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Abstract

Ends and coends, as described in [Kel05], can be described as objects which are

universal amongst extranatural transformations [EK66b]. We describe a cate-

gorification of this idea, extrapseudonatural transformations, in such a way that

bicodescent objects are the objects which are universal amongst such transfor-

mations. We recast familiar results about coends in this new setting, providing

analogous results for bicodescent objects. In particular we prove a Fubini theorem

for bicodescent objects.

The free cocompletion of a category C is given by its category of presheaves

[Cop,Set]. If C is also monoidal then its category of presheaves can be pro-

vided with a monoidal structure via the convolution product of Day [Day70].

This monoidal structure describes [Cop,Set] as the free monoidal cocompletion

of C. Day’s more general statement, in the V-enriched setting, is that if C is

a promonoidal V-category then [Cop,V] possesses a monoidal structure via the

convolution product. We define promonoidal bicategories and go on to show

that if A is a promonoidal bicategory then the bicategory of pseudofunctors

Bicat(Aop,Cat) is a monoidal bicategory.
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Introduction

The notion of monoidal category, originally defined by Mac Lane [ML63] as a category

with a multiplication, abstracts the idea of a tensor product to a structure borne by

a category. Familiar examples are the tensor product of vector spaces on the category

Vectk, as well the cartesian product for any category with finite products, and disjoint

union on Set. A monoidal category consists of a category C with functors ⊗ : C×C→ C,

I : 1→ C, and natural isomorphisms

αabc : (a⊗ b)⊗ c→ a⊗ (b⊗ c),

λa : I ⊗ a→ a,

ρa : a⊗ I → a.

The functor I serves to specify a unit object in C, also denoted I. These isomorphisms

are required to be coherent in the sense that the following diagrams commute in C.

((a⊗ b)⊗ c)⊗ d

(a⊗ (b⊗ c))⊗ d) a⊗ ((b⊗ c)⊗ d)

a⊗ (b⊗ (c⊗ d))

(a⊗ b)⊗ (c⊗ d)

αabc×1

??

αa(b⊗c)d
//

1×αbcd

��

α(a⊗b)cd

((

αab(c⊗d)

66

(a⊗ I)⊗ b a⊗ (I ⊗ b)

a⊗ b

αaIb //

1λb

��

ρa1

��
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Mac Lane’s original definition included two more unit axioms involving the associations

(Ia)b and (ab)I. Kelly [Kel64] went on to show that these further axioms follow from

the two written above.

Mac Lane followed up his definition with a proof of coherence for monoidal categories,

though a more standard reference is the instance in [ML98]. The version presented was

of the form ‘every diagram of coherence cells commutes’. This means that a composite

of instances of α, λ, and ρ between any two associations are in fact equal. Coherence

theorems often take a different form saying that a weak instance of a structure is equiv-

alent to a stricter version. In the case of monoidal categories it was shown by Joyal

and Street [JS93] that every monoidal category, as above, is monoidally equivalent to a

monoidal category in which all of the coherence isomorphisms are identities.

Day’s promonoidal categories [Day70], [Day71] are obtained when we take the defi-

nition of a monoidal category and replace every instance of a functor with a profunctor.

For example, rather than a tensor product ⊗ : C × C → C there would be a profunctor

P : Cop×C×C→ V. Similarly, instead of a functor I : 1→ C there would be a profunctor

J : Cop → V. Each monoidal structure on a category provides a promonoidal structure

for that same category. Day’s definition of promonoidal category was in order to define

a well-behaved monoidal structure on the presheaves of a category. If C is a promonoidal

category then it extends to a monoidal structure on presheaves in Ĉ = V-Cat(Cop,V).

Furthermore, if C is a symmetric monoidal category then the resulting monoidal struc-

ture on Ĉ from the convolution product is also symmetric. Any promonoidal structure

on C then extends to a biclosed monoidal structure on presheaves Ĉ.

The definition of promonoidal category uses profunctors, the composition of which

is defined using coends [Kel05], [ML98]. Coends are also used to define the convolution

product on presheaves. These are colimits associated with functors F : Cop × C → V,

where V denotes a suitable enriching category. The analogous limit is called an end.

Fixing c ∈ C gives two functors F (c,−) : C→ V, F (−, c) : Cop → V which we think of as

a right and left action of F . The coend associated to F is the universal way of making

these actions agree, whereas the end of F is the universal object where these actions

agree already. The most common example of an end is the V-object of natural transfor-

mations between two V-functors. If G,H : A → B are two V-functors then there is an

isomorphism between the end of the V-functor B(G−, H−) and V-Cat(A,B)(G,H).

Coends are often described as a coequalizer of a particular diagram involving the

previously mentioned left and right actions of functors F : Cop × C→ V. An equivalent

formulation is to define them as universal objects amongst extranatural transformations

[EK66b]. An extranatural transformation is a way of slightly tweaking the notion of
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natural transformation. In a similar way to above, they are defined between functors

F : Cop × C → E, G : Dop × D → E and act as a mediator between the left and right

actions of each functor. For example, rather than requiring the usual naturality squares

to commute, one of the axioms for an extranatural transformation α : F
··⇒ G requires

the commutativity of the following diagram.

F (b, c) F (b, b)

F (c, c) G(d, d)

F (b,f)
//

αbd

��

F (f,c)

��

αcd
//

The category Ĉ often appears for another reason, in that it is the free cocompletion

of C [MM94]. This is the category obtained by freely adjoining colimits in order to make

C cocomplete. This is a destructive process in that colimits that C already possessed

are often not colimits after freely adding those needed to make it cocomplete. If C is a

monoidal category then the convolution monoidal product on Ĉ has a further universal

property - it is the free monoidal cocompletion of C [IK86]. A monoidally cocomplete

category is one for which each of the endofunctors b ⊗ − : C → C, − ⊗ c : C → C

preserves colimits. The way in which this occurs is typical of a pseudodistributive

law for pseudomonads [Kel74], [Mar99], [MW08], [MW12], [CHP13]. Apart from issues

of size [AR94], there is a pseudomonad on Cat which describes free cocompletion of

categories. There is then a pseudodistributive law [TP06] between the free symmetric

monoidal category pseudomonad and the free cocompletion pseudomonad, both on Cat,

which makes use of Day’s convolution product. With regard to the issue of size, one could

adapt the idea of relative monads [ACU10], [ACU14] to a notion of relative pseudomonad

[FGHW16].

Moving up a dimension we can generalise the idea of a category to not only have

objects and morphisms but also 2-cells between morphisms (1-cells), the prototypical ex-

ample being Cat consisting of (small) categories, functors, and natural transformations.

In a 2-category the composition of 1-cells is strictly associative and unital. A 2-category

is an instance of an enriched category in the case that the base category is Cat. This

is to say that each hom-object A(a, b) is a category. Since it is a Cat-category then

1-cell composition is still strictly associative and unital. If we weaken this requirement

for composition on 1-cells then we discover the notion of a bicategory, originally defined

by Bénabou [Bén67]. One way of considering bicategories is as a many-object version of

a monoidal category. In a bicategory we have objects, 1-cells (morphisms), and 2-cells.



4 Introduction

Here, however, the composition of 1-cells is not associative or unital, being so only up

to coherent isomorphism, similar to the associations on objects in monoidal categories

above.

In a similar way to the coherence theorem for bicategories, Mac Lane and Paré

[MP85] describe a coherence theorem for bicategories of the ‘all diagrams commute’

variety. The bicategorical Yoneda lemma [Str80] gives another form of coherence for

bicategories, stating that each bicategory A is biequivalent to a strict 2-category, a

sub-2-category of Bicat(Aop,Cat).

Whilst it is simple to define strict n-categories, simply as n-Cat-enriched categories,

giving hands-on definitions for weaker structures becomes much more difficult as the di-

mension increases. From Bénabou’s bicategories [Bén67] as a weak 2-category the next

step up was the definition of weak 3-categories, or tricategories, given form by Gordon,

Power, and Street [GPS95]. Whereas coherence for bicategories shows that each bicat-

egory is biequivalent to a strict 2-category, the same is not true for tricategories. Each

tricategory is only triequivalent to a type of semi-strict 3-category know as a Gray-

category [Gra74], [Gra76], [GPS95]. More generally n-categories have been specified in

one of two ways, algebraic or non-algebraic. A survey of the numerous proposed defini-

tions is given by Leinster [Lei02], while Cottrell gives a comparison of the algebraic and

non-algebraic viewpoints [Cot13]. For the specific case of tricategories Gurski showed

how to specify a fully algebraic definition [Gur13a]. This thesis deals with monoidal

bicategories. In the same sense that monoidal categories are considered as degener-

ate bicategories, we can consider monoidal bicategories to be degenerate tricategories

[CG11].

Our goal is to generalise Day’s convolution structure to the setting of monoidal

bicategories, as well as considering the free cocompletion of a bicategory under bicolimits.

The setting becomes more complicated since we will be working in higher dimensions,

where it becomes harder to keep track of coherence requirements and perform algebraic

manipulations.

In order to more efficiently describe the constructions involved in setting up a higher

analogue of Day convolution we go on to characterise codescent objects as universal

objects amongst a weakened 2-dimensional generalisation of extranatural transforma-

tions. The analogous limit, the descent object, originally appeared in an article of Street

[Str76] before being given a formal definition in [Str87]. These colimits can be seen as

a 2-dimensional generalisation of coends and are defined in reference to pseudofunctors

P : Aop × A → B. A slightly weaker notion of codescent object that we consider is the

bicodescent object. These objects are a type of bicolimit, having both a 1-dimensional
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and 2-dimensional universal property but requiring only existence but not uniqueness of

1-cells in the 1-dimensional part.

We now outline the structure of this thesis.

• In Chapter 1 we discuss the necessary background material needed to contextualize

and motivate the later results. This chapter can be seen as an outline for the rest of

the thesis in that each section will be generalized to fit in a higher-dimensional con-

text. We recall the ideas of ends/coends and their description as universal objects

amongst extranatural transformations before introducing promonoidal categories

and the resulting Day convolution product on categories of presheaves. Finally we

discuss bicategorical colimits and monoidal bicategories, along with a brief survey

of free cocompletions.

• Chapter 2 introduces a generalised notion of extranatural transformation, them-

selves obtained by bending the rules for natural transformations. To fit into the

higher-dimensional context that we wish to consider, the definition of extrapseudo-

natural transformation is a categorified version of extranatural transformation. We

replace the axioms with isomorphisms and provide suitable axioms governing how

the data fits together. Familiar composition lemmas are reproved in this gener-

alised setting before embarking on the definition of bicodescent objects as universal

objects amongst extrapseudonatural transformations. The chapter culminates in

a Fubini-like interchange theorem for bicodescent objects.

• In Chapter 3 we concern ourselves with free bicocompletions of bicategories, by

which we mean the free cocompletion of a given bicategory A under bicolimits.

This is seen to be the bicategory of pseudofunctors Bicat(Aop,Cat). We essen-

tially retread the familiar ground of free cocompletions for categories, this time

using bidescent and bicodescent objects in place of the usual ends and coends.

• Chapter 4 introduces the notion of a promonoidal bicategory, a generalisation of

Day’s original definition. We base the definition on the idea that a promonoidal

bicategory should be a pseudomonoid in the monoidal tricategory 2-Prof [Chi15].

We do not fully investigate this connection, though it proves useful in trying to

understand the definition of a promonoidal bicategory. The setting of our definition

is also quite specific. Whereas Day defined promonoidal categories over any base

symmetric monoidal closed category V, our definition is only specified for the base

bicategory Cat. It is also at this point that we rely heavily on string diagrams to
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depict the large axioms for this new definition. This is largely for presentational

purposes but we do make remarks on the manipulations of such diagrams.

• The convolution tensor product for presheaves on bicategories is defined in Chapter

5. As with previous material it is superficially similar to Day’s original ideas but

being a categorified notion of such we have more intricate structure to deal with.

We go on to prove that a promonoidal structure on a bicategory A extends to a

monoidal structure on the bicategory Bicat(Aop,Cat). In this chapter we also

give some brief remarks about Â being the free monoidal bicocompletion of A, as

well as some comments about the monoidal structure on Â being biclosed.



Chapter 1

Background Theory

We begin by introducing the reader to much of the background material needed to moti-

vate the later chapters. We briefly recall the ideas behind ends and coends, in particular

their characterisations as universal objects amongst extranatural transformations. We

go on to discuss free cocompletion and introduce Day’s promonoidal categories and

convolution product. The basics of bicategories and their monoidal variants are then

considered. Of particular note in this chapter is that we introduce the string diagram

notation which will be used to present results later in the thesis - this is introduced in

the definition of a monoidal bicategory.

1.1 Ends and Coends

In this first section we recall the definition of extranatural transformation and the char-

acterisation of coends as universal objects amongst these transformations. For the reader

unfamiliar with such notions, a comprehensive overview can be found in the literature

[ML98], [Bor94], [Kel05]. We will later go on to give a categorified notion of both ex-

tranatural transformations as well as ends/coends. In the rest of this chapter all notions

regarding ends, coends, and profunctors can be considered from a V-enriched perspec-

tive, à la [Kel05], for a given closed monoidal category V. Our later generalisations

involving profunctors between bicategories will have a fixed setting in the monoidal bi-

category Cat though we expect a more thorough treatment could readdress this and

recast the definitions and results in the setting of other suitable monoidal bicategories.

Definition 1.1.1. Let F : A × Bop × B → D and G : A × Cop × C → D be functors.

An extranatural transformation α : F
··⇒ G has components αabc : F (a, b, b) → G(a, c, c)

such that
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• for each b ∈ B, c ∈ C, α−bc : F (−, b, b)⇒ G(−, c, c) is a natural transformation;

• for each g : b→ b′ in B, the following diagram commutes;

F (a, b′, b) F (a, b, b)

F (a, b′, b′) G(a, c, c)

Fagb
//

Fab′g
��

αabc
��

αab′c
//

• for each h : c→ c′ in C, the following diagram commutes.

F (a, b, b) G(a, c′, c′)

G(a, c, c) G(a, c, c′)

αabc′//

αabc
��

Gahc′
��

Gach
//

Given a natural transformation between functors F,G : A→ B, we can think of the

naturality in A in terms of string diagrams, simply a string from A to itself.

A

A

Usually string diagrams for natural/extranatural transformations would involve more

labels but we will not be making much use of these, only introducing them to later

motivate the ways that different transformations can be composed.

With extranaturality we bend the rules for naturality and this can be seen in the

string diagrams representing extranatural transformations. Given an extranatural trans-

formation between F : A×Bop ×B→ D and G : A× Cop × C→ D we depict extranat-

urality as follows.

A Bop B

A Cop C

Eilenberg and Kelly [EK66b] showed that composition of extranatural transforma-

tions is governed by composition of such string diagrams. If string diagrams correspond-

ing to transformations can be composed vertically, without any closed loops, then the



1.1 Ends and Coends 9

transformations corresponding to the diagrams can be composed in the same manner.

In Chapter 2 we prove analogous results for the categorified version of extranatural

transformations.

Definition 1.1.2. Let F : Aop × A → B be a functor. The coend of F consists of an

object ∫ a

F (a, a)

in B, along with an extranatural transformation i : F
··⇒
∫ a
F (a, a) which is universal in

the following sense. Given any other object b ∈ B along with an extranatural transfor-

mation j : F
··⇒ b, there exists a unique morphism t :

∫ a
Faa → b such that t · ia = ja for

all objects a ∈ A.

In the above definition, the codomain of the extranatural transformation is
∫ a
F (a, a)

by which we mean the constant functor at that object.

Ends are similarly defined, with the end of a functor F : Aop × A → B being an

object
∫
a F (a, a) along with a universal extranatural transformation s :

∫
a F (a, a)

··⇒ F .

Remark 1.1.3. We can define ends and coends as types of limits and colimits, respec-

tively. We will briefly look at this for coends. Let F : Aop × A → B be a functor and

consider the following diagram.

∐
a∈obA

F (a, a)
oo l

oo
r

∐
a
f→b

F (b, a)

The functor l is determined by the functors

{lf = P (f, 1) : P (b, a)→ P (a, a)}f : a→b

whilst r is determined by the functors

{rf = P (1, f) : P (b, a)→ P (a, a)}f : a→b.

The coend of a functor F , as above, is then given by the coequalizer of this diagram and

so coends can be considered as a kind of colimit.

Remark 1.1.4. Consider a functor F : C→ D. We can define a functor F̄ : Cop×C→ D

by F̄ (c′, c) = Fc, simply muting the contravariant variable. In doing so we can consider

the end of F̄ which, when the definitions have been compared, can be seen to be the
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limit of the functor F , i.e., limF ∼=
∫
c Fc. We can similarly describe the colimit of F

using coends.

Examples abound when it comes to ends and coends. For given V-categories C, D,

the functor V-category [C,D] is the V-category whose objects are V-functors C→ D and

for which the hom-objects are given by the ends

[C,D](F,G) =

∫
c
D(Fc,Gc)

in V. Kan extensions can be expressed using coends as well. We will make much use of

ends/coends and, in later sections, their 2-dimensional analogues - codescent objects.

1.2 Free Cocompletion

Let V be a complete and cocomplete symmetric monoidal closed category and let C be

a small V-category. We will describe the category Ĉ = [Cop,V], of presheaves on C, as

the free cocompletion of the V-category C. In what follows we will often omit the prefix

V- when discussing V-categories, V-functors, and the like, simply referring to them as

categories, functors, and so on, as long as there is no room for confusion. We do not

provide much in the way of proof, only highlighting certain ideas that will reappear in

our generalisation of this setting. The enriched case is discussed in [Kel05], with the

case V = Set considered in [MM94].

We begin by discussing the situation in the setting where V = Set. Useful general

results will be specified in a more general setting for a given V as described above. Given

a small category C, the Yoneda embedding y : C→ Ĉ = Cat(Cop,Set) describes the free

cocompletion of C in the following sense. Given a cocomplete category D there is a

pseudonatural equivalence of categories

Cocomp(Ĉ,D) ' Cat(C,D)

where Cocomp(Ĉ,D) is the category of colimit preserving functors.

We also end up with the following situation. Given a cocomplete category D and

a functor F : C → D, there is a colimit preserving functor F̂ : Ĉ → D and a natural

isomorphism F̂ · y ∼= F . Furthermore, F̂ is unique up to isomorphism. Each F̂ is left

adjoint to to a functor

D(F−,−) : D→ Ĉ

which takes an object d ∈ D to the presheaf D(F−, d) : Cop → Set. That is to say there
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is an adjunction

D(F̂ (G), d) ∼= Ĉ(G,D(F−, d)).

The description of F̂ is actually that of a Kan extension, namely the left Kan extension

LanyF of F along the Yoneda embedding y.

This fits into a larger picture which describes a pseudofunctor

̂ : Cat→ Cocomp

where Cocomp is the category of cocomplete categories and colimit preserving functors

between them. It would be convenient to place ̂ : Cat → Cocomp itself into the

setting of an adjunction but here we run into size issues. While we can consider the

free cocompletion of categories C which are not small, where we then have to consider

the category of small presheaves on C, the category Cat in the domain of ̂ is a large

category containing all small categories. The act of freely adjoining colimits has the

potential to turn a small category into a large category and so Cocomp contains co-

complete categories which are large. The right adjoint in this setup, the inclusion of

cocomplete categories into categories, then has a size issue in that if we intend to forget

the cocompleteness of a large category in Cocomp there is nowhere for it to live in

Cat, which is inhabited only by small categories. This matter of size is considered in a

number of places [FGHW16], [AR94], [TP06]

We now state a number of useful results which we later go on to generalise in the

setting of bicategories.

Lemma 1.2.1 (Co-Yoneda Lemma). Every presheaf X : Cop → V is the colimit of rep-

resentable functors as

X ∼=
∫ c

X(c)⊗ y(c).

It is important here to know that V is symmetric closed and that this implies that the

tensor product preserves colimits in each variable. The above lemma is useful because

it allows us to give an explicit description of F̂ by considering what properties we want

of it. First we consider that we want isomorphisms

F (c) ∼= F̂ (C(−, c))

for each object c ∈ C.
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Since we want F̂ to preserve colimits, including coends, then we require

F̂ (X) ∼= F̂

(∫ c∈C
X(c)⊗ C(−, c)

)
∼=
∫ c∈C

F̂ (X(c)⊗ C(−, c))

∼=
∫ c∈C

X(c)⊗ F̂ (C(−, c))

∼=
∫ c∈C

X(c)⊗ F (c).

This final step then describes F̂ for all presheaves on C.

Proposition 1.2.2. Let C be a small V-category. The functor V-category Ĉ is the free

V-cocompletion of C.

In the above proposition, the free V-cocompletion refers to the free cocompletion of

C under V-weighted colimits [Kel05], [Bor94]. In the case that V = Set, this is the free

cocompletion that we originally considered.

1.3 Promonoidal Categories

We now recall Day’s definition of promonoidal category and briefly describe their relation

to monoidal categories. Since we later on do not investigate Day convolution using a

general monoidal bicategory, staying firmly with Cat, we limit our exposition here to

the case where V = Set. The definition of a promonoidal category can be obtained by

replacing functors in the definition of monoidal category with profunctors.

Definition 1.3.1. A profunctor F : A −7→ B is a functor F : Bop ×A→ V.

There is a symmetric monoidal bicategory Prof consisting of categories, profunctors,

and natural transformations [DS97]. A promonoidal category is then a pseudomonoid

object in Prof . Unpacking this statement gives the definition below.

In the following definition we will write P (a, b, c) as Pabc in order to save space.

Similarly, we will write A(a, b) as Aab. The cartesian product is omitted in favour of

a ·, while each expression with a repeated variable is intended to mean a coend. For

example,

Pxbc · Pyxd · Paye =

∫ x,y

Pxbc × Pyxd × Paye.
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We will also encounter Yoneda isomorphisms on a functor P which has three inputs. If

for example, we fix a and b in order to give a functor Pab− with one input then we will

write the Yoneda isomorphism as y3 in order to make clear which variable is under the

coend.

Definition 1.3.2. A promonoidal category over V consists of:

• A category C;

• A functor P : Cop × C× C→ V;

• A functor J : Cop → V

• A natural isomorphism a in Cat(Aop ×A×A×A,V), with components

aabcd :

∫ x

P (x, b, c)× P (a, x, d)→
∫ x

P (x, c, d)× P (a, b, x);

• Natural isomorphisms l and r in Cat(Aop ×A,V), with components

lab :

∫ x

Jx× P (a, x, b)→ A(a, b),

rab :

∫ x

Jx× P (a, b, x)→ A(a, b).

These are subject to the following axioms.

PC1 given objects a, b, c, d, e ∈ A, the following diagram commutes;

Pxbc · Pyxd · Paye Pxcd · Pybx · Paye

Pxcd · Pyxe · Paby

Pxde · Pycx · Paby

Pxbc · Pyde · Paxy

Pyde · Pxbc · Paxy

Pyde · Pxcy · Pabx

a1 //

1a

%%

a1

��

1a

��

'

��

1a
''

id
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PC2 given objects a, b, c ∈ A, the following diagram commutes.

Pabc

Axb · Paxc

Jy · Pxby · Paxc Jy · Pxyc · Pabx

Axc · Pabx

Pabc

y−1
2

??

r−11
??

1a //

l1
��

y3

��

id
//

Each monoidal category (C,⊗, I, α, l, r) describes a promonoidal category where

P (a, b, c) = A(a, b⊗ c) and Ja = A(a, I).

1.4 Day convolution

When C is also monoidal then we can equip Ĉ with a monoidal structure given by

the convolution tensor product of Day [Day71], which realises Ĉ as the free monoidal

cocompletion of C. The convolution of two presheaves F,G : Cop → V is given by the

coend formula:∫ c

Fc⊗
∫ d

Gd⊗ C(−, c⊗ d) ∼=
∫ c,d

Fc⊗Gd⊗ C(−, c⊗ d).

The unit for this monoidal structure is the hom-functor C(−, I), the image of the unit

for the monoidal structure in C.

Lemma 1.4.1. The hom-functor y(I) is a unit for the convolution tensor product on Ĉ.

Proof. The convolution of a presheaf F with y(I) is given by

F ? y(I) ∼=
∫ c,d∈C

Fc⊗ C(d, I)⊗ C(−, c⊗ d)

∼=
∫ c∈C

Fc⊗ C(−, c⊗ I)

∼=
∫ c∈C

Fc⊗ C(−, c)

∼= F.

The associator involves a sequence of isomorphisms between coends utilising the

Fubini theorem for coends, the co-Yoneda lemma, and the associator in C. The following
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sequence of isomorphisms shows the unravelling of the coends describing (F ? G) ? H,

which can then be similarly shown to be isomorphic to F ? (G ? H).

(F ? G) ? H ∼=
∫ a,b∈C

(F ? G)a⊗Hb⊗ C(−, a⊗ b)

∼=
∫ a,b,c,d∈C

Fc⊗Gd⊗ C(a, c⊗ d)⊗Hb⊗ C(−, a⊗ b)

∼=
∫ b,c,d∈C

Fc⊗Gd⊗Hb⊗
∫ c∈C

C(a, c⊗ d)⊗ C(−, a⊗ b)

∼=
∫ b,c,d∈C

Fc⊗Gd⊗Hb⊗ C(−, (c⊗ d)⊗ b)

∼=
∫ b,c,d∈C

Fc⊗Gd⊗Hb⊗ C(−, c⊗ (d⊗ b))

When we approach the generalisation of Day convolution to monoidal bicategories,

we will start with a promonoidal structure before equipping presheaves with a monoidal

structure. In the above discussion we started with a monoidal category C and used the

promonoidal structure given by P (a, b, c) = C(a, b⊗c). We can instead assume only that

C carries a promonoidal structure (C, P, J,a, l, r) in which case we define the convolution

product of two presheaves F,G : Cop → V to be

F ? G =

∫ c,d

Fc⊗Gd⊗ P (−, c, d).

The associator for the monoidal structure on C is then described by the composite

(F ? G) ? H ∼=
∫ a,b,c,d

Fa⊗Gb⊗ P (c, a, b)⊗Hd⊗ P (−, c, d)

∼=
∫ a,b,c,d

Fa⊗Gb⊗Hd⊗ P (c, a, b)⊗ P (−, c, d)

∼=
∫ a,b,c,d

Fa⊗Gb⊗Hd⊗ P (c, b, d)⊗ P (−, a, c)

∼= F ? (G ? H).

The monoidal category axioms are checked using commutative diagrams similar to those

in Section 4.2 with the omission of the invertible 2-cells, instead using identities. Un-

ravelling this definition in the case that C is a monoidal category leads to the previous

associator.

The following theorem is the main result that we partly generalise for monoidal
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bicategories.

Theorem 1.4.2 (Day). Let C be a promonoidal category. Then Ĉ is a monoidal category

admitting a biclosed structure.

Free cocompletions and Day convolution go hand in hand. If C is a monoidal cat-

egory, then Ĉ is a monoidal category with respect to the convolution product, which

characterises the free monoidal cocompletion of C, as described by Im and Kelly [IK86].

Definition 1.4.3. Let C be a monoidal category. We say that C is monoidally cocomplete

if C is cocomplete and the functors

a⊗− : C→ C,−⊗ b : C→ C

preserve colimits.

Remark 1.4.4. The conditions of the previous definition are satisfied when C is a

biclosed monoidal category. In this case, each of the functors a⊗− and −⊗ b have right

adjoints, hence they preserve colimits.

Proposition 1.4.5. Let C be a monoidal 2-category. Then [Cop,Cat] is the free monoidal

cocompletion of C.

This is a rather strict result. The cocompletion of C as a Cat-enriched category is the

cocompletion under Cat-weighted limits. These are strict 2-colimits in which cocones

are required to commute strictly, unlike the bicolimits we have previously discussed.

1.5 Bicategories and Bicolimits

Bicategories live in the world of 2-dimensional category theory. Unlike a strict 2-category,

the composition of 1-cells in a bicategory is not strictly associative. For any three

composable 1-cells h, g, f there is an invertible 2-cell ahgf : (hg)f ∼= h(gf) and similarly

for any 1-cell f there are invertible 2-cells lf : 1f ∼= f ,rf : f1 ∼= f , all of which are

governed by axioms akin to those of a monoidal category - a monoidal category can be

thought of as a single object version of a bicategory. The standard reference is [Bén67] for

which definitions can be found for bicategories (Section 2), wherein the composition of 2-

cells within a bicategory, along with the interchange law, is described in an illuminating

geometric fashion.
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Definition 1.5.1. Let A be a bicategory. The opposite bicategory Aop is the bicategory

A in which the source and target of each 1-cell is reversed. For the coherence cells,

l = rop, r = lop, and aophgf = a−1
hgf .

The main notion of morphism between bicategories that we will consider is that of

a pseudofunctor, defined as a orphism of bicategories by Bénabou [Bén67][Section 4].

A pseudofunctor P : A → B between bicategories is similar to a 2-functor between 2-

categories but does not preserve composition or identities on the nose. Instead there are

coherent isomorphisms

φPg,f : PgPf ⇒ P (gf)

and

φPa : P (ida)⇒ idPa

in B.

Going up a dimension from the usual world of categories affords an extra degree of

freedom. This extra versatility allows us to define a range of limit and colimit notions,

not all of which satisfy the usual strict universal properties from 1-dimensional category

theory. The colimits that we will consider will be the type often referred to as bicolimits.

These bicolimits have both a 1-dimensional and a 2-dimensional universal property.

The 1-dimensional property, in dealing with 1-cells from a bicategory, only specifies the

existence of mediating 1-cells and does not require any form of uniqueness. Since the

top dimension in a bicategory involves strict composition of 2-cells the 2-dimensional

property does require uniqueness. Unlike many other types of 2-dimensional limits one

can can consider in 2-categories and bicategories, bicolimits cannot be defined using

weighted colimits.

A final remark on bicolimits is to mention the way that they are objects characterised

by an equivalence of categories.

Definition 1.5.2. Let P : A → B be a pseudofunctor. The bicolimit of P , if it exists,

is an object bicP in B for which there is an equivalence of categories

B(bicP, b) ' Bicat(A,B)(P,∆b)

where b ∈ B and ∆b is the constant pseudofunctor at b. Furthermore, this equivalence

is natural in b.

Since the above definition refers to an equivalence the 1-dimensional property will

only concern existence of certain 1-cells, without any indication of uniqueness. However,
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the 2-dimensional property does govern uniqueness in induced 2-cells. We unfold this

definition as a remark below and will mostly refer to this explicit description instead.

Remark 1.5.3. Let P : A→ B be a pseudofunctor between bicategories. The bicolimit

of P consists of an object bicP of B, a family of 1-cells {ia : Pa → bicP}a∈A, and a

family of invertible 2-cells

Pa

bicP

Pb

ia

''

ib

77
Pf

��

if ��

indexed by the 1-cells of A.

Given another object X of B, with similar families of 1-cells ja and invertible 2-cells

jf , there exists a 1-cell h : bicP → X and an invertible 2-cell

Pa

bicP

X

ia
77

ja ''

h

��

ha��

such that

Pa bicP

Pb X

Pa bicP

Pb X.

ia //

Pf

��

h

��

jb
//

ib

??

ia //

Pf

��

h

��

jb
//

ja

��

if��

hb �� jf��

ha ��

Furthermore, given two 1-cells h, k : bicP → X and 2-cells γa : h · ia ⇒ k · ia satisfying

Pa bicP

Pb bicP X

ia //

h

��

Pf

��

ib
//

k
//

ia

��

if��
γa��

Pa bicP

Pb bicP

X
ia // h //

Pf

��

ib
//

k

??

ib

??

if�� γb��

there is a unique 2-cell γ : h⇒ k such that γ ∗ 1ia = γa for all a ∈ A.

Furthermore, given two composable 1-cells f : a → b and g : b → c in A there is an

equality of pasting diagrams as follows.
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Pa

Pb

Pc

bicP

ia

""

ib //

ic

<<

Pf

��

Pg

��

P (gf)

##

∼=

if
{�

ig
{�

Pa

Pc

bicP

ia

""

ic

<<
P (gf)

##

igf
{�

This equality follows from the pseudonaturality axioms. Similarly there is an equality

of pasting diagrams involving iida expressing the fact that

1ia ∗ φPa · iida = ria .

The properties of a bicolimit ensure that any other object satisfying such properties

will be adjointly equivalent in the following sense, following [Gur12].

Definition 1.5.4. Let A be a bicategory. Let f : a → b and g : b → a be 1-cells in A.

An adjunction f a g consists of 2-cells η : 1a ⇒ gf and ε : fg ⇒ 1b satisfying the triangle

identities. We will refer to (f, g) as an adjoint pair, saying that f is left adjoint to g and

that g is right adjoint to f .

Definition 1.5.5. We say that an adjoint pair f and g form an adjoint equivalence if

the unit and counit maps of the previous definition are invertible.

We point out Remark 1.2 of [Gur12], noting that an adjoint pair in the bicategory

Cat reduces to the usual definition of an adjunction between functors. When specifying

the adjoint of a 1-cell f we will write it as f �.

Remark 1.5.6. Section 1.2 of [Gur13a] gives a thorough discussion of 2-cells between

adjoint pairs. If f, g : a → b are both left adjoints in an adjoint pair in a bicategory B

then there is a bijection between 2-cells α : f ⇒ g and α� : g� ⇒ f �. This can be seen as

an instance of Lemma 1.6 therein.

Remark 1.5.7. Let A be a bicategory. There is a bicategory Aadj which has the same

0-cells and adjoint pairs as 1-cells. A 2-cell (f, f �, εf , ηf ) ⇒ (g, g�, εg, ηg) consists of a

pair of 2-cells α : f ⇒ g and β : f � ⇒ g� satisfying a suitable condition. According to

[CF07] each of these pairs is invertible, with α� = β−1. Furthermore, if we consider the
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sub-bicategory Ainv of A with only invertible 2-cells then Aadj is itself a sub-bicategory

of Ainv determined by the left adjoints.

From now on we will often refer to the bicategory of pseudofunctors between two

given bicategories. If A and B are bicategories then there is a bicategory

Bicat(A,B)

which has pseudofunctors F : A→ B as 0-cells, pseudonatural transformations α : F ⇒
G as 1-cells, and modifications Γ: α V β for 2-cells [GG09]. Definitions of pseudonat-

ural transformations and modifications can be found in [BG88], wherein pseudonatural

transformations are referred to as pseudotransformations.

For completeness we mention some further facts about bicategories. Given two bicat-

egories A and B we describe the product bicategory A×B as follows. The 0-cells are given

by pairs (a, b) where a ∈ A and b ∈ B are both 0-cells. Similarly the hom-categories are

defined as

(A×B) ((a, b), (c, d)) = A(a, c)×B(b, d).

Street [Str80] gives us the following lemma, an analogue of the familiar hom-tensor

adjunction, for bicategories and pseudofunctors.

Lemma 1.5.8 (Street). There are biequivalences

Bicat(A×B,C) ' Bicat(A,Bicat(B,C)).

1.6 Monoidal Bicategories

We will describe monoidal bicategories as one-object tricategories, following the algebraic

definition of Gurski [Gur13a]. We will also use this opportunity to introduce the string

diagram notation that we will use later in defining promonoidal bicategories. The reader

wishing to see axioms for monoidal bicategories presented as pasting diagrams may wish

to consider the aforementioned book of Gurski.

Definition 1.6.1. A monoidal bicategory A consists of the following data.

• A bicategory A;

• A pseudofunctor ⊗ : A×A→ A;

• A pseudofunctor I : 1→ A, where 1 is the unit bicategory;
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• An adjoint equivalence

A3 A2

AA2

⊗×1
//

⊗
��

1×⊗
��

⊗
//

a��

in Bicat(A3,A);

• Adjoint equivalences

A

A2

A

I×1

;;

⊗

##

1
//

l��

A

A2

A

1×I
;;

⊗

##

1
//

r��

in Bicat(A,A);

• An invertible modification

A4 A3

A3 A3

A2 A

A2

⊗×1×1
//

⊗×1

��

⊗
��

1×1×⊗

��

1×⊗
��

⊗
//

1×⊗×1

��

⊗×1 //

1×⊗
��

a×1��

a��

1×a
{�

A4 A3

A3 A2

A2 A

A2

∼=

⊗×1×1
//

⊗×1

��

⊗
��

1×1×⊗

��

1×⊗
��

⊗
//

1×⊗
��

⊗×1 //

⊗
��

a
{�

a��

V
π

in Bicat(A4,A), which we will depict as follows;

π

a

a a

a1 1a
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• Invertible modifications

A2

A3 A2

A2 A

1

��

⊗
��

1

((

⊗
//

1×I×1

��

⊗×1 //

1×⊗
��

r�×1��

1×l��
a��

A2

A2

A2 A

1

��

⊗
��

1

((

⊗
//

1��V
µ

A2

A3

A2

A A

∼=

I×1×1
77

⊗×1

''

1
//

⊗
��

⊗
��

1
//

l×1��
A2

A3

A2

A A

A2
∼=

I×1×1
77

⊗×1

''

⊗
��

⊗
��

1
//

I×1

77

⊗
''

1×⊗
�� a��

l��

V
λ

A2

A3

A2

A A

∼=

1×1×I '' 1×⊗

77
1 //

⊗

OO

⊗

OO

1 //

1×r���
A2

A3

A2

A A

A2∼=

1×1×I '' 1×⊗

77

⊗

OO

⊗

OO

1 //

1×I
''

⊗
77

⊗×1

OO a��

r��
V
ρ

in Bicat(A2,A), which we will depict, respectively, as follows.

µ

r�1 a1l

λ

l1

la

µ

1r�

ar�
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MB1 The following string diagram equation holds in A, where the braids are naturality

isomorphisms for a.

1π

1a 1(1a)(1a)1 a

π

a1

π1

a a

π1

a1(a1)1 (1a)1

π

a 1a

π

a a

(a1)1

a

1(1a)

a

MB2 The following string diagram equation holds in A, where the braids are either

naturality isomorphisms for a or coherence cells in A.
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µ

λ

π

a1

µ

(r�1)1 (1l)1a1(1l)1 a(r�1)1

a

a

a

MB3 The following string diagram equation holds in A.

µ

µ

π

1a

ρ

1(1l)1(r�1) 1a 1(r�1)a 1(1l)

a

a

a

In the above string diagrams there are various braidings that occur. In this depiction

it does not matter which string is above in a braid, we simply depict the crossing for

clarity.



Chapter 2

Extrapseudonaturality and

Bicodescent Objects

In this chapter we will define the notion of extrapseudonatural transformation, a weak

2-dimensional generalisation of extranatural transformations - a similar generalisation

is seen in the thesis of Lawler [Law15]. We could generalise dinatural transformations

in an analogous way, though we do not investigate that here. We will begin by defining

extrapseudonatural transformations before proving a host of useful lemmas which we

will use to investigate the connection with bicodescent objects. This will culminate in a

Fubini theorem for bicodescent objects.

2.1 Extrapseudonatural Transformations

Extranatural transformations were first defined by Eilenberg and Kelly [EK66b] for use

in their subsequent article on closed categories [EK66a].

Definition 2.1.1. Let P : A×Bop×B→ D and Q : A×Cop×C→ D be pseudofunctors.

An extrapseudonatural transformation β : P
··⇒ Q consists of

• for each b ∈ B, c ∈ C, a pseudonatural transformation β−bc : P (−, b, b)⇒ Q(−, c, c);

• for each g : b→ b′ in B, an invertible 2-cell in D

P (a, b′, b) P (a, b, b)

P (a, b′, b′) Q(a, c, c);

P1g1
//

P11g

��

βabc
��

βab′c

//

βagc��
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• for each h : c→ c′ in C, an invertible 2-cell in D

P (a, b, b) Q(a, c′, c′)

Q(a, c, c) Q(a, c, c′).

βabc′//

βabc
��

Q1h1

��

Q11h

//

βabh��

These are required to satisfy the following axioms.

• EP1 Given f : b→ b′ and g : b′ → b′′ in B, there is an equality of pasting diagrams

Pab′′b

Pab′b

Pabb

Pab′′b′

Pab′′b′′

Qacc

P1f1

((

P1g1

��

βabc
vv

P11g
vv

P11f

��

βab′′c
((

P11(gf)

��

P1(gf)1

��

∼=

βa(gf)c
w�

∼=

Pab′′b

Pab′b

Pabb

Pab′′b′

Pab′′b′′

Qacc

Pab′b′

P1f1

((

P1g1

��

βabc
vv

P11g
vv

P11f

��

βab′′c
((

P11g
vv

P1f1
((

βab′c

��

∼=

βagc
w�

βafc
w�

for all a ∈ A, c ∈ C.

• EP2 Given h : c→ c′ and i : c′ → c′ in C, there is an equality of pasting diagrams

Pabb

Qac′′c′′

Qac′c′′

Qacc

Qacc′

Qacc′′

βabc′′
((

Q1i1

��

Q1h1
vv

βabc
vv

Q11h

��

Q11i
((

Q1(ih)1

��

Q11(ih)

��

∼=

βab(ih)
w�

∼=

Pabb

Qac′′c′′

Qac′c′′

Qacc

Qacc′

Qacc′′

Qac′c′

βabc′′
((

Q1i1

��

Q1h1
vv

βabc
vv

Q11h

��

βabc′

��

Q11i
((

Q11i
((

Q1h1
vv ∼=

βabi
w�

βabh
w�

for all a ∈ A, b ∈ B.

• EP3 For each f : a → a′ in A and g : b → b′ in B there is an equality of pasting
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diagrams

Pab′b

Pa′b′b

Pa′bb

Qa′cc

Pab′b′

Qacc

Pa′b′b′

Pf11
((

P11g

��

βa′bc
vv

P1g1
vv

βab′c

��

Qf11
((

P1g1
vv

βa′b′c

��

Pf11
((

∼=

βa′gc
w�

βfbc
w�

Pab′b

Pa′b′b

Pa′bb

Qa′cc

Pab′b′

Qacc

Pabb

Pf11
((

P11g

��

βa′bc
vv

P1g1
vv

βab′c

��

Qf11
((

P11g

��

Pf11
((

βabc
vv

∼=
βagc
w�

βfb′c
w�

for all c ∈ C.

• EP4 For each f : a → a′ in A and h : c → c′ in C there is an equality of pasting

diagrams

Pabb

Pa′bb

Qa′c′c′

Qa′c′c

Qacc

Qacc′

Qa′cc

Pf11
((

βa′bc′

��

Q1h1
vv

βabc
vv

Q11h

��

Qf11
((

βa′bc
vv

Q11h

��

Qf11
((

∼=

βfbc′
w�

βabh
w�

Pabb

Pa′bb

Qa′c′c′

Qa′c′c

Qacc

Qacc′

Qac′c′

Pf11
((

βa′bc′

��

Q1h1
vv

βabc
vv

Q11h

��

Qf11
((

βabc

��

Qf11
((

Q1h1
vv

∼=

βfbc
{�

βa′bh
w�

for all b ∈ B.

• EP5 For each a ∈ A, b ∈ B, and c ∈ C,

βa1bc = idβabc·Pabb , βab1c = idQacc·βabc .
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• EP6 Given g, g′ : b→ b′ and γ : g ⇒ g′ in B, there is an equality of pasting diagrams

Pab′b Pabb

Pab′b′ Qacc

Pag′b

//

Pab′g′

��

βabc

��

βab′c

//

Pagb

  

βag′c��

Paγb��
Pab′b Pabb

Pab′b′ Qacc

Pagb
//

Pab′g

��

βabc

��

βab′c

//

Pab′g′

##

βagc��
Pab′γks

for all a ∈ A, c ∈ C.

• EP7 Given h, h′ : c→ c′ and δ : h⇒ h′ in C, there is an equality of pasting diagrams

Pabb Qac′c′

Qacc Qacc′

βabc′ //

βabc

��

Qahc′

��Qach //

Qah′c

>>

βabh��

Qacδ��

Pabb Qac′c′

Qacc Qacc′

βabc′ //

βabc

��

Qah′c′

��

Qach′
//

Qahc′

{{

βabh′��
Qaδc′ks

for all a ∈ A, b ∈ B.

Remark 2.1.2. There are a large number of axioms in the definition of an extrapseudo-

natural transformation. In practice we will find that only a subset of these will need

to be checked. For example, if Q in the above definition was a constant pseudofunctor

then each 2-cell βabh is in fact an identity idQ · idβab� . This would mean that EP2, EP4,

EP7, and the second part of EP5 would all hold automatically.

In the one dimensional case a transformation is extranatural in the pair (a, b) if and

only if it is extranatural in a and b separately. For extrapseudonatural transformations,

however, this is no longer true. Being extrapseudonatural in a and b separately only

implies extrapseudonaturality in (a, b) under the conditions of the following lemma,

though the converse still holds.

Lemma 2.1.3. Let P : Aop × Bop × A × B → C be a pseudofunctor and let X ∈ C.

Suppose, respectively, that for fixed a ∈ A and for fixed b ∈ B, γa− : P (a,−, a,−)
··⇒ X

and γ−b : P (−, b,−, b) ··⇒ X are extrapseudonatural transformations such that (γa−)b =
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(γ−b)a. If there is an equality of pasting diagrams

Pa′b′ab

Pa′bab Pabab

Pa′b′a′b

Pa′b′a′b′ X

Pa′ba′b

Pfgab

$$
Pa′gab

))
Pfbab //

Pa′b′fg

��

Pa′b′fb

��

Pa′b′a′g

��

γab

��

γa′b′
//

γa′b

��

Pa′ga′b
))

Pa′bfb

��

Pa′b′ab

Pab′ab Pabab

Pa′b′ab′

Pa′b′a′b′ X

Pab′ab′

Pfgab

$$
Pfb′ab

))
Pagab //

Pa′b′fg

��

Pa′b′ag

��

Pa′b′fb′

��

γab

��

γa′b′
//

γab′

��

Pfb′ab′
))

Pab′ag

��

γfb�� γag��

γa′g��
γfb′��

∼= ∼=

∼= ∼=

∼= ∼=

=

then these 2-cells constitute an extrapseudonatural transformation γ : P
··⇒ X.

Proof. All of the axioms to check extrapseudonaturality for the above 2-cells are satisfied

as a result of the corresponding axioms for the individual transformations, naturality of

coherence cells for P and of those in A and B, as well as the equality of 2-cells stated

above which is needed for axioms EP1 and EP2.

Lemma 2.1.4. Let P : Aop×Bop×A×B→ C be a pseudofunctor and let X ∈ C. Suppose

that γ : P
··⇒ X is an extrapseudonatural transformation. If a ∈ A is fixed then there

is an extrapseudonatural transformation γa− : P (a,−a,−)
··⇒ X. Similarly, if b ∈ B is

fixed then there is an extrapseudonatural transformation γ−b : P (−, b,−, b) ··⇒ X.

Proof. Since the pseudofunctor in the codomain is constant at the object X we need

only check that EP1, EP3, EP6, and the first part of EP5 hold. The axiom EP3 is a

consequence of the pseudofunctor axioms for P , the first part of EP5 holds for γa− holds

via the axiom EP5 for γ, while EP6 holds for γa− also holds via EP6 for γ. To show

that EP1 holds for γa− is more involved but fairly simple, resulting from instances of

EP1 and EP6 for γ. We must show that two diagrams are equal, one featuring γ1a,hg

and the other featuring both γ1a,g and γ1a,h. By EP1 for γ the diagram featuring γ1a,g

and γ1a,h is equal to one featuring γ1a1a,hg. At this point we use EP6 to show that this

diagram is equal to the diagram featuring γ1a,hg. Hence γa− is an extrapseudonatural

transformation. A similar argument holds for γ−b.
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2.2 Composition Lemmas

The article of Eilenberg and Kelly [EK66b] in which extranatural transformations are

defined also investigates the ways in which they can be composed. We now present

generalisations of the simplest forms of these arguments for extrapseudonatural trans-

formations. In many cases from this point onwards we deal with extrapseudonatural

transformations into or out of constant pseudofunctors on an object of a bicategory. We

denote the constant pseudofunctor on an object H either by ∆H : 1op × 1→ C or, most

commonly, simply by H.

We can picture the first of the composition lemmas in the string diagram format

mentioned in Chapter 1. We have a pseudonatural transformation β : F ⇒ G where

F,G : Aop × A → C, along with an extrapseudonatural transformation γ : G
··⇒ H, for

some object H ∈ C. We define a composite which results in an extrapseudonatural

transformation F
··⇒ H. Graphically this looks like the following diagram, sometimes

referred to as ‘stalactites’ due to the shape.

Aop

Aop

Aop

A

A

A

Lemma 2.2.1. Let F , G : Aop×A→ C be pseudofunctors and let H ∈ C. Suppose that

β : F ⇒ G is a pseudonatural transformation and that γ : G
··⇒ H is an extrapseudonat-

ural transformation. Then there is an extrapseudonatural transformation from F to H

given by composites of the cells constituting β and γ.

Proof. The 1-cells of the extrapseudonatural transformation are given by the composites

δa = γa · βaa. Given a 1-cell f : a→ b in A, we give 2-cells δf : δa · F (f, 1)⇒ δb · F (1, f)
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by the following diagram.

F (b, a)

F (a, a)

G(b, a)

H

F (b, b)

G(b, b)

G(a, a)

F (f,1)
((

βaa

��

γavv

F (1,f)
vv

βbb

��

γb ((

βba

��

G(f,1)
((

G(1,f)
vv

βf1
w�

β−1
1f

w�

γfw�

As per Remark 2.1.2, ∆H is a constant pseudofunctor and so the other 2-cells required

are all identities.

The axioms EP2-5 are simple to check, whilst EP1 requires a sequence of involved

pasting diagrams. We will consider the initial and final pasting diagrams in the sequence

and describe the steps required to complete the proof. The left-hand diagram of axiom

EP1 is given, in this instance, by the following pasting diagram.

F (c, a) F (b, a) F (a, a)

G(a, a)

H

F (c, b)

F (c, c)

G(c, c)

F (b, b)

G(b, b)G(c, b)

G(b, a)

F (g,1)
//

F (f,1)
//

βaa

''

γa

��

F (1,f)

��

F (1,g)

��

βcc ''

γc
//

F (1,f)

��

F (g,1) //

βbb
''

γb

''

βcb
''

G(g,1) //

G(1,g)

��

βba
''

G(f,1) //

G(1,f)

��

∼= βf1��

β−1
1f��

βg1��

β−1
1g��

γf��

γg��
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The right-hand diagram of EP1 is given by the following diagram.

F (c, a) F (b, a)

F (a, a)

G(a, a)

H

F (c, b)

F (c, c) G(c, c)

G(c, a)

F (g,1)
//

F (f,1)

''

βaa
��

γa

��

F (1,f)

��

F (1,g)
''

βcc
//

γc
//

βca

''

G(gf,1) //

G(1,gf)

��

F (gf,1)

,,

F (1,gf)

��

∼=

∼=

βgf,1��

β−1
1,gf��

γgf��

The coherence cells in the top left of the first diagram allow us to use the composition

axiom for β to replace βg1 ∗ 1F (1,f) and 1F (g,1) ∗β−1
1f with the corresponding components

of β and coherence cells for G on the composites G(g, 1) ·G(1, f) and G(1, f) ·G(g, 1).

Naturality of β on 2-cells, specifically the unitors in Aop×A, gives a new diagram where

βg,f meets its inverse, leaving appropriate coherence cells in the square adjoining γg and

γf to apply EP1 for γ. This leaves a diagram with γgf in the lower right corner, at

which point we use instances of the composition axiom for β followed by its naturality on

unitors again to yield the final diagram. The rest of the axioms are simple to check.

The following lemma is the opposite of the previous lemma, having an extrapseudo-

natural transformation out of a constant pseudofunctor. Graphically the lemma corre-

sponds to the following ‘stalagmite’ diagram.

Bop

Bop

Bop

B

B

B

Lemma 2.2.2. Let F ∈ A and let G, H : Bop×B→ C be pseuodfunctors. Suppose that

β : F
··⇒ G is an extrapseudonatural transformation and that γ : G⇒ H is a pseudonat-

ural transformation. Then there is an extrapseudonatural transformation from F to H

given by composites of the cells constituting β and γ.

Proof. This proof is analogous to that of the previous lemma, only this time the axiom

EP2 is the involved part.
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The final composition lemma corresponds to a graphical ‘yanking’ of strings.

A Aop A

A A

AA

Lemma 2.2.3. Let F,H : A → C and G : A × Aop × A → B be pseudofunctors. Let

a, b ∈ A. Suppose that

βb : Fb
··⇒ G(−,−, b), γa− : G(a,−,−)

··⇒ Ha

are extrapseudonatural transformations and that

βa− : F ⇒ G(a, a,−), γ−b : G(−, b, b)⇒ H

are pseudonatural transformations such that (βa−)b = (β−b)a and (γa−)b = (γ−b)a. Then

there is a pseudonatural transformation from F to H given by composites of the cells

constituting β and γ.

Proof. We need to construct a pseudonatural transformation from F to H. The 1-

cell components are given by δa = γaa · βaa, whilst the 2-cell component, δf , for some
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f : a→ b in A is given by the pasting diagram below.

Fa Fb

G(b, b, b)

Hb

G(a, a, a)

Ha

G(b, b, a)

G(b, a, a)

Ff
//

βbb

��

γbb

��

βaa

��

γaa

��

Hf
//

βba
%%

G(1,1,f)

%%

G(1,f,1)

��

G(f,1,1)

%%

γba

%%

βbf��

γfa��

β−1
fa��

γ−1
bf��

Similar to the proof of the previous lemmas, the proof of the composition axiom relies

on a sequence of pasting diagrams. The first diagram in the sequence is given by the

component δgf with the coherence cells for F and G applied on the top and bottom.

Fa Fc

G(c, c, c)

Hc

G(a, a, a)

Hc.

G(c, c, a)

G(c, a, a)

Fb

Hb

F (gf) //

βcc

��

γcc

��

βaa

��

γaa

��

H(gf) //

βba
%%

G(1,1,gf)

%%

G(1,gf,1)

��

G(gf,1,1)

%%

γca

%%

Ff
55

Fg

))

Gf )) Gg

55

βc(gf)��

γ(gf)a��

β−1
(gf)a��

γ−1
c(gf)��

φFgf��

(φGgf )−1

��
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The final diagram is given below.

Fa Fc

G(c, c, c)

Hc

G(a, a, a)

Ha

G(b, b, b)

G(b, b, a)

Fb

Hb

G(b, a, a)

G(c, c, b)

G(c, b, b)

βcc

��

γcc

��

βaa

��

γaa

��

Ff
//

Fg
//

Gf
//

Gg
//

βba
%%

G(1,1,f)

%%

G(1,f,1)

��

G(f,1,1)

%%

γba

%%

βbb

��

γbb

��

βcb
%%

G(1,1,g)

%%

G(1,g,1)

��

G(g,1,1)

%%

γcb

%%

βbf��

γfa��

β−1
fa��

γ−1
bf��

βcg��

γgb��

β−1
gb��

γ−1
cg��

The first step is to use the composition axioms for the pseudonatural components of β

and γ, replacing the components at gf with those for g and f , whilst also introducing

the composition coherence cells for G(−, a, a) and G(c, c,−). Now we can apply axioms

EP2 and EP1, respectively, for the extrapseudonatural components of β and γ. This

gives a diagram with extrapseudonatural components for β and γ at g and f , along with

a large number of coherence cells in the middle of the diagram. At this point many

of the coherence cells cancel out and we are then able to apply axioms EP4 and EP3,

respectively, for the mixed components of β and γ. The coherence cells introduced by

the use of these axioms then cancel in the middle of the diagram, yielding the second

diagram pictured above.

The component δida is plainly seen to the be the identity. Axiom EP5 ensures the ex-

trapseudonatural components at identity morphisms are themselves identities and what

remains is simply a composition of pseudonatural components at identities. The axioms

EP6 and EP7 are a simple chase of 2-cells through the component pasting diagram

defined at the start of the proof.

2.3 Bicodescent Objects

Descent objects, the dual notion to codescent objects, first appeared in [Str76] before

being formally defined by Street in [Str87]. We will base our definition of bicodescent

object upon that given by Lack in [Lac02], where codescent objects are used to study co-



36 2. Extrapseudonaturality and Bicodescent Objects

herence for the algebras of 2-monads. Each of these treatments of codescent objects goes

on to define them as weighted colimits, whereas our weaker notion of bicodescent object,

being a bicolimit, has no description using weights. However, one could investigate the

connection between weighted bicolimits, following [Str80], [Str87], and bicoends. We

will go on to recast the definition of bicodescent object as a universal object amongst

extrapseudonatural transformations (sometimes referred to as bicoends), allowing us to

obtain a Fubini theorem for bicodescent objects.

Definition 2.3.1. Let B be a bicategory. Coherence data consists of a diagram

X1 v // X2
w
oo

uoo
X3.

r
oo

qoo
p

oo

in B along with invertible 2-cells

δ : uv ⇒idX1 , γ : idX1 ⇒ wv, κ : up⇒ uq,

λ : wr ⇒ wq, ρ : ur ⇒ wp.

The bicodescent object of this coherence data consists of a 0-cell X, a 1-cell x : X1 → X,

and an invertible 2-cell χ : xu⇒ xw in B satisfying the following axioms.

BC1 The following pasting diagrams are equal.

X3 X2

X2 X2 X1 X1

X1 X;

p
//

u

""

x||

q

||
r
""

u //

w
||

w ""

x
//

x
""

w
||

ρ��

χ��

λ�� χ��

X3 X2

X2 X1

X1 X

p
//

u

""

x
||

q

||

w ""

x
//

u //

κ��

χ��
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BC2 The following pasting diagrams are equal.

X1 X2

X1

X1

X
v //

u
<<

w ""

x

""

x

<<
χ�� X1

X2

X2

X1 X

v
<<

v ""

u

""

w

<<

x //idX1
//

δ��

γ��

BC3 Given any other 0-cell Y , 1-cell y : X1 → Y , and 2-cell υ : yu ⇒ yw which satisfy

the previous two axioms, there exists a 1-cell h : X → Y and an isomorphism

ζ : hx⇒ y such that the following pasting diagrams are equal.

X2 X1 X

X1 Y

u // x //

h
��

y
//

y

��

w
��

ζ��υ
�� X1

X2 X1

Y

X

u //

w

��

x

��
x //

h
��

y
��

χ��

ζ��

BC4 Given a 0-cell Y , 1-cells h, k : X ⇒ Y , and a 2-cell β : h⇒ kx satisfying

X2

X1

X

X

Y

X1

u
??

x
??

h

��

w �� x

??

k

??
x

��

β��

χ��

X2

X1

X

X

YX1

u
??

x

��

h

��
w ��

x
�� k

??

x
??

χ��

β��

there exists a unique 2-cell β′ : h⇒ k such that β′ ∗ 1x = β.

Now we have defined bicodescent objects we will liken them to coends. (See Remark

3.2.1.) Coends can be described as a colimit for functors of the form F : Aop ×A→ C,

being given as the coequalizer

∫ a
F (a, a)

∐
a

F (a, a)
i

oo
∐
f
a→b

F (b, a)
ρ
oo

λoo

where λ and ρ act in a similar manner to u and w below. In our case, a bicodescent
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object will be a bicolimit for pseudofunctors of the form P : Bop×B→ C. The previous

definition only has two axioms but requires setting up a lot of data, whereas using

extrapseudonatural transformations requires little in the specification of data with the

trade-off of checking a few more axioms.

Given a pseudofunctor P : Bop ×B→ C we describe its coherence data as follows.

∐
a∈obB

P (a, a)
oo u

oo
w

∐
f

P (b, a)//v
oo
p
oo q
oo
r

∐
θ

P (c, a)

The middle coproduct is indexed over 1-cells f : a→ b while the last coproduct is indexed

over 2-cells θ : gf → h for 1-cells f : a→ b, g : b→ c, and h : a→ c.

In the following, the 1-cells Ia and Jf are coproduct inclusions. The 1-cell u is

determined by the 1-cells

P (b, a)
P (f,1)−→ P (a, a)

Ia−→
∐
a

P (a, a),

the 1-cell w is determined by the 1-cells

P (b, a)
Pbf−→ P (b, b)

Ib−→
∐
a

P (a, a),

and the 1-cell v is determined by the inclusion on identities. The 1-cell p is characterised

by the 1-cells

P (c, a)
Pga−→ P (b, a)

Jf−→
∐

f : a→b
P (b, a),

the 1-cell q is determined by the 1-cells

P (c, a)
Jh−→

∐
f : a→b

P (b, a),

and the 1-cell r is characterised by the 1-cells

P (c, a)
Pcf−→ P (c, b)

Jg−→
∐

f : a→b
P (b, a).

When we consider a pseudofunctor, say F : A→ B, we will write its coherence cells

as follows. For composition, on 1-cells f : a→ b, g : b→ c in A, we write

φFgf : F (g) · F (f)⇒ F (g · f)
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with

φFaa = φFida,ida

while for identities we write

φFa : F (ida)⇒ idFa

where a ∈ A. We now use the corresponding cells for P in order to determine the

coherence data for the bicodescent object of P . We will omit certain indices on the

pseudofunctor coherence cells for P when it is obvious. The 2-cell δ : uv ⇒ id is deter-

mined by the 2-cells

P (a, a) P (a, a)

P (ida,ida)

&&

idP (a,a)

88
φPaa��

Similarly the 2-cell γ : id⇒ wv is characterised by the inverses of those that give δ. The

2-cell κ : up⇒ uq is characterised by the 2-cells

P (c, a) P (a, a)

P (b, a)
P (g,1) 88 P (f,1)

��P (gf,11) ++

P (h,1)
33

φP��

P (θ,r1)��

and the 2-cell λ : wr ⇒ wq is characterised by the 2-cells

P (c, a) P (c, c).

P (c, b)
P (1,f) 88 P (1,g)

��P (11,gf) ++

P (1,h)
33

(φP ) ��

P (l1,θ) ��

The remaining 2-cell, ρ : ur ⇒ wp, is characterised by the 2-cells

P (c, a) P (b, b).

P (c, b)

P (b, a)

P (1,f)
77

P (g,1)

��

P (g,1)
''

P (1,f)

II

P (1g,1f)

##

P (g1,f1)

;;
P (g,f) //

φP��

P (r,l)��

P (l,r)−1
��

(φP )−1
��
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The following results will characterise bicodescent objects as objects which are uni-

versal amongst extrapseudonatural transformations. By this we mean that the mor-

phisms

ia : P (a, a)→ CodP

are part of the data for an extrapseudonatural transformation, satisfying universal prop-

erties as in Definition 2.3.3.

Lemma 2.3.2. Let (Y, y, υ) be data as in 2.3.1 satisfying only the axioms BC1 and

BC2 for the coherence data of a pseudofunctor P . Then it is necessary and sufficient

for the corresponding (Y, ya, υf ) to constitute an extrapseudonatural transformation.

Proof. Collectively the (Y, ya, υf ) give a triple (Y, y, υ). The axiom BC1 then follows

from the axioms EP1, to change an υgf into a composite of υg and υf , and EP6 for

the modification-like property. For BC2 we see that one side of the pasting diagram

corresponds to υida = idya·Paa by EP5, whilst the other side is a composite of δ and

γ = δ−1, giving the identity required.

Now we will show that the 1-cells

yb : P (b, b)→ Y

along with 2-cells, to be described, constitute an extrapseudonatural transformation.

As P is a pseudofunctor out of Bop ×B then we require pseudonatural transformations

between the pseudofunctor

∆P (b,b) : 1 −→ C

· 7−→ P (b, b)

1· 7−→ P (1b, 1b)

11· 7−→ idP (1b,1b)

and the constant pseudofunctor ∆Y . The 2-cell components at the identity are given by

P (b, b) P (b, b)

Y Y

P (1b,1b)

##

id
//

yb

��

yb

��

id
//

yb

""

φbb��

ryb
w�

l−1
yb

w�
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which we will denote by jb. Using the fact that in any bicategory the left and right

unitors at the identity are equal, along with the naturality of many of the coherence cells

we can see that this constitutes a pseudonatural transformation. The first collection of

extrapseudonatural 2-cells are given by

P (b, a) P (a, a)

P (b, b) Y

P (f,1)
//

ya

��

P (1,f)

��

yb
//

υf��

where υ is the 2-cell given in the triple. The second collection of extrapseudonatural

2-cells is given by the identity on the 1-cell idY · yb.

The axiom EP1 holds by an instance of BC1 using the identity 2-cell id : g · f ⇒ gf ,

whilst EP2 holds trivially. The third axiom, EP3, requires an equality of the following

two pasting diagrams.

P (b, a)

P (b, a)

P (a, a)

Y

P (b, b)

Y

P (b, b)

P (1,1)
((

P (f,1)

��

javv

P (1,f)
vv

jb

��

idY ((

P (1,f)
vv

jb

��

P (1,1)
((

∼=

jf
w�

jb
w�

P (b, a)

P (b, a)

P (a, a)

Y

P (b, b)

Y

P (a, a)

P (1,1)
((

P (f,1)

��

javv

P (1,f)
vv

jb

��

idY ((

P (f,1)

��

P (1,1)
((

ja

vv

∼=
jf
w�

ja
w�

Written out as a commutative diagram of 2-cells, including all coherence cells, this can

plainly be seen to hold as a result of naturality of various coherence 2-cells, unit axioms

for P , and triangle identities in C. The fourth axiom, EP4, follows by a similar, though

simpler, argument, whilst EP5 holds immediately due to δ and γ being inverse to each

other, giving

χida = idja·P (1a,1a).

Clearly axiom EP7 holds since we are considering a constant pseudofunctor ∆Y . It

remains then to check EP6 which requires, for each θ : g ⇒ g′ between g, g′ : a → b in
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B, an equality of pasting diagrams as follows.

P (b, a) P (a, a)

P (b, b) Y

P (g′,1)
//

P (1,g)

��

ya

��

yb
//

P (g,1)

!!

υg′��

P (θ,1)��
P (a, b) P (a, a)

P (b, b) Y

P (g,1)
//

P (1,g)





ya

��

yb
//

P (1,g′)

""

υg��
P (1,θ)ks

This is slightly tricky to prove but really relies on making a suitable choice of 2-cell in B

when considering BC1. First we can check that EP6 holds for the 2-cell rg : g · ida ⇒ g,

this relies on the fact that many of the pseudofunctor coherence cells for P , and the

image of some unitors, can be cancelled in the resulting diagrams. If we then have a

2-cell θ : g ⇒ g′ then choosing the 2-cell γ · rg

a

a

b

ida

77

g

��g
++

g′

;;

rg��

θ��

in an instance of BC1 proves that EP6 holds in all cases.

We now describe the bicoend of P as the universal extrapseudonatural transformation

out of P , which we will later use as our definition of bicodescent object.

Definition 2.3.3. Let P : Bop ×B→ C be a pseudofunctor. The bicoend of P is given

by i : P
··⇒
∫ b
P (b, b) satisfying the following universal properties:

• EB1 Given another object X with an extrapseudonatural transformation j : P
··⇒

X, there is a 1-cell j̃ :
∫ b
P (b, b) → X and isomorphisms Ja : j̃ · ia ∼= ja such that

the following equality of pasting diagrams holds.

Pba Paa
∫ b
P (b, b)

Pbb Y

Pf1
//

ia//

j̃
��

jb
//

ja

��
P1f ��

Ja��
jf
�� Pