictive capabilities 

(Teufel, Fletcher, et al., 2010). This may be due to either impairments in ability to make 

predictions or, more likely given the extreme desire for routine within individuals with 

ASD, that there is reduced or impaired feedback to update such predictions when they 

mismatch reality. 

Interestingly, whilst own performance monitoring in individuals with Schizophrenia is 

impaired as seen by reduced ERN activation, monitoring of others actions appears to be 

relatively intact as seen by intact oERN activation (De la Asuncion, Docx, Morrens, 

Sabbe, & De Bruijn, 2015). However, further research is needed to support this finding.  

Whilst there is limited research investigating ERN within individuals with ASD, the 

findings indicate lower ERN amplitudes in ASD. A recent review (Hüpen, Groen, 

Gaastra, Tucha, & Tucha, 2016) highlights a lack of research on oERN in ASD, and 

only two studies into oFRN (which find conflicting results), so this is clearly a key area 

for future research.  

Whilst the current analyses focused on ERPs, further evidence of internal person-

models could also be explored by analysing the oscillatory signatures of action 

observation such as the mu-rhythm. Mu rhythm is found within the alpha frequency 

range (8-13Hz) usually in central electrode sites, and is typically suppressed during 
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movement onset (Pfurtscheller & Lopes da Silva, 1999), but also during observations of 

others’ actions (e.g., in adults, Muthukumaraswamy & Johnson, 2004; Oberman et al, 

2007, in infants, Marshall & Meltzoff, 2011). Recent research further suggests that 

mirror neurons may mediate mu rhythm suppression during such observations 

(Braadbaart, Williams & Waiter, 2013), and even when actions were only predicted to 

occur (Southgate, Johnson, El Karoui & Csibra, 2010). Thus, in the current study, if 

participants, indeed, predict the actions of others with their own motor system more 

evidence of mu suppression would be hypothesised during typical than atypical actions, 

and more so during the goal-directed act towards rather than turning away trials. Future 

studies/analyses will explore this possibility.  

 

Experiment 2b – transference between concrete and abstract action 

knowledge 

Experiment 2a provided further evidence towards a predictive internal model account of 

action observation, and against a mere motor/stimulus learning account for the 

prediction effects. Experiment 2b was designed to further support this conclusion using 

a behavioural paradigm to test whether person-knowledge can be generalised across 

modalities. As such, it would provide further evidence supporting the proposal in 

Chapter Two that the prediction effects emerge from internal models of the behaviour 

tendencies of others, and against the counter-argument that they merely reflect stimulus-

response or perceptual learning. If participants only engaged in this simple stimulus-

response mapping or perceptual learning, then the action intentions they received 

verbally should not influence their visual action identification responses as they would 

simply have learned which button to press for each stimulus. This experiment was 

designed as a more direct test of whether the results reflect prediction of action. If the 

effects reflect higher-level prediction of action, then they might also be elicited if 
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learning is not based on the stimuli itself, but on other stimuli, which should predict 

action in a similar way.  

In two thirds of the trials participants saw an equal distribution of the actors performing 

each action in each situation, such that neither actor showed a preference for one 

particular object or action. Participants identified the action as an interaction or 

withdrawal in the same way as in the previous experiments. In the other third of the 

trials, however, the participants saw the neutral photograph only (of the actor stood or 

sat by the object) and heard the actor utter a verbal expression of intent (“Yeah, I’ll have 

a go”, “Nah, I’ll leave it”). These verbal expressions were, again, varied such that one 

actor would always say that they would have a go with one object and would leave the 

other object (counterbalanced across conditions and participants). Thus, these 

expressions of intent could provide information to participants of whether the actors 

intended to act upon or turn away from an object, which could then influence the action 

identification task (despite these action observation trials actually showing all actions 

equivocally for each actor with each object). If this knowledge of action intention is 

transferred to the action identification task, it should be reflected in terms of faster 

response times and fewer errors when observed actions are congruent to the verbal 

statements of intent (i.e., when participants observe an action towards an object, if 

carried out by the actor that previously said they wanted to have a go with the object 

rather than leave it). Such a finding of transfer from verbal learning to action 

identification would indicate that the prediction effects of the previous experiments can 

originate from high-level action knowledge about what the actors might do, instead of 

just abstract learning of stimulus or response sequences. 
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Method 

Participants 

79 participants (70 females, mean age = 20.35 years, SD = 4.24; 71 right handed) took 

part in the study in exchange for course credit. Sample sizes were determined with G-

Power (Erdfelder et al., 2007) on the basic paradigm (Experiment 1b), which indicated 

that a sample size of at least 76 was required to reliably detect an interaction effect of 

Observed Action and Expected Action based on the assumption that the effect size 

would be roughly half the size (dz = .313) with .80 power to detect an effect size 

compatible with the previous experiments. Three participants were excluded for making 

more than 10% errors, and an additional three participants were removed for mentioning 

the manipulations in the funnel debrief. 

 

Materials and apparatus  

The exit questionnaires were identical to previous experiments. The course of the trials 

was identical to Experiment 1b for two thirds of the trials (112 trials), but all stimuli 

were presented at equal rates (e.g., John kicked the ball as often as he turned away from 

it). Again, participants simply had to indicate, as quickly and accurately as possible, 

whether the actor interacted or turned away from the object, using a button press.  

However, in the remaining third of trials (96 trials) participants saw only the neutral 

photograph (of the actor stood or sat with the object), and heard a verbal statement of 

intent (“Yeah, I’ll have a go”, “Nah, I’ll leave it”), 500 ms after picture onset, roughly 

coinciding with the action execution in the other trials. Participants were instructed to 

simply listen to these statements without making a response.  
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Trial order was pseudorandomised such that within every 24 trials there were 16 

‘normal’ trials and 8 ‘verbal’ trials presented in random order to more equally disperse 

the different trial types across the experiment. There were 336 trials altogether.  

 

Procedure 

Participants first completed the main computer-based task. They then completed the two 

exit questionnaires before being fully debriefed. 

 

Results 

Funnel debrief  

The average overall ease of the task was perceived to be 7.23 (out of 10). The data 

suggested that the actors and the actions/objects were equally salient with neither being 

easier to identify conclusively (see Table 3.2).  

Table 3.2:  

Data showing which actor and which action participants rated as easier to identify for Experiment 2b 

Character Easiest to identify Action Easiest to 

identify 

Claire 17 Ball/kick 23 

John 13 Computer/type 15 

Neither Claire nor 

John 

49 Interacting with 

an object 

14 

  Turning away 

from an object 

11 

  None 16 

 

Sixty-eight participants (86.08%) did not notice anything unusual in the stimuli, fifty-

three participants (67.09%) said they did not notice a pattern, and the rest mentioned 

similar proposed patterns as in previous experiments. One participant (1.27%) 
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mentioned that they thought they saw the male kick the ball more and the female use the 

computer more. One participant (1.27%) stated that the female always said she would 

leave the ball and take the computer, with the opposite behaviour for the male. Finally, 

one participant (1.27%) said that the actors would do the opposite of what they would 

say. As mentioned above, these three participants (3.81%) were removed from the 

analyses for potential explicit awareness. 

7.39% of trials were excluded in total (4.45% for error trials, 2.52% for scores greater 

than 3 SD from the mean, and 0.42% for Presentation uncertainties). For the response 

time data, erroneous responses were also excluded. The remaining data were analysed 

with a repeated measures ANOVA with the factors Observed Action (act towards, turn 

away) and Expected Action (“Yeah, I’ll have a go”, “Nah, I’ll leave it”), separately for 

RTs and Error rates.  

 

Response times 

The analysis revealed no main effect of Observed Action, F[1,72] = 2.625, p = .110, ηρ² 

= .035, and no main effect of Expected Action, F[1,72] = .219, p = .641, ηρ² = .003. The 

analysis also failed to reveal the hypothesised interaction between these factors, F[1,72] 

= 2.476, p = .120, ηρ² =.033.  

 

Error rates.  

The same ANOVA was conducted on the error rates, and revealed a main effect of 

Observed Action, F[1,72] = 7.444, p = .008, ηρ² = .094, with a higher proportion of 

errors for the acting towards (M = .05, SE = .004) than turning away trials (M = .04, SE 

= .003). Whilst there was no main effect of Expected Action, F[1,72] = .500, p = .482, 



120 

 

ηρ² = .007, there was a borderline statistically significant interaction between these 

factors, F[1,72] = 3.793, p = .055, ηρ² = .050. Further analysis (see Figure 3.8) revealed 

a higher proportion of errors when actors acted upon an object that they had stated they 

would not act with, compared to when they had stated they would act on it, t[72] = 

1.831, p= .071, d = .25. The same pattern was seen numerically for the observation of a 

turn away action, t[72] = 1.111, p = .270, d =.33. 
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Figure 3.8. Response times, proportion of errors and correlations for Experiment 2b 

Average response times (top panel) and average proportion of errors (middle panel). The left bars show 

responses for the verbal statement “Yeah, I’ll have a go”, and the right bar shows responses for the 

statement “Nah, I’ll leave it”. The black bars reflect actions towards objects, and the white bars show the 

turning away actions. Error bars show the standard error of the mean. The bottom panel shows the 

correlation between prediction effects for the proportion of errors and the corresponding differences in 

perceived object liking.  
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Action identification trials immediately following a verbal trial 

In Chapter Two it was proposed that internal models are created relatively implicitly 

and then tested explicitly in the form of behavioural wagers (Marcus et al., 2006; see 

also Duran & Dale, 2009). We therefore explored the data for the first two ‘normal’ 

trials following a verbal trial using one sample t tests, with the hypothesis that the 

transfer of verbal to action information more strongly affects the first trial after a trial in 

which the verbal information was heard. 

This analysis revealed that participants made more errors in the trial immediately 

following a verbal trial if the observed action mismatched the verbal intention than 

when it matched the verbal intention (e.g., when John said he would have a go with the 

ball but was then seen turning away from the ball, compared to when he said he would 

have a go with the ball and was then seen acting towards the ball), t[72] = 2.225, p 

= .029. However, there were no differences in proportion of errors based on expectation 

from the verbal intention in the second subsequent ‘normal’ trial, t[72] = .072,  p = .943, 

suggesting that participants rapidly readjusted their hypotheses based on what was 

actually observed. 

 

Liking  

Objects that actors said they would have a go with were rated as more liked by this actor 

(M = 1.26, SD = 1.13) than objects they said they would leave (M = .65, SD = 1.40), 

t[72] = 2.707, p = .008, d =.48. Whilst in previous experiments correlation and 

regression analyses were performed on this information in relation to the response time 

effect, this time the same analyses was performed on the error data (specifically on the 

interaction effect) and the liking effect. There was no correlation between the 

interaction in the error data and the liking effect, r = -.033, n = 73, p = .781, and the 
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regression analysis revealed that the intercept was not significantly different from zero 

(t = .753, p = .454). This suggests that the effect was only seen in those participants with 

at least some access to explicit knowledge. 

 

Discussion 

Experiment 2b tested whether the actors’ abstract verbal statements of intent influenced 

identification of their future actions to provide further evidence that prediction effects 

reflect evidence of the behavioural knowledge of actors in given situations rather than 

simple stimulus-response learning. There was, indeed, evidence for a prediction effect 

based on person-knowledge, which, contrary to previous experiments, was 

predominantly seen in the error data. Fewer errors were made when the action matched 

the verbal intention in previous trials (the actor acted on an object they said they would 

have a go with and turned from an object they said they would leave) compared to when 

the action mismatched the verbal intention (the actor acted on an object they said they 

would leave, and turned from an object they said they would have a go with). 

Interestingly, the prediction effect was, again, primarily driven by actions towards 

objects, supporting the previous findings for the special status of object-directed actions.  

Thus, the data again supports the hypothesis of ‘intentional relations’ for both abstract 

and concrete behaviours that are goal-directed (Barresi & Moore, 1996). 

One reason the effect may predominantly be seen in the error rates may be because the 

task is more akin to the ‘explicit’ experiments in the series (see Chapter Two, 

Experiments 1c, 1d and 1e). Here, participants may have heard the verbal intention 

(“Yeah, I’ll have a go”) and explicitly tested it against the action in the subsequent trial. 

Indeed, we found more errors for unexpected actions specifically in the first trial after a 
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verbal intention was given. This interpretation would be in line with the Chapter Two 

proposal that internal models are created relatively implicitly and then tested in the form 

of explicit behavioural wagers (Marcus et al., 2006; see also Duran & Dale, 2009), and 

used to update the models. Indeed, anecdotally, in the exit questionnaire (as noted 

previously), several participants thought that the verbal intentions were contradictory to 

what was actually seen suggesting that they were testing these verbal intentions against 

action observations. 

Whereas the error data demonstrated a clear positive compatibility effect, no effects 

were seen in the response time data.  

As in Chapter Two, intention (though in this case based on verbal information from the 

actors) also transferred to post hoc liking ratings; participants rated the actors as liking 

the objects that actors said they would ‘have a go with’ compared to those they said 

they would leave, despite no evidence of explicit awareness of this manipulation in the 

funnel debrief. However, in the current experiment, there was no evidence of a 

dissociation between implicit and explicit knowledge.  

The data therefore provide further evidence against a simple stimulus response learning 

account. Such an account would predict that there would be faster response times and 

fewer errors for more frequent pairings, independent of what the actors said they 

intended to do with the object. However, recall that, in the current experiment, all 

actions were seen equally often (John kicked the ball as often as he turned away from 

it). As such, stimulus learning accounts would not predict any differences in response 

times or error rates across stimuli. Yet, the evidence suggests that participants did use 

the verbal statements of intent as there were more errors when actors behaved 

differently than they said they would. This suggests that participants were integrating 
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this higher-level knowledge with their observations of the actors acting with the objects 

in person-models. 

 

General discussion 

The current chapter aimed to provide evidence that person-knowledge really was 

leading to prediction effects based on the typical actions of two actors in two situations, 

rather than simply reflecting mere stimulus and/or response learning. Experiment 2a 

found evidence for components typically found in prediction paradigms and error 

processing of actions, namely P3b and oERN (Bismark et al., 2013; Carp et al., 2009; 

Donchin & Coles, 1988; Duncan-Johnson & Donchin, 1982; Koban et al., 2012; Kobza 

& Bellebaum, 2013; Polich, 2007; van Schie et al., 2004). These effects were modulated 

by Action Type (act towards, turn away) such that the oERN was only found for the 

acting towards trials, indicating that participants viewed the unexpected action as an 

action error on the part of the actor (relative to the person-model), but that the same 

processing was not applied to the turning away trials. However, independent of whether 

an act towards or turn away action was observed, greater P3b activity was seen when 

the action was atypical for the actor in the given situation indicating that during atypical 

trials the person-models were being updated (Donchin & Coles, 1988; Duncan-Johnson 

& Donchin, 1982). These findings provide evidence that participants are, indeed, 

making predictions based on person-models of the actors’ behaviour, and against the 

counter-argument of data simply reflecting mere stimulus-response learning.  

Experiment 2b further supported the person-model explanation over a simple stimulus-

response bias explanation by demonstrating that verbal statements of intent transferred 

to action identification, which should not occur with simple motor learning. There were 
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fewer errors (and slower response times) when actions matched the verbal intention of 

the actor in previous trials (the actor acted on an object they said they would have a go 

with), compared to when the action mismatched the verbal intention of the actor in 

previous trials (the actor acted on an object they said they would leave).  

Thus, there was evidence of a transfer between verbal intentions and action observation. 

One caveat is that this transfer was explicitly mediated such that participants were 

actively assessing whether what the actor said was true in the subsequent action 

observation trial. The first subsequent ‘normal’ trial after a verbal intention produced 

more errors when the action displayed mismatched rather than matched that intention. 

Moreover, anecdotal reports of several participants in the exit questionnaires appeared 

to reflect a contrast effect between verbal intention and subsequent action, where they 

perceived the actors to act against their stated intentions. As such, Experiment 2b 

provided further evidence towards the implicit learning tested by explicit wagers 

explanation posited in Chapter Two (Marcus et al., 2006; see also Duran & Dale, 2009).  

 

Conclusion 

Both experiments provide further support towards the person-model explanation that 

participants (implicitly) learn the behavioural tendencies of others and reactivate this 

when they are seen again (Barresi & Moore, 1996). If the previous findings were merely 

due to a stimulus-response bias then there should be no modulation of ERPs, and no 

influence of verbal statements of intention, during the action identification task. Instead, 

there was evidence of a modulation of ERPs based on both Action Typicality and 

Action Type, and verbal statements of intent did influence action identification 
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responses. Crucially, there was also evidence of ERP components typically activated 

during predictive coding tasks (P3b, oERN). 
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Chapter Four – the predictive influence of pre-existing 

person-models on motor biases 

Recently, it has been suggested that people identify the actions of others by ‘mapping’ 

these actions onto their own motor system, to help derive their associated internal states 

(e.g., Gallese et al., 1996; Rizzolatti & Craighero, 2004; Sparenberg, Springer, & Prinz, 

2012; Wilson & Knoblich, 2005). In other words, people understand the action because 

they simulate how they themselves would perform that action; how it would feel to 

them, and what internal states it would activate, which is then attributed to their 

interaction partner.  

Research in this motoric understanding of actions has grown exponentially since the 

discovery of ‘mirror’ neurons, which fire both when performing an action and when 

observing that same action (e.g., di Pellegrino et al., 1992; Rizzolatti et al., 1996). There 

is much debate as to their purpose, with some theorising that mirror neurons are a 

mechanism for mapping observed actions onto our own motor system (e.g., Wilson & 

Knoblich, 2005) to help us understand our interaction partners and make predictions 

about how they will behave (e.g., Gallese et al., 1996; Rizzolatti & Craighero, 2004). 

For example, there is evidence that action initiation is faster in humans when a co-actor 

shares the same (rather than a different) action intention, which suggests the use of the 

same goal representation for self and other (Ondobaka, de Lange, Newman-Norlund, 

Wiemers, & Bekkering, 2012). 

Such accounts typically assume that mirror neurons are primarily stimulus-driven: 

mirror neurons represent the actions we observe, matching it with prior knowledge in a 

primarily bottom-up fashion (e.g., Gallese et al., 1996; Rizzolatti & Craighero, 2004). 

However, more recently there has been a move away from such exclusively bottom-up 

accounts towards a view that perception in general – social and otherwise – is also 
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influenced by prior knowledge and predictions (Bubic et al., 2010; A. Clark, 2013; den 

Ouden et al., 2012; Friston & Kiebel, 2009). These models assume that the brain is 

constantly making predictions for what will happen next, and testing them against the 

perceptual input. Evidence suggests that such a bias in perception occurs very early in 

processing, at least for non-social perception (den Ouden et al., 2012; Gamond et al., 

2011; Senior, Ward, & David, 2002), but similar evidence is emerging for social stimuli 

in person perception (Macrae & Bodenhausen, 2001), gaze perception (see Teufel, 

Fletcher, et al., 2010), and action perception (Hudson, Nicholson, Simpson, Ellis & 

Bach, 2015) as well. 

In such models, contrary to purely bottom-up theories, goals rather than action 

kinematics are being simulated. Activation of the associated actions occurs in a second 

step when observers predict (“emulate”) the action they would do to achieve the goal 

(e.g., Hickok, 2009; Kilner et al., 2007). Such an account proposes that perception is 

biased by predictions at multiple levels of the behaviour-goal hierarchy (see Bubic et 

al., 2010; A. Clark, 2013; den Ouden et al., 2012; Friston & Kiebel, 2009), for example, 

on both lower levels (John will kick the ball) and higher levels (John wants to score a 

goal). Mismatches between what is expected and what is actually observed lead to 

prediction errors, which are then fed back up the hierarchy. For example, knowing John 

likes football would lead to the prediction that he would kick a ball in the park, and 

surprise (i.e., a prediction error) if he is, instead, seen in the park having a picnic whilst 

his friends are playing football. 

Prior chapters provide evidence that such predictions elicit biases in action 

identification, and we have also recently shown how these predictions also elicit 

attentional biases, namely that observers direct attention not only to where someone is 

looking, but also to where they expect them to look (Joyce et al., 2015). However, 
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recent predictive coding models would further hypothesise that predictions also elicit 

motor biases, as it is assumed that expected actions of another person are derived via the 

observers’ own motor system (Kilner & Frith, C.D. 2007; Kilner et al., 2007). Indeed, 

there is evidence of forward models for motor commands showing people’s ability to 

predict the consequences of their own motor actions (for a review, largely within 

saccadic eye movements, see Shadmehr, M.A. Smith & Krakauer, 2010; for a model of 

adaptation and anticipation within sensorimotor synchronisation see van der Steen & 

Keller, 2013). There is also evidence for anticipatory motor activations during action 

observation (Avenanti, Annella, Candidi, Urgesi, & Aglioti, 2013) suggesting that we 

predictively code others’ actions (Urgesi et al., 2010). Similarly, infants who were not 

yet proficient walkers could predict crawling more accurately than walking, whereas 

infants who were proficient in both walking and crawling showed no difference in 

predictive accuracy (Stapel, Hunnius, Meyer, & Bekkering, 2016). These studies 

highlight the use of the motor system during predictions of action observations.  

The experiments in this chapter build on these effects to test whether person-models of 

others are also embodied, in the sense that predictions can be attributed from observers’ 

involuntary motor responses when seeing these individuals. The experiments build upon 

prior work by Bach and Tipper (2006; see also Tipper & Bach, 2011) who asked 

participants to identify famous football and tennis players with either a hand or foot 

response. They investigated whether the typical body part – the one most frequently 

used in the sport – was activated even if the athletes were not currently seen executing 

their typical action (kicking a ball, using a racket), implying motor activation that 

reflects the action anticipated from the actors rather than what is currently observed.  

While Bach and Tipper’s (2006) results took the form of contrast rather than facilitation 

effects, impairing the body part that was used in the athletes’ sport (e.g., slower 
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responses for hand than foot responses for tennis players, and vice versa for football 

players), they nevertheless suggest that participants were using their own motor systems 

to represent knowledge about the athletes because the athletes’ main effector influenced 

the motor response required, even though action knowledge was not required for the 

task. This may be a result of the arm being ‘reserved’ for the tennis players and the foot 

for football players, and so the other effector is easier to access leading to the contrast 

effects. 

Moreover, the results showed that motor activation was person-specific, that is, 

different body parts were affected for different athletes, depending on the body part 

primarily used in their sport. This supports the notion of person-models for action 

observation described in Chapter Two. In this case Wayne Rooney is associated with 

kicking footballs whereas Andy Murray is associated with playing tennis. In this view, 

the negative compatibility effects might, therefore, reflect a prediction error: that an 

expected action (i.e., a kick for Wayne Rooney) was not observed, leading to an 

inhibition of the associated motor response. Indeed a further experiment using the same 

paradigm (Tipper & Bach, 2011) showed that the usual positive compatibility effects 

are, indeed, observed when the same athletes were shown carrying out their sport 

(hitting a tennis ball or kicking a football). 

The current experiments will test whether such effects emerge from the activation of 

internal person-models for action prediction. According to the results of the previous 

experiments, internal person-models are both person- and situation-specific, specifying 

how an individual acts in different situations. In other words, participants should not 

predict that Wayne Rooney should kick in general; instead, a kick should only be 

predicted when he is seen on the football pitch. Similarly, a famous tennis player should 

only be predicted to use the racket when on the tennis court, but not at a wedding. This 
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situation-specificity and resulting action activation leads to the prediction that both the 

negative compatibility effects (when athletes are not carrying out the expected actions) 

and the positive compatibility effects (when they are acting) should only be observed 

(or should at least be stronger) when the athletes are observed in their sporty contexts 

(i.e., on the football pitch or tennis court, wearing the associated attire).  

To test these hypotheses, the current two experiments presented four famous athletes 

either acting, or not acting, in and out of their typical contexts, and participants had to 

identify these athletes using either a keyboard or a foot pedal. This establishes whether 

the athletes’ typical actions are embodied within the observer such that footballers are 

identified more slowly when using a foot compared to a hand response when seen not 

acting, and vice versa when acting (and that tennis players show the opposite pattern). 

For the first time, both the context and action factors were fully counterbalanced such 

that athletes could either be seen (1) carrying out their sporty hand and foot actions or 

standing passively, and (2) in either their sporty contexts (tennis court, football pitch) or 

outside it (i.e., on the beach). 

The current paradigm extends the previously proposed person-model in at least three 

ways. First, it tests whether the predictions derived from these models are embodied and 

lead to measurable changes in motor output. This would help address one of the key 

counter-arguments against the proposed person-model theory of the first paradigm 

(Chapter Two), namely that the effects could merely be due to familiarity with the most 

frequently seen stimuli (e.g., one person kicking but not turning away from a football) 

or mere stimulus-response associations. Whilst Chapter Three provides preliminary 

evidence against this interpretation, the current paradigm would further counter this 

argument, by revealing that person prediction happens on an embodied level, thereby 
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clearly linking it to reflecting action information rather than other, more abstract, 

stimulus attributes.  

Second, it tests whether such models extend to knowledge held about individuals prior 

to the experiment. In Chapter Two, prior knowledge was created by setting up situations 

in which participants can learn how actors behave in different situations, and these 

stimuli were, by necessity, limited and constrained. In contrast, this chapter explores 

pre-existing knowledge that participants had prior to this experiment, (often for many 

years) and which was acquired in everyday, non-experimental settings.  

