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Abstract

The aim of this paper is to propose a novel approach to integrate financial infor-
mation, incorporating the dependence structure among the variables. The approach
is based on two types of graphical models: vines and non parametric Bayesian belief
nets (NPBBNs). Vines are undirected graphs, representing pair copula constructions,
which are used to model the dependence structure of a set of variables. NPBBNs
are directed graphs, that use pair copulas to model the dependencies, and allow for
diagnosis and prediction via conditionalization. This approach allows to aggregate in-
formation and to calibrate the results obtained with different sources of data. The
illustrated methodologies are applied to two financial datasets, the first one containing
data collected through a survey and the second one containing official statistics data.
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1 Introduction

The problem of data integration has become an important issue in the latest years, due
to the growth of the number of available data sources and to the increase in data quality
standards.
In particular, one of the challenges faced by statistical scientists is to balance results obtained
from specific datasets with those obtained from official statistics. When these results differ
substantially, it is difficult to interpret and integrate them. Using a method to aggregate
these results is fundamental in order to obtain reliable analyses. As illustrated by Foresti
et al. [12], the matching of public with private databases is crucial for implementing new
analyses that are functional to a new approach to business.
Recently the advances in technology and communications have increased the availability
of sources of information and large databases. For this reason multivariate modeling is of
fundamental interest and new methods to manipulate high quantities of data have become
essential. Unfortunately, high-dimensional modeling with data characterized by complex
dependence patterns can be quite challenging.
Copulas have proven to be very promising in statistical problems where data include a
number of high-dependent variables. Vine copulas, in particular, are extremely flexible in
high-dimensional cases, allowing the specification of various types of non-linear dependencies.
However, vines interpretation can be hard when used for prediction, due to the complexity of
its undirected structure. Moreover, the use of vines becomes computationally cumbersome
when the dimension of the dataset exceeds the order of tens of variables. Non parametric
Bayesian belief nets (NPBBNs) have demonstrated adequate for dimensionality of hundreds
of variables, with fast computational times. NPBBNs require no assumption on the distribu-
tions of the marginals, unlike parametric Bayesian belief nets, and the relationships among
variables are specified through copulas. NPBBNs allow a straightforward interpretation of
the casualties, thanks to their directed structure. Therefore, NPBBNs can be easily used
for prediction via conditionalization, since they clearly show the flow of influence among
variables.
The aim of this paper is to use vines to identify the dependence structures of multidimensional
datasets, where the variables exhibit a high degree of correlation. Moreover, we will present
an innovative approach to integrate and calibrate the information of different datasets, con-
ditionalizing NPBBNs for predictive and diagnostic reasoning. This methodology is applied
to two financial datasets. The first dataset includes information of a sample of Italian firms,
collected through a survey, while the second dataset contains publicity available data of the
Italian national stock exchange (FTSE-MIB). Both datasets include the sales variable, which
is the main focus of our analysis.
The remainder of this paper is organized as follows: in Section 2 we present an overview of the
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existing literature; Section 3 illustrates the characteristics of the proposed novel approach,
introducing the theoretical framework, illustrative examples and simulation studies; finally
concluding remarks are given in Section 4.

2 Literature overview

The existing literature about data integration ranges from traditional models based on re-
gression and linear dependencies, to more complex models allowing to express non-linear
dependencies and causal relationships. In the analysis of data characterized by a com-
plex dependence structure, traditional methods often fail to capture the actual relationships
among variables and may produce biased results for prediction. However, simple models like
multivariate regression are still quite popular. For example, Foresti et al. [12] used OLS to
identify the determinants of sales growth, applying it to several integrated private databases.
Copulas, introduced by Sklar in 1959 [28], have become very popular in finance, and have
been applied to a wide variety of fields, like biology, medicine, social sciences and sampling
theory. They allow to calculate the joint multivariate distribution from the marginals, in-
corporating their dependence structure. The main advantage of copulas is their flexibility,
since the marginals may be described by any type of distribution and the various classes of
copulas are able to accommodate several types of dependencies. Therefore, copulas can be
successfully used to model datasets with complex and non-linear dependence structures, and
to aggregate data from different sources. However, while in the bivariate case copulas can
be effectively used for dependence modeling, in the multivariate case (typically, when the
number of variables exceeds 3) copulas’ flexibility is greatly reduced, since the choice of the
families is limited to the elliptical copulas (Normal and Student’s t). Recently pair copula
constructions and their graphical representation, vines, have been introduced by Aas et al.
[1], to overcome the lack of flexibility of copulas in high-dimensional cases. Vines have been
applied to a variety of financial problems, like in Czado et al. [9], to model the dependencies
of US exchange rates, or in Brechmann and Czado [5], to analyze the Euro Stoxx 50. The
main advantage of copulas and vines is therefore the ability to model complex dependence
structures of variables in a flexible way, and to use it to integrate different scenarios and
results obtained with different data. However, the use of vines is not always easy, since their
visualization and interpretation is not straightforward.
Probabilistic graphical models are another powerful statistical tool that aims at modeling
the dependencies among variables. These models are used to represent multivariate densities
via a combination of a qualitative graph structure that encodes independencies and local
quantitative parameters. Penny and Reale [26] used graphical models in official statistics to
identify the relevant components in a saturated structural VAR model for the quarterly gross
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domestic product, that is the aggregation of a large number of economic time series. More
recently, Vicard and Scanu [29] applied Bayesian networks to official statistics, showing that
the use of post-stratification allows integration and missing data imputation.
However, Bayesian belief networks (BBNs) are affected by some limitations. The main classes
of BBNs are in fact discrete, normal or discrete-normal, where discrete BBNs are limited to
small-sized datasets, and normal BBNs are limited by the joint normality assumption. For
this reason, researchers proposed alternative methodologies. Elidan [11] for example points
out the need for a synergy between the copula framework and the field of machine learning.
To this end, Kurowica and Cooke [20] and Hanea et al. [15] introduced continuous non
parametric Bayesian belief nets, using copulas to realize rank correlations in directed acyclic
graphs. This new approach is based on nonparametric statistical inference and elicited expert
knowledge to understand the dependencies among the variables, and uses conditionalization
for diagnosis and prediction.
An alternative approach, that will not be analyzed in the present work, is given by pair
copula Bayesian networks, introduced by Bauer and Czado [2], who conversely focused their
attention to parametric likelihood inference and data-driven structure estimation.

3 The proposed approach

3.1 Theoretical framework

3.1.1 Copulas and Vines

The copula is a function that allows to bind together a set of marginals, considering their
dependence structure, to obtain the joint multivariate distribution.
More formally, suppose that U1, . . . , Ud are random variables uniformly distributed on [0, 1].
Then, a d-dimensional copula C : [0, 1]d → [0, 1] is a multivariate distribution function
defined on the unit cube [0, 1]d, with uniformly distributed marginals:

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud).

According to Sklar’s theorem [28], any joint multivariate distribution F (x1, . . . , xd) of a
random vector X = (X1, . . . , Xd) can be represented as a copula of its univariate marginals
F1(x1), . . . , Fd(xd), via the following expression

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) .

For continuous marginals F1, . . . , Fd, the copula C(·, . . . , ·) is unique and it is defined through
Nelsen’s corollary [24]

C(x1, . . . , xd) = F (F−11 (x1), . . . , F
−1
d (xd)).
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The converse statement is also true, since any copula taking any marginal distribution as its
arguments defines a d-dimensional cumulative distribution function.
The corresponding copula density is given by

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 · · · ∂ud
.

The joint density function of a random vector X = (X1, . . . , Xd) is therefore, using the chain
rule,

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) · f1(x1) · · · fd(xd) (1)

where c(F1(x1), . . . , Fd(xd)) is the d-variate copula density.
For example, in the 5-dimensional case d = 5 and the (1) becomes

f(x1, . . . , x5) = c(F1(x1), . . . , F5(x5)) · f1(x1) · · · f5(x5)

where c(·, . . . , ·) is the appropriate pair-copula density for the transformed variables
F1(x1), . . . , F5(x5).
Therefore, the copula not only allows to determine the joint multivariate distribution, but
also allows to describe the dependencies among the marginals, that are arbitrary and poten-
tially different distributions.
Several families of copulas are available to capture different types of symmetric and asym-
metric dependencies among the marginals. The most popular families are the elliptical (i.e.
Gaussian and Student’s t) and the archimedean copulas (i.e. Clayton, Gumbel, Frank, Joe,
BB1, BB6, BB7 and BB8). For an overview of the main types of copulas and their charac-
teristics see for example Joe [19] or Nelsen [24]. However, while the literature on bivariate
copulas (or pair copulas) has flourished in the recent years, its extension to the multivariate
case is rather limited, due to analytical and computational complexity. For this reason the
application of copulas to big multivariate datasets characterized by complex patterns of de-
pendence has been rather scarce so far. In order to fill this gap, Bedford and Cooke ([3], [4])
introduced a flexible class of multivariate copulas using bivariate copulas as building blocks.
The decomposition of a multivariate copula into bivariate copulas is called pair copula con-
struction (PCC) and it allows to express the multivariate distribution of a random vector as
a product of pair copulas. Assuming that f(x1, . . . , xd) is the distribution of a random vector
X = (X1, . . . , Xd), then it easily factorizes (uniquely up to re-labeling of the variables) into
a product of conditional densities

f(x1, . . . , xd) = fd(xd)× fd−1|d(xd−1|xd)× . . .× f1|2···d(x1|x2, . . . , xd). (2)

Considering a 5-dimensional distribution, equation (2) correspond to

f(x1, . . . , x5) = f5(x5)× f4|5(x4|x5)× f3|4,5(x3|x4, x5)× . . .× f1|2···5(x1|x2, . . . , x5). (3)
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Then, using the (1), the conditional densities of (2) can be decomposed into the appropriate
pair copula times a conditional marginal density. More precisely, for a generic element X

of the vector X we obtain

fx|v(x|v) = cx,vj |v−j
(Fx|v−j

(x|v−j), Fvj |v−j
(vj|v−j))× fx|v−j

(x|v−j), (4)

where v is the conditioning vector, vj is an generic component of v, v−j is the vector v without
the component vj, Fx|v−j

(·|·) is the conditional distribution of x given v−j, and cx,vj |v−j
(·, ·)

is the conditional pair copula density. For example, the second factor, f4|5(x4|x5), in the
right-hand side of (3) can be easily decomposed into the pair-copula c4,5(F4(x4), F5(x5)) and
a marginal density f4(x4):

f4|5(x4|x5) = c4,5(F4(x4), F5(x5)) · f4(x4).

For the third factor in the right-hand side of (3) one of the possible decompositions, using
the (4), is

f3|4,5(x3|x4, x5) = c3,4|5(F3|5(x3|x5), F4|5(x4|x5)) · f3|5(x3|x5),

for the appropriate pair copula c3,4|5, applied to the transformed variables F3|5(x3|x5) and
F4|5(x4|x5).
The d-dimensional joint multivariate distribution function can thus be expressed as a product
of pair copulas by recursively using equation (4) in equation (2). Since in the (4) the
conditional distributions of the form Fx|v(·|·) are not directly observable, they are calculated
using Joe’s result [18]

Fx|v(x|v) =
∂Cx,vj |v−j

(F (x|v−j), F (vj|v−j))
∂F (vj|v−j)

. (5)

If the conditioning set v is univariate, v = v and expression (5) can be written as

F (x|v) =
∂Cx,v(x, y,θ)

∂v
= h(x, v,θ), (6)

where θ denotes the set of parameters of the copula (measuring the dependencies among the
marginals), and F (x|v) is named the h function. The forms of the h functions for the main
classes of copulas are given in Aas et al. [1] and in Czado et al. [9]. For example, F3|5(x3|x5)
can be determined using expression (6) as follows

F3|5(x3|x5) =
∂C3,5(F3(x3), F5(x5))

∂F5(x5)
.
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Therefore, under the assumption of absolutely continuous distributions, a multivariate den-
sity can be expressed as a product of pair copulas acting on several different conditional
distributions, obtaining a PCC.
PCCs can be represented through a graphical model called regular vine (R-vine). An R-vine
V(d) on d variables is a nested set of trees (connected acyclic graphs) T1, . . . , Td−1, where the
variables are represented by nodes linked by edges, each associated with a certain pair copula
in the corresponding PCC. The edges of tree Tj are the nodes of tree Tj+1, j = 1, . . . , d− 1.
In an R-vine, if two edges of tree Tj share a common node, they are represented in tree Tj+1

by nodes joined by an edge. Note that there are many different orderings of the variables
yielding different R-vines. We can distinguish two subclasses of regular vines, canonical or
C-vines and D-vines, each of them giving a specific way of decomposing the density. A
C-vine is an R-vine whose trees are all stars, since each tree Tj has a unique node that is
connected to d − j edges. This type of vine is particularly suitable for datasets where a
variable is known to be a key variable that should be located at the root of the C-vine.
Conversely, a D-vine is an R-vine where all vertices in tree T1 are adjacent to at most two
other vertices. Figure 1 shows a C-vine and a D-vine with five variables, in the left and in
the right panel, respectively. Both vines consists of four trees Tj, j = 1, . . . , 4. Each edge
corresponds to a pair copula density (possibly belonging to different families) and the edge
label corresponds to the subscript of the pair copula density, e.g. edge 34|12 corresponds to
the copula density c34|12(·). For the C-vine represented in Figure 1 the joint density is given
by

f(x1, . . . , x5) =
5∏

j=1

fj(xj)× c12 × c13 × c14 × c15 × c23|1 × c24|1 × c25|1 × c34|12 × c35|12 × c45|123.

Note that in the previous equation the notation has been simplified, setting
cab = cab(F (xa), F (xb)).

Figure 1 approximately here

Therefore, any multivariate positive density can be decomposed according to the correspond-
ing PCC and it can be represented through a vine.
Considering the R-vine estimation, the vine structure as well as the copula parameters have
to be specified. In order to select a suitable R-vine decomposition, a sequential approach is
generally adopted, specifying the first tree and then proceeding similarly for the following
trees. For selecting the structure of each tree, we followed the approach suggested by Aas
et al. [1] and developed by Dißmann et al. [10], using the maximal spanning tree algo-
rithm. This algorithm defines a tree on all nodes (named spanning tree), which maximizes
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the sum of absolute pairwise dependencies, measured, for example, by Kendall’s τ . This
specification allows to capture the strongest dependencies in the first tree and to obtain a
more parsimonious model.
Then, given the selected tree structure, a copula family for each pair of variables is selected
using the Akaike Information Criterion (AIC), or the Bayesian Information Criterion (BIC).
This choice is made amongst a large set of families, comprising elliptical copulas (Gaussian
and Student t) as well as archimedean copulas (Clayton, Gumbel, Frank, Joe, BB1, BB6,
BB7 and BB8) and their rotated versions, to cover a large range of possible dependence
structures.
Note that conditional independence between variables may reduce the number of levels of
the pair copula decomposition, and hence simplify the construction (removing edges in the
R-vine). Therefore, an independence test (see Genest and Favre [13]) is performed on each
pair of variables.
After specifying the vine structure and the copula families, the copula parameters θ are
then estimated using the maximum likelihood method, as illustrated by Aas et al. [1].
Alternatively, Bayesian inference can be adopted to estimate the parameters, as shown in
Min and Czado [23].
Finally, Joe’s formula (5) is employed to calculate the conditional distributions F (x|v), that
are used as input for the next trees.
Note that, as already mentioned, the R-vine estimation procedure is repeated for all the
trees, until the R-vine is completely specified.

3.1.2 Continuous Non Parametric Bayesian Belief Nets

R-vines represent very flexible tools to model complex patterns of dependence among marginal
distributions through a rich class of pair copula families. R-vines have been successfully ap-
plied to datasets with dimensionality of at most tens of variables, as illustrated by Brechmann
and Czado [5] who investigated the dependence structure of the Euro Stoxx 50 and analyzed
a 52-dimensional dataset. However, with datasets of dimensionality of hundreds of variables,
R-vines become computationally intractable. For this reason, NPBBNs were introduced in
Kurowicka and Cooke [20] and extended in Hanea et al. [15].
Bayesian belief nets (BBNs) are directed acyclic graphs (DAGs) whose nodes represent vari-
ables and the arcs represent causal relationships between the variables. These variables are
associated to conditional probability functions that, together with the DAG, are able to pro-
vide a compact representation of high-dimensional distributions. For an introduction and
for more details about the definitions and main results see, for example, Cowell [7], Jensen
[16], Jensen [17] or Pearl [25].
The most popular classes of BBNs are discrete, normal or discrete-normal. Recall that
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the direct predecessors of a node, corresponding to a variable, are called parents, while the
direct descendants of a node are called children. Then, the nodes of discrete BBNs are
discrete random variables, that are represented as marginal distributions for parent nodes
and conditional probability tables for child nodes. In normal BBNs the nodes form a joint
gaussian distribution, where the influence of the parent nodes on a child node is interpreted
as partial regression coefficients where the child is regressed on the parents (see Shachter
and Kenley [27]). However, discrete BBNs are only suitable to datasets of limited size
and complexity, while normal BBNs are limited by the assumption of joint normality. In
order to overcome this limitations, Kurowicka and Cooke in [21] introduced NPBBNs, where
distributions can conform to any parametric form and the relationships among variables
are defined through R-vines. The DAG of a NPBBN induces a non-unique ordering, and
stipulates that each variable is conditionally independent of all predecessors in the ordering
given its direct predecessors. The conditional independence statements encoded in the graph
allow to write the joint density as

f(x1, . . . , xd) =
d∏

j=1

fxj |Pa(j)(xj|Paj)

where fxj |Pa(j), with j = 1, . . . , d, is the conditional probability function associated to node
j, that corresponds to variable Xj, and Paj is the set of all j’s parents. Hence, the nodes
are associated with continuous invertible distributions, while each arc is represented by a
(conditional) rank correlation. More precisely, for each node j with parents j1, . . . , jp(j), the
arc jp(j)−k −→ j is associated with the (conditional) rank correlation{

rj,jp(j) if k = 0

rj,jp(j)−k|jp(j),...,jp(j)−k+1
if 1 ≤ k ≤ p(j)− 1

where the assignment is vacuous if the considered node does not have any parents, that is
{j1 · · · jp(j)} = ∅. Therefore, every arc in the NPBBN is associated with a (conditional)
rank correlation between parent and child, according to a protocol presented, for example,
in Kurowicka and Cooke [20].

Figure 2 approximately here

As an example, we illustrate the assignments for the DAG of the NPBBN depicted in Figure
2, as explained in Hanea [14]. The first step is to construct a sampling order of the nodes
and to index the nodes according to it. Between the two possible orderings (1, 2, 3, 4) or (1,
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3, 2, 4), we choose the first one. The second step is the factorization of the joint following
the sampling order, that in our case gives us

P (1)P (2|1)P (3|21)P (4|321).

The following step consists in highlighting the nodes in each conditioning set that are not
parents of the conditioned variable, obtaining

P (1)P (2|1)P (3|12)P (4|321), (7)

where the underscored variables are not necessary in sampling the conditioned variable and
can be omitted. Therefore, the rank correlations to be assigned to the arcs in Figure 2
are {r12, r13, r43, r42|3}. These assignments uniquely determine the joint distribution and are
algebraically independent, as proved in Kurowicka and Cooke [20]. For each term of the
factorization (7) a D-vine is built, whose (conditional) rank correlations exactly correspond
to those of the NPBBN (see Hanea et al. [15]). The (conditional) rank correlations and the
marginal distributions needed to completely specify the NPBBN can be retrieved from data
or elicited from experts.
In order to sample the joint distribution, the same procedure used for D-vines can be em-
ployed (for more details about sampling a D-vine, see Aas et al. [1]). However, as explained
in Hanea [14], the order of the variables in successive D-vines might not be same. Sampling
involves the calculation of complex conditional cumulative distribution functions, that may
be not analytically tractable. Since their numerical evaluation for every sample is computa-
tionally heavy, it is recommended to use the normal copula to realize the conditional rank
correlations. Restricting the choice on normal copulas allows us to avoid the computational
problems associated to NPBBNs, due to the nice properties of this particular type of copula
(for more details see Kurowicka and Cooke [20]).
Continuous NPBBNs are in many ways similar to vines. They both express the dependence
structure among the marginal distributions through conditional copulas, associated to the
arcs of the corresponding graph. However, while NPBBNs are described by directed graphs,
in vines the arcs are undirected, and different conditional independence statements are spec-
ified. More specifically, as explained by Hanea [14], in NPBBNs conditional independence is
expressed by the absence of an arc connecting two nodes, but the presence of an arc does not
guarantee dependence. On the contrary, in R-vines fully connected graphs represent condi-
tional dependence statements, but conditional independence does not always correspond to
a missing arc.
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3.2 Illustrative examples

3.2.1 Analysis of Assolombarda data

After introducing the methodology, we now apply vines and NPBBNs to a dataset of Italian
firms. The information do not come from official sources, but were collected by an association
called Assolombarda. This is an Italian association of about 5,000 firms located in the
province of Milan and in other provinces of the north of Italy, and represents manufacturing
and service companies. The associated firms employ about 300,000 workers locally and
several hundred thousands in the whole country. Assolombarda periodically collects data
through questionnaires sent to the associated firms, in order to gather information about the
economic climate, firms’ activity and production, and the number and types of employees.
The data analyzed here contain information collected through one of the association surveys
in 2007, and it is about 167 firms located in the provinces of Milan and Lodi. The variables
in the dataset are

• sales : firm annual turnover;

• emp: average number of employees;

• rise: number of managers receiving wage rise;

• rise2 : number of managers that will receive wage rise in the following year;

• prom: number of employees gaining a promotion;

• horiz : number of employees involved in horizontal movements;

• ext : number of people employed in the external market;

• grad : number of newly-graduated employees;

• qual : number of newly-qualified employees.

Therefore, the dimensionality of the dataset is d = 9, which makes the traditional multivari-
ate copula approach unfeasible, while vines and NPBBNs are perfectly adequate.

Canonical Vine

Since in the dataset “sales” is the target variable and dominates the dependencies with all
the remaining variables, we decided to use C-vines amongst other vine structures, and to set
“sales” as the root node.
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After choosing the C-vine structure, we fitted the vine copula model to the data. Firstly,
we used the inverse transformation method to transform the original data into pseudo-
observations, lying in the interval [0, 1]. In particular, we employed the canonical maximum
likelihood (CML) method, that, using the empirical cumulative distribution functions of each
marginal to calculate the pseudo-observations, does not require the specification of the forms
of the marginal distributions.
In order to select an appropriate C-vine copula model, we followed the method described in
section 3.1.1. For each variable pair we performed the bivariate asymptotic independence
test (Genest and Favre [13]), where the rejection of the null hypothesis denotes a strong
dependence between the selected marginals. Subsequently, for the variable pairs that were
not identified as independent by the Genest and Favre test, we selected the appropriate pair
copula families. More precisely, for given bivariate copula data, we chose the copula among
Elliptical, Archimedean and rotated Archimedean families using the AIC, although the BIC
produced very similar results. A preference towards the AIC over BIC in vines has been
expressed by other authors in the literature, like for example Brechmann and Czado [5].
Finally, we estimated the parameters of each copula with the maximum likelihood method
(see Aas et al. [1]).

Table 1 approximately here

The parameter estimates of the C-vine for the Assolombarda dataset are listed in Table 1.
The Table displays the list of pair copulas in the trees of the C-vine, the selected copula family
and the copula parameters (that can be one or two according to the type of copula). From
the copula families selected, we see evidence of different types of asymmetric dependence,
easily captured by the flexible vine copula approach. Note that only the first and second
tree do not have any conditional independent variable pair. In higher order trees the Genest
and Favre test selected a number of independent copulas, so that the C-vine structure is
simplified and all the dependencies (edges) in the last trees can be removed. In Table 1 e.g.
the conditional copula cqual,rise|sales,ext is independent, meaning that the number of newly-
qualified employees is not dependent on the number of managers receiving wage rise, given
the values of the sales and the number of people employed in the external market.
Observing the strongest dependencies in the unconditional pair copulas in the first tree, we
note a high dependence between the sales and the number of employees (csales,emp), and
also between the sales and number of managers receiving wage rise (csales,rise). Looking
at the conditional copulas instead, we notice a strong relationship between the number of
people employed in the external market and in horizontal movements, given the sales value
(cext,horiz|sales). The remaining dependence results can be interpreted in a similar way.
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Figure 3, obtained with the R package CDVine described in Brechmann and Schepsmeier
[6], shows the first two trees of the C-vine tree plot for the Assolombarda data. The squares
represent the nodes (variables), while the lines represent the arcs (dependencies). The names
of the nodes are written in the squares, and the pair copula families and Kendall’s τ values
corresponding to copula parameters are written on the edges. The thicker the grey line the
higher the dependence between the variables represented by the nodes.

Figure 3 approximately here

In the first tree of the C-vine, depicted in the top panel of Figure 3, the highest dependencies
(thickest arcs) are between the sales and the number of employees, and between the sales
and number of managers receiving wage rise. The first dependence corresponds to the
unconditional pair copula csales,emp, while the second dependence corresponds to csales,rise, as
already highlighted in Table 1. In the second tree, represented in the bottom panel of Figure
3, we notice e.g. a strong dependence (thick arc) between the central node “sales, ext” and
the node “sales, horiz”. This arc corresponds to the pair copula cext,horiz|sales and it can
be interpreted as the relationship between the number of people employed in the external
market and in horizontal movements, given the sales value, as mentioned above.

Non Parametric Bayesian Belief Nets

As we discussed in the previous section, the vine copula model calculated for the Assolom-
barda data is very useful to understand the relationship among the variables, especially
when their dependence pattern is very complex. However, if a specific value of a variable
is observed, one could be interested in calculating the new conditional distributions of the
remaining variables, in order to understand the effect of one variable on the others. These
conditional distributions can be obtained by simulation, but it is not so straightforward to
compare them with the unconditional distributions. The main advantage of NPBBNs is their
use for inference purposes. The impact of conditionalized variables on the other variables
can be easily visualized and compared with the original distributions. The interpretation
of the results is also very intuitive, due to the directionality of the arcs. In this context,
NPBBNs can be used for prediction, when the effect on a target variable of the remaining
variables is observed, or for diagnosis, when the effect of a fixed value of a target variable is
observed on the remaining variables.

Figure 4 approximately here
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Figure 4 shows the NPBBN for the Assolombarda data, that was created with the software
UniNet1. In the top panel the variables are represented by nodes, while in the bottom
panel the variables are represented by histograms, together with their means and standard
deviations. As you can notice from the histograms, all the variables are highly right-skewed,
making the traditional normality assumption completely unrealistic. Figure 4 illustrates
by arcs directed towards the “sales” node the influence on the target variable of the other
variables in the dataset. The numbers written on the arrows, denoting the rank correlations,
suggest e.g. a high dependence between the number of employees and the sales. Moreover,
the oriented arcs in Figure 4 show the relationships among all the other variables, like the
influence of both “grad” and “qual” on “ext”, meaning that the employees’ level of education
determines their employment in the external market.

Figure 5 approximately here

Figure 5 illustrates two examples of predictive and diagnostic reasoning, respectively in the
top and bottom panel. In particular, suppose that we wish to predict the sales value when
the number of employees is very high, conditionalizing on the “emp” variable. Thus, we set
“emp” to be equal to 32,000, which is much higher than the mean value of this variable (that
is 364). In this case the sales value on average goes from 188,080 to 4,745,600, due to the
strong dependence between “emp” and “sales”. Since the “emp” variable positively influences
not only “sales”, but also “prom”, “rise” and “horiz”, the value of all the aforementioned
variables rise substantially (top panel of Figure 5). Since “rise” has the strongest conditional
rank correlation with “emp”, this is the most affected variable by the change in the number
of employees, rising from 4.36 to about 36.
Now suppose that we wish to examine the ideal situation in which the “sales” are very
high and we want to know which values should the other variables take to obtain this
result. Conditionalizing on a high value of “sales”, like 700,000, we can use the NPBBNs
for diagnosis purposes. As we see in Figure 5, all the variables should rise with “sales”,
especially “emp” and “ext”. Therefore, in order to reach this high sales value, the average
number of employees should considerably rise from 364 to 1,076.5 and the average number
of people employed in the external market should go from about 5 to 9. For variables with
a limited influence on the sales instead, like “horiz”, “qual” and “rise2”, we note a small
increase in their mean figures.

1The software is available on http://dutiosc.twi.tudelft.nl/ ∼ risk/.
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3.2.2 Analysis of the FTSE-MIB data

The second application analyses the FTSE-MIB (formerly MIB30) data, an official source.
The FTSE-MIB is the benchmark stock market index for the Italian national stock exchange
and consists of the 40 most-traded stock classes on the exchange. The dataset analyzed here
contains information from the balance sheets of the 40 largest Italian firms belonging to
the Italian stock market. For comparison purposes we excluded banks and insurance groups
from the original dataset. The data, referring to 2007, are available on the World Wide Web.
Specifically, the dimension of the dataset is d = 8, and the variables used in our analysis are:

• sales : firm annual turnover;

• emp: average number of employees;

• goodwill : difference between the balance sheet assets and the sum of its intangible
assets and equipment at market value;

• ncas : non-current financial assets;

• stocks : stocks and work in progress;

• prov : provisions for liabilities and non-recurring expenses;

• ncliab: non-current liabilities;

• cliab: current liabilities.

Canonical Vine

As in the first example, “sales” is the variable dominating the dependencies of the whole
FTSE-MIB dataset. Thus, we chose a C-vine structure to represent the model, with “sales”
playing the role of root node. Again, we employed the CML method to obtain pseudo-
observations, using empirical cumulative distribution functions for the marginals and avoid-
ing the specification of parametric distributions. Moreover, the Genest and Favre bivariate
asymptotic independence test was employed on each pair copula, to check for independence
between the corresponding marginals. Then, for each variable pair an appropriate copula
family was selected via AIC and, finally, the copula parameters were estimated using the
maximum likelihood method.
The parameters estimates of the C-vine for the FTSE-MIB dataset are listed in Table 2.
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Table 2 approximately here

Table 2 displays the list of pair copulas in the trees of the C-vine, the selected copula family
and the copula parameters. In this case only the first tree does not have any conditional
independent variable pair. In the second tree cncliab,ncas|sales has been identified as an inde-
pendent copula, suggesting the absence of dependence between non current liabilities and
assets, conditionally on the value of sales. This is depicted in the second tree of Figure 6 as
a separate node, not linked to the remaining nodes.

Figure 6 approximately here

Examining the unconditional pair copulas we note a strong dependence between the sales
and the number of employees, like in the Assolombarda dataset. This is evident looking at
the high value of the dependence parameter in Table 2 for csales,emp, and observing the thick
edge linking “sales” and “emp” in the first tree of Figure 6. However, we note that “sales”
is quite strongly unconditionally dependent on all the remaining variables, as denoted by
high parameter values in Table 2, and as represented by thick edges linking all the nodes in
the first tree of Figure 6. On the contrary, the conditional dependencies are rather weak,
as demonstrated by small parameter values in Table 2 for the second to the last tree, and
thin edges in the second and in the remaining trees (Figure 6). This means that the main
dependencies are captured by the unconditional copulas. Therefore, we can say that non-
current liabilities are quite strongly correlated to sales (csales,ncliab); however, at the same
time non-current liabilities are weakly correlated to provisions for liabilities, given the sales
(cncliab,prov|sales).

Non Parametric Bayesian Belief Nets

Figure 7 shows the NPBBN for the FTSE-MIB data. The top panel depicts the NPBBN with
nodes representing the variables, while in the bottom panel the variables are represented by
histograms, with their means and standard deviations. Similarly to the Assolombarda data,
all the variables are highly right-skewed, as it is clear from the histogram. Here sales are
mostly influenced by the values of stocks and non-current labilities, and fairly by the number
of employees, while “goodwill” does not seem to have a direct high impact on “sales” (as you
may see from the conditional rank correlations on the oriented arcs). Moreover, considering
the relationships among the non-target variables, we note that e.g. non-current liabilities
not only influence the “sales”, but also “goodwill”, “ncas” and “stocks”.
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Figure 7 approximately here

This scenario is also summarized in the first four columns of Table 3, that lists the medians,
means and standard deviations of the FTSE-MIB variables, as calculated from the original
dataset.

Table 3 approximately here

Figure 8, top panel, illustrates a scenario where “emp”, “ncas” and “stocks” are set at a
low value. More precisely, the number of employees is set at 365, the stock value is 240 and
the non-current asset value is 50. As shown in the fifth to seventh columns of Table 3, the
value of “sales” decreases from 12,595,630 to 194,510, such that it becomes similar to that
of Assolombarda data. Therefore, conditionalizing a NPBBN based on official data, it is
possible to set the variables to reflect the status of a particular company and check if the
target variable (“sales”) corresponds to the official results. In the bottom panel of Figure
8 we conditionalized the “sales” value to be similar to its mean value in the Assolombarda
data (188,000). This scenario is summarized in the last three columns of Table 3, where the
new medians, means and standard deviations of all the variables are displayed. Figure 8 and
Table 3 suggest what characteristics the firms should have in order to reach a particular level
of sales, e.g. a number of employees of more than 2,700 and a stock value of almost 70,000.
This approach is very useful to check if a particular company performs similarly to other
companies in official studies and to calibrate the results obtained with a specific dataset.

Figure 8 approximately here

3.3 Simulation study

After defining the structure and estimating the parameters of C-vines and NPBBNs, our
aim is now to check the fit of the proposed models to the two illustrated datasets. Since the
main purpose of vines and NPBBNs is to model the dependence structure of the marginals
and to use it for inference purposes, we focus on how well the considered models replicate
the original data, embedding the actual relationships among the variables. Therefore, we
generated 1000 simulations of the two datasets using the two models (C-vines and NPBBNs),
and we compared the distribution of the original variables with the simulated variables.
Since the simulations are generated from the two models with parameters estimated as
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specified in Section 3.1, they reflect the dependence structure of the marginals. We considered
the multivariate t copula as a benchmark, since a multidimensional elliptical copula is the
traditional approach to model high-dimensional dependencies, and the t copula in particular
is the standard choice for financial data. In order to assess the similarity of the simulated
data to the observed data, we performed the Kolmogorov-Smirnov test for the equality
of distributions for each simulation. Then, we calculated the median, mean and standard
deviation of the p-values of the tests for each variable of the two datasets, as shown in Tables
4 and 5. The closer the median and mean to 1 the better the fit.

Table 4 approximately here

Table 5 approximately here

Table 4 illustrates the test results for the Assolombarda data, while Table 5 refers to the
FTSE-MIB dataset results. Both Tables list the node names in the first column, the p-
values median, mean and standard deviations for the multivariate t copula in columns 2 to
4, analogous results for the C-vine in columns 5 to 7, and analogous results for the NPBBN
in columns 8 to 10.
As we note from Tables 4 and 5, the C-vine and the NPBBN perform almost always better
than the traditional multivariate t copula. In particular, focusing on the sales variable,
for the Assolombarda dataset the NPBBN provides the best fit, with an average p-value
of 0.83940. For the FTSE-MIB dataset, instead, the C-vine provides the best fit, with an
average p-value of 0.87035.
Nevertheless, we need to point out that the main limitation of vines and NPBBNs compared
to the standard multivariate elliptical copulas is that they may have a very complex structure,
with many parameters to be estimated. In particular, if dependencies in NPBBNs are not
expressed by bivariate normal copulas, the computational complexity of the whole structure
may become cumbersome. However, the great flexibility of vines and NPBBNs and their
graphical representation allows them to effectively describe highly dependent data and to
easily interpret the relationship among the variables.

4 Conclusion

In this paper we presented a new approach to integrate the information provided by official
sources with information provided by other sources.
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We used PCCs and their corresponding graphical models, vines, to model the dependance
structure of the variables and to calculate the conditional rank correlations. Then, we used
NPBBNs to understand the influence of some variables on others and to make predictions
and diagnostics.
We firstly applied the illustrated methodologies to a dataset of specific firms, containing
information collected by a private association. Then, we applied the methods to a dataset
containing official information about the balance sheets of firms in the FTSE-MIB.
The use of vines allowed us to calculate the dependencies among the variables and, in par-
ticular, the conditional rank correlations. These correlations were then used to define the
arcs of the NPBBNs that were built for the two datasets. In a simulation study NPBBNs
performed better than the traditional multivariate t copula, and generally better than the
C-vine. The vine performance could be improved by employing the R-vine, instead of the C-
vine, since its less constrained structure better adapts to different types of data and various
dependencies.
Conditionalizing on a target variable, it is possible to calibrate the values of a specific dataset,
considering the dependence structure of the variables. In our case, we can easily calibrate
the two datasets via conditionalization and see what characteristics a set of firms should
have in order to perform similarly to the firms described in the official data source. In this
way we are able to integrate different sources of information.
This study could be extended by including expert opinions and eliciting prior distributions.
This prior information could be used to construct the conditional rank correlations in the
NPBBNs and could be subsequently updated using observed data.
Furthermore, this approach can be applied to different datasets, as for example those con-
taining categorical variables. This will definitely enhance the applicability of the methods
to all types of survey data, and will help to calibrate them with official data. Both vines
and NPBBNs allow the specification of discrete variables, however discrete vines have been
introduced only recently in the literature and require future investigation and research.
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[29] Vicard, P. & Scanu, M. (2012) Applications of Bayesian Networks in Official Statistics.
In: A. Di Ciaccio, M. Coli & J. M. Angulo Ibanez (Ed.) Advanced Statistical Methods for
the Analysis of Large Data-Sets, Springer, 113–123.

21



Figures

Figure 1: A C-vine (left panel) and a D-vine (right panel) with 5 variables.
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Figure 2: A BBN on four variables with conditional rank correlations assigned to arcs.
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Figure 3: First (top) and second (bottom) C-vine trees for the Assolombarda data.
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Figure 4: NPBBN for the Assolombarda data. The variables are represented with nodes in
the top panel and with histograms in the bottom panel.
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Figure 5: Conditionalized NPBBN for the Assolombarda data. In the top panel the NPBBN
is conditionalized for a high value of “emp” (predictive reasoning). In the bottom panel the
NPBBN is conditionalized for a high value of “sales” (diagnostic reasoning).
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Figure 6: First (top) and second (bottom) C-vine trees for the FTSE-MIB data.
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Figure 7: NPBBN for the FTSE-MIB data. The variables are represented with nodes in the
top panel and with histograms in the bottom panel.
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Figure 8: Conditionalized NPBBN for the FTSE-MIB data. In the top panel the NPBBN is
conditionalized for a low value of “emp”, “ncas” and “stocks” (predictive reasoning). In the
bottom panel the NPBBN is conditionalized for a low value of “sales” (diagnostic reasoning).
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Assolombarda data: Parameters of the C-Vine
Tree Copulas Family Parameter 1 Parameter 2

1 csales,ext Frank 1.1225 0
csales,qual Gumbel 1.2165 0
csales,grad SClayton 0.4361 0
csales,rise2 SClayton 0.1089 0
csales,emp Frank 13.2271 0
csales,rise Gaussian 0.5924 0
csales,prom Gumbel 1.1635 0
csales,horiz SClayton 0.1520 0

2 cext,qual|sales Gaussian 0.0404 0
cext,grad|sales Student t 0.6526 2
cext,rise2|sales SJoe 1.9468 0
cext,emp|sales SJoe 1.1277 0
cext,rise|sales Student t 0.3288 2
cext,prom|sales Student t 0.8141 2
cext,horiz|sales SJoe 4.2206 0

3 cqual,rise|sales,ext Independent 0 0
cqual,prom|sales,ext Independent 0 0
cqual,horiz|sales,ext SJoe 1.0001 0
cqual,grad|sales,ext Gaussian 0.1799 0
cqual,rise2|sales,ext Frank 0.7868 0
cqual,emp|sales,ext Independent 0 0

4 cgrad,horiz|sales,ext,qual Independent 0 0
cgrad,emp|sales,ext,qual SJoe 1.0001 0
cgrad,rise|sales,ext,qual Independent 0 0
cgrad,rise2|sales,ext,qual Frank 0.8799 0
cgrad,prom|sales,ext,qual Frank 2.7894 0

5 crise2,prom|sales,ext,qual,grad Gaussian -0.2264 0
crise2,horiz|sales,ext,qual,grad Joe 1.5419 0
crise2,emp|sales,ext,qual,grad Independent 0 0
crise2,rise|sales,ext,qual,grad Independent 0 0

6 cemp,prom|sales,ext,qual,grad,rise2 Independent 0 0
cemp,horiz|sales,ext,qual,grad,rise2 Independent 0 0
cemp,rise|sales,ext,qual,grad,rise2 Independent 0 0

7 crise,prom|sales,ext,qual,grad,rise2,emp Independent 0 0
crise,horiz|sales,ext,qual,grad,rise2,emp Independent 0 0

8 cprom,horiz|sales,ext,qual,grad,rise2,emp,rise Independent 0 0

Table 1: Assolombarda data: selected copulas and C-vine PCC parameters. SClayton and
SJoe denote the Survival Clayton and Survival Joe copula, respectively.
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FTSE-MIB data: Parameters of the C-Vine
Tree Copulas Family Parameter 1 Parameter 2

1 csales,ncliab Frank 4.7259 0
csales,stocks Frank 7.6876 0
csales,ncas Joe 3.5353 0

csales,goodwill Frank 4.4699 0
csales,emp Joe 3.3784 0
csales,prov Gaussian 0.8769 0
csales,cliab Student t 0.5715 2

2 cncliab,ncas|sales Independent 0 0
cncliab,goodwill|sales Gumbel 1.0211 0
cncliab,emp|sales Frank 4.1546 0
cncliab,prov|sales Gaussian -0.0846 0
cncliab,cliab|sales Frank 1.8065 0
cncliab,stocks|sales Clayton 0.4768 0

3 cstocks,ncas|sales,ncliab Frank -1.6267 0
cstocks,emp|sales,ncliab Independent 0 0
cstocks,prov|sales,ncliab Independent 0 0
cstocks,cliab|sales,ncliab Independent 0 0

cstocks,goodwill|sales,ncliab Frank -0.0655 0
4 cncas,goodwill|sales,ncliab,stocks Independent 0 0

cncas,emp|sales,ncliab,stocks Independent 0 0
cncas,prov|sales,ncliab,stocks Frank 1.9324 0
cncas,cliab|sales,ncliab,stocks Independent 0 0

5 cgoodwill,emp|sales,ncliab,stocks,ncas Independent 0 0
cgoodwill,prov|sales,ncliab,stocks,ncas Independent 0 0
cgoodwill,cliab|sales,ncliab,stocks,ncas Independent 0 0

6 cemp,cliab|sales,ncliab,stocks,ncas,goodwill Independent 0 0
cemp,prov|sales,ncliab,stocks,ncas,goodwill Independent 0 0

7 cprov,cliab|sales,ncliab,stocks,ncas,goodwill,emp Independent 0 0

Table 2: FTSE-MIB data: selected copulas and C-vine PCC parameters.
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Unconditionalized NPBBN Predictive reasoning Diagnostic reasoning
Node name Median Mean Std Dev Median Mean Std Dev Median Mean Std Dev

sales 4602162 12595630 30800230 122869 194510 238424 188000 188000 0
cliab 179254 353552300 32324790000 23141 31746140 2511286000 10199 6047388 141801900
prov 241824 1648392 8959909 9632 30919 91406 17948 59557 179661

employees 13058 37930 95616 365 365 0 1497 2786 4194
goodwill 213450 991221100 40223790000 646 327970 13146760 9034 15427590 701917500
ncas 116541 33019030 1172014000 50 50 0 1799 83431 1016132
stocks 264140 1741744 7913491 240 240 0 20127 69202 201553
ncliab 751678 297541300 7431751000 4082 663782 15698810 15993 1947262 44543930

Table 3: Predictive and diagnostic reasoning with the NPBNN for the FTSE-MIB data. The
node names are in the first columns. Columns 2–4 list, respectively, the medians, means and
standard deviations for the unconditionalized NPBBN; columns 5–7 list the same results
for the case of predictive reasoning (for fixed low values of “emp”, “ncas” and “stocks”);
columns 8–10 list the same results for the case of diagnostic reasoning (for a fixed low value
of “sales”).

Assolombarda data simulation study
t Copula C-Vine NPBNN

Node name Median Mean Std Dev Median Mean Std Dev Median Mean Std Dev
sales 0.92400 0.82845 0.19808 0.89167 0.81490 0.19948 0.92400 0.83940 0.21473
emp 0.92400 0.82596 0.19879 0.85934 0.79710 0.22671 0.92400 0.83345 0.19362
rise 0.96769 0.91118 0.16251 0.99051 0.89730 0.16023 0.96769 0.89625 0.16639
rise2 0.96769 0.89204 0.16387 0.96769 0.90204 0.15977 0.99051 0.92632 0.12693
prom 0.99847 0.92378 0.15118 0.99051 0.91868 0.14088 0.99847 0.93451 0.13280
horiz 0.99991 0.96869 0.08892 0.99991 0.96431 0.09411 0.99991 0.96999 0.08076
ext 0.38623 0.40424 0.21919 0.34882 0.35135 0.21739 0.42365 0.40504 0.24651
grad 0.99847 0.95135 0.10131 0.99991 0.95047 0.11797 0.99847 0.94842 0.11772
qual 1.00000 0.96419 0.08990 1.00000 0.97651 0.06374 1.00000 0.99415 0.02427

Table 4: Simulation study for the Assolombarda data. The node names are in the first
columns. Columns 2–4 list, respectively, the medians, means and standard deviations of the
Kolmogorov-Smirnov p-values for the multivariate t copula; columns 5–7 list the same results
for the C-vine; columns 8–10 list the same results for the NPBBN.
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FTSE-MIB data simulation study
t Copula C-Vine NPBNN

Node name Median Mean Std Dev Median Mean Std Dev Median Mean Std Dev
sales 0.95144 0.82924 0.19020 0.95144 0.87035 0.18840 0.95144 0.83460 0.21944
cliab 0.95144 0.83322 0.19926 0.95144 0.82044 0.22950 0.95144 0.83888 0.21495
prov 0.94549 0.82947 0.20143 0.86366 0.78658 0.22774 0.86366 0.81087 0.20438

employees 0.95144 0.81756 0.21390 0.95144 0.82977 0.21854 0.95144 0.81719 0.23339
goodwill 0.95144 0.81703 0.21838 0.95144 0.85069 0.18576 0.95144 0.85779 0.18791
ncas 0.78183 0.81139 0.18362 0.94549 0.83495 0.20541 0.94549 0.83036 0.20573
stocks 0.79123 0.80044 0.21316 0.95144 0.82966 0.20268 0.95144 0.85187 0.18010
ncliab 0.94549 0.82689 0.19431 0.94549 0.86051 0.17019 0.94549 0.86351 0.19108

Table 5: Simulation study for the FTSE-MIB data. The node names are in the first
columns. Columns 2–4 list, respectively, the medians, means and standard deviations of
the Kolmogorov-Smirnov p-values for the multivariate t copula; columns 5–7 list the same
results for the C-vine; columns 8–10 list the same results for the NPBBN.

34