Third, it allows us to separate the hypothesised person-models from different potential 

models that can explain the positive and negative athlete compatibility effects in prior 

research. One alternative possibility is that person and situation do not interact to 

specify the most likely forthcoming actions (as proposed in previous chapters), but that 

they predict action independently. If this is the case, then there should be stronger motor 

activation when the athlete is in their typical situation next to the associated objects 

(football pitch, tennis court), and there should be stronger activation whenever they 

perform their typical action (kicking the ball, hitting a ball with their tennis racket).  

A second alternative possibility is that person-models are accessed in stages. For 

example, how a person looks and the situations they are typically seen in might be the 

most relied upon factors that guide imitation of the athletes, with the specifics of this 

person-knowledge (motor information, contextual cues, etc.) only being activated when 

there is uncertainty. For example, when Wayne Rooney is seen in his typical context 

performing his typical action, no further information (i.e., person-knowledge) is 

required. However, if Wayne Rooney is seen in an atypical context it may elicit a 

prediction error, and so more detailed person-knowledge held about him may be 

activated to reduce the uncertainty. As such, motor information (i.e., the knowledge that 
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Wayne Rooney typically kicks a ball) should not be activated when he is seen in 

context, instead it should be predominantly observed when he is seen out of context. 

Numerically, at least Tipper and Bach (2011) provide support for this outcome, with 

negative compatibility effects being numerically larger in the out-of-context condition.  

 

Experiment 3a – Action prediction based on pre-existing person-

knowledge 

The previous experiments investigated person-knowledge gained during the course of 

an experiment. Experiment 3a investigated the influence of action knowledge about 

individuals gained prior to the experiment, and tests whether this affects motoric 

(“mirror”) representations of others’ actions. Finding such motoric effects of anticipated 

actions would solve the problem in the previous chapters of whether the prediction 

effects truly reflect anticipation of the forthcoming action, rather than other stimulus or 

response aspects that could be encoded in a non-social format. In contrast, finding that 

the participants’ motor system would, in some way, represent the not observed (but 

predicted) action of somebody else would provide clear evidence for such a social 

prediction of others’ actions. 

Participants were presented with photographs of famous football and tennis players – 

Wayne Rooney, Cristiano Ronaldo, Andy Murray and Roger Federer – either acting, or 

not acting, in a neutral context or in their usual sports context, in a fully 

counterbalanced factorial design. Participants had to identify these actors with hand and 

foot responses, such that one tennis player (e.g., Andy Murray) and one footballer (e.g., 

Wayne Rooney) would have to be identified with a foot response, and the others with a 

hand response (e.g., Roger Federer and Cristiano Ronaldo). This tests whether the 

athletes’ actions are embodied within the observer such that the congruency of the 
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participants’ identification response with the body part typically used in the athletes’ 

actions affects response times.  

Prior research has suggested that these motoric activations do, indeed, have some 

predictive components (Bach & Tipper, 2006; Tipper & Bach, 2011). When the athletes 

were seen acting and carrying out their typical behaviours (tennis players hitting a ball 

and footballers kicking), the well-known positive compatibility (“mirror”) effects were 

found (e.g.,  Bach et al., 2007; Brass et al., 2000), such that athletes were identified 

more quickly with the body part primarily used in their sport. Crucially, however, 

congruency of body parts used for identifying the athletes affected response times even 

if the athletes were not seen acting, and so their actions could only be predicted. 

Importantly, these took the form of negative compatibility effects, that is, a tennis 

player took longer to be identified with a hand than a foot response and vice versa for 

football players. This could be taken as evidence for predictive processing, where the 

expected action is represented as “missing” and, therefore, elicits negative compatibility 

effects.  

The goal of Experiment 3a is, firstly, to replicate these negative compatibility effects. 

Second, this paradigm tested whether these effects reflect underlying person-models 

that predict others’ behaviour in different circumstances, such that the negative 

compatibility effect codes the absence of the clearly expected action from this athlete. 

Recall that in the previous experiments in this thesis, anticipation of action always 

occurred not only in a person but also a situation-specific manner. If our embodied 

knowledge of the athletes’ sport emerges from similar underlying person-models, then 

these effects should also be modulated by context. It would then be hypothesised that 

the negative compatibility effects should be stronger when the athlete is in their typical 

situation (e.g., on a football pitch), where they would be expected to perform these 
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actions, compared to an atypical situation (e.g., at a wedding), where such an action 

expectation is reduced.   

 

Method 

Participants 

43 participants (34 females, mean age = 20.86 years, SD= 4.49; 38 right handed) took 

part in the study in exchange for course credit. Samples sizes were based on the two 

previous experiments (Bach & Tipper, 2006; Tipper & Bach, 2011). Four participants 

had technical difficulties with the foot pedal and were excluded from the analysis.  

 

Materials and apparatus 

The apparatus was identical to the previous experiments. Photographs of four athletes 

were presented; two footballers (Wayne Rooney, Cristiano Ronaldo) and two tennis 

players (Andy Murray, Roger Federer). Each athlete was shown in two photographs for 

each of the four conditions (acting in context, not acting in context, acting out of 

context, not acting out of context). Therefore, there were 32 photographs in total. 

Actions out of context could be in any situation that was not a tennis court or football 

field for example at an awards ceremony, at the beach, etc. (see Figures 4.1 & 4.2). 

 

 

 

 



137 

 

 

Figure 4.1. has been removed due to Copyright restrictions. 

 

 Figure 4.1. An example of the typical action conditions for Experiment 3a.   

Andy Murray is playing tennis (left) in context on a tennis court and (right) out of context on a beach 

 

 

  

 

 

Figure 4.2. has been removed due to Copyright restrictions. 

 

Figure 4.2. An example of the non-action conditions for Experiment 3a.   

Andy Murray is seen not performing his typical action of playing tennis (left) in context on a tennis court 

and (right) out of context on a beach 

 

 

 

A questionnaire asked how often participants had seen each athlete playing 

tennis/football, how skilled they thought the athlete was compared to other 

professionals within their sport, how talented they thought the athlete would be at the 

other sport (e.g., for Andy Murray, participants were asked how talented they thought 

he would be at football), and finally how much participants liked each athlete. For each 
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question, participants responded on an 8-point Likert scale from -4 to +4 with no zero 

point. 

The social intelligence scale (Silvera et al., 2001) was administered to test correlations 

between self-report measures of social intelligence and response time effects. However, 

there were no significant correlations so this will not be discussed further.  

 

Procedure 

Participants were only invited to take part in the study if they could recognise each of 

the four athletes to ensure the reactivation of this prior knowledge during the 

experiment. 

Participants were instructed to identify the athletes as quickly and as accurately as 

possible using either a keyboard or a foot pedal. One footballer and one tennis player 

had to be identified using the foot pedal, and the second footballer and tennis player had 

to be identified using the keyboard (counterbalanced across participants). 

Each trial consisted of a fixation point in the centre of the screen for between 800 and 

1000 ms (randomly chosen) followed by the photograph of one of the athletes in one of 

the conditions. This image stayed on screen for a maximum of 2000 ms if no response 

was given. If participants responded correctly they were shown a blank screen for 300 

ms, if not they were given a reminder of which pedal to press for each athlete for 3000 

ms. There were 384 trials in total – 12 blocks of the 32 photographs presented in 

random order using E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA). There 

was an opportunity for a short break halfway through if the participants wanted one. 

Finally, participants filled out the exit questionnaire and the social intelligence scale, 

and were debriefed and thanked for their participation. 
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Trial exclusions 

As in previous chapters, trials were excluded if they had RTs greater than the trial 

duration, and if they had RTs greater than three standard deviations from the 

participants’ condition mean. For the analysis of RTs, error trials were additionally 

excluded. However, due to the increased task difficulty compared with the previous 

paradigm, participants were excluded if they made more than 20% errors, though none 

did in either experiment. 

 

Results 

6.44% of trials were excluded in total (4.79% for error trials, and 1.65% for response 

times greater than 3 SD from the mean).  

 

Response times 

For the remaining data, a repeated measures ANOVA was performed with the factors 

Context (in context, out of context), Action (action, non-action) and Effector 

Congruency (congruent with athlete’s typical effector, incongruent with athlete’s typical 

effector), and Counterbalance (Rooney/Murray hand and Ronaldo/Federer foot 

identification, Rooney/Murray foot and Ronaldo/Federer hand identification, 

Ronaldo/Murray hand and Rooney/Federer foot identification, Ronaldo/Murray foot 

Rooney/Federer hand identification) as a between subjects factor of no interest.  

There was no overall main effect of Effector Congruency, F[1,35] = 1.111, p = .299, ηρ² 

= .031. However, there was a main effect of Context, F[1,35] = 80.740, p < .001, ηρ² 

= .698, with faster response times for identification of athletes out of context (M = 

731.01, SE = 10.18) than in context (M = 763.69, SE = 11.62). There was also a main 
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effect of Action, F[1,35] = 9.278, p = .004, ηρ² = .210, with faster response times when 

athletes performed their typical action (M = 743.30, SE = 10.57) than when they did not 

(M = 751.41, SE = 11.12). The predicted three-way interaction of Context, Action and 

Effector Congruency was not significant, F[1,35] = .048, p = .827, ηρ² = .001, but, as in 

the original studies (Bach & Tipper, 2006; Tipper & Bach, 2011), there was a 

significant interaction between Action and Effector Congruency, F[1,35] = 5.580, p 

= .024, ηρ² = .138 (all other effects, F[35] ≤ .750, p ≥ .392), showing negative 

congruency effects when athletes were seen not acting. Planned comparisons on Action 

and Non-Action trials separately with Counterbalance as a factor of no interest revealed 

no main effects or interactions for the action trials, largest F[1,35] ≤ 1.251, smallest p 

≥ .306, but there were slower response times for congruent (M = 759.71, SE = 10.96) 

than incongruent (M = 746.80, SE = 10.59) stimuli, F[1,35] = 5.410, p = .026, ηρ² 

= .134 for the non-action trials.  

As a direct effect of context on the congruency effects was hypothesised, planned 

comparisons were then performed on the in context and out of context trials separately 

with Counterbalance as a factor of no interest. For the in context trials, this revealed no 

main effects or interactions, largest F[1, 35] ≤  2.162, smallest p ≥ .150. However, the 

same analyses for the out of context trials revealed that there was a near significant 

main effect of Effector Congruency, F[1,35] = 3.359, p = .075, ηρ² = .088, with faster 

responses for incongruent (M = 726.40, SE = 10.13) than congruent (M = 735.63, SE = 

10.82) responses. The out of context trials also showed an interaction of Action and 

Effector Congruency that was borderline significant, F[1,35] = 3.8341, p = .058, ηρ² 

= .099. Further planned comparisons revealed that response times were faster when 

non-actions were identified with the incongruent than congruent effector, F[1,35]= 

8.483, p = .006, ηρ² = .195. The same effect was not observed for the typical actions, 

F[1,35]= .110, p = .742, ηρ² = .003.     
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Figure 4.3. Average response times for Experiment 3a.  

The left graph reflects average response times in context, and the right graph reflects average response 

times out of context. The left bars reflect typical actions, and the right bars represent atypical actions. The 

black bars show identification with a congruent effector, and the white bars show identification with an 

incongruent effector. Error bars show the standard error of the mean. 

 

Errors 

A parallel ANOVA was carried out on the error rates. There were no main effects of 

Action, F[1, 35]= 1.105, p = .300, ηρ²= .031 nor Effector Congruency, F[1, 35]= 1.571, 

p = .218, ηρ²= .043, but there was a main effect of Context, F[1, 35]= 14.323, p = .001, 

ηρ²= .290. Participants made a higher proportion of errors when identifying athletes in 

context (M = .054, SE = .005) than out of context (M = .040, SE = .004). The critical 

three-way interaction was not significant, F[1, 35]= .017, p = .898, ηρ²= .000, nor were 

any of the other interactions, largest F[1, 35] ≤ 1.347, smallest p ≥ .254 (see Table 4.1).  

Planned comparisons revealed no further main effects or interactions for the in context 

trials, largest F[1, 35] ≤ 2.476, smallest p ≥. 125, nor the out of context trials, largest 

F[1, 35] ≤  .503, smallest p ≥ .683. 
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Table 4.1 

The mean proportion of errors for in context and out of context trials with standard deviations in 

brackets for Experiment 3a 

 Typical action  Neutral action  

 Effector 

congruent 

Effector 

incongruent 

Effector 

congruent 

Effector 

incongruent 

In context .053 (.037) .060 (.035) .046 (.040) .057 (.046) 

Out of 

context 

.040 (.034) .040 (.033) .040 (.037) .041 (.031) 

 

 

Liking & Skill ratings 

To investigate the influence of prior knowledge and attitudes towards the athletes on the 

above effects, separate regression analyses were conducted for the RT Action by 

Effector Congruency interaction effect, and the equivalent error interaction effect (see 

Table 4.2). Even though there was no significant facilitation effect, motor priming 

effects for typical actions in the response times were stronger for participants who rated 

the athletes as more skilled in their own sport and, to a lesser extent (p = .075), those 

who were more familiar with the athletes (replicating Tipper & Bach, 2011), suggesting 

that the predicted facilitated Congruency effect for Action stimuli was present in those 

participants that knew the athletes better. However, as in the previous studies, there 

were no relationships involving the skill participants perceived the athletes to have in 

the other sport (e.g., the skill of a football player at playing tennis) nor liking for the 

athletes. There were no significant relationships for the error data. 
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Table 4.2. 

Regression analysis for Experiment 3a; standardised beta coefficients describing the relationships 

between motoric priming and participant prior knowledge and liking of the athletes for RTs (based on 

the interaction of Typical Action by Effector Congruency) and error data.  

Predictor Motor Priming effect 

RTs Errors 

Familiarity  -.331 -.008 

Skill: Athlete’s own sport -.381* .102 

Skill: Other sport 0.89 .039 

Liking .180 .202 

* p < .05 

 

Discussion 

Experiment 3a tested whether seeing a famous athlete primes the main effector used in 

their sport such that when a famous tennis player like Andy Murray is seen, the 

participants’ own arm is activated, even when Andy is not currently seen acting with his 

arm. Crucially, a fully factorial design manipulated whether presenting the athletes in or 

out of their typical contexts modulates the size of the resulting facilitation or inhibition 

effects. It was hypothesised that, as in previous chapters, participants would re-activate 

person-models of the athletes, which would then activate the typical actions they carry 

out in different situations. Therefore, both negative and positive compatibility effects 

should be stronger when the athlete is observed in their typical situation (e.g., on a 

football pitch), where they would be expected to perform these actions, compared to an 

atypical situation (e.g., at a wedding), where such an action expectation is reduced. 

However, the results did not support this prediction. 
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The results replicated previous findings that viewing athletes famous in their sports 

influenced observer motor systems (Bach & Tipper, 2006; Tipper & Bach, 2011), even 

if the athletes were not shown performing their typical actions. As before, participants 

showed negative compatibility effects when the athletes were not performing their sport 

(i.e., slower to respond when they must identify Andy Murray using a hand response 

compared to a foot response). As in Tipper and Bach (2011), these effects were 

eliminated when viewing the athletes performing their typical actions. These findings 

suggest that merely seeing Andy Murray elicits the expectation that he will use his arm. 

This priming facilitates responses with the same effector when observers see him 

performing as expected. In contrast, when he is not performing his expected action, this 

appears to be coded as an absence - a negative deviation of an action that was expected 

– and elicits negative compatibility effects.   

These results are in line with the notion of person-specific internal models that predict 

the actions of other people. Participants responded differently depending on whether 

they see someone who typically uses their arm (or leg) even though this was not task-

relevant, based only on their prior history with watching these athletes outside of the 

experimental context. This would not be hypothesised by simple stimulus-response 

accounts. Thus, as seen in Chapter Two, who is being observed is important and directly 

affects one’s own motor responses. This reliance on prior knowledge is supported by 

the replication of Tipper and Bach's (2011) finding that knowledge about the athletes 

influenced the motor priming effects. Those participants who rated the athletes as more 

skilled in their sport (and, to a lesser extent, those who had more knowledge of the 

athletes) showed the strongest motor priming effects. This highlights how perception of 

the athletes being particularly skilled in their sport influenced motor priming towards 

them. It is striking that for this person-identification task, information about behavioural 

tendencies (which is not task-relevant) still influenced response times. 
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However, the current experiment does not support Barresi and Moore's (1996) 

argument, or previous findings (Chapters Two and Three), that situation is an important 

factor in intentional relations. It was predicted that, if the effects reflect the activation of 

internal person-models, the negative compatibility effects should be stronger when the 

athlete is in their typical situation (e.g., on a football pitch), where they would be 

expected to perform these actions, compared to an atypical situation (e.g., at a wedding), 

where such an action expectation is reduced. However, the same pattern of results was 

seen irrespective of context, whether the athletes were identified in their usual contexts 

(football field, tennis court) or in other, more neutral situations, suggesting that the main 

determinant of these effects is the identity of the actor, but not the situation they are in. 

Whilst the interaction was not significant (and power analyses revealed sample sizes of 

over 1000 participants would be required to find such an effect), numerically the data 

suggested the strongest compatibility effects for the out of context stimuli. If replicated, 

this would provide tentative support for the person-model hypothesis; that a person-

knowledge heuristic is activated when the individual is seen, but the details of this are 

only ‘unpacked’ if there is uncertainty, such as seeing the athlete in unusual situations. 

The out of context stimuli would lead to the most uncertainty, which would explain the 

stronger compatibility effects. 

These results differ from those reported in Chapter Two, which demonstrated that actor, 

action and situation are all important factors influencing responding. Therefore, each of 

these cues may have a different weighting within prediction, with a much lesser 

weighting for situation. However, here, the task was to identify the actor, making their 

identity task-relevant. Context, in contrast, varied incidentally, and thus it is perhaps not 

surprising that it had little effect. Experiment 3b more directly manipulated the salience 

of the contextual information to test whether these changes affect whether it influences 

the congruency effects, and assimilated the paradigm more closely with Chapter Two.  
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Experiment 3b – the influence of pre-existing person-knowledge when 

highlighting context 

The experiments in Chapter Two showed that action prediction occurred in a situation-

specific manner during action identification, but Experiment 3a failed to support this 

hypothesis when measuring embodied activation of action knowledge about famous 

athletes in a person-identification task. One difference between these experiments is that 

Chapter Two first showed a neutral image of the actors stood or sat by the objects 

before presenting a second image of the action. This prior viewing of the context may 

have provided the crucial cues needed to reactivate the behavioural tendencies of the 

actors. Thus, in Experiment 3b, situation cues (a tennis court, football pitch, or one of 

two beach scenes) were provided prior to the critical image of the athletes to provide 

more time for processing context. It was also hoped that this may reduce some of the 

‘noise’ in the previous data to reduce the minimum sample size of participants needed 

to find the three-way interaction. In light of this it was, again, hypothesized that the 

negative compatibility effects should be stronger when the athlete is in their typical 

situation (e.g., on a football pitch), where they would be expected to perform these 

actions, compared to an atypical situation (e.g., at a wedding), where such an action 

expectation is reduced. 

 

Method 

Participants 

56 participants (35 females, mean age = 21.29 years, SD = 5.28; 49 right handed) took 

part in the study in exchange for course credit. Sample size was determined with G-

Power (Erdfelder et al., 2007) based on Experiment 3a, which indicated that a sample 
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size of at least 50 was required to reliably detect the interaction between Action and 

Effector Congruency with .80 power. 

 

Materials, apparatus and procedure 

The questionnaires were identical to the previous experiments. However, the 

photographs were altered so that all out of context photographs showed the actors on the 

beach to reduce possible confounds in the previous stimuli whereby the out of context 

photographs could be in several situations (e.g., at awards, in the street, or on the 

beach). An additional photograph of either a beach scene or a tennis/football scene was 

also now presented prior to the critical photograph. Whilst a tennis or football scene is 

unambiguously predictive of subsequently viewing a football or tennis player, a beach 

scene does not predict whether a football or tennis player will be seen. To reduce this 

potential confound, one specific beach scene was assigned to tennis players and one to 

football players.  

Each trial consisted of a fixation point in the centre of the screen for between 800 and 

1000 ms (randomly chosen) followed by the photograph of the context (beach scene 

one/tennis court for the tennis players or beach scene two/football pitch for the football 

players) for 500 ms, followed by a photograph of one of the athletes in the related 

situation. As before, this photograph stayed on screen for a maximum of 2000 ms if no 

response was given. If participants responded correctly they were presented with a 

blank screen for 300 ms, if not they were reminded which response to press for each 

athlete for 3000 ms. There were 384 trials in total – 12 blocks of the 32 photographs 

presented in random order. Again, there was an opportunity for a short break halfway 

through if the participants wanted one.  
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Results 

Response times 

7.12% of trials were excluded in total (5.29% for error trials, 1.83% for scores greater 

than 3 SD from the mean).  

As before, the remaining data were analysed with a repeated measures ANOVA with 

the factors Context (in context, out of context), Action  (action, non-action) and Effector 

Congruency (congruent with athlete’s typical effector, incongruent with athlete’s typical 

effector) and Counterbalance (Rooney/Murray hand and Ronaldo/Federer foot 

identification, Rooney/Murray foot and Ronaldo/Federer hand identification, 

Ronaldo/Murray hand and Rooney/Federer foot identification, Ronaldo/Murray foot 

Rooney/Federer hand identification) as a between subjects factor of no interest. 

The analysis revealed no overall main effect of Effector Congruency, F[1,52] =.016, p 

= .901, ηρ² < .001 nor of Action, F[1,52] = .244, p = .624, ηρ² = .005. However, there 

was a main effect of Context, F[1,52] =14.524, p < .001, ηρ² = .218. Response times 

were, again, faster out of context (M = 763.32, SE = 10.73) than in context (M = 776.24, 

SE = 11.42). The predicted three-way interaction was not significant, F[1,52] = 1.579, p 

= .215, ηρ² = .029. Replicating Experiment 3a, and the previous experiments by Bach 

and Tipper (2006), there was an interaction between Action and Effector Congruency, 

F[1,52] = 6.531, p = .014, ηρ² = .112. There was also an interaction between Action and 

Context, F[1,52] = 5.021, p = .029, ηρ² = .088. However, the interaction between 

Context and Effector Congruency was not significant, F[1,52] = .082,  p= .776,  ηρ² 

= .002.  

Planned comparisons were performed to further resolve the two-way interaction 

between Action and Effector Congruency with Counterbalance as a factor of no interest. 
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They revealed that response times were faster when typical actions were identified with 

the congruent than incongruent effector, F[1,52]= 4.148, p = .047, ηρ² = .074, showing 

positive compatibility effects. The negative compatibility effect seen in Experiment 3a, 

and previous research (Bach & Tipper, 2006; Tipper & Bach, 2011), just failed to reach 

marginal significance, F[1,52]=2.744, p = .104, ηρ² = .050.     

As in Experiment 3a, planned comparisons were conducted for the in context and out of 

context trials separately with Counterbalance as a factor of no interest. For the in 

context trials, there was a main effect approaching significance for Action, F[1,52] = 

3.303, p = .075, ηρ² = .060, with faster response times for action (M = 772.29, SE = 

11.60) than non-action stimuli (M = 780.19, SE = 11.65). However, there were no other 

main effects or interactions, largest F[1,52] ≤ 1.434, smallest p≥ .237. However, for the 

out of context trials there were no main effects, largest F[1,52] ≤ 1.558, smallest 

p≥ .218, but, as in Experiment 3a, there was an interaction between Action and Effector 

Congruency, F[1,52] = 6.748, p = .012, ηρ² = .115.  

 

 
Figure 4.4. Average response times for Experiment 4b  
The left graph reflects average response times in context, and the right graph reflects average response 

times out of context. The left bars reflect typical actions, and the right bars represent atypical actions. The 

black bars show identification with a congruent effector, and the white bars show identification with an 

incongruent effector. Error bars show the standard error of the mean. 
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Errors 

The same ANOVA was conducted on the error data and revealed no main effect of 

Effector Congruency, F[1,52] =.977, p = .328, ηρ² = .018, but there was a main effect of 

Context, F[1,52] =15.767, p < .001, ηρ² = .233, and a near-significant main effect of 

Action,  F[1,52] =3.029, p = .088, ηρ² = .055. There were a higher proportion of errors 

in (M = .04, SE = .003) than out of context (M = .030, SE = .003), and when the athletes 

performed their typical action (M = .04, SE = .003) compared to a neutral action (M 

= .03, SE = .003). However, the predicted three-way interaction was, again, not 

significant, F[1,52] = 2.189, p = .145, ηρ² = .040. Indeed, the only near-significant 

interaction was between Context and Action, F[1,52] = 3.591, p = .064, ηρ² = .065, for 

all other interactions; largest F[52] ≤  .997, smallest p ≥ .328.  

As with the RTs, planned comparisons were conducted separately for in and out of 

context trials with Counterbalance as a factor of no interest. For the in context trials 

there was only a main effect of Action, F[1,52] = 5.046, p = .029, ηρ² = .088, all other 

main effects and interactions were F[52] ≤ .095, p ≥ .759. For the out of context trials 

there was only a near-significant interaction of Action and Effector Congruency, 

F[1,52] =3.593, p = .064, ηρ² = .065, all other main effects and interactions were; 

largest F[52] ≤ 1.977, smallest p≥ .166.  

Further planned comparisons were performed to further resolve the two-way interaction 

of Action and Effector Congruency with Counterbalance as a factor of no interest. 

Whilst there was no difference in the proportion of errors for congruent than 

incongruent responses to typical actions out of context, F[1,52]= .016, p = .899, ηρ² 

< .001, there was a higher proportion of errors for congruent compared to incongruent 

responses to non-actions out of context, F[1,52]=5 .137, p = .028, ηρ² = .090, showing, 

again, the expected negative compatibility effect in this condition.     
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Table 4.3 

The mean proportion of errors for in context and out of context trials with standard deviations in 

brackets for Experiment 3b 

 Typical action  Non-action  

 Effector 

congruent 

Effector 

incongruent 

Effector 

congruent 

Effector 

incongruent 

In context .046 (.036) .047 (.032) .038 (.035) .038 (.035) 

Out of 

context 

.034 (.030) .034 (.031) .030 (.028) .040 (.035) 

 

Liking 

To investigate the influence of prior knowledge and attitudes towards the athletes on the 

above effects, separate regression analyses were conducted for the RT Typical Action 

by Effector Congruency interaction effect, and the error interaction effect (see Table 

4.4).  However, there was little effect of prior knowledge of the athletes.  

 

Table 4.4 

Regression analysis for Experiment 3b; standardised beta coefficients describing the relationships 

between motoric priming and participant prior knowledge of liking of the athletes for RTs (based on 

the Action by Effector Congruency interaction) and error data.  

Predictor Motor Priming effect 

RTs Errors 

Familiarity  .187 .002 

Skill: Athlete’s own sport .119 -.007 

Skill: Other sport .255 .066 

Liking -.066 .134 

* p < .05  
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Discussion 

Experiment 3b tested whether having a prime image of the context followed by the 

athlete stimulus would provide the cues needed to modulate the embodiment of the 

expected actions of famous athletes. It was hypothesised that the negative compatibility 

effects should be stronger when the athlete is seen in their typical situation (e.g., on a 

football pitch), where they would be expected to perform these actions, compared to an 

atypical situation (e.g., at a wedding), where such an action expectation is reduced. This 

would support the previous claim that both person and situation are crucial to embodied 

behavioural predictions of others. However, the results, again, favoured the hypothesis 

that embodied components of person-knowledge are only activated when there is 

uncertainty, that is, when the athletes are seen in an atypical context. Such person-

specific effects would not be predicted by stimulus response accounts. 

As with Experiment 3a, the current data replicate previous findings that viewing athletes 

famous in their sports influenced observer motor systems (Bach & Tipper, 2006; Tipper 

& Bach, 2011), even if the athletes were not shown performing their typical actions. 

Numerically, the results replicated Experiment 3a that participants showed negative 

compatibility effects when the athletes were not performing their sport (i.e., slower to 

identify Andy Murray using a hand compared to a foot response). As in Tipper and 

Bach (2011), these effects were reduced when viewing the athletes performing their 

typical actions, to the point of showing facilitation effects. These findings suggest that 

merely seeing Andy Murray elicits the expectation that he will use his arm. This 

priming facilitates responses with the same effector when observers see him performing 

as expected. In contrast, when he is not performing his expected action, this appears to 

be coded as an absence - a negative deviation of an action that was expected – and 

elicits negative compatibility effects.   
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As with Experiment 3a, the results support the notion of person-specific internal models 

that predict the behaviours of others. Even though not task-relevant, participants 

activated action knowledge of the athletes and this biased their motor responses. This 

replicates the role of who is being observed from Experiment 3a (and previous chapters) 

in eliciting these effects. However, if it is true that people encode which actions people 

typically perform in different situations (Barresi & Moore, 1996; Chapters Two and 

Three) then the athletes’ typical actions should be expected specifically when they are 

shown in their typical contexts, where only these actions are appropriate. However, akin 

to Experiment 3a, the current experiment has not provided evidence for this hypothesis 

(but, again, sample sizes of over 1000 participants were found to be necessary to show 

the predicted three-way interaction). Instead, the same pattern of results was seen 

irrelevant of context, and the interaction of Action and Effector Congruency was, if 

anything, stronger in the out of context condition. This highlights who was seen, rather 

than where they were seen, as a key driving force for these effects, demonstrating that 

person-knowledge is the most crucial factor with other cues such as motor knowledge 

and context only becoming activated during uncertainty. 

 

General discussion 

The current chapter tested whether seeing an athlete automatically primes the main 

effector used in their sport such that when a famous tennis player like Andy Murray is 

seen, the participants’ own arm is activated, even when Andy is not currently acting 

with his arm. Essentially, the experiments investigated the influence of person-

knowledge gained prior to the experiment, and tested whether this affects motoric 

(“mirror”) representations of others’ actions. Finding that the participants’ motor system 

would, in some way, represent the not seen but predicted action of an observed 
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individual would provide clear evidence for social predictions of others’ actions, and 

would provide evidence that the prediction effects seen in previous chapters truly reflect 

anticipation of the forthcoming action, rather than other stimulus or response aspects 

that could be encoded in a non-social format. A fully factorial design further tested 

whether presenting the athletes in or out of their typical contexts influenced the extent to 

which positive and negative compatibility are seen. More specifically, it was 

hypothesised that both the positive (when the athletes are seen acting) and negative 

compatibility effects (when they are not seen acting) should be stronger when the 

athlete is in their typical situation (e.g., on a football pitch), where they would be 

expected to perform these actions, compared to an atypical situation (e.g., at a wedding), 

where such an action expectation is reduced.  

However, this is not what was found. Both Experiments 3a and 3b replicated previous 

findings that viewing athletes famous in their sports influenced the motor systems of 

observers (Bach & Tipper, 2006; Tipper & Bach, 2011), even if the athletes were seen 

not performing their typical actions. As with Tipper and Bach (2011), and particularly 

in Experiment 3a, there were more negative compatibility effects for non-actions than 

for typical actions (e.g., participants were slower to identify the tennis player Andy 

Murray using a hand compared to a foot response). As in Tipper and Bach (2011), these 

were reduced for the typical action stimuli, even to the point of showing facilitation 

effects (particularly in Experiment 3b). Thus, when Andy Murray is observed, it is 

predicted that he will use his arm to hit a ball, which primes the motor system to 

activate one’s own arm leading to faster responses when Andy Murray is seen 

performing that action, but slower responses when he is not.  

Bach and Tipper (2006) previously interpreted these facilitation and contrast effects in 

terms of contrast effects in social psychology and inhibitory dynamics in neural 
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networks. However, recent predictive coding models suggest they might reflect 

prediction of forthcoming actions, based on one’s prior knowledge of the athlete (e.g., 

Hickok, 2013; Kilner et al., 2007). Seeing a famous athlete not performing their sport is 

coded as a prediction error relative to the expected action, such that the non-

performance of the action is coded as an absence, a negative deviation, of an action that 

was expected.   

As with previous chapters, these experiments highlight the person-specific nature of 

these predictions. Knowing that someone typically uses their hand or foot influences 

person identification even though it is not task-relevant. Experiment 3a provides further 

support for this person-specificity with the replication of Tipper and Bach (2011) that 

knowledge held by the participants about the athletes influenced the motor priming 

effects; those who had more knowledge, and rated the athletes as more skilled in their 

sport, showed the strongest motor priming effects. Thus, the more is known about 

someone, the greater the knowledge of their behavioural tendencies, and the more likely 

motor priming will be seen towards them.  This expands prior research that person-

knowledge leads to predictions, which create biases for action identification (see 

Chapters Two and Three) and attentional biases (see Joyce et al., 2015). It also builds 

on prior work showing general motor biases exist (Heerey & Crossley, 2013; Sartori, 

Betti, Chinellato, & Castiello, 2015), to specifically highlight the contribution of 

person-knowledge on these predictive motor biases. 

Evidence of these person-specific motor biases also extends prior research that there are 

over-lapping neuronal populations for self-performed and observed actions (e.g., di 

Pellegrino et al., 1992; Ondobaka et al., 2012; Rizzolatti et al., 1996; Rizzolatti & 

Craighero, 2004; Wilson & Knoblich, 2005). It suggests that a similar overlap exists 

between actions that are performed and actions that are merely predicted based on prior 
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knowledge about how an individual has behaved previously, such that the mere 

knowledge that Wayne Rooney typically kicks a ball is enough to bias an observer’s 

own motor system. Thus, the data support the person-model hypothesis rather than a 

stimulus response account, which would not hypothesise integration of such person-

knowledge. Similarly, as all stimuli were seen equally frequently, stimulus response 

accounts would not hypothesise differences in response times across stimuli. 

Interestingly, the current experiments highlight action typicality of the athletes as a key 

driving force for predictions, with situation as an apparently less important cue. Whilst 

this supports the importance of action cues found in Tipper and Bach (2011), and 

extends these results from face to whole body stimuli, it contradicts Barresi and Moore's 

(1996) assertion – and findings from previous chapters – that actor and situation 

combine in the prediction of action. One reason for this may be that famous athletes are 

seen primarily as a tennis player or a footballer and so it is these actions which are most 

salient when knowledge about them is reactivated, rather than other action tendencies 

that are relevant when we are interacting with these individuals. Indeed, Hastie and Park 

(1986) demonstrated that once a coherent impression about someone else has been 

formed, perceivers are able to retrieve that impression directly from memory without 

consulting the specific episodes that led to its formation. In this case, the most salient 

impression is likely to be kicking the ball or playing tennis, which is what is primarily 

retrieved by participants. In contrast, the context they are in is much less 

salient/relevant, and so this does not have the hypothesised modulating effect.  

The data (numerically) support the idea that when an athlete is seen (e.g., Andy 

Murray), a specific person-knowledge heuristic is initially activated for him akin to 

opening an ‘Andy Murray’ folder on a computer. However, the details held within it are 

only activated (or ‘read’ in the computer analogy) if the situation requires it. For 
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example, in the current task participants simply had to identify the athlete, thus this 

should have been easier (i.e., more predicted) when Andy was seen on a tennis court 

irrelevant of whether he was acting or not because this is where we would most expect 

to see him. In contrast, this task should have been more difficult if he was presented in a 

different situation like on the beach. The results tentatively suggest that it is this 

condition in which person-knowledge is ‘unpacked’, the Andy Murray heuristic (and 

the accompanying motor knowledge) is retrieved to help participants to resituate him.  

This would be consistent with several other literatures that show a similar rapidly 

activated heuristic, the details of which are only released when the situation requires it. 

For example, it has been found that people only spontaneously partake in visuo-spatial 

perspective taking when they need to understand the situation better. Zwickel and 

Müller (2010) performed a dot-probe task with either a fearful or neutral face in the 

centre of the screen and participants had to say if the dot was on the right or the left. 

Participants only demonstrated perspective-taking – responding from the face’s rather 

than one’s own perspective – when presented with the fearful face, suggesting they took 

the perspective of the face to try to further understand the situation during fearful 

expressions, but not during neutral expressions when no further understanding was 

required.  

Similarly, Butterfill and Apperly (2013) suggest a ‘minimal theory of mind’ whereby 

objects and agents can be ‘encountered and registered’ but not fully represented (e.g., in 

terms of attitudes, beliefs, etc.), which they suggest may explain the tracking of others’ 

beliefs under cognitive load or in infants/non-human species. As such, individuals can 

still make links between observed actions and goals without necessarily having to 

unpack the information or represent it fully, instead, only the outcomes need to be 
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represented. This minimal theory of mind can only function for simple cases, with the 

full-blown theory of mind being needed for more complicated situations.  

Taking a second look at Chapter Two in light of this, the reason context may have been 

more important in this paradigm may have been the task. In Chapter Two participants 

had to identify the action, thus it is unsurprising that there was unpacking of this person-

knowledge to include situation. Here, seeing a ball or a computer and knowing that John 

tended to kick the ball but turn from the computer is helpful to the task. Also, of course, 

in Chapter Two the situation (i.e., object) was much more inherently related to the 

action – it provided affordances – so this definition of situation may be stronger in terms 

of predictions than a more general context with other (potentially distracting) 

information.  

Taken together, the evidence in this chapter suggests that the three factors previously 

found in Chapter Two (actor, action, situation) may not be of constant equal weighting. 

Instead, the models may be primarily person-and-situation based, with other 

information (motor knowledge) only becoming activated when it is needed to aid 

understanding. However, there are several limitations with the current paradigm.  

First, the stimuli were constrained to just two photographs in each category for each 

athlete due to difficulties finding the athletes performing their typical action out of 

context (and out of the context of their sports kit which could also have been 

influential), whilst still maintaining a high enough resolution and large enough 

photographs to clearly see their faces.   

Second, there was a limited measure of how much experience the participants have with 

the athletes, and how much their (dis)liking for the athletes may have biased their 
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perception. Due to its influence on the motor effects (see Experiment 3a and Tipper & 

Bach, 2011), this is an important area for future research. 

Third, the use of foot pedal and keyboard responses may have further weakened the 

results. For example, there is some evidence that automatic imitation effects are stronger 

when the same effector is used to perform the action compared to a different effector 

(Heyes & Leighton, 2007). Moreover, mirror areas in the premotor and parietal cortices 

are activated in an effector-specific way (Buccino et al., 2001). However, there is 

limited information as to whether the specific movement with the effector is important. 

For example, does seeing someone kicking a ball just prime the observer’s foot and leg 

so that they are ready to make any other movement, or does it prime the foot and leg 

specifically to make a kick? If the latter is true, then much stronger effects should be 

seen when the participant themselves must make a kick action rather than just pushing 

down on a foot pedal to identify the athletes. Recent developments in technology (such 

as the use of the Microsoft Kinect Sensor) could help to answer this question in future 

studies (see Chapter Five).  

 

Conclusion 

The current chapter investigated the influence of prior knowledge about the internal 

person-models re-activated during action observation, and whether the resulting actions 

are encoded in an embodied format. The findings partially replicated Chapter Two in 

that person-specific internal models were reactivated when the actor was reencountered. 

Crucially, the evidence suggests that these effects really are action-specific, leading to 

motor biases, thus supporting the proposition (see Chapter Two) that person-specific 

internal models are created for the behavioural tendencies of others. However, there was 
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no evidence that situation modulates these effects. This suggests that the different cues 

thought to be important for making predictions (action, actor and situation; Barresi & 

Moore, 1996, Chapter Two) may have different weightings in different situations and 

tasks. Indeed, the hypothesis most supported by the current data is that observers 

automatically activate person-specific information, but that the details of this – whether 

a person is typically someone that uses their hands or feet – are only made available if 

further processing is needed to resolve uncertainty. 
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Chapter Five: An investigation into person-models in 

more naturalistic settings using the Microsoft Kinect 

Sensor 

The previous chapters have provided evidence that person-specific internal models 

based on prior actor behaviour in a given situation are reactivated during action 

observation. However, as highlighted in Chapter Four, predictive coding accounts (e.g., 

A. Clark, 2013; Kilner et al., 2007) would suggest that predictions not only lead to such 

perceptual facilitation of others’ expected actions, but that they could also “stand in” for 

perceptual input to form the basis of subsequent own behaviour, thereby leading to 

motor biases in one’s own responses.  

As discussed in Chapter Four, previous research has already demonstrated that the 

motor system can be activated when observing others, and reflect action knowledge 

about them. When seeing the faces of famous athletes, observers automatically re-

activate general action-related information about the individuals, such as the body parts 

used in the sport of famous athletes (Bach & Tipper, 2006; Tipper & Bach, 2011), 

people’s last emotional expressions, last direction of their gaze (Frischen & Tipper, 

2006; Halberstadt et al., 2009), or the objects they typically look at (Joyce et al., 2015).  

Studies have also found general motor biases based on prediction in general perception. 

For example, there is evidence for motor (and attentional)  biases towards high 

probability trials using simple left or right arrow stimuli (Eickhoff, Pomjanski, Jakobs, 

Zilles, & Langner, 2011; Jakobs et al., 2009), or letters mapped to specific responses 

(Miller, 1998).  

Various studies have also demonstrated more direct prediction effects within the motor 

system, which act as a sort of ‘social affordance’ and elicit appropriate actions in 
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response to the other person. For example, there is evidence that whilst participants 

mimicked ‘polite’ smiles reactively, they displayed predictive smiles in response to 

anticipated genuine smiles of an individual (Heerey & Crossley, 2013). EEG data has 

even shown evidence for anticipatory motor simulation of a partners’ actions in a joint 

action task where one participant had to pass an object, and the other had to receive the 

object (Kourtis, Sebanz, & Knoblich, 2012), which is modulated by social factors such 

that it is stronger for a known interaction partner than someone participants do not have 

to interact with (Kourtis, Sebanz, & Knoblich, 2010). Moreover, a recent study found 

evidence for predictive motor biases in action observation (Sartori et al., 2015). Here, 

TMS and electromyography were combined at various time points to explore 

corticospinal excitability to the presentation of a football player acting out various 

penalty kicks. They found modulation of this excitability dependent on effector and 

time, and demonstrated evidence for kinematic, predictive and response coding, which 

can co-exist to some extent.  For example, observing just before the run phase provided 

evidence of motoric predictive coding, then kinematic coding was found during the first 

phase of the kick, and finally motor activation was only present during the final phase 

of the kick. This demonstrates how three different levels of motor coding occur 

depending on which part of the action is currently being observed. 

However, research into these predictive biases to date tends to investigate general 

effects, or those elicited by immediate social cues, and therefore do not consider person-

specific knowledge within social situations, for example, that John might typically 

behave kindly towards a homeless person whereas George may ignore them. Chapter 

Four found preliminary evidence for person-specific motor biases. When participants 

saw the footballer Wayne Rooney, for example, it automatically activated the 

knowledge that he typically kicks with his foot (despite this not being task-relevant). 

However, rather than facilitating foot responses, there were contrast effects such that 
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participants were actually quicker to identify Wayne Rooney using a hand rather than a 

foot-based response.  This replicated previous findings evidencing inhibitory motor 

biases based on person-knowledge (Bach & Tipper, 2006; Tipper & Bach, 2011). 

One reason that this embodiment led to inhibition rather than facilitation may have been 

due to the artificial keyboard/foot pedal responses, which are not the same as kicking a 

ball or hitting a ball with a tennis racket. The activation created by person-specific 

motor knowledge may be very specific to the action (kicking, swinging a racket) rather 

than just generally priming the effector as a whole. As such, it may be that facilitation 

effects may have been seen if the same action had been performed (e.g., the participant 

actually had to kick rather than press a foot pedal). The other possibility is that 

observing an action might facilitate a complementary action (i.e., when face-to-face 

with someone, seeing them kick the ball to the left might lead to activations of the 

observer motor system to move to their right to receive the ball). Yet much of the action 

prediction literature focuses largely on keyboard-based responses, leaving open the 

possibility that current investigations may be quite far removed from responses in the 

real-world (when observations actually affect the observer). 

Therefore, the current chapter further explores these person-specific motor biases based 

on the behavioural tendencies of individuals, but using more naturalistic responses to 

assimilate the findings with more ‘real’ world situations where there are, at least some, 

consequences to the observer.  Here, prediction biases on the motor system were further 

investigated using the Microsoft Kinect Sensor to maintain the rigorous control of 

Chapter Two, but with more naturalistic responding. This enables the investigation of 

whether facilitation effects might be seen when observers must respond in a more 

meaningful way themselves.  
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There is certainly precedence for a person-specific aspect to motor biases as such biases 

have already been found not just for perception (as in previous chapters), but also for 

gaze.  For example, in a gaze cueing paradigm, we have recently demonstrated that 

observer gaze is anticipatory based on the typical gaze of actors towards objects (Joyce 

et al., 2015). Moreover, Chapter Four provided preliminary evidence that person-

knowledge is similarly influential in creating motor biases. 

 

Experiment 4: measuring social action predictions using the Microsoft 

Kinect Sensor   

A key issue with the action prediction literature is that it is often far removed from 

reality; generally studies involve hundreds of trials using computers with simple button 

responses. Similarly, much of the social literature involves measurements that are often 

ambiguous and subjective, like simply reading descriptions about target people. Often 

merely the reading time of these descriptions is assessed (e.g., Belmore, 1987), recall of 

behaviours (Heider et al., 2007), or recognition of whether congruent or incongruent 

behaviours have been encountered previously (e.g., Sherman & D. L. Hamilton, 1994). 

As such, both literatures would benefit from an objective yet unobtrusive (and 

inexpensive) methodology, which still allows for ecologically valid responses.  

The Microsoft Kinect Sensor V2 with its depth sensing, 1080p colour camera, active 

infrared capabilities and large field of view (cf. Microsoft Developers, 2016) may afford 

such a paradigm. This sensor can record the skeletal data of up to six individuals 

(tracking 25 skeletal joints per person) simultaneously, providing scope to track the 

different movements being made during social interactions. There is huge scope for a 

wide variety of applications for the sensor but, here, only the potential use of the 

skeletal tracking is considered. By pre-determining the parameters of movements being 
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investigated the sensor can provide the relevant data in a time-efficient and objective 

manner, reducing research degrees of freedom.   

The concept of motion capture is not a new phenomenon (see Barnachon, Bouakaz, 

Boufama, & Guillou, 2013 for an example of this methodology and a brief review of 

some earlier attempts at motion capture), but often requires expensive equipment. There 

has been a recent surge in the use of the such motion capturing in various rehabilitation 

efforts, and the use of these sensors as clinical tools (e.g., Barzilay & Wolf, 2013; 

Chang, Chen, & Huang, 2011; R. A. Clark et al., 2012; de Albuquerque, Moura, 

Vasconcelos, Mendes, & Nagem, 2012; Summa, Basteris, Betti, & Sanguineti, 2013; 

Vista & Angeles, 2012). Moreover, the Microsoft Kinect Sensor itself has already been 

used to explore the recognition of a range of human poses (Shotton et al., 2011) and 

gestures (Biswas & Basu, 2011; Gonçalves, Rodrigues, Costa, & Soares, 2012), but this 

is the first time, to my knowledge, that the sensor has been used in an action prediction 

paradigm. 

Whilst some coding is currently required to build the experiment and to communicate 

with the sensor, there are also some programs (compatible with Windows 8 64-bit and 

above) with a much more user-friendly interface that do not require experience of 

coding. For example, Kinect Studio enables the recording of actions, which can then be 

inputted into Visual Gesture Builder to ‘teach’ the sensor what constitutes a specific 

gesture such as a kick to the right. Multiple exemplar recordings of each gesture are 

amalgamated to better teach the software some of the variability within the gesture (e.g., 

different strengths of kick, different speeds and distances of kick), which can then be 

tested and assessed to see how well the software performs on novel recordings.  This 

provides an objective measure every time the Sensor ‘sees’ the gesture. For the current 
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experiment, the Sensor was trained to differentiate a left from a right kick, and a left and 

from a right ‘block’ (turning the foot to the side to block the ball). 

Thus, Experiment 4 investigates action predictions using the Microsoft Kinect Sensor to 

track more realistic movements. This provides a preliminary test of the use of person-

models to bias more naturalistic movements in the observer. Previous research has 

provided evidence of motor biases based on prediction within non-social stimuli 

(Eickhoff et al., 2011; Jakobs et al., 2009a; Miller, 1998), and with more social stimuli 

(Heerey & Crossley, 2013; Sartori et al., 2015), but none, to my knowledge, has thus far 

explored the hypothesis that such biases may be influenced in a person-specific manner. 

Chapter Four provided preliminary evidence that such person-knowledge does lead to 

predictive motor biases, but using more artificial responses. Thus Experiment 4 

explored this using more realistic movements, which are more generalizable to ‘real-

life’. 

Stimuli consisted of a three-frame sequence of a forward-facing male or female who 1) 

stood with a ball, 2) stepped in towards the ball, 3) kicked the ball (either to the left, 

right or centre of the screen at a variety of angles). These images were shown on a large 

screen with participants stood in front of it, playing the role of a ‘goal keeper’ by 

moving either to the right or left with their feet to simulate blocking the ball.  

In each trial, the ball could be kicked by one of two actors (John, Claire). As before, 

unbeknownst to participants, one actor would mostly kick to the right and the other to 

the left. As with the previous experiments, it was hypothesised that participants would 

‘learn’ these behavioural tendencies such that when they see the person who kicks to the 

right, they should be faster to move to block that kick than one to the left.  Thus, it was 

predicted that the action onset would be initiated sooner for kicks in the typical 

compared to the atypical direction for each actor. 
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Method 

Participants  

40 undergraduates from Plymouth University (21 females, mean age = 22.53 years, SD 

= 3.97; 33 right handed and 36 right footed) participated in exchange for course credit. 

Sample size was based on the previous paradigm in Chapter Two. One participant was 

excluded due to technical issues. 

 

Initial gesture training 

First, pre-recorded “exemplar” video clips for training the Kinect recognition database 

were made using Kinect Studio. These were of actors ‘saving’ the ball to the right or left 

represented with a step to the left or right with the foot pointed in that direction such 

that if a ball really was kicked towards them it would hit the side of their foot and thus 

not ‘score’. These exemplars also included kick gestures to the right and left in case 

participants chose to save the ball using a kicking rather than a blocking action.  

Static gestures (point-in-time snapshots of a gesture response signature as a 3D 

map/shape of a participant’s skeleton) formed the gesture training database.  This 

gesture recognition database was then embedded into a custom-made program to detect 

response gestures in real-time during the experiment with a good degree of accuracy 

based on the live output from the sensor. Gesture recognitions were expressed as 

confidence values from 0.00 to 1.00 (0.00 = gesture not detected, 1.00 = gesture 

definitely detected). 
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Material and apparatus  

The experiment proper was controlled by a custom-made program in Microsoft C#.NET 

making use of the Microsoft Kinect v2 SDK programming API for Kinect V2 sensors 

(“Developing with Kinect”, 2016).  The experiment was displayed on a large-format 

(40”) flat screen TV at 1080p resolution to make the stimuli more life-sized and easier 

to interact with the Microsoft Kinect V2 Sensor at the base. The sensor was connected 

to the controlling laptop, which was Windows 8.1 64-bit with an Intel Core i5 processor 

and 6GB of RAM and a screen size of 1366 x 768 pixels via a USB 3 connection.   

The stimulus set consisted of a series of three-frame sequences. The first frame was of a 

neutral photograph of the actor stood next to the ball, the second depicted a step-in 

towards the ball, and the third showed the actor kicking the ball. Each actor had 24 

different final action photographs in total (12 depicting the actor kicking to various 

angles towards the left of the screen, and 12 to the right). Unbeknownst to participants, 

one actor would kick to one side 80% of the time and to the other side only 20% of the 

time, whilst the other actor would do the reverse.  

An exit questionnaire asked participants to rate how much each actor liked the ball on a 

scale from -4 to 4 with no zero point. Then five further questions identified explicit 

awareness of the covariations. They were first asked “How easy did you find the task?” 

on a scale from 1 “really difficult” to 10 “really easy”. They were then asked whether 

they found it easier to identify the direction of the kick for one actor, and whether they 

found it easier to kick in one direction themselves. They were then asked if they noticed 

anything unusual about the actors or objects, and whether they noticed any patterns in 

the stimuli. They were then told one of the actors tended to kick the ball to the right and 

the other to the left, and were asked which one they thought was which (they were 

asked this question both in text and, later, by seeing a photograph and drawing an arrow 
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to make sure there was no confusion between what counted as a ‘left’ and what counted 

as ‘right’).  

 

Procedure  

Participants received written and verbal instructions about the task. They were 

additionally asked to remove their shoes to prevent the weight of the shoe from 

hindering their movement, and to ensure as natural a movement as possible. After 

receiving a brief demonstration of the movement, they then carried out a minimum of 

two practice trials per actor; one straight kick and one extreme kick in the typical 

direction for each actor. If they were still unsure of the task, then they could complete 

further practice trials (which only one participant did).  

When the experimenter was satisfied that the task was understood, participants 

completed the experiment proper, which contained 240 trials. The trials were presented 

in two blocks of 120 (48 trials in the typical direction and 12 in the atypical direction 

per actor) to ensure a more equal distribution of oddball trials throughout the 

experiment. At this half-way point, participants could take a short break before 

continuing with the second half of the trials.  

Each trial started with a fixation cross in the centre of the screen (400-800 ms, randomly 

chosen) followed by the neutral photograph of the actor stood with the ball (shown for 

1000 ms). Here, the response timer and sensor started recording. Then participants saw 

the step-in photograph for 500 ms, and the kick photograph for 2000 ms. Participants 

were asked to respond as quickly and as accurately as possible. After 2000 ms, a blank 

screen was shown for 1500 ms (to allow participants to get back in position), and the 

sensor recording stopped (see Figure 5.1 for a schematic of the trial sequence).  After 
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the experiment participants completed the two exit questionnaires, were thanked and 

fully debriefed about the aim of the experiment. 

 

Figure 5.1. Schematic of the trial sequence for Experiment 4.  

Each trial started with a fixation cross. Then the neutral image was shown with one of the two actors (top, 

Claire; bottom, John) stood in front of the ball. This was followed by an image of the actor stepping in, 

and then the kick image was shown.  A blank screen was then presented to enable repositioning back on 

the central cross ready for the next trial. 

 

Results 

Funnel debrief  

Overall participants perceived the task as being relatively easy (mean ease = 8.13), with 

neither actor being perceived to like the ball more than the other (p = .63). Neither 

direction was perceived as being easier to identify for one actor, but most participants 
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reported it being easier to kick towards the right (n = 25) than the left (n = 10) or had no 

preference (n = 5), which is unsurprising given that most were right-footed.  

Most participants alluded to some form of the manipulation during the funnel debrief 

(19 [47.50%] when asked if they found it easier to identify the direction of one actor, 1 

[2.50%] when asked if they noticed anything unusual about the stimuli, and 7 [17.50%] 

when asked if they noticed any patterns in the stimuli). When informed of the 

manipulation, most participants selected the correct option (n = 33 [82.50%] for the 

worded version of the question and n = 34 [85.00%] for the pictorial version of the 

question). 

 

Kinect data preparation 

The data from the left and right feet were collapsed to give an overall dataset for both 

feet combined. As the centre of the room represents zero on the sensor, all negative 

scores were reverse scored to make the trials in both directions comparable.  As in 

previous experiments, error trials (when participants went in the opposite direction to 

where the ball would have been kicked such that they would not be able to block it) 

were excluded. 

The data were collapsed into trials in which the actor kicked in the direction that was 

typical for them and the direction that was atypical for them. Data were then split into 

five time points of approximately 500 ms (approximately one time point for the neutral 

stimuli, one for the step-in stimuli, and three for the action stimuli). Timings were 

approximate as timing within the sensor is only accurate to within two frames of 

recording (66 ms). T tests comparing the typical and atypical trials were then performed 

at each time-point with a corrected alpha of .01.  
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X coordinate scores  

Data were first analysed based on the x coordinate scores (along the horizontal plane of 

the sensor) for both feet combined (see Figure 5.2). Here, movements occurred earlier 

(and to a greater extent) when they were in the typical compared to the atypical 

direction for that actor. Thus, it appears that participants learned that one actor tended to 

kick in one direction, and were using this in a predictive manner to prepare their own 

responses as they were faster to make the corresponding movement when it was typical 

compared to atypical for the actor. This prediction effect was seen significantly 

(according to the corrected alpha of .01) from approximately 1500 ms after the start of 

the trial (i.e., during the step-in photograph), thus suggesting participants had already 

begun planning their movement before the kick was even observed.  

 

 Figure 5.2. x coordinates for Experiment 4  

A line graph showing the x coordinates for both feet combined based on whether the movement was in 

the typical or atypical direction for that actor over the duration of the experiment. Each time point 

represents approximately 100 ms, with time accurate to 66 ms. The table below where there were 

differences between typical and atypical trials according to the t tests carried out at each 500 ms time 

interval.  
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Confidence scores 

For the confidence scores based on the gesture database (see Method Section), both feet 

were, again, combined, but for this analysis a threshold for each participant first had to 

be calculated where the recognition database was 50% confident that the gesture had 

been observed. This was achieved by, first, averaging the confidence scores for each 

participant and, second, finding the time point where maximum confidence occurred for 

each individual. As can be seen in Figure 5.3, the kicks tended to be given a higher 

confidence score if they were in the typical compared to atypical direction for that actor. 

The analysis, indeed, revealed that the recognition database was able to recognise the 

typical actions sooner (on average in the 22nd time interval; M = 22.47, SD = 1.54) than 

atypical actions (on average in the 23rd time interval; M = 23.13, SD = 1.14), t[37] = 

3.696, p = .001, d  = .49. Thus, the recognition database was more confident (i.e., able 

to define the kicks) at an earlier time when they were in response to the typical direction 

of the actors (approximately 2400 ms from the start of the trial), than when they were in 

response to the atypical direction (approximately 2500 ms from the start of the trial). 
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Figure 5.3. Confidence scores for Experiment 4  

A line graph showing confidence scores for both feet combined based on whether the movement was in 

the typical or atypical direction for that actor over the duration of the experiment. Each time point 

represents approximately 100 ms, with time accurate to 66 ms.  

 

 

 

Discussion 

The current chapter investigated evidence for person-models in more ecologically 

realistic settings. Prior chapters have evidenced person-models, but using rigorous 

laboratory methods that are far removed from everyday life. Whilst such paradigms 

have high internal validity due to the high levels of control, and reduction in potential 

confounding variables, they leave open questions about the generalisability of the 

findings both across paradigms, and to real-life.  Whilst several iterations of the 

paradigm have been tested, with results seeming to generalise at least to some extent, 

the current chapter is the first to attempt to assimilate these paradigms into situations 

more akin to real-life.  
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Experiment 4 utilised the Microsoft Kinect Sensor to assess motor biases based on 

person-models using more natural responses. This experiment, therefore, tested whether 

predictions about how individuals will act, derived from their previous behaviour, can 

drive own responses in joint action. Put another way, it tested whether predictions can 

‘stand in’ for real behaviour and drive own responses as if the predictions themselves 

were actually perceived. Instead of the keyboard responses from prior chapters, 

participants simulated a more ‘real-life’ exchange by responding to actors kicking a ball 

by ‘acting like a goalkeeper’ and blocking it as they would if they were playing football 

in the park. Thus, this provides a preliminary test of whether the prior findings can 

generalise to more realistic responses, and, indeed, what happens when there are more 

‘real-world’ implications for the participant. It also tested the potential application of 

the Microsoft Kinect Sensor to assimilate action prediction paradigms into more 

ecological settings, whilst still maintaining objectivity and relative precision of 

responses.  

As predicted, participants were faster to ‘block’ to the right if this was the direction that 

the actor tended to kick towards compared to if they tended to kick towards the left. As 

such, it provides further evidence that person-models are created and used to make 

predictions about future actor behaviour, this time using more naturalistic responses 

(Barresi & Moore, 1996). Thus, the evidence suggests that predictions about other 

people’s behaviour was used for own responses when participants had to ‘block’ the 

balls. Actions were initiated earlier, and movements were more pronounced, when they 

were made in the direction that corresponded to the actor’s prior behaviour.  This 

generally happened even before the action stimuli had been displayed, or very early into 

the action stimuli.  Contrary to previous experiments in this thesis, participants could 

explicitly identify the experimental manipulation both spontaneously, and from more 

cued questions.  
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These results provide further evidence for person-specific internal models that are (a) 

created based on the behavioural tendencies of individuals, and (b) reactivated to predict 

forthcoming actions. This builds on our previous research demonstrating how such 

predictions based on person-models bias action observation (see Chapters Two and 

Three) and attention (Joyce et al., 2015), to include biases on motor responding (see 

also Chapter Four).  These findings, again, support the theory put forward by Barresi 

and Moore (1996) that we create ‘intentional relations’ between people, objects and 

actions, and Newen's (2015) theory that person-models are created based on prior 

knowledge of the individual. 

These data support the hypothesis that predictions of others’ behaviour can ‘stand in’ 

for real actions, and guide our own behaviour in social situations (e.g., A. Clark, 2013; 

Kilner et al., 2007). Being able to accurately predict other people’s behaviour enables us 

to prepare our own responses to enable more fluid and successful social interactions.  

Experiment 4 extends previous research demonstrating that observers automatically re-

activate general action-related information about others, such as the body parts used in 

the sport of famous athletes (Bach & Tipper, 2006; Tipper & Bach, 2011), people’s last 

emotional expressions, or direction of their gaze (Frischen & Tipper, 2006; Halberstadt 

et al., 2009).  The current findings also support the experiments in Chapter Four that 

suggested that we can create person-models for typical actions of others, and this can 

influence our own responding. 

It also builds on other prior research showing evidence of predictions biasing motor 

responses more generally (Eickhoff et al., 2011; Jakobs et al., 2009b; Miller, 1998) and 

specifically within social paradigms (Heerey & Crossley, 2013; Sartori et al., 2015), to 

specifically highlight the influence of person-specific knowledge on these biases. 
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Experiment 4 also supports the importance of prediction in joint action (for a review see 

Sebanz et al., 2006). For example, research has shown that we represent a co-actor’s 

action in advance to enable a smooth coordinated behaviour with them (Kourtis et al., 

2012), and that shared representations are formed for co-acting individuals dependent 

on how the social situation was conceptualised (Sebanz, Knoblich, & Prinz, 2005), with 

different aspects of visual information (whether to focus on the body or the racquet of a 

table tennis player for example) being modulated by the social context of whether a 

cooperative or competitive action is required (Streuber, Knoblich, Sebanz, Bülthoff, & 

De La Rosa, 2011).  

 

Limitations and open questions 

A key divergence between Experiment 4 and the prior research in this thesis is that the 

person-models here appear to be much more explicitly accessible. As such, it is unclear 

to what extent the mechanism is the same as in these previous paradigms, and the extent 

to which the data reflect controlled strategies of participants.   

One explanation for the current prediction effect not being implicit may relate to 

COVIS models (e.g., Ashby et al., 1998; Maddox & Ashby, 2004). Such models 

suggest that patterns that can be verbalised are controlled explicitly. Here, the design is 

much more simplistic; situation was constant and only direction of action changed 

between actors. As such, the current person-models were much easier to verbalise (e.g., 

he goes left, she goes right). However, in previous paradigms the person-models varied 

on two counts (actor and situation), thus they were less easy to verbalise. Thus, in line 

with COVIS models, implicit learning was apparent. Interestingly, when these person 
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models are actually explicitly verbalised to participants (see Experiment 1c), there is, 

again, evidence of explicit strategic responding.  

Another outstanding question from the current data is whether the predictions are 

perceptual (i.e., ‘seen’ in the mind’s eye, which then alters the motor response), or 

whether these predictions act directly on the motor system. Participants’ apparent 

explicit awareness would suggest that direct motor biases are probably less likely in the 

current paradigm. Nonetheless, Chapter Four highlighted how predictions can become 

embodied within the observer and lead to motor biases. 

Finally, the current experiment cannot differentiate between the person-model 

hypothesis and stimulus learning accounts. But see Chapters Two, Three and Four for 

some evidence against stimulus learning accounts.  

Highlighting the use of the Microsoft Kinect Sensor as an objective measure, the 

confidence scores matched the x coordinate findings in that kicks in the typical direction 

were rated by the recognition database as more confident that the gesture had occurred, 

and that this gesture was initiated earlier in time. This establishes the sensor as a more 

naturalistic yet objective tool for action predictions. Indeed, a variety of investigations 

corroborate the accuracy of the Microsoft Kinect Sensor to track and detect a variety of 

gestures (e.g., Biswas & Basu, 2011; R. A. Clark et al., 2012; Gonçalves et al., 2012; 

Kar, 2010; Obdrzálek et al., 2012; Ren, Meng, Yuan, & Zhang, 2011). 

Now that the Microsoft Kinect Sensor has been successfully established as an objective 

measurement tool, it can be tested in further paradigms. To test the COVIS approach to 

learning, future research could adapt Experiment 4 to vary both actor (male, female) and 

situation (e.g., football, tennis). Here, the person-models should be less easy to verbalise 
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and thus, in line with COVIS models (and prior research in this thesis), learning should 

be more implicit. 

Another key avenue possible with the sensor is to allow action predictions to be tested 

in more naturalistic settings rather than relying on mere button responses. For example, 

future research could also incorporate virtual reality into the paradigm to create an even 

more immersive and naturalistic setting. Here, consequences to the participant would 

even further simulate ‘real-life’ as they could react to a virtual ball actually moving 

towards them, and see the results of their own action simulated within virtual reality. 

This is an important avenue for future research because, as previously mentioned, 

responses may differ when there are actual consequences to the participant, and when 

the situation is more akin to reality than the artificial setting of a computer screen with a 

simple button response. Based on the apparent robustness of the person-models 

demonstrated thus far in the thesis across multiple paradigms, I would hypothesise that 

person-models should also be apparent under these more naturalistic conditions. 

A further question for future research would be to test competitive vs. cooperative 

situations to identify how the use of person-models may vary. Whilst there is certainly 

evidence that cooperative and competitive behaviours have different action patterns 

(Georgiou, Becchio, Glover, & Castiello, 2007), there is currently little evidence (to my 

knowledge) as to whether this kinematic information is used differentially whilst 

making action predictions. It may be, for example, that during a cooperative act you 

may pay more attention to the step-by-step actions required by both you and your 

interaction partner to achieve your joint goal. However, in a more competitive task, 

there may be looser, more holistic predictions on how they will act to achieve the goal, 

but the individual steps they take to achieve it may not be important. For example, given 

the task of putting together a table in the fastest time possible, you need to work closely 
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with the other person to make sure the parts are aligned correctly to screw in the bolts, 

etc., but to put together a table faster than a competitor you simply need to ensure that 

your actions are faster than their actions. Thus, you need only monitor their overall 

performance, but not the individual steps of how they are aligning the different parts 

together.  

Finally, another area for future research is to identify just how specific predictive motor 

biases (and embodiment) may be. For example, does observing a kick activate the leg in 

general, or specifically a kicking movement? Such examinations have previously been 

limited due to a lack of (affordable) technology. Now, with the Microsoft Kinect 

Sensor, these research questions can be addressed in a more cost-effective manner. For 

example, the experiments of Chapter Four could be altered such that participants have to 

respond to identifying the athletes by using either a kicking or hitting response. Under 

these conditions, it may well be that the negative compatibility responses were merely 

due to basic effector inhibition, but the actual action might be primed. Thus, the hand 

might be specifically prepared for a hit, not a button press. 

 

Conclusion 

The current chapter explored the potential for motor biases based on predictive person-

models in more naturalistic settings. The results provided further evidence for predictive 

motor biases based on person-models for motor responses. Moreover, the Microsoft 

Kinect Sensor has been shown to be an effective measurement tool within an action 

prediction paradigm, with wide scope for applications in a variety of different 

paradigms.  
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Chapter Six – An investigation into person-models in 

more naturalistic settings using a mimicry paradigm 

A vast array of evidence demonstrates that people adapt their behaviour to copy their 

interaction partners. However, the majority of research investigates ‘responsive’ 

mimicry. For example, if I touch my face, my interaction partner has a tendency to also 

touch their face (Chartrand & Bargh, 1999). If I use certain words, my interaction 

partner utilises the same specific terminology such as saying ‘spuds’ rather than 

potatoes (for a brief review see Lakin et al., 2003). If I use an object in a certain way, 

my interaction partner also uses it in the same way. This automatic matching of one’s 

own bodily states to those of interaction partners is heavily supported across the 

literature (e.g., Brass et al., 2000; Chartrand & Bargh, 1999). The current chapter builds 

on this literature to investigate whether there is a ‘predictive’ aspect to mimicry. 

For social interactions, mimicry serves various functions. Not only does observing (and 

imitating) others help us to learn, it has also been shown to enhance social cohesion 

(e.g., Chartrand & Bargh, 1999). For example, mimicry can communicate similarity to 

an interaction partner (e.g., Gueguen & Martin, 2009). Here, mimicking someone shows 

them that “I am like you” or, for the purposes of someone observing you, “I am like 

them” (Over & Carpenter, 2011). Being mimicked also demonstrates “you are like me”, 

and may help to dissipate tension/threat. There are also many other positive outcomes 

associated with mimicry (e.g., increased liking and rapport; Chartrand & Bargh, 1999; 

Lakin et al., 2003; Vrijsen, Lange, Becker, & Rinck, 2010, prosocial behaviour; van 

Baaren & Holland, 2004; Lumsden, Miles, Richardson, C. A. Smith, & Macrae, 2012, 

and more trust; Over, Carpenter, Spears, & Gattis, 2013). 

Mimicry can also increase synchrony between interaction partners, for example, during 

joint action (Sebanz et al., 2006), and may enhance understanding of a situation by 
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activating the same motor systems within the observer. Finally, mimicry may be used in 

a communicative manner, for example, to communicate to someone that you are 

empathising with them. Indeed, a study by Bavelas et al. (1986) demonstrated that 

participants displayed increased motor mimicry towards an actor in pain who made eye 

contact with the participants, compared to an actor who did not make eye contact. In the 

latter situation, there was a marked decrease (or shorter duration of expression) 

suggesting that participants only mimicked the actor if they thought it would be 

beneficial (i.e., if they thought the actor would see them).   

Mimicry has been found across a broad range of behaviours from body language 

(Chartrand & Bargh, 1999), to gaze (Frischen et al., 2007) to pain responses (Morrison, 

Poliakoff, Gordon, & Downing, 2007) to observed reactions to errors or inhibitive 

behaviours (Schuch & Tipper, 2007). Whilst it is largely assumed to be highly 

automatic - mimicry has even been found when interacting with a computer avatar 

(Bailenson & Yee, 2005) - research has suggested that it is intentional and goal-directed 

at least to some extent (e.g., Chartrand & Bargh, 1999). Indeed, Wang and A.F. 

Hamilton (2012) provide evidence that mimicry is not a purely bottom-up process. To 

be able to mimic seamlessly (and automatically) within such interactions requires a 

sophisticated system, which can rapidly react to new input.  Their STORM model 

proposes that mimicry is controlled by social goals, and is a strategy for increasing 

social standing. Over and Carpenter (2013) similarly suggest this top-down influence on 

imitation is due to human dependence on group membership (i.e., that there is a “social 

side to imitation”; p1.), namely that social motivations (e.g., needing to belong to, and 

affiliate with, a group) drive imitation, which can explain how imitation is sometimes 

extremely faithfully, and other times more selectively, carried out.  
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There is suggestive evidence of mirroring cells in humans that may control imitation 

during action observation (Mukamel et al., 2010), with further supportive behavioural 

evidence that mimicry is at least under some top-down guidance. For instance, more 

mimicry is found towards people deemed to be more powerful (in adults; Cheng & 

Chartrand, 2003; Dalton, Chartrand, & Finkel, 2010, in children; Chudek, Heller, Birch, 

& Henrich, 2012), and towards in group than out group members (in adults, Bourgeois 

& Hess, 2008; in children, Buttelmann, Zmyj, Daum, & Carpenter, 2013).  When 

primed with exclusion, adults will mimic a new interaction partner more, particularly if 

they are an in-group compared to an out-group member (Lakin, Chartrand, & Arkin, 

2008), and children will imitate a model more faithfully (Over & Carpenter, 2009). 

Moreover, after reading a short person description, participants are more likely to mimic 

facial expressions of positively than negatively described people (Likowski, 

Mühlberger, Seibt, Pauli, & Weyers, 2008).  

Further evidence that, even within children, mimicry is not a purely bottom-up process 

includes children not copying erroneous movements (Carpenter, Akhtar & Tomasello, 

1998), and not mimicking an elaborate or inefficient movement when a simple 

movement would suffice (Gergely, Bekkering, & Király, 2002). Instead, it is the goal 

rather than the action that is mimicked. Over and Carpenter (2013) suggest that whether 

an infant (or presumably an adult) selectively or faithfully mimics depends on their goal 

(social, non-social, or an integration of the two). Thus, mimicry is influenced by social 

context and is not always automatic, even in children. If mimicry is a way of saying 'I 

am like you', it is unsurprising that mimicry occurs more towards those deemed more 

similar, or who we aspire to be.   

Further support for a top-down influence on mimicry is apparent in those with 

echopraxia (automatic, uncontrollable tendency to imitate) and echolalia (unintentional 
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repetition of another’s words). This ‘disordered’ mimicry is usually found in those with 

impairments in their ability to self-regulate consciously and intentionally including 

aphasia, apraxia, mental retardation and frontal lobe injury (e.g., Lhermitte, Pillon, & 

Serdaru, 1986). Indeed, research has shown that mimicry increases when resources are 

taxed in ‘normal’ populations (Dalton et al., 2010).  Thus, under ‘normal’ circumstances 

there must be some form of regulator that prevents the mimicking of every single 

observed action. This is required for many successful social interactions, especially 

when cooperating with another person. As Sebanz et al. (2006) highlight, the common 

goal needed for successful joint action requires complementary (not identical) 

behaviours. In other words, whilst mimicry may aid our affiliation goals, if we wanted 

to move a heavy table together, it would not be efficient.  

Together, these findings of top-down guidance in mimicry provide a basis for the 

assumption that it might also be predictive.  Instead of simply aiding current 

interactions, it may be used to foster affiliation in future encounters. Much as with 

general social action prediction, predictions here would be based on person-specific 

models of how interaction partners have behaved in previous encounters (e.g., often 

playing with their hair, tapping their feet). This information would then be reactivated in 

a future encounter with the individual, and lead to pre-emptive hair playing oneself in 

the expectation that the individual will be performing that behaviour again to foster the 

‘I am like you’ message. 

There is already evidence for anticipatory responding to real rather than ‘polite’ smiles 

(Heerey & Crossley, 2013), which highlights the tracking of other people’s movements, 

and responding in an anticipatory manner during interactions. Experiment 5 goes one 

step further, hypothesising that if mimicry occurs during social interactions, and the 

behavioural tendencies of actors can be tracked, then there may be some form of 
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mechanism for ‘predictive’ mimicry. Such a mechanism would ‘learn’ that John tends 

to tap his foot during an interaction, associate it with his internal person-model, and 

reactivate this information when he is seen again. As such it could ‘prime’ observer 

motor systems. Thus, when participants see John again, they will (1) begin tapping their 

foot as a result of this action being reactivated, even if John himself does not tap his 

foot (yet), and (2) assuming they (implicitly) wish to affiliate with John and reap the 

benefits of mimicry (briefly described above). 

Whilst, to my knowledge, this has not specifically been investigated previously, there is 

evidence of ‘deferred’ imitation in infants. Generally, in these studies participants see 

actions with objects in a first session, and then their imitation of these actions with these 

objects is assessed in a second session. For example, Barr, Dowden, & Hayne (1996) 

found deferred imitation with a 24-hour delay between the first and second session in 

12, 18 and 24 month old infants (and even 6 month olds provided they had additional 

exposure to the target actions). This was later supported by Collie and Hayne (1999) 

who found both 6 and 9 month olds produced more target than control actions following 

a 24-hour delay between sessions. Meltzoff (1988) even found deferred imitation after a 

one-week delay between sessions for 14-month-old infants.    

Barnat, Klein, and Meltzoff (1996) demonstrated that deferred imitation does not 

require the same strict context and object conditions as during the original 

demonstration period (i.e., the mechanism is relatively flexible and adaptable). 

Compared to controls, infants still produced more target behaviours even when the 

objects were different colours or sizes, and even when the room in which they saw the 

objects was different to encoding. However, more imitation was found when these 

factors were consistent across encoding and retrieval. Moreover, Herbert (2011) 

demonstrated increased imitation when infants were given a verbal cue at encoding and 



186 

 

retrieval compared to when they were given no such cue. This indicates that these acts 

create a stored representation, which is reactivated when a relevant cue is provided 

leading to facilitated recall of the behaviour. There is also evidence that infants produce 

tongue protrusions both in the presence of someone protruding their tongue, and when 

they meet this person later as though producing this from memory (Meltzoff & Moore, 

1989). A later study (Meltzoff & Moore, 1994) found that this was not specific to 

tongue protrusions, but also to ‘mouth opening’. Those infants who saw an adult 

protruding their tongue imitated this behaviour more during that interaction, and also 

produced this movement 24 hours later when they viewed the same face this time 

displaying a neutral expression. Similarly, those who saw the adult in the mouth 

opening condition, imitated this behaviour more during the initial session, and also 

performed this behaviour when later presented with a neutral expression. This indicates 

that the infants learned the behaviour (either tongue protruding or mouth opening), 

linked it to the representation of the other person, and reactivated this stored knowledge 

24 hours later when they saw this person again. 

 

Experiment 5: an investigation into person-specific ‘predictive’ 

mimicry 

The experiments on deferred imitation demonstrate that participants do reactivate 

imitative actions in a second interaction. However, these behaviours were found in 

infants, goal-directed towards achieving an object-directed outcome, and associated 

with objects. Thus, they fail to examine the influence of person-specific models. 

However, there is some precedence for person factors being important here, with 

evidence that infants will imitate someone they deem to be more reliable compared to 

someone seen to be unreliable (e.g., Poulin-Dubois, Brooker, & Polonia, 2011). 

Experiment 5, therefore, aims to demonstrate that mimicry can be person-specific, such 
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that participants perform the behaviour that their interaction partner has performed in a 

previous encounter. 

To test this hypothesis, confederates performed one of two ‘model’ behaviours in an 

initial interaction with the participant (face touching, foot tapping), but during a second 

interaction with the participant they did not perform the model behaviour. Thus this 

paradigm tests, first, whether participants would mimic this initial behaviour as seen in 

previous studies (Chartrand & Bargh, 1999), and second, whether participants would 

(implicitly) predict reencountering this behaviour when they meet these individuals 

again and so continue performing the behaviour in a second interaction, even when the 

confederates no longer perform the actions themselves.   

As a partial replication of Chartrand and Bargh (1999), participants performed a picture 

description task, first, together with one confederate who performed one model 

behaviour (e.g., tapping their foot), then with a second confederate who performed the 

other model behaviour (touching their face). They then met the first confederate again 

who, this time, did not perform the model behaviour. Finally, they met the second 

confederate again who also no longer performed their model behaviour.  

It was hypothesised, first, that participants would mimic the model behaviour for each 

confederate during the initial encounter. In the above example, they would tap their foot 

with the first confederate, and touch their face with the second confederate 

(counterbalanced across participants). Second, it was hypothesised that participants 

would associate these behaviours with their interaction partners, thus would continue 

performing the behaviour specific to each confederate in a second interaction with them. 
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Method 

Participants 

40 first year undergraduate psychology students (all female, mean age = 18.88, SD = 

1.16) participated in the study in exchange for course credit. Two participants 

mentioned that they thought the other ‘participants’ were confederates, and one other 

participant freely recalled the manipulation, so all three were removed from further 

analyses.  

 

Design and materials 

As with Experiment 3, the empathy quotient was administered. A creativity 

questionnaire additionally asked participants various questions about their musical and 

artistic talents to help with the cover story that the experiment was investigating video 

game use and creativity. 

The Xbox Kinect game “Kinect Adventures” was used whereby two people (here the 

participant and a confederate) work as a team to knock down crates using their arms to 

direct balls. This, again, was part of the cover story for the aim of the experiment, and 

additionally it provided a collaborative environment to set the participants in a more 

collaborative frame of mind, and to bolster affiliation which has been shown to have a 

bi-directional relationship with mimicry (see Lakin et al., 2003). 

The picture description task involved the participant and one confederate sat facing each 

other, taking turns to describe what was shown in the picture. They were told to try to 

construct a brief story about what was happening.  To help make sure the task was 

performed correctly, the confederates always started.  
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The funnel debrief asked participants to rate various aspects of their interactions with 

each confederate on a Likert scale from -4 to +4 with no 0 point. These questions 

assessed how fluent the interaction was perceived to be, how much they liked the 

confederate, how good they thought the confederate was at the picture description task, 

and how well they thought they cooperated during the initial Kinect game. 

The final exit questionnaire asked participants whether they noticed anything unusual 

about the behaviour of the other two ‘participants’. They were then asked if they noticed 

that one participant tended to tap their foot and the other touched their face and, if so, 

who they thought did each behaviour. Participants were then asked if they noticed they 

were tapping their foot more with one participant and, if so which one. Finally, they 

were asked if they noticed that they were touching their face more with one participant 

and, if so which one. 

 

Procedure 

Upon entering the lab participants were informed that they would be taking part in an 

experiment exploring the influence of real action video games on creativity levels. 

Participants first played the Xbox Kinect game for approximately five minutes (once 

with each confederate, and the confederates also ostensibly played the game together). 

During the game, the person not involved would leave the room. 

   Next, the first confederate and the participant did the first picture description task for 

seven minutes. The confederates would show their respective behaviours. Then the 

confederates swapped and the task resumed for another 7 minutes. Next, the participant 

left the room to fill out the creativity questionnaire and the empathy quotient whilst the 

confederates ostensibly did their 7-minute picture description task. 
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The picture description task was then repeated in the same order, but this time lasting 

only 3 minutes. The confederates were instructed not to perform their model behaviours 

here. Finally, the participants filled out the funnel debrief and exit questionnaire before 

being fully debriefed about the aims of the study. During this debrief they were asked 

what they thought the task was about, and whether they had noticed the two behaviours. 

 

Coding 

Each session was split into 30-second time intervals; thus, there were fourteen intervals 

for the first interaction and six for the second interaction with each confederate. The 

frequency for general movements with the arm and foot were calculated (based on 

personal correspondence from Chartrand, 18.11.15) for each participant during each 

time interval. This figure was then averaged across the time intervals to give an average 

rating across each of the four interactions. A rating was also given for the non-model 

behaviour (e.g., touching the face if the experimenter shook their foot) as a comparator 

in the same way. The same rating was given for only the specific movement (foot 

tapping, face touching) for each participant during each time interval. 

Three coders performed these ratings on the first seven participants, and achieved high 

levels of intra correlation coefficient reliability (see Table 6.1), thus each coder then 

rated a third of the remaining participants. 
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Table 6.1 

The intra-class correlations for the three coders for the first 7 participants for Experiment 5.  

 Coders 1 and 2 Coders 1 and 3 Coders 2 and 3 

General Foot .911** .996*** .938*** 

General Hand .889** .829* .862** 

Specific Foot .754* .814* .960*** 

Specific Hand .988*** .998*** .989*** 

*p < .05 ** p < .01 *** p < .001 

 

Results 

Funnel debrief 

When asked if they noticed anything unusual about the other participants’ behaviour, 27 

participants (67.50%) said they did not. Of the remainder, most commented that at least 

one confederate seemed a little nervous, or that one or both confederates tended to 

perform the task very well, but two (5.00%) explicitly mentioned awareness of the task 

and were excluded from further analyses. 

Twenty-five participants (62.50%) said they were aware of the movements and thirteen 

(32.50%) said they were not. Twenty-nine (72.50%) correctly stated the model 

behaviour for each confederate, but eleven (27.50%) were incorrect. However, when 

asked what they thought the experiment was about, only two (5.00%) alluded to 

mimicry in some form (and were excluded from the analysis as mentioned above), the 

rest gave answers around creativity and video games (e.g., in line with the cover story). 
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The only significant differences perceived between the first and second confederate 

overall was that the first confederate (counterbalanced across participants) tended to be 

rated as better at the task, t[39]= 2.314, p= .026. All other differences were non-

significant (all t’s ≤ .960). When comparing the two actual different confederates 

(irrespective of the order in which they were seen), there were no differences in 

perception of the cooperation, likability, fluency of the interaction, nor ability to 

perform the task between the two confederates, all t < 1.275. 

 

Behavioural results 

A repeated measures ANOVA was conducted with the factors Session (first interaction, 

second interaction) and Behaviour (model, non-model) on the coded data of general 

movements with feet or hands. The analysis revealed no main effects of Behaviour, 

F[1,36] = .574,  p = .454, ηρ² = . 160, nor Session, F[1,36] = .174, p = .679, ηρ² = .174, 

and no interaction between the two factors, F[1,36] = .041, p = .841, ηρ² = .001.  

A parallel ANOVA was conducted for the coding of just the specific behaviours 

(tapping the foot, touching the face). The analysis revealed a main effect of Session, 

F[1,36] = 7.179, p = .011, ηρ² = .166 with lower scores for the first (M = .58, SE = .06) 

compared to the second session (M = .75, SE = .09). However, there was no main effect 

of Behaviour, F[1,36] = .574,  p = .454, ηρ² = . 160, nor any interaction between the two 

factors, F[1,36] = .041, p = .841, ηρ² = .001.  
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Figure 6.1. Coding ratings for Experiment 5. 

The left-hand side shows the coding ratings for the specific effector movement (foot taps, face touching) 

and the right-hand side shows the ratings for general movement of the model effector (hand, foot). The 

black bars represent the model behaviour (the behaviour performed by the confederate e.g., foot 

movements) and the white bars represent the non-model behaviour (the other behaviour e.g., hand 

movements). 

 

EQ correlations 

Correlations were conducted on the difference between model and non-model 

behaviours for each session (first interaction, second interaction) and the EQ separately 

for specific and general movements of the effector. The analysis revealed no significant 

correlations between the EQ and behaviour for general movements in either the mimicry 

(r = .043, n = 37, p = .802), nor predictive mimicry sessions (r = -.264, n = 37, p 

= .115). However, there were near significant negative correlations between the EQ and 

behaviour for the specific movements in the mimicry (r = -.295, n = 37, p = .077) and 

predictive mimicry conditions (r = .076, n = 37, p = .092). This indicated that those with 

a higher EQ displayed fewer specific model movements. As research suggests that 

mimicry does not happen when participants are aware of it (Lakin & Chartrand, 2003), 
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this lower model behaviour might be due to participants actively avoiding performing 

the same action as the confederate.  

 

Discussion 

The current chapter investigated evidence for person-models in more ecological 

settings. Prior chapters have evidenced person-models using rigorous laboratory 

methods, which are far removed from everyday life. Whilst such paradigms have 

stronger internal validity due to the high levels of control and reduction in potential 

confounding variables, they leave open questions about the generalisability of the 

findings both across paradigms, and to real-life. Specifically, Experiment 5 assessed the 

potential for a (person-specific) ‘predictive mimicry’ mechanism. It was hypothesised 

that participants would implicitly ‘learn’ the behavioural tendencies of their interaction 

partners (face touching, foot tapping), which would be reactivated when they met them 

for a second time. As such, this experiment aimed to investigate the potential for 

person-models to bias not just perception, but also motor responses. However, this 

experiment (as well as a similar preliminary study, see below) failed to find evidence 

for even basic mimicry, and thus predictive mimicry could not be investigated within 

this experiment.  

One reason for this may have been that the ‘sweet spot’ for creating mimicry simply 

was not found. In a previous pilot, there was also no evidence for basic mimicry, but in 

this pilot the confederates made the movements approximately three times every ten 

seconds. However, in accordance with email correspondence from Dr. Tanya Chartrand 

(one of the original authors of the mimicry effect, 18.11.15), Experiment 5 consisted of 

almost constant movements. As such the movements may have been too obvious. 
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Indeed, three participants spontaneously mentioned performance of at least one model 

behaviour by one of the confederates. Moreover, most participants could accurately 

state which confederate made which movement, suggesting either that they were aware 

of the movements during the experiment or, as in previous paradigms (see Chapters 

Two and Three), could accurately relay information from their person-models to give 

the behavioural tendencies of the individual confederates. If the former is true then it is 

unsurprising that there was no evidence of mimicry given that it is not believed to occur 

if there is awareness of it (Lakin & Chartrand, 2003). Of course, it may simply be that 

mimicry is either not as ubiquitous in social situations as previously claimed, or that 

there is a high variability amongst individuals in the amount they mimic (and thus 

power was not strong enough in the current experiment). 

Mimicry research, and observational studies in general, have a myriad of experimental 

difficulties. The biggest issue is in operationalising each movement. For example, there 

are lots of questions to ask when considering what constitutes a foot tap. Does a heel lift 

equate to a toe lift for example? Must the foot fully touch the ground? If both feet tap at 

the same time does it count as one or two foot taps? Etc. As such, it is very difficult to 

know what should constitute each model behaviour.  

A further issue is that even when the behaviours in question have been operationalised, 

someone must then code these behaviours. This is not only incredibly time-consuming, 

but also very subjective. Typically, at least two ‘blind’ coders (individuals who are not 

told the aims of the experiment, nor the condition in which each participant is in) 

provide their measurements for each behaviour, and then this is averaged. Despite being 

unaware of the aims, it is often not particularly difficult to guess what is going on – 

particularly if the videos they are coding also show the confederates performing their 

movements.  
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One solution, at least for the coder subjectivity, is to use technology to do the coding. 

For example, Experiment 4 highlighted the potential of the Microsoft Kinect Sensor as 

an objective measurement tool for human actions (see Chapter Five). As such, it is 

possible that the sensor could be utilised in mimicry paradigms such as Experiment 5 to 

reduce the subjective (and time-consuming) nature of coding. Whilst there is still the 

complicated matter of deciding exactly what constitutes a model behaviour, once 

decided this could be ‘taught’ to the sensor to provide a more objective measure of 

whether these behaviours actually occurred, and to what frequency. The sensor could 

also be used in a similar manner in other observation-based experiments where there are 

clear and distinct behaviours to assess.  

 

Conclusion 

The current chapter explored the potential for motor biases based on predictive person-

models during mimicry. However, Experiment 5 failed to provide the conditions 

necessary for even ‘basic’ mimicry of a confederate, and thus was unable to test for 

person-specific ‘predictive’ mimicry. As suggested above, the Microsoft Kinect Sensor 

may be an effective measurement tool to reduce potential subjective coding biases. 
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Chapter Seven – General Discussion 

Social interactions are a major part of daily life, and are extremely dynamic. Successful 

social interactions may result from our ability to create accurate predictions for how our 

interaction partners will behave. Whilst prior research has focused on the use of 

available cues (e.g., emotional expressions; R. B. Adams et al., 2006, statements of 

intent; Hudson et al., 2016, action kinematics; Bach et al., 2011; Bach, Nicholson, et al., 

2014) to make such predictions, the purpose of this thesis was to investigate the 

influence of prior knowledge about the person’s typical behaviour. For example, Barresi 

and Moore (1996, see also Newen, 2015) theorised that humans create internal models 

of others’ behaviour that describe the ‘intentional relations’ they hold towards objects. 

These internal models capture three key factors: who the person is, the situation they are 

in, and which behaviour they typically perform (and the mental states this behaviour 

implies). Whenever the individuals are seen again in a similar situation, this knowledge 

would be re-activated and provide information about their likely forthcoming actions, 

allowing efficient prediction of behaviour. 

The current thesis utilised various paradigms to provide evidence for such predictive 

person-models during action observation (Chapters Two and Three), person 

identification (Chapter Four), and when acting together with others (Chapters Five and 

Six). The results, indeed, suggest that, as theorised by Barresi and Moore (1996) and 

Newen (2015), participants do form internal ‘person-models’ based on the behavioural 

tendencies of individuals in a given situation, which are reactivated when the individual 

is re-encountered in that situation again, and which influence action observation and 

one’s own behaviour with these individuals. 
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Overview of the thesis results 

The five experiments in Chapter Two used a simple action identification task in which 

different actors were seen acting towards or away from different objects. Unbeknownst 

to participants, the frequency of each actor’s behaviour towards the objects varied, such 

that one actor would typically interact with one object (e.g., they would kick a ball) and 

turn away from the other (a computer), and vice versa for the other actor. The results 

revealed a response time advantage towards more frequent actions in a given situation 

for each actor, suggesting that participants predicted the actors’ typical actions with the 

objects. These effects of an actor’s typical behaviour on identification were elicited 

even though neither actor identity nor the situation were task-relevant. The results 

therefore suggest a routine or automatic activation of person-specific action knowledge 

during action identification, which specifies how the given individuals interact with 

different objects, and which biases action identification, in a predictive manner, towards 

these actions. 

Importantly, this effect did not seem to be mediated by explicit knowledge. The vast 

majority of participants did not spontaneously detect the experimental manipulations. 

They could only verbalise the individuals’ different action likelihoods when the 

questions were re-situated by providing the same cues as the original scenario (person 

and situation), allowing them to re-activate the relevant internal person models. In this 

case, participants attributed actor liking of the objects more when the actor tended to act 

towards than away from them, and could accurately say which object was interacted 

with more frequently by each actor. Thus, they could explicitly amalgamate the 

information retrospectively when given the relevant cues, but could not spontaneously 

provide this information explicitly. Even then, however, the response time effects were 

present even in those not able to explicitly report the individuals’ behaviour, which 
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suggests at least a partial dissociation between this implicit and explicit knowledge 

(Experiments 1a to e). 

Other findings further supported the idea that these results do not merely reflect explicit 

detection of the experimental manipulation. Strategic responding based on explicit 

knowledge would predict an effect independent of action type (act towards, turn away), 

and an effect in both RTs and error rates (e.g., Dale et al, 2012; Duran & Dale, 2009; 

Marcus et al, 2006). Indeed, evidence for this pattern associated with strategic 

responding was found when participants were explicitly given the person information 

(Experiments 1c and d), but not when the information was provided implicitly 

(Experiments 1a, b and e).  

Instead, the findings are consistent with COVIS models (COmpetition between Verbal 

and Implicit Systems; e.g., Ashby et al., 1998; Maddox & Ashby, 2004) that propose 

two learning systems, one for verbal categorisation (when the rules can be easily 

verbalised), and one for implicit categorisation (when the rules are more complex and 

cannot be easily verbalised). Thus, for the experiment in Chapter Five where the rules 

for learning are simpler (i.e., Experiment 4 where the situation is constant and only the 

actor varies), and the explicit studies where the participants are explicitly given the rules 

(i.e., Experiments 1c, 1d, 1e, 2b), there is evidence of strategic responding (i.e., effects 

in error rates, and for both actions towards objects and withdrawals) because the 

learning is primarily in the verbal (i.e., explicit) system. However, in the other 

experiments where the rules are more complex (both actor and situation vary), the 

implicit system is employed, and there is no evidence of strategic responding (i.e., 

Experiments 1a, 1b, 2a). 

Experiment 1d showed that implicit prediction effects and explicit strategies could be 

dissociated within one experiment. When explicit and implicit information were put in 
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conflict, the prediction effect in the response times was still present and reflected how 

frequently each actor performs each action in each situation (as in the previous 

experiments). The errors, however, were made based on which actions participants 

expected to see based on the explicit information. Similarly, when the task did not 

explicitly provide the person-models, but merely asked for explicit action predictions, 

participants, again, tend to draw from these person-models (Experiment 2b). Taken 

together this provides support for the theory that participants can form person-models 

both implicitly (based on the statistical knowledge of each individuals’ action 

likelihoods) and explicitly (e.g., from gossip). Implicit knowledge primarily affects 

response times, perhaps through predicting incoming stimuli, but explicitly provided 

knowledge is actively tested through behavioural wagers, causing participants to make 

actual errors (see also Dale et al., 2012; Duran & Dale, 2009; Marcus et al., 2006).  

A striking finding was that the prediction effects – whether induced explicitly or 

implicitly – were primarily found for goal-directed actions (actions towards objects but 

not withdrawals from objects, which have a less clear goal and are not afforded by the 

objects in the scenes). Thus, not all actions are equal, at least not within this simplistic 

design. This supports Barresi and Moore's (1996) hypothesis that intentional relations – 

their version of internal models of other people’s behaviour – are primarily formed for 

goal-directed actions. The findings also link with prior research on a special status for 

object-related actions that fit the objects’ affordances (e.g., Bach et al., 2014). Evidence 

for this was not just seen behaviourally in response time data, but also in ERPs (Chapter 

Three). Here, there was evidence that participants saw atypical actions towards objects 

as an action error on the part of the actor (indicated by early negative activation 

suggestive of the oERN), but that atypical withdrawal actions did not elicit a similar 

ERP response. However, in both cases, participants showed evidence of the updating of 

internal models via a later positivity suggestive of the P3b component.  
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Finally, while not fully conclusive, the results cannot be easily explained by simple 

stimulus and/or response learning that would apply similarly to non-social stimuli, 

rather than internal person-model accounts (see also Chapter Two discussion). First, in 

Experiment 2a the (o)ERN is typically associated with error processing of own and 

others actions, indicating that participants represented the stimuli as actions, rather than 

merely as moving stimuli. Second, in Experiment 2b, verbally associating intentions to 

the two actors transferred to action identification (see Chapter Three). If participants 

were just learning simple associations between stimuli and responses, then these verbal 

intentions should not have affected action identification. Thus, there is evidence across 

multiple paradigms that participants were creating person-models based on the 

behavioural tendencies of actors, and reactivating them when the actor was re-

encountered in similar situations as opposed to some stimulus-response bias.  

Whilst much of the evidence presented in this thesis was based on information acquired 

during the course of the experiment, Chapter Four tested person-models using older, 

more naturally-formed information about famous athletes. Participants identified 

famous athletes with hand and foot button presses that were either compatible or 

incompatible with the primary effectors in the athletes’ sport, while the athletes were 

either seen performing this action or standing passively, and either in their typical 

sporty contexts or in neutral situations. The results confirmed, first, the potential 

embodiment of internal person-models, in the form of contrast effects, such that 

participants made slower responses when the same effector was needed to identify the 

athlete as was typically used in their sport. Second, these effects were modulated by 

how well participants knew the athletes thus providing preliminary evidence that 

strength of knowledge influences strength of predictions. 
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Both results replicated prior research that action expectations about others’ can be 

embodied in one’s own motor system (Bach & Tipper, 2006; Tipper & Bach, 2011), but 

the main goal of these experiments was to test whether these embodied prediction 

effects were modulated by context, and the situation the athletes were seen in, that either 

afforded their typical effector action or did not (i.e., whether they were seen in the 

athletes’ sporty contexts or neutral situations). Crucially, however, there was no 

significant influence of context, which suggests that the three factors thought to be 

pivotal (Chapters Two and Three, see also Barresi & Moore, 1996) may not be equally 

weighted. Indeed, the evidence (numerically at least) is more in line with Newen's 

(2015) argument that situation models are only activated during uncertainty (i.e., that 

when we see an individual, we activate a heuristic for our knowledge of them, which is 

only ‘unpacked’ in cases of uncertainty, such as when the athletes are seen outside their 

usual circumstances). 

One of the issues with the experiments in the first three experimental chapters is that the 

paradigms are quite far removed from reality. It is therefore unclear to what extent the 

results generalise to more naturalistic settings, and whether predictions guide own 

motor responses in social interactions (not just action identification). As such, Chapter 

Five used the Microsoft Kinect Sensor to test these person-models “in action” and using 

more naturalistic responding. Here, participants had to respond with their feet by 

moving to the left or right to ‘block’ a ball, while the players that kicked the ball to 

them, again, showed different response profiles, with one being biased to kick to the left 

and the other to the right. Again, the results were suggestive of predictive facilitation 

towards typical compared to atypical actions for the individual actors, such that 

participants made their own foot movements more quickly, and in a more pronounced 

manner, when responding to an expected action of the other player. Thus, this is first 
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evidence that person-models are used when more realistic responses than simple button 

presses are required, and that they guide own responses in social interactions.  

Finally, the role of person-models within more naturalistic settings was also tested in a 

mimicry paradigm (see Chapter Six), which tested whether participants would mimic a 

behaviour that they ‘knew’ others would exhibit (based on a prior interaction), but 

which was not actually shown in this interaction. However, because we could not 

establish the basic mimicry effect, no accurate measure of such ‘predictive’ mimicry 

based on internal person-models could be assessed. 

 

Relations to prior research 

The findings in this thesis argue against the conventional bottom-up view of social 

perception whereby incoming sensory stimulation activates conceptual (or motor) 

representations, allowing the action to be identified (e.g., Iacoboni, 2009b; Rizzolatti & 

Craighero, 2004; Rizzolatti & Sinigaglia, 2010). Instead, the current findings add to the 

accumulating literature highlighting top-down involvement in perception, particularly in 

the social domain (e.g., A. Clark, 2013; Csibra, 2008; Kilner et al., 2007). In such 

models, the brain constantly uses internal models about the world and other people to 

form expectations about forthcoming stimuli and tests them against the perceptual input. 

Expected input can be processed readily (as seen in the response time advantages in 

Chapters Two and Three, and the earlier and more pronounced actions in Chapter Five), 

whilst mismatches elicit prediction errors that lead to a revision of the internal person-

models (not tested within this thesis).  

The current experiments are novel in that they highlight the person-specific nature of 

such predictive processing. Prior work has shown that other people’s behaviour can act 
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as available cues informing prediction, for example, for emotional expressions (R. B. 

Adams et al., 2006), action kinematics (Bach et al., 2011; Bach, Nicholson, et al., 

2014), gaze (Pierno et al., 2006) and statements of intent (Hudson et al., 2016). Others 

show that contextual object cues (for a review see Bach et al., 2014) guide action 

prediction. In contrast, the current studies show that who is acting is an important part of 

making successful predictions. As such, the experiments in this thesis support the idea 

of a ‘Social Prediction System’ whereby person-specific internal models are created 

based on an individual’s behavioural tendencies in a given situation, which are then 

reactivated in a relatively automatic and implicit manner when the individual is re-

encountered, and allow one to predict their most likely forthcoming actions.  

The results extend the experimental psychology literature that action knowledge about 

other individuals can be reactivated when they are seen again, such as the body parts 

used in an athlete’s sport, an individual’s last seen emotional expression or direction of 

their gaze (Bach & Tipper, 2006; Frischen, Loach, & Tipper, 2009; Halberstadt et al., 

2009; Tipper & Bach, 2011). They add to this by showing that this knowledge aids 

action identification, by predicting most likely forthcoming behaviour, and can guide 

own motor responses, and that it reflects not only such static information about other 

people, but also how they respond dynamically in different situations or towards 

different objects (see Barresi & Moore, 1996; Newen, 2015).  

The findings also directly extend evidence from social psychology that people establish 

person-models based on behavioural descriptions (Hastie, 1984; Srull et al., 1985; Srull, 

1983; Stinson & Ickes, 1992) influencing memory, judgments of others (D. L. Hamilton 

& Sherman, 1996; Heider et al., 2007; Sherman & D. L. Hamilton, 1994; Stangor & 

McMillan, 1992; Wyer, 2013), and reading times for (in)consistent behaviours 

(Belmore, 1987; Dickter & Gyurovski, 2012). Indeed, predictive coding accounts could 
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explain why these so-called prediction errors or inconsistent behaviours generally 

require longer, more elaborate processing (Graf et al., 2007; Srull & Wyer, 1989). 

Expected behaviours are processed fluently, whilst inconsistent behaviours elicit 

prediction errors that need to be resolved. Here, more attention is drawn to the event, 

which increases processing as the higher hierarchical levels try to explain the 

discrepancy (Heider et al., 2007). However, while previous studies in social psychology 

tested relatively abstract processes that happen offline, after verbal descriptions of 

others’ behaviour have been read, the current results reveal similar predictive processes 

during online action observation, which affect action identification (Chapters Two and 

Three), the embodiment of the expected actions (Chapter Four), as well as one’s own 

motor output during social interactions (Chapter Five). 

Finally, the current results demonstrate how mere behaviour observation can influence 

abstract knowledge such as perceived liking of an object based on the frequency of 

interaction with it, as was measured here in post-experiment ratings. Thus, observing an 

individual provides information not just about their behavioural tendencies, but also 

provides insights into traits and intentions. This extends research in the social literature 

that inferences can be made about people based on knowledge of their behaviour or 

personalities. For example, a common finding is that agent observation typically leads 

to implicit extraction of the trait: “spontaneous trait inference” (see Chen et al., 2014), 

or a personality judgment (Vonk, 1994).  
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The Social Prediction System  

The present results can be integrated with the prior literature to develop a model of how 

social predictions may occur (see Figure 8.1). The “Social Prediction System” follows 

prior suggestions (Kilner et al., 2007; Csibra, 2008) that social predictions are formed 

due to an interaction between top-down expectations (based on person-knowledge) and 

lower-level cues (e.g., what is currently available such as objects and their affordances, 

eye gaze, facial expressions and body language). When an individual is encountered, 

prior knowledge – an internal model of how they behave in different circumstances – is 

reactivated and informs action predictions, which speed up the identification of 

expected actions (Chapters Two and Three), can be detected in motor activation 

(Chapter Four), and allows one to anticipatorily plan one’s own action in response 

(Chapter Five). Although not the focus of this thesis, this person-knowledge need not 

only be informed by what is directly known about the individual, but can also relate to 

knowledge of the groups they belong to (sports team, nationality, gender, etc.), and 

general human ‘schemas’ such as that people get grumpy when they are hungry (e.g., 

Quadflieg et al., 2011; Quinn & Rosenthal, 2012). It can reflect knowledge that captures 

the statistical action likelihoods of others as seen in previous encounters (such as in the 

Experiments 1a, 1b, 1d, 1e, 2a), or explicit knowledge we have about them, either 

hypotheses about their actions we have developed ourselves or that were given from 

others (Experiments 1c, 1d, 2b, 3a, 3b, 4).  

It is assumed here that this knowledge does not flow directly into action prediction, but 

is combined with situational knowledge (derived from knowledge of the functions and 

affordances of objects for example) to provide a best guess for what action is likely in a 

given situation with a given individual (see also Bach et al., 2014; Barresi & Moore, 

1995; Newen, 2015). Objects are represented in human cognition in terms of both the 
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goals that can be achieved with them, and how they must be used for these goals to be 

achieved (e.g., van Elk et al., 2014). By themselves, objects therefore provide 

information about someone’s most likely actions in a given situation, such as that a 

hammer predicts hammering, a dish predicts eating, among others (Gergely & Csibra, 

2003, Bach et al., 2014). Thus, if one sees a football-sized ball there are limited actions 

one could do with it; pick it up, throw it, kick it, burst it.  

But considering pre-existing knowledge of the individual can further narrow these 

choices to enable a more rapid, accurate prediction. In other words, the object provides 

all the possible actions that can occur in the situation, but person-knowledge further 

selects the most likely action based on prior behaviour, goals, or known (dis)likes. In 

the above example, therefore, seeing a football would make kicking especially likely if 

the actor is already known to like football and to frequently engage in this activity. In 

the present study, such an interaction of person and situation factors was seen in all 

experiments in Chapters Two and Three (albeit not in Chapter Four), where person-

knowledge seemed to act specifically on the actions afforded by the objects, but not 

when actions are unrelated to the objects.  

In such a model, predictions cascade down from higher, more abstract goals, via 

situational constraints and the available objects, to lower, more concrete goals and 

actions (see also Kilner et al., 2007; Csibra, 2008). For example, John wants to be a 

professional footballer, and would therefore be predicted to want to kick the ball 

respectively. When predictions match reality, no further processing is required, but if 

predictions mismatch reality it triggers a prediction error and additional processing to 

resolve the discrepancy. This resolution may come in the form of an altered prediction, 

or a reassessment of the situation, and may be reflected in longer response times and 
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changes to subsequent person judgments (Chapters Two and Three) and can be detected 

in the ERP responses, such as the oERN or P3b (Chapter Three).  

Via this bottom-up feedback, the Social Prediction System is bidirectional, so 

information about a given action can also make a ‘best guess’ for person and/or 

situational knowledge. Assume for example that general person-knowledge is that 

children prefer sweet over savoury treats. The prediction error of now seeing a child 

going for a packet of crisps over chocolate could be resolved either on the situation 

level (it is not a very nice chocolate) or on the person level: this particular child prefers 

savoury tastes. In the current thesis, this backwards influence may be reflected in the 

high-level person evaluations seen in the post-experiment ratings that were informed by 

the behaviour tendencies of the actors (Chapters Two and Three), but of course further 

studies are needed to further develop this link.    
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Figure 7.1. The Social Prediction System 

Knowledge about the person can either be represented at the individual level, group level or general 

human level. Knowledge of afforded actions can include factors such as what objects are present, which 

is heavily linked to what affordances the object(s) warrant to inform what actions are likely to take place. 

Knowledge about the person and the afforded actions can enable predictions of action, but this process 

can also work in reverse. When mismatching, prediction errors can trigger revisions about the person or 

situation models.   

 

 

Person specificity in action prediction and social interactions 

The current model builds directly on the affordance matching hypothesis (Bach, 

Nicholson, et al., 2014), which theorises that information about intentions and objects 

informs low-level action predictions. It assumes that objects can provide a wealth of 

information about a given situation in terms of what functions (goals) can be achieved 

with a given object, and what actions these functions require (for a review see van Elk, 

van Schie, & Bekkering, 2014). For example, grasping a cup may afford a precision 

grip, whereas a tennis ball may require a power grasp (Tucker & Ellis, 1998), while 

shooting someone requires a gun, which needs to be lifted and triggered. Knowing an 
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actor’s goals, and which objects are available, therefore allows one to derive a ‘best 

guess’ as to the most likely subsequent action (for a review see Bach, Nicholson, et al., 

2014). For example, knowing that someone is thirsty, and seeing them near a glass of 

water, can trigger the prediction that they will reach for, and drink from, the glass. 

Indeed, research has shown that even by 12 months of age, infants use their knowledge 

of object functions to categorise and individuate objects (e.g., Booth & Waxman, 2002; 

Kingo & Krøjgaard, 2012), Moreover, as seen in the current thesis, afforded interactions 

with an object are perceived and predicted more readily than non-afforded actions, 

especially when a higher-level action goal is implied (Bach et al., 2005; van Elk et al., 

2009; for a review of further findings, see Bach et al., 2014).  

So far, however, the affordance-matching hypothesis does not say much about the 

person-specific information crucial for making higher level social predictions, and 

distinguishing between the behaviour of multiple actors. The Social Prediction System, 

on the other hand, with the assumption of person-specific internal models for behaviour 

prediction, highlights the importance of who is acting. Thus, it describes the operation 

of the affordance-matching hypothesis in the context of social interactions to 

incorporate these higher level, person-specific social predictions. Including such person-

specificity is important because, in the same way that an object gives information on 

how it must be handled and what its purpose is, a person can also act as an affordance 

by providing various facets of how they act in different situations (Wolpert, Doya, & 

Kawato, 2003). Various factors can influence these assumptions. Humans can be 

considered in terms of their attitudes (e.g., John likes football), their beliefs (e.g., theory 

of mind, the football is in the cupboard), and their behavioural tendencies, as tested in 

the current thesis.  
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The affordance-matching hypothesis suggests that if you see a football-sized ball there 

are limited actions you could do with it; pick it up, throw it, kick it, burst it. Taking into 

account pre-existing knowledge of the individual can further narrow these choices to 

enable a more rapid, accurate prediction. So, as the affordance-matching hypothesis 

suggests, the object provides all the possible actions that can occur in the situation, but 

person-knowledge further selects the most likely action based on prior behaviour, or 

known (dis)likes. This is supported by the experiments in this thesis. Even though not 

task-relevant, how frequently each actor acted towards or away from an object 

influenced the speed with which participants could identify an action and, in some 

cases, the amount of errors they made in this action identification task. This was shown 

both for new person-knowledge learned within the course of the experiment, and for 

pre-existing knowledge held by participants.  

As discussed above, so far, the action prediction literature has rarely considered person-

related action information. Next to experiments in the thesis, only a few studies so far 

provide evidence of person-knowledge informing action predictions. For example, 

seeing famous tennis players or footballers can inhibit observer use of their hands or 

feet respectively (Bach & Tipper, 2006; Tipper & Bach, 2011; see also Chapter Four).  

In a recent study, we have provided evidence for the interaction of object and person 

information. Here, we showed that participants’ own gaze behaviour reflected the 

expected gaze of other individuals, based on prior knowledge about which objects these 

individuals typically like and smile at (Joyce, Schenke, & Bach, 2015), but further 

experiments specifying this interaction are required. 

The importance of person-specific action knowledge is, however, consistent with the 

social psychology literature. It has already been mentioned that people establish person-

models based on behavioural descriptions (Hastie, 1984; Srull et al., 1985; Srull, 1983; 
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Stinson & Ickes, 1992) influencing memory, judgments of others (D. L. Hamilton & 

Sherman, 1996; Heider et al., 2007; Sherman & D. L. Hamilton, 1994; Stangor & 

McMillan, 1992; Wyer, 2013), and reading times for (in)consistent behaviours 

(Belmore, 1987; Dickter & Gyurovski, 2012). Similar research comes from the study of 

stereotypes (Macrae & Bodenhausen, 2000), which can be used to establish behavioural 

tendencies when specific knowledge of the individual is lacking. Indeed, behaviour 

information is processed faster, and remembered better, when it is congruent to a 

stereotype or a trait (C. E. Cohen, 1981; D. L. Hamilton & Sherman, 1996; Heider et al., 

2007; Macrae & Bodenhausen, 2000; Quadflieg et al., 2011; Srull & Wyer, 1989; 

Stangor & McMillan, 1992).  

In much the same way as we can better discriminate between objects and/or actions 

when we have specific knowledge or experience with them (Beilock, 2008), knowing 

more about the person can also aid processing. Once the individual is better-known, 

more specific knowledge of them can be reactivated based on this prior experience with 

the individual so there is less reliance on stereotyping and other group knowledge. The 

difference between such individuated and stereotype use in person-knowledge is 

supported by evidence that, whilst both famous and unfamiliar faces are categorised by 

gender initially, famous faces are rapidly (implicitly) re-categorised by identity (Quinn, 

Mason, & Macrae, 2009a). Similarly, unfamiliar faces are categorised to the most 

salient visual element (e.g., gender), whereas this is not the case for famous faces 

(Quinn, Mason, & Macrae, 2009b). Here, Chapter Four provides evidence that 

embodied prediction effects are seen more when participants were more familiar with 

the athletes (see also Tipper & Bach, 2011), but further studies are needed to explicitly 

test when predictions in action observation are made on the basis of stereotypes or 

individuated person-knowledge. 
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Whilst much prior research (as described above) has highlighted the importance of 

person-knowledge and afforded actions separately, few have shown their joint 

importance (as theorised by Barresi & Moore, 1996). One such study by Macrae, 

Bodenhausen, and Milne (1995) showed a Chinese woman either eating with chopsticks 

or applying makeup. Participants more readily attributed her as being Chinese if she 

was seen with chopsticks, and as being a woman when she was seen applying makeup. 

Thus, the object she was acting upon influenced the participants’ perception of her. 

Even mimicry research (long considered a simple motor-matching process) 

demonstrates how we use aspects of the person within social interactions. For example, 

by demonstrating that we automatically imitate bodily movements (e.g., Brass et al., 

2000; Chartrand & Bargh, 1999), aspects of our language (see  Lakin et al., 2003), gaze 

behaviour (Frischen et al., 2007) and even pain responses (Morrison et al., 2007) within 

social interactions, this literature highlights how we change our behaviour to fit our 

specific interaction partner. Importantly, this mimicry behaviour now appears to be 

strongly influenced by top-down factors, based on knowledge of our interaction partner. 

For example, research has shown increased mimicry towards those in power (Cheng & 

Chartrand, 2003; Dalton et al., 2010), or those in our group (Bourgeois & Hess, 2008). 

Thus, we attune our actions to emulate those we feel close to, or those we aspire to be 

like, based on specific aspects of person-knowledge (e.g., the group they belong to, or 

the attributes they have). This highlights the importance of who the interaction partner 

is, again, providing support for the person-specific nature of the Social Prediction 

System. Future studies need to establish whether person-models guide mimicry not only 

through whether someone is imitated, but whether they also determine the content of 

mimicry, as the experiment in Chapter Six attempted to demonstrate.  
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Open questions for future research 

This thesis investigated the interplay between top-down and bottom-up processes as 

hypothesised by existing predictive coding models of action observation (Kilner, et al., 

2007; Csibra, 2008; Bach et al., 2014). The results provide evidence for a Social 

Prediction System, which creates person-models based on prior behavioural tendencies 

of specific individuals in given situations that are reactivated when the individual is re-

encountered, and allow the observer to make predictions about their future behaviour.   

However, as this is one of the first explorations into the person-specific nature of action 

predictions, several important questions remain open. 

 

Are predictions really being made? 

A key question is whether the experiments really demonstrate that predictions are being 

made. One possibility is that the results may simply reflect stimulus and/or response 

learning or strategic response preparation, but, as detailed previously, the various 

experiments in this thesis provide substantial evidence against this notion. Nevertheless, 

much like the majority of the behavioural action prediction literature to date, the 

experiments in this thesis largely provide indirect evidence for ‘assumed’ prediction, by 

demonstrating faster response times and/or lower errors rates for what would be 

predicted rather than what would not be predicted. The response time effects could 

therefore reflect faster processing of an individual’s typical actions, and therefore be 

indicative of person-models, but might not reflect predictions per se.  

This problem seems to be present in the broader action observation literature as well. To 

my knowledge, there is little direct measurement of actual online prediction within the 

behavioural paradigms of the action prediction literature. For example, eye movement 

studies show that the observer’s gaze jumps ahead towards the endpoint of an action 
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(Flanagan & Johansson, 2003), such as the implied target object, but this might simply 

reflect knowledge of the action goal and subsequent disengagement from the action 

kinematics, rather than a prediction of the action. Similarly, the action embodiment 

literature suggests that observers sometimes show motor activation that mirrors an 

expected but not yet perceived action. The question is, however, whether this motor 

activation really reflects prediction made for the other person, or just epiphenomenal 

motor outflow that happens because the observer has identified the other’s goal (e.g., 

Csibra, 2008).  In contrast, while the social literature, indeed, tends to measure 

‘expectations’ about others’ behaviour, these tend to be tested in a more offline fashion, 

by abstract judgments of reading times, person judgments, or memory for behaviours 

(D. L. Hamilton & Sherman, 1996; Heider et al., 2007; Sherman & D. L. Hamilton, 

1994; Stangor & McMillan, 1992; Wyer, 2013; Belmore, 1987; Dickter & Gyurovski, 

2012), and therefore say little about predictions during action observation.  

Experiment 1e provides an initial test of online action prediction, showing that 

participants can, indeed, predict to some extent what the two actors will do, and in 

Experiments 1a and 1b, participants sometimes made anticipatory responses towards the 

expected stimuli. However, future research needs to extend this across paradigms, and 

in more depth, preferably with further direct measures. There needs to a stronger 

amalgamation of the paradigms from the person-memory and action prediction 

literatures. Person-memory paradigms need to be brought more ‘online’, and action 

prediction behavioural experiments need to consider more direct measurements rather 

than relying on mere response time and error data.  

One possibility to show such predictions directly is to measure perceptual processes 

during action observation, instead of the more indirectly related motoric or gaze 

processes. Some interesting evidence has recently been provided. Kessler, Gordon, 
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Cessford & Lages (2010) showed that biological human motion that can be seen as 

goal-directed leads to a larger forward bias in perceptual measures than abstract motions 

for which such a goal is not evident, providing direct evidence of predictive perceptual 

processing. Similarly, Hudson and colleagues (Hudson et al., 2015; Hudson et al., 2016) 

have shown in various experiments that implying specific goals of others biases 

perceptual reports of where an action disappeared, such that participants judged the 

disappearance point closer to an object when assuming the goal to reach, and further 

away when assuming a withdrawal. They therefore show that perception is affected 

predictively, towards the implied goals. Combining such measures with the current 

person-knowledge manipulations may provide evidence that high level person-models, 

indeed, affect even low-level perception in a predictive manner.  

 

I know what you will do, but is this explicit or implicit? 

The majority of the findings in this thesis suggest that the Social Prediction System 

operates primarily implicitly, but that the person-models can be brought into explicit 

awareness and be ‘read’ out when participants are effectively probed post-experiment 

with both situation and person information (see Chapter Two). In contrast, the 

prediction effects in Chapter Five suggested that the person-models were primarily 

explicit, as participants spontaneously detected the experimental manipulation. As 

previously hypothesised, this dissociation can be explained by the complexity of the 

rules governing the individuals’ behaviours. The simpler rule set used in Chapter Five 

which only varied on the one “actor” is more verbalisable than the rules in Chapter Two 

in which an individual’s behaviour could only be predicted by also considering the 

situation factor, such that they interacted with one object but withdrew from the other  

(see COVIS models e.g., Ashby et al., 1998; Maddox & Ashby, 2004).  
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This hypothesis needs to be tested in future research. In a setup such as Chapter Five, 

where participants have to interact with an avatar, one could vary the relevance of both 

situation and actor factors and their interaction, for example, by having some 

participants throwing and some kicking. Based on both the research about COVIS, and 

the findings in this thesis, I would hypothesise that when the rules become more 

complex, and less verbalisable, learning should be more implicit. This would be (to my 

knowledge) the first time the hypotheses of the COVIS models – that verbalisable rules 

are processed explicitly, and non-verbalisable rules are processed implicitly – have been 

specifically tested in more naturalistic and social situations.  

A further issue is that the current tests may not be stringent enough measures of explicit 

awareness (see Shanks & Stjohn, 1994 for extended discussion). For example, it may be 

that during the basic task (in Chapter Two), participants do have the person-models in 

their explicit awareness, but they ‘forget’ them after the experiment. However, this is 

unlikely given that they use this knowledge to answer the liking and frequency exit 

questionnaires. Moreover, a further experiment (not included in this thesis) directly 

tested explicit awareness during the task by asking, at intervals throughout the action 

identification task, what patterns participants were currently aware of. At the end of this 

experiment participants then simply had to recognise the pattern from a list of seven 

potential patterns. However, the majority of participants still remained oblivious to the 

patterns even during the simple recognition task. 

Finally, it needs to be addressed how explicit and implicit routes to person predictions 

differ. As noted, predictions based on explicit person information (“gossip”) lead to 

participants making errors in action identification, which judgments biased towards the 

expected actions. In contrast, predictions from implicit action likelihoods of the 

individuals primarily affected response times. It needs to be resolved why both kinds of 
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prediction have such differential effects. One possibility is, for example, that both 

predictions reflect processes at different levels of the hierarchy. Explicit predictions 

might reflect high-level information that can be used for own behaviour planning, 

allowing participants to make explicit behavioural wagers about what will happen (Dale 

et al., 2012; Duran & Dale, 2009; Marcus et al., 2006). In contrast, the implicit 

prediction effects may reflect lower level processes, perhaps reflecting a perceptual or 

motoric pre-activation of the predicted action. Those predictions might not be accessible 

enough to induce actual behaviour, but nevertheless speed up identification of the 

expected actions. 

 

Neither here nor there – how influential are objects in the Social Prediction 

System?  

This thesis provides mixed evidence for the influence of context within the Social 

Prediction System. On the one hand, Chapters Two and Three highlighted the 

importance of context, where the actions of individuals were predicted relative to the 

object they were close to, yet, on the other hand, Chapter Four suggested (albeit with 

limited power) that context was not used to determine predicted actions. Only for 

unusual contexts was detailed person-knowledge (action information, context) 

‘unpacked’ to resolve uncertainty.  

Power aside, a key issue for the discrepancy might be the nature of the initial paradigm 

(Chapters Two and Three). Here, all cues other than the object and actor were removed 

from the stimuli and so context was more directly linked to the action than in Chapter 

Four where athletes were shown in various situations (on the football pitch/tennis court, 

on a beach, etc.). The athletes, in contrast, in participants’ prior experience, were 

typically experienced almost exclusively acting, and only rarely in unusual contexts. 
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Participants may therefore never have established differentiated person-models that 

would allow them to capture their behaviour across situations, other than a stereotypical 

association with kicking footballs and playing tennis.  

Finally, context was, of course, manipulated differently in both experiments. Whereas 

context, in Chapter Two and Three, reflected the objects that afforded the individuals’ 

actions, in Chapter Four, it reflected the general situation. While these situations – on 

the tennis court or the football field – are also associated with the two different actions, 

they were not affordances in the strong sense of the word, in that they would specify the 

typical actions that would be carried out with them (Tucker and Ellis, 1998; Gibson, 

1979). It therefore needs to be tested whether the situation-specific priming effects 

when the presence or absence of the respective affording objects – tennis ball or 

footballs – are saliently manipulated in a setup such as that used in Chapter Four. 

Perhaps motor activation for kicking and typing is only seen when such affording 

objects are present, but not for other, unrelated objects.  

A similar question relates to the prediction effects that were only found for clearly goal-

directed action, but not for those that had no clear goal (turn away from an object). 

Future research could investigate this difference by, for example, testing whether the 

driving effect of the acting towards actions is eradicated if the actors turned away from 

one object to face another object (i.e., narrowing the goal for the turning away actions). 

This could also be achieved by giving a reason for the turn away trials (e.g., 

accompanying the visual stimuli with verbal stimuli either saying “Yes, I like the ball” 

or “No, I don’t like the ball” for example). Based on the notion of intentional relations 

(Barresi & Moore, 1996), and the evidence that the majority of mirror neurons only fire 

for goal-directed behaviours (for a review see Fabbri-Destro & Rizzolatti, 2008), 

providing such a clear goal for the turning away trials should assimilate them much 
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more with the acting towards trials thus the prediction effect should be present in both 

sets of trials. 

  

Monkey see, monkey do – what is the influence of the Social Prediction System on 

the motor system of the observer? 

A key finding was that the Social Prediction System does not merely bias action 

identification, it also creates motor biases. For example, Chapter Four demonstrated 

how the person-models can become embodied within the observer, influencing response 

times for same/different effectors (see also Bach & Tipper, 2006; Tipper & Bach, 2011). 

However, one of the key issues with both the action prediction and person-memory 

literatures is that they are often quite far removed from reality. Thus, it is important to 

further establish the effects of these prediction biases in more ‘real-world’ settings 

where there are (at least perceived) consequences for the observer.  

As seen in Chapter Five, the introduction of the Microsoft Kinect Sensor has wide scope 

to bring these paradigms into more naturalistic settings or, at the very least, allow more 

naturalistic responding. This is particularly relevant for measuring embodiment and 

mimicry. For example, often research has looked at rudimentary embodiment effects 

such as whether a hand or foot response is facilitated (Chapter Four, Bach & Tipper, 

2006; Tipper & Bach, 2011), but it may be that embodiment effects are actually not just 

effector-specific, but action-specific. That is, it may not be simply the foot that is 

primed in general, but specifically the kicking action when presented with a famous 

football player. Thus, the contrast effects seen in Chapter Four may actually be reversed 

towards the expected facilitation effects if participants had to identify the footballers 

using a kick rather than pressing down on a foot pedal.  
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In relation to mimicry research, the major issue of subjectivity within the coding could 

be resolved by using an automated system such as the Kinect gesture database 

programmed to identify the gestures of interest. This would not only provide more 

objective coding, but also coding in a much more time-effective manner. Other more 

complex investigations could then be carried out such as identifying the response times 

within mimicry (i.e., the time lag between observing a behaviour and mimicking that 

behaviour). Similarly, investigations could more accurately assess postural mimicry 

using the skeletal data from the sensor. This could provide very rich information, and 

add a lot of new knowledge to the mimicry literature. 

 

To what extent do the results generalise?  

Another key avenue for future research is the generalisability of the current findings. 

The current thesis tested relatively simplistic stimuli as an initial exploration into these 

person-models. Now that robust evidence demonstrates the importance of person-

knowledge for creating and using predictions in action observation, further research can 

investigate more complex stimuli and situations. For example, future research can 

investigate how these predictions change during cooperative and competitive situations, 

or when multiple simultaneous action predictions must be made. It is possible that 

cooperative situations may require more step-by-step predictions with constant 

monitoring of the interaction partner required, and constant adjustments to one’s own 

behaviour. In contrast, competitive situations may require a more goal-directed focus on 

the observed actions – predictions may be made more holistically about what is needed 

to ‘win’ in the situation, rather than focusing on the small behavioural changes being 

made by the interaction partner. 
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Another key area for investigating the generalisability of the Social Prediction System is 

to test how much the person-models generalise from one situation to another. For 

example, if one learns that John likes football (or tends to kick a ball), would this 

translate into also viewing him as being more sporty in general (or easier to identify in a 

sporting situation) than George who likes computer games? Furthermore, would this 

lead to viewing John as being healthier than George, for example? Such effects would 

allow a more direct test of to what extent uniquely social mechanisms underlie these 

prediction effects. For example, after participants are exposed to two individuals either 

acting in sporty or academic situations, one could test to what extent the acquired 

knowledge is action-based such that any predictive speed up transfers to an equivalent 

action that achieves the same goal (e.g., making notes on a computer or on a notepad) or 

reflects attribution of higher level personality traits that generalises even to new 

situations (i.e., different sporty or academic situations). Such studies would open up the 

possibility of more closely linking research in social and experimental psychology to 

provide a common predictive person-model framework for human social interactions. 

 

You’ve got my attention – do person-models influence our attention? 

Whilst the current research focused on perceptual aspects of using knowledge to aid 

action predictions, its influence on attention is another important area of exploration 

particularly for the phenomenon of joint attention, which is crucial for a range of social 

behaviours including language acquisition, social development, and fluent social 

interactions. Based on the current findings it would be hypothesised that, in a similar    

vein to the perceptual system, predictions may act as primes or markers for attention to 

enable predictions of where interaction partners will direct their attention based on 

where they have previously directed their attention, or on prior knowledge such as their 
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(dis)likes. For example, walking on Dartmoor with the knowledge that an interaction 

partner likes horses would direct attention to the Dartmoor ponies compared to when 

walking with a keen landscape photographer whose attention would more likely be 

drawn to the sunset in the distance.  This attentional bias would afford the opportunity 

to assimilate with the individual based on their known interests. Indeed, we have 

previously found preliminary evidence that knowledge of behavioural tendencies can 

influence attention in this way within a gaze cueing paradigm (Joyce et al., 2015). 

Future research can now explore this in different paradigms and using more complex 

stimuli. 

 

Conclusion 

A key aspect of navigating the social world is being able to understand and interpret the 

intentions and actions of others. One mechanism that may aid this process is the 

proposed Social Prediction System, which uses person-specific prior knowledge to 

predict the actions of other people. This knowledge is accumulated over time as the 

behavioural tendencies of the individual are learned (or as others provide us with 

information about the individual). This knowledge results in the formation of person-

specific internal models, and is re-activated when the same person is re-encountered in a 

given situation to provide a prediction for how they will behave. When predictions are 

correct there is little further processing, but prediction errors result in reassessment of 

the situation or prediction. This person-knowledge takes the form of a person-heuristic, 

which is rapidly created when we meet an individual. This heuristic is only unloaded if 

events do not unfold as predicted, and more information is needed to explain the 

difference between prediction and reality. 
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Whilst much research into action predictions have focused on the use of bottom-up 

processes such as the use of available cues, the research field is moving forward with 

recent models now beginning to explore the top-down processes that also influence 

these predictions. The current research has provided some key foundations for the 

influence of such processes, and the basis for a detailed model of how such processing 

may occur, which fits with much research evidence across multiple fields of 

investigation. Future research should address the generalisability and boundary 

conditions of the Social Prediction System, and build on the work of Experiment 1d to 

explore the exact interplay between top-down and bottom-up processes.    
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Appendix 

The peer-reviewed journal article containing Experiments 1a, b and d from Chapter 

Two: 

Schenke, K. C., Wyer, N. A., & Bach, P. (2016). The Things You Do: Internal Models 

of Others’ Expected Behaviour Guide Action Observation. PLoS One, 11(7), e0158910. 

http://dx.doi.org/10.1371/journal.pone.0158910. 
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Abstract
Predictions allow humans to manage uncertainties within social interactions. Here, we

investigate how explicit and implicit person models–how different people behave in different

situations–shape these predictions. In a novel action identification task, participants judged

whether actors interacted with or withdrew from objects. In two experiments, we manipu-

lated, unbeknownst to participants, the two actors action likelihoods across situations, such

that one actor typically interacted with one object and withdrew from the other, while the

other actor showed the opposite behaviour. In Experiment 2, participants additionally

received explicit information about the two individuals that either matched or mismatched

their actual behaviours. The data revealed direct but dissociable effects of both kinds of per-

son information on action identification. Implicit action likelihoods affected response times,

speeding up the identification of typical relative to atypical actions, irrespective of the explicit

knowledge about the individual’s behaviour. Explicit person knowledge, in contrast, affected

error rates, causing participants to respond according to expectations instead of observed

behaviour, even when they were aware that the explicit information might not be valid.

Together, the data show that internal models of others’ behaviour are routinely re-activated

during action observation. They provide first evidence of a person-specific social anticipa-

tion system, which predicts forthcoming actions from both explicit information and an indi-

viduals’ prior behaviour in a situation. These data link action observation to recent models

of predictive coding in the non-social domain where similar dissociations between implicit

effects on stimulus identification and explicit behavioural wagers have been reported.

Introduction
Predictions are central to our ability to succeed within an ever-changing environment. They
allow us to respond quickly to expected events, to fill in ambiguous or missing information,
and to identify mismatches between beliefs and reality, should one’s predictions not come to
pass [1–2]. Nowhere are predictions more important than in social interactions, one of the
most dynamic situations in everyday life. Predictions help us to coordinate behaviour with
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others [3], to interpret their actions [4–6] and to detect deception [7]. Indeed, some of the
social deficits of autism or schizophrenia may originate from deficits in predicting own and
others’ behaviour [8–9].

Prior work has focused on how people derive predictions from social cues and signals, such
as emotional expressions [10–11], action kinematics and their match to available tools and goal
objects [12–15, 5], object-directed gaze [16], and explicit action goals of others [17–18]. Such
cues automatically bias action observation towards the expected actions, allowing rapid and
accurate recognition, and planning of one’s own actions relative to the expected future state
rather than the current input [19–20, 3]. However, overt signals are not the only source of pre-
dictions. Humans are remarkably adept at recognizing other people, with evidence pointing
towards dedicated cognitive and neuronal systems for identifying others and storing knowl-
edge about them (e.g., [21–24]). This knowledge not only contains information about their
appearance, race and sex, but also information directly related to their behaviour. It has been
argued [25–27], for example, that humans form elaborate internal models about the people
they know [28–29], describing which behaviours they typically carry out with different objects
(e.g., Peter typically goes for chocolate), as well as the mental states these behaviours imply
(Peter likes chocolate). Once established, such internal models could be automatically re-acti-
vated whenever these individuals are seen again and predict their most likely actions.

It is well established that similar internal models guide our perception of the non-social
environment. For example, humans have internalised typical behaviour of objects, such that
displacements upward (against the effect of gravity) appear more salient than displacements
downward, unless, of course, the object is known to be self-propelled like a rocket [30–31].
Similarly, in natural scenes attention is automatically guided towards the likely locations of rel-
evant objects [32–33] and when identifying items in rapidly presented sequences, internal
models predict the forthcoming items [34–35], even when these sequences follow complex sec-
ond-order rules of an artificial grammar [36]. Together, these findings provide converging evi-
dence that (non-social) perception is not a simple bottom-up process but constantly guided, in
a top-down manner, by internal models that specify the behaviour of the external world. On a
neuronal level, these influences can be traced to activation in low-level visual areas, which
anticipate the incoming stimulation [37]. Behaviourally they manifest in speeded up response
times to predictable events, often despite an inability to verbalise the underlying causal struc-
ture (for a critical discussion see [38]).

Here, we ask whether a similar mechanism exists for social perception, which makes the
current actor’s typical behaviour in the given situation available to guide action observation.
Such a mechanism would have to overcome at least two challenges. First, each human act is
jointly caused by a number of hidden factors–goals, beliefs, energy and motivation–that
observers do not have access to [39]. To an outside observer, others’ behaviour can therefore
not be described deterministically but stochastically, in terms of tendencies for action. Second,
one of the strongest non-hidden influences on others’ behaviour is the current context, with
others’ exhibiting different behaviours in different situations [5, 25, 40–42]. For example, in
personality psychology it has been shown that such a situation dependant encoding of traits
allows much more robust descriptions of others behaviour than overarching personality traits
(i.e., that a child is shy at school but extrovert at home, rather than shy across situations [43].
Person models would need to capture specifically this situation-dependency of human behav-
iour, encoding the specific intentional behaviour an individual exhibits towards one type of
object, but not towards others (e.g., [25]).

Despite these theoretical proposals, there is currently little evidence that action observation
recruits such internal person models [28–29]. As noted above, several studies have shown that
observers predict others’ actions based on various social cues, such as smiles, gaze, or action
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kinematics [10–18]. Whilst these cues could indeed exert their effects by providing person
information, such as others’ goals and beliefs, they could just as well be explained on the level
of action alone, where certain cues (e.g., a smile) directly predict certain behaviours (approach),
without drawing upon person information at all (e.g., [44–45]). In contrast, social psychology
has shown that people establish person models from behaviour descriptions [46–49]. Yet,
while these internal person models have been shown to affect reading times of subsequent
behaviour descriptions [50], as well as one’s explicit judgments and memories of these individ-
uals ([51–53], for reviews see [54–57]), their online use during action observation has not been
demonstrated. Other studies have shown that people learn others’ looking behaviour towards
objects, which then guides attention similarly as directly perceived gaze, and that people auto-
matically activate action knowledge about the people they see [58–59]. However, neither of
these studies has demonstrated any predictive impacts on action identification, and the knowl-
edge tested has been very stereotypical, such as the typical behaviours of black and white people
[60], the body parts used in sports associated with famous athletes [61–62], or people’s emo-
tional expression when last seen [63]. They therefore fall short of the crucial situation-depen-
dency, which is the hallmark of human action [5, 25, 43].

Here, we develop an experimental paradigm in which such person based predictions can be
studied. The studies presented here provide a first test of whether (1) once established, internal
models of others behaviour are activated when these individuals are seen again, whether (2)
these person models exert a predictive influence on action observation, speeding up the identi-
fication of expected actions relative to unexpected ones, and whether (3) they capture the situa-
tion-specificity of human action, predicting the actions that others’ typically perform in one
situation but not in others. To test these hypotheses, participants were given a simple action
identification task, in which they watched the actions of two individuals (John or Claire) in two
situations (sitting next to a computer or standing next to a soccer ball). In each situation, they
simply reported, with a speeded button press, whether the individual interacted with the object
or turned away from it. To induce action expectancies, we either manipulated, unbeknownst to
participants, the actual frequencies of the two individuals’ behaviours across situations in
Experiment 1 (e.g., Claire would be more likely to kick a soccer ball than type on a computer
and vice versa for John), or we gave them explicit descriptions (“gossip”) of how the two indi-
viduals would behave in Experiment 2.

This paradigm captures both the required stochastic rather than deterministic distributions
of others’ actions, and their dependency on situational context (i.e., it is not the case that one
person simply interacts more than the other, but rather that each person has a specific interac-
tion “signature” across objects). It allows us to test whether internal models of the two individ-
ual’s behaviour are automatically activated when we watch other people and predict their most
likely forthcoming action in the given situation. Even though task irrelevant, the identity of the
current actor–and the way in which we have previously observed them behaving with the
objects–should then directly affect action observation. Actions should be identified more
quickly and accurately if they are typically carried out by this individual in the given situation,
compared to actions that are overall equally frequent but are typically carried out by someone
else. This is exactly what we find in both experiments.

Experiment 1: Predictions Derived from an Individual’s Prior
Behaviour
Experiment 1 provides an initial test of whether, once established, internal models of other
individual’s typical behaviour are automatically activated whenever they are seen again and
facilitate identification of their most likely forthcoming actions in the given situation.
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Participants performed a simple action identification task, in which they reported, with
speeded button presses, whether an actor interacted with or turned away from an object,
while both the situational context (in front of a computer or a soccer ball) and the identity
of the actor (Claire, John) varied. Unbeknownst to the participants, the two actors had dif-
ferent behaviour profiles such that they were differentially likely to interact with each object
(e.g., Claire would be more likely to interact with a soccer ball than with a computer and
vice versa for John) whilst the overall action frequency was controlled. If observers establish
internal models of the two actors’ typical interaction signatures across situations and acti-
vate them whenever they are seen again then actor identity should directly affect action
observation: actions should be identified more quickly and accurately when carried out
by an individual that typically performs this action in the given situation, compared to an
individual that carries it out more rarely, even though both actor and object were task
irrelevant.

To measure the extent to which such effects depend on explicit knowledge or response strat-
egies of participants, we asked all participants in a funnel debrief whether they noticed any pat-
terns in the stimuli. In addition, we asked them to rate which objects they thought the two
individuals “liked” to interact with more. These two questions provide potentially dissociable
information [38]. Question 1, whether participants had detected the manipulation, tests for
spontaneous awareness of the manipulation during the experiment which participants could
have relied on to guide strategic responses. In contrast, the liking question tests for whether
any tacit information about the two individuals’ behavioural tendencies can be explicitly
accessed, in principle, when participants’ now-formed person models are appropriately probed.
Such responses typically do not reflect explicit knowledge about the global co-variation pat-
terns, but the generation of such knowledge at the time of probing, perhaps by bringing to
mind remembered instances of the seen stimuli [38]. In other words, while participants might
not have independently detected the contingency patterns during the experiment (Question 1),
they might be able to make accurate judgments by “reading out” the acquired internal models
retrospectively (Question 2).

We tested these hypotheses in a first group of participants (Experiment 1a) and then repli-
cated in a second, near-identical study (Experiment 1b), which only differed in whether partici-
pants were asked to rate, as in Experiment 1a, which object they perceived the two individuals
to like more (subgroup 1 of Experiment 1b), or whether they were asked to rate which object
they did, in fact, interact with more (subgroup 2 of Experiment 1b).

Method

Participants
Forty-two undergraduates from Plymouth University (31 females, 37 right-handed, mean
age = 20.40 years, SD = 3.71 years) took part in Experiment 1a and fifty-seven in Experiment
1b (49 females, 51 right-handed, mean age = 20.39, SD = 5.56 years), in exchange for course
credit. In both experiments, participants were excluded from response time and error rate anal-
ysis if they detected the experimental manipulation (Exp. 1a, n = 3, Exp. 1b, n = 2), or if they
made more than 10% errors (Exp. 1a, n = 2). Sample sizes were determined with G-Power [64]
on pilot data from different participants (n = 42), which indicated that a sample size of at least
36 was required to reliably detect a main effect of Expectancy (dz = .625) with .95 power. All
experiments were approved by the Faculty of Health and Human Sciences Research Ethics
Committee prior to data collection, and we report all measures, manipulations and exclusions
for all experiments. All participants provided written consent.
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Materials and apparatus
The autism quotient scale (AQ; [65]) contained 50 questions to measure the presence of
autism-like traits in neurotypical individuals. No relationships were found between autism-like
traits and any of the effects in the experiments and will not be discussed further.

The experiment proper was controlled by Presentation (Neurobehavioral systems, Inc; ver-
sion 14.9, Build 07.19.11) using a Windows XP SP3 1280x1024 32 bit colour 17” display. The
stimulus set consisted of 16 different two frame sequences. Each sequence consisted of a neutral
image, which showed one of the two actors (John, Claire) in one of the two situations (next to a
computer, next to a soccer ball), displayed for 500ms. This image was identical for both actions
that might follow (interact, turn away) and served as a prime for the identity of the individual.
The second image then showed the actor either interacting with this object (typing on the com-
puter, kicking the soccer ball) or turning away from it. The two images were presented without
an inter-stimulus interval, creating the impression of apparent motion [66]. Static images
rather than video clips were used to remove, via photo-editing, all cues for context so that only
the object and actor were influential. This also provided unambiguous onset times for the
action judgments (the second image in the sequence). To control for Simon-like [67] response
effects, in one half of the trials, the object was to the left of the individuals, and in the other half
on the right (see Fig 1 for an example of the stimuli).

In the first exit questionnaire, participants in Experiment 1a and one half of participants in
Experiment 1b rated how much each actor liked each object on a scale from -4 to 4 with no
zero point e.g., “How much do you think John liked the ball?”. The second half of participants
in Experiment 1b rated how much each actor interacted with each object using the same scale
(-4 to +4 with no zero point). The second exit questionnaire was a funnel debrief consisting of
five questions identifying any explicit knowledge of the experimental manipulation that could
guide strategic responses. They were first asked “How easy did you find the task of identifying
whether the actors interacted or turned away from the object?” and answered this by circling a

Fig 1. Trial sequence. Each trial started with a fixation cross (400 ms.) and a brief blank screen. Each action started with an image showing one of the
two individuals (John, left; Claire, right) in one of the two situations (at a computer, top; near a soccer ball, bottom). They then either interacted with the
object or turned away from it, with one individual typically interacting with one object and turning away from the other, and vice versa for the other
individual.

doi:10.1371/journal.pone.0158910.g001
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number between 1 “really difficult” and 10 “really easy”. They were then asked: “Did you find
one actor easier to identify than the other? If so please state which one.”, “Did you find one
action easier to identify than the other? If so please state which one.”, “Did you notice anything
unusual about any of the actors or objects?”, and “Did you notice any patterns in the stimuli?”

Procedure
Participants completed the AQ and then received written and verbal instructions. When the
experimenter was satisfied that the task was understood, participants completed the computer
task, which contained 240 trials. Both actors (John, Claire) were shown equally often in each of
the situations (computer, soccer ball), but we varied how often they performed the two possible
actions in these situations (interacting, turning away). In 80% of the trials, the actors would
perform their typical action while in the remaining 20% they would perform the atypical
action. Thus, for one participant, John would interact with the computer in 80% of the cases
and turn away from it in 20%, while he would turn away from the soccer ball in 80% of cases
and interact with it in 20%. Claire would show the reverse contingences (interact with the soc-
cer ball in 80% and the computer in 20% of cases). These contingency mappings were counter-
balanced across participants. The trials were presented in blocks of 40 (four repetitions of the
eight regular trials and one set of the oddball trials) to ensure an equal distribution of oddballs
across the experiment.

Each trial started with a fixation cross in the centre of the screen (400 ms). After a blank
screen of 400 to 800 ms (randomly chosen), one of the two frame sequences was presented. In
Experiment 1a, the stimulus onset asynchrony (SOAs) between the first and the second frame
of the action sequences was either 150 ms or 850 ms. Because no effects depended on SOA, in
Experiment 1b, the images followed each other with a fixed SOA of 500 ms. Participants
pressed the “UP” arrow key to identify that the actors were interacting with the objects (either
typing or kicking) and the “DOWN” arrow key to identify that the actors were turning away
from the objects. Participants were asked to respond as quickly and as accurately as possible. If
they took longer than 2000ms or responded incorrectly, an error message reminded them of
the correct button assignment. After the experiment, participants completed the two exit ques-
tionnaires, were thanked and fully debriefed.

Trial exclusions
The same exclusion criteria were used across all experiments. The first twelve trials of each
experiment were considered training trials and excluded. Additionally, trials were excluded if
they fell within any of the below criteria: 1) trials with RTs greater than 2000ms (maximum
duration of the response interval), 2) trials with anticipations (i.e., responses before the critical
second frame was displayed), 3) trials where Presentation timing was uncertain (measurement
uncertainties larger than 10 ms), and 4) trials with RTs over 3 standard deviations from this
participants’ condition mean. For the analysis of RTs, error trials were additionally excluded.

Results
4.58% of trials were excluded in Experiment 1a and 1.28% from Experiment 1b (see above for
criteria). The remaining data were analysed with a repeated measures ANOVA with the factors
Observed Action (act with object, turn away from object) and Action Typicality (typical, odd-
ball), separately for response times (RTs) and error rates.
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Response times
The analysis of Experiment 1a revealed no main effect of Observed Action, F[1,36] = 2.233, p =
.144, ηρ2 = .058, but a marginally significant main effect of Action Typicality, F[1,36] = 3.140, p =
.085, ηρ2 = .080, as well as an interaction between both factors, F[1,36] = 6.378, p = .016, ηρ2 = .151.
As can be seen in Fig 2, actions towards objects (kicking a soccer ball, typing on the computer)
were identified more quickly when the current actor typically carried out these actions with the
objects, compared to when they were atypical for the actor, t[36] = 3.330, p = .002, Cohen’s d = .16.
However, no such effect was found for withdrawals, t[36] = .518, p = .607, d = .04.

The analysis of Experiment 1b fully replicated these findings. It revealed a marginally signif-
icant main effect of Observed Action, F[1,51] = 3.070, p = .086, ηρ2 = .057 and the predicted
effect of Action Typicality, F[1,51] = 12.314, p = .001, ηρ2 = .194. Importantly, as in Experiment
1a, this effect was qualified by an interaction of both factors, F[1,51] = 12.773, p = .001, ηρ2 =
.200. The RT advantage for typical relative to atypical actions was only present when the indi-
viduals acted with the objects (kicking a soccer ball, typing at a computer), t[51] = 4.620, p<
.001, d = .29, but not when they withdrew from them, t[51] = .379, p = .707, d = .021. Entering
Group (liking questions, frequency questions) into the ANOVA did not reveal any further
effects, all F< 1.

Error rates
No effects were found in either Experiment (Fs< 2.124) for the error data, with the exception
of a main effect of Observed Action in Experiment 1b, F[1, 49] = 5.155, p = .028, ηρ2 = .095,
with more errors for actions towards objects then withdrawals, which was unrelated to our
hypotheses.

Anticipations
An important question is whether internal person models only affect action identification
times, or whether it also causes overt response anticipations, such that participants identify the
expected action even though it is not yet presented (i.e., while the neutral image is still on the
screen). Due to the low number of anticipations (6.46% in both experiments), we combined the
data for Experiments 1a and 1b to increase power and performed a repeated measures
ANOVA with the factors Expected Action (act with object, turn away from object) and
Response (typical action identified, atypical action identified) on the data from the participants
who made at least one anticipation, n = 31. There was a marginally significant main effect of
Response, F[1,30] = 3.214, p = .083, ηρ2 = .097, revealing that responses typically anticipate the
expected action, but no main effect of Expected Action (F = 2.161), nor an interaction between
the two (F = .171). Thus, the anticipations show that others’ typical behaviour does not only
affect action identification, but also sometimes causes participants to anticipate the forthcom-
ing response while the neutral image was still on the screen.

Liking and frequency ratings
After completing the action identification task, participants rated how much the two individu-
als liked the two objects (in Experiment 1a, and subgroup 1 of Experiment 1b), and how much
each individual had interacted with them (subgroup 2 of Experiment 1b). In Experiment 1a,
objects that were typically acted upon by the given individual were rated as more liked by this
individual (M = 1.79, SD = 1.52) than objects this individual typically turned away from (M =
-0.17, SD = 1.89), t[36] = 3.818, p = .001, d = 1.05. This effect was replicated in Experiment 1b.
When the objects were typically acted upon they were rated as more liked (M = 1.74,
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SD = 1.21) than when they were turned away from (M = 0.40, SD = 1.82), t[26] = 2.498, p =
.019, d = .80. Similarly, when the objects were typically acted upon they were rated as being
interacted with more (M = 2.20, SD = 1.06) than when they were turned away from (M = 0.50,
SD = 1.49), t[24] = 4.332, p< .001, d = 1.30,

Fig 2. Experiments 1a and 1b RT and liking results. Top panel: average response times in Experiment 1a (left panels) and 1b (right panels). In each
panel, the left bars show identification of actions towards objects (typing on a computer or kicking the soccer ball) and the right bar shows withdrawals
from these objects. The black bars reflect actions expected of this individual in the given situation, and white bars show the action expected of the other
individual. Error bars show the standard error of the mean. Middle and bottom panels: correlation between prediction effects in the RTs for actions
towards objects and the corresponding differences in perceived object liking and interaction frequency, for individuals who either identified (unfilled
diamonds) or did not identify (filled diamonds) the behavioural pattern.

doi:10.1371/journal.pone.0158910.g002
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Having established that participants can access some explicit information about the two
individual’s behaviour, we then tested whether explicit person knowledge predicts the effects
during action identification. We therefore also included those participants that explicitly
detected the contingencies between individuals, objects and actions (but also report if results
depend on these participants). A regression analysis measured the relationship between appar-
ent explicit awareness of individuals’ behaviours as seen in the liking and frequency ratings,
and the response time effect for actions towards objects (difference between likely and unlikely
actions for the actor), for each of the three participants groups separately. None of the three
participant groups showed a significant correlation, (Exp 1a, r = .187, n = 40, p = .248; Exp 1b
liking, r = .252, n = 28, p = .195; Exp 1b, frequency, r = .210, n = 26, p = .304). However, in
each, the intercept was different from zero (Exp 1a, t = 3.325, p = .002; Exp 1b liking, t = 1.710,
p = .099; Exp 1b, frequency, t = 2.117, p = .045), indicating that even those with no apparent
explicit awareness in the liking or frequency ratings still showed significant RT prediction
effects. The same pattern is seen when three participants who detected the manipulation were
excluded, with the exception that the intercept for the liking ratings in Experiment 1b now
failed to reach marginal significance (t = 1.519, p = .142).

To attain enough power to detect weaker correlation effects, the data from all three sub-
groups were pooled. These analyses indeed revealed a marginally significant correlation
between the post-experiment ratings and the response time effects (all participants, correlation;
r = .186, p = .073; unaware participants only, correlation; r = .181, p = .089). In addition, they
confirmed the significant intercept (all participants, t = 4.957, p< .001, unaware participants
only, t = 4.544, p< .001), indicating that even those who were unable to explicitly recall the
individuals’ behaviour still showed reliable response time prediction effects.

Discussion
Experiment 1 tested whether internal models of others’ typical behaviour are automatically re-
activated whenever they are seen again, and predict their most likely forthcoming actions in
the given situation. Indeed, actions were identified more rapidly when they were typical for the
given individual in the given situation, compared to an action that is, overall, equally frequent
but typically carried out by another individual. These effects of actor identity on action obser-
vation were found even though individual and situation were task irrelevant, and the overall
frequency of each action was controlled across situations and individuals. As such, they provide
first evidence that watching other people goes along with activation of internal person models
that describe these individual’s typical behaviour in the given situation, which biases identifica-
tion towards their most likely forthcoming action.

A striking observation was that in both experiments action expectations affected the identi-
fication of actions with objects (e.g., kicking the soccer ball, typing on the keyboard), but not
withdrawals from them. Although not predicted, this finding is in line with the proposal that
action prediction specifically occurs for meaningful actions towards objects, ([for a recent
review, see [5]; see also [13–14, 25]), and that object avoidance is coded on a second-level, as
an inhibition of a potential approach [68–69]. For example, even though there are neuronal
populations for representing intransitive action [70–71], the majority of mirror neurons, one
of the proposed core mechanisms of action understanding and prediction, fire only for actions
towards objects (for a review see [72] and even in humans object-directed actions are repre-
sented in dedicated neuronal populations [73]). Indeed, studies in humans show that afforded
interactions with an object are perceived and predicted more readily than non-afforded actions
[19, 74] and studies on high level mentalizing abilities show that predictions of what other peo-
ple will do (e.g., in theory of mind tasks) occur for approach related behaviours but not for
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avoidance behaviours [68–69]. Our results are therefore in line with these studies and further
support the special status of object-directed actions in action observation and prediction.

The effects of actor identity on action identification are unlikely to result from strategic
responses of participants that detected the experimental manipulations. Only five participants
spontaneously detected the experimental manipulation when probed after the experiment.
Moreover, if the effects reflected strategic response preparation they should have been found
not only for interactions with objects, but also for withdrawals, especially as overall response
times between these conditions did not differ. Yet, faster responses were only found for mean-
ingful actions towards objects, but not actions away from them. Finally, explicit response prep-
aration effects should specifically affect error rates, not only response times [75–76], but no
such effects were detected.

Importantly, though, when explicitly probed after the experiment, participants could make
reliable judgments about which objects the two individuals liked more and which they tended to
interact with. Thus, if John was typically seen interacting with the computer but turning away
from the soccer ball, participants were able to retrieve this information when directly prompted,
and he was later judged to like computers more than soccer balls. Importantly though, while the
data reveal some weak relationships between these post-experiment ratings and prediction effects
in response times, they also showed that even those participants that did not show any rating
effect still showed significant prediction effects. This finding is in line with the idea that explicit
knowledge is not the basis for the prediction effects but that, instead, these internal models of
others’ behaviour are not fully opaque, but can be accessed to generate behaviour information,
perhaps by playing through relevant instances in memory (for similar dissociations, see [77–79]).

Experiment 2: Explicit Knowledge of Others’ Behaviour
Action observation is not our only source of information about our interaction partners. People
love to gossip (e.g., [80]) and mutual acquaintances are a rich source of information about
other people, which might exert similar predictive influences on action observation. This is
also the typical situation tested in prior work in social psychology where the influence of
explicit person descriptions on subsequent person memory and reading times were tested [81,
51, 53, 56–57]. The current study attempted to capture this explicit social knowledge, and
tested whether such explicitly derived person models have similar or different effects on action
observation as the actual behaviour pattern of the individuals in Experiment 1, and whether
they interact with this (potentially conflicting) information. At the start of the experiment, par-
ticipants were given an explicit description about the two actors’ typical behaviour (“George
typically kicks the ball but rarely types on the computer”). They then performed the same
action identification task as in Experiment 1. Across blocks within the experiment, the actual
behaviour tendencies could either follow the person description (in 75% of the trials the indi-
vidual acts according to expectations and counters the expectations in the remaining 25% of
trials), conflict with the prior description (the individuals’ actions counter the expectation in
75% of the trials), or could be equivocal (they carried out the described action in 50% of the tri-
als and the alternative action in the other 50%). To ensure that participants would perceive the
individuals’ behaviour in light of the prior behaviour descriptions, we asked them to assess,
after each block, to what extent individuals’ actual behaviour matched the initial description.

This task therefore pits implicitly derived internal models of other people from those
derived by explicit information. It allows us to test, first, whether explicit information about
others leads to similar biases in identifying their actions as found for implicit statistical manip-
ulation of their behaviour. Second, it allows us to test the extent to which explicit and implicit
predictions interact or are independent of one another.
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Method

Participants
49 participants (39 females, mean age = 20.92 years, SD = 6.06; 44 right-handed) took part in
the study in exchange for course credit. One participant was excluded for making more than
10% errors.

Apparatus & Materials
Stimuli and the course of each trial were identical to the previous experiments. The experiment
was controlled with E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA), and responses
were recorded with button boxes.

Design and Procedure
Participants received detailed instructions then underwent 16 explicit practice trials in the
action identification task of Experiment 1b (more practice trials were needed here than in the
previous experiment due to the increased difficulty highlighted by pilot testing). All actions in
the practice trials were carried out by a third actor who did not appear in the main experiment.
Participants were then informed that whilst performing this task they would also be asked to
perform a second task and assess whether a person description matches the individual’s actual
behaviour. For practice, they were informed that the actor typically kicked the ball but turned
away from the computer. They then underwent 12 further practice action identification trials,
in which 8 of the trials supported the hypothesis and 4 contradicted it. They then rated how
much they agreed or disagreed that the seen behaviour corresponded to the prior person
description on a 4-point scale (1 = “completely disagree”, 4 = “completely agree”).

After both participant and experimenter was satisfied that the task was understood, the par-
ticipant was given an explicit description about the actors’ typical behaviour (e.g., that John
typically kicks the ball but turns away from the computer, or vice versa, and that Claire has the
opposite preferences), and that they had to evaluate the appropriateness of this behaviour
description after seeing the individuals’ actual behaviour in each of the experiments’ nine
blocks (32 trials each). At the start of each block participants were reminded of the explicit per-
son description and that this was a new set of trials and to ignore what they had seen previ-
ously. They then performed the action identification task of Experiment 1b. The individuals’
actual behaviour differed in each block, such that it could either conform to the prior person
description (75:25), be equivocal (50:50), or contradict it (25:75), such that the actors per-
formed the opposite action more frequently. At the end of each block, participants rated
whether they agreed that the individuals’ behaviour corresponded to the person descriptions at
the start of the experiment. Block order was randomised across participants.

At the end of the experiment, the social intelligence scale [82] was administered. The scale con-
sists of 21 questions each on a 7 point Likert scale. Examples of questions are “I can predict other
peoples’ behaviour”, “I often feel uncertain around new people who I don’t know” and “I can often
understand what others mean through their expression, body language, etc.” There were no signifi-
cant correlations between this scale and the effects seen and so this will not be discussed further.

Results

Response times
7.26% of trials were excluded in total (5.33% errors and 1.93% for RTs greater than 3 SD from
the mean). The remaining data were analysed with a repeated measurements ANOVA with the
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factors Action-Description Match (the observed action follows/does not follow the person
description), Block-Description Match (observed statistics in the current block matches the
person description, are equivocal, contradict the description), and Action Type (act toward
object, withdraw from object).

The analysis of RTs (Fig 3, left panels) revealed no main effect of Block-Description Match, F
[2,44]< 1, nor of Action-Description Match, F[1,47]< 1, nor of Action Type, F[1,47]< 1, pro-
viding no evidence that actions that matched the explicit information were generally identified
more quickly than mismatching actions. Importantly, there was an interaction between Block-
Hypothesis Match and Action-Hypothesis Match, F[2,46] = 5.062, p = .010, ηρ2 = .180, signalling
that response times were driven by the statistical regularities in a block, but not the explicit per-
son description. In a block in which the individuals’ behaviour matched the prior description,
participants more quickly identified actions that matched this description (t = 2.260, p = .029, d =
.66). However, in blocks where the action likelihoods were equal (and the individuals acted ran-
domly), there was no differences between actions that matched or mismatched the prior person
description (t< 1). Finally, when the actors’ behaviours in a block contradicted the person
description, the effect reversed, too, with RTs being faster for trials that mismatched the person
description (but therefore matched the statistics in the block), t = 2.060, p = .045, d = .60. These
data therefore reveal no effect of prior explicit person information but replicate Experiment 1
and show that internal person models derived from an individual’s action likelihoods affect
response times even within relatively short blocks of 32 trials. There were no other effects
(Fs< 2.391). In Experiment 1, action likelihood specifically affected actions with objects but not
withdrawals from them. We therefore tested whether the RT effects are similarly driven by these
actions towards objects. Indeed, planned comparisons revealed no significant effects (all

Fig 3. RTs and error rates for Experiment 2. The black bars represent trials which followed the hypothesis and the white bars represent trials,
which are the opposite of the hypothesis. The left side shows the response times and the right side shows error rates. The top row indicates actions
towards objects and the bottom row indicates withdrawals. Error bars show the standard error of the mean.

doi:10.1371/journal.pone.0158910.g003
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Fs<1.376) for withdrawals, while the acting towards trials showed the relevant interaction
between Block and Hypothesis Match, F[2,46] = 4.471, p = .017, ηρ2 = .163.

Error rates
Error rates were analysed with the same ANOVA model as the RTs. It revealed no effect of
Block-Description Match, F[2,46] = 1.099, p = .342, ηρ2 = .046, nor of Action Type, F[1,47] =
.360, p = .552, ηρ2 = .008, but a main effect of Action-Description Match, F[1,47] = 7.404, p =
.009, ηρ2 = .136. Participants made more errors when actions conflicted with the prior person
description. This effect was qualified by an interaction of Action-Description Match and
Action Type, F[1,47] = 6.385, p = .015, ηρ2 = .120, showing that the increase of errors for non-
expected actions was stronger for actions towards objects than withdrawals, as was found in
the previous experiments for statistical person information. Indeed, pairwise comparisons
showed that the main effect of Action-Description Match was present for actions towards
objects, F[1,47] = 15.740, p< .001, ηρ2 = .251), but not for withdrawals (F< 1.265). Finally,
there was an interaction of Block-Description Match and Action Type, F[1,47] = 3.790, p =
.030, ηρ2 = .012 but this was not relevant to our hypotheses.

Behaviour ratings
Data to what extent the individuals were rated to have followed the person description in the
different blocks were analysed with a one-way ANOVA with the factor Block-Description
Match (blocks either matched the hypothesis, mismatched the hypothesis or showed each
action equally). This main effect was significant, F[1, 143] = 72.053, p< .001, showing that par-
ticipants reliably distinguished the different behaviour patterns in the three types of blocks.
Agreement was higher when the actors’ behaviour in a block matched the prior person descrip-
tion (M= 2.97, SD = .51) than when action likelihoods were equivocal (M= 2.27, SD = .36), t
[47] = 8.201, p< .001, or opposite to the description (M= 1.93, SD = .42), t[47] = 10.391, p<
.001. Moreover, they were higher for equivocal likelihoods then distributions opposite to the
person description, t[47] = 6.096, p< .001.

Discussion
Experiment 2 showed that internal models of others’ behaviour can be established either from
observing their typical behaviour or from explicit person descriptions, with both having disso-
ciable effects on action identification. The two individuals’ action likelihoods affected action
identification times (but not error rates), such that actions towards objects were identified
more quickly when they were typically carried out by this individual in the given situation,
compared to actions that were carried out more rarely. In addition to replicating Experiment 1,
these findings show that person models can be established from relatively few exposures (32
trials in a block) and exert their influence spontaneously, despite the secondary task of assess-
ing the individual’s behaviour.

In contrast, explicit behaviour descriptions about the two individuals directly affected error
rates (but not response times), such that an action was more likely to be misidentified for the
action that was currently expected (e.g., identifying a kick as a withdrawal when a withdrawal
was expected). This effect on error rates is striking given that the participants were aware that
across blocks the actions were equally likely to match and mismatch the behaviour description,
and that they were instructed to evaluate whether the explicit information was correct or not.
Merely maintaining a hypothesis about someone else’s behaviour may therefore induce a subtle
tendency to act according to this prediction, even when explicitly trying to keep an open mind.
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The differential effect of explicit and implicit information is consistent with other research
on predictive coding in the non-social domain. Implicit information about statistical regulari-
ties often affects response speed, perhaps because it allows relatively low-level perceptual (or
motoric) anticipations of forthcoming events [76]. Explicit information, in contrast, provides
higher-level assumptions that might induce a tendency to make explicit “wagers” about what
will be observed, which allows people to overtly test any hypothesis they have about the regu-
larities guiding the events against reality [83, 75]. Indeed, in a recent study, it was exactly these
explicit behavioural wagers that were associated with the explicit (rather than implicit) recogni-
tion of the underlying rules that governed the event sequences [76]. As such, the present disso-
ciations are in line with predictive coding work that sees behavioural wagers as key learning
mechanisms for explicit learning and verification of explicit hypotheses. In addition, it further
confirms that the response time effects do not reflect this currently available (and explicitly
tested) person model, but rather statistical information about other’s most likely behaviour
with the different objects.

General Discussion
In two experiments, we tested whether observers use internal models about other individuals’
typical behaviour in different situations to predict their most likely forthcoming actions. In
Experiment 1, participants performed a simple action identification task–whether the actor
interacted or withdrew from an object–while we manipulated, unbeknownst to them, the prob-
ability distribution with which the actors performed these behaviours across situations (i.e.,
one individual typically interacted with a soccer ball but withdrew from a computer, and vice
versa for the other individual). We found that action identification was indeed sensitive to
actor identity, being faster for actions that were typical for an individual in a given situation,
compared to actions that were overall equally frequent but typically carried out by someone
else. This effect was found even for participants that were unable to report the individuals’ typi-
cal behaviours and even though both situation and person were task irrelevant, suggesting a
largely automatic effect.

Experiment 2 then showed that similar–but dissociable–effects are evoked for explicit infor-
mation about the acting individuals. Here, participants evaluated behaviour descriptions about
the actors while we varied, in different blocks, the extent to which the actors indeed followed
these patterns. We found that the actor’s actual action likelihoods again sped up identification
times, showing that these prediction effects adjust to new statistics within very few exposures
(32 trials within a block). In contrast, explicit behaviour descriptions affected error rates, caus-
ing participants to respond according to the explicit predictions instead of what was perceived.
This bias was observed even though participants were asked to merely evaluate the given
behaviour descriptions, and were aware that the actual behaviour may differ. Simply evaluating
a hypothesis about others’ behaviour may therefore induce an involuntary confirmation bias
[84] towards these actions irrespective of the actual behaviour patterns, or involuntary beha-
vioural “wagers” where participants test their explicit action hypotheses against reality ([76],
see also [83, 75]).

The two experiments provide converging evidence that internal person models influence
action observation in a predictive manner, such that the actions others are most likely to carry
out are identified faster and more accurately. These findings are in line with recent theoretical
work that has re-conceptualised social perception, away from conventional bottom-up mecha-
nisms that match kinematic information to own action knowledge [85–87] towards interactive
models, in which action observation is constantly guided by prior knowledge [4–6]. As found
here, these models assume that top-down information about the person (action tendencies,
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goals, beliefs) is constantly integrated with the situational constraints (objects available for goal
achievement) to predict the most likely actions. Expected actions should therefore be processed
rapidly, while unexpected actions cause salient prediction errors and revisions of one’s person
models. While previous research has revealed that such expectancies are derived from social
cues (e.g., [10, 13–16, 19, 88]), the present data reveal an influence of actor identity and the
internal models of their behaviour: what we were told about them and how they have
responded in the same situation before.

To our knowledge, this is the first study to show such a top-down effect of person models
on online action observation. While it is known that person models provide a reference frame
against which others’ behaviour can be judged [46–48], prior studies used measures that were
far removed from online action observation, such as reading times or memory about individu-
als [51, 53, 55–57, 81]. Other studies have shown that people re-activate action-related infor-
mation about others whenever they are seen, but this knowledge has been very general and
does not reflect how these individuals behave in different situations (e.g., the body parts used
in the sport of famous athletes, [61–62]; prior emotional expression or direction of gaze, [63,
58–59]). Our new data now show, first, that internal person models can affect online action
identification, and that, second, this person knowledge is organised around discrete situations,
reflecting not only what somebody typically does, but also in which situations these actions
occur [25].

A striking finding was that the effects on online action identification were largely de-cou-
pled from the participants’ ability to make explicit judgments about the two individuals’ behav-
iour. In Experiment 1, participants were able to accurately judge how frequently the
individuals had interacted with the objects and how much they “liked” these activities. Yet,
while these judgments were weakly related to the response time effects, the speed up for
expected actions was found even in those who were unable to make such judgments. Similarly,
in Experiment 2, while giving participants explicit knowledge about the individuals also led to
overt biases in action identification, it did so differently than implicitly acquired person knowl-
edge, affecting error rates instead of response times, causing participants to sometimes respond
in line with their expectations rather than observed reality.

Similar dissociations are also known from social psychology. The explicit judgments that
people make about others are often abstracted away from the behaviours that were actually
observed, leading to a similar lack of strong correlational relationships as observed here [77–
78]. It has therefore been argued that participants might not make explicit judgments during
social perception at all. Only when explicitly asked after the experiment, they form such
impressions in an ad-hoc manner, by relying on their (imperfect) memory of what was previ-
ously observed. In such a view, the response time effects in Experiment 1 reflect the automatic
generation and activation of person models when these individuals are seen. The post-experi-
ment explicit rating effects, in contrast, reflect attempts to “read out” these models, in a retroac-
tive fashion, perhaps by simulating/imagining the observed events that one has previously
observed, and drawing conclusions about them.

This interpretation is also in line with research on causal or statistical learning. People are
able to learn even complex second-order relationships between events, and respond faster to
expected stimuli, compared to unpredicted ones. In many cases, this knowledge cannot be
explicitly verbalised by participants and even if they can, it is not diagnostic of prediction
effects in the response time task (e.g., [89–90]; for a critical view, see [38]). As argued above,
this does not mean that there are two separate systems for implicit and explicit learning.
Instead, it might suggest that participants solve explicit tasks by trying to re-activate their inter-
nal models based on the cues provided, but that this re-activation is imperfect and differently
effective in different individuals (e.g., [89, 91–92, 38]).
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The observed distinction between implicit and explicit knowledge affecting response times
and error rates, respectively, is particularly in line with such models. Recent work in predictive
coding suggests that implicit information about statistical regularities often affects response
speed, because it might support relatively low-level perceptual (or motoric) anticipations of
forthcoming events [76]. In contrast, explicit hypotheses about forthcoming events provide
higher-level inferences that were constantly tested with explicit behavioural “wagers”, which
are then either confirmed or disconfirmed through the errors participants make ([76]; see also
[75, 83]). Our results therefore suggest that social expectations may be similarly tested against
the individual’s actual behaviour.

Whilst social research demonstrates the continued influence of initial trait expectancies on
categorising behavioural descriptions (e.g., [48. 53, 57]), in Experiment 2 we find that observed
actions very quickly adjust the initial hypothesis, such that participants are able to judge the
actual behaviours accurately after each block. This may be because the more concrete actions
of our research have a stronger “updating” effect, or that the described behaviours (“John will
mostly type on the computer, but turn away from the soccer ball.”) are more specific than the
trait expectancies of the social literature which tend to be much more general and thus more
robust against incongruent behaviours (for reviews see [54–57]). However, it could also be that
most social studies generally do not investigate effects while impressions are still being formed.
Indeed, one study showed that providing atypical group members once a stereotype is formed
leads to this information being largely ignored, but if these group members are given whilst the
stereotype is being formed it weakens the stereotype [93]. Thus, as it was the case in the current
study, person knowledge is malleable by contradictory behaviour while it is still being formed,
but less so when fully established.

As this is the first study investigating the activation of internal models of other people, some
questions remain unanswered. First, the current study shows that, once established, internal
models of other people’s behaviour are accessed fluently during action observation and bias the
identification of the action towards these predictions. However, the range of situations and
actors was by necessity restricted and the stimuli were relatively simplistic. It is therefore
important to establish that people can also acquire internal models of others in real life social
interactions, where participants meet a larger number of different individuals across a variety
of more loosely connected situations that offer a variety of action possibilities that nevertheless
suggest similar underlying traits (e.g., sporty and academic situations such as libraries, lecture
halls, and fitness studios).

Such studies would also help solve the second question, namely whether the mechanisms
underlying these predictions are uniquely social or whether they rely on domain general mech-
anisms. As noted, humans routinely acquire even complex relationships between stimuli, social
and otherwise, and can use them to predict what comes next e.g., reaching from artificial gram-
mar sequences [36]. Several theorists argue that the internal models one builds of other people
are very similar, implying a continuity between the learning mechanisms for physical and
social causality [94–96]. A question is therefore whether the current results can be accounted
for by more general non-social mechanisms as well, which, for example, simply learn the con-
tingencies between subsequent stimuli, whether they are social or non-social.

Although this was not the focus of this first study, several aspects of our research suggest a
reliance on at the very least action-specific information. First, our prediction effects were
restricted to predictions of object-directed actions, but not withdrawals. While this finding is
very much in line with prior findings of a special status of goal directed actions during both
action observation and prediction (see above, and [5] for a review), it is hard to account for by
abstract stimulus based learning, which should apply to all stimulus types equally. Second, we
found that similar prediction effects (again restricted to actions towards objects) were obtained
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when person information was explicitly given in Experiment 2 in a decidedly social format:
which actions the two actors typically carry out with the objects. It is hard to see why partici-
pants would have effortfully translated these descriptions into non-social contingences prior to
the experiment, especially as they had to evaluate these person descriptions after each block.
Finally, while the effect was weak and could only be demonstrated when data was pooled across
groups, the response time prediction effects were weakly related to subsequent person ratings:
how much the two individuals interacted with and liked the objects. Again, from the viewpoint
of mere stimulus learning, such relationships would not be predicted. It suggests that at the
very least some of the learning during the response time task is drawn upon when making per-
son judgements, suggesting a social or at least action based encoding of the stimuli.

Future studies will need to more directly test to what extent uniquely social mechanisms
underlie these prediction effects. The type of experiment specified above would help solve
these questions. For example, after participants are exposed to two individuals either acting in
sporty or academic situations, one could test to what extent the acquired knowledge is action
based such that any predictive speed up transfers to an equivalent action that achieves the same
goal (e.g., making notes on a computer or on a notepad) or reflects attribution of higher level
personality traits that generalises even to new situations (i.e., different sporty or academic situ-
ations). Such studies would open up the possibility of more closely linking research in social
and experimental psychology to provide a common predictive person model framework for
human social interactions.

Conclusions
This study reveals that observers routinely access both explicit and implicit knowledge about
which actions the observed actor typically carries out in the given situation, which allows them
to rapidly identify these expected actions. These data provide evidence for a person-specific
social anticipation system, which tracks the actions that others exhibit towards the environ-
ment and uses them to predict their forthcoming actions, in a situation-specific manner. Our
results support recent models in which action identification emerges from an interaction of
bottom-up cues and such top-down expectations derived from prior knowledge about others’
behaviour in different situations.
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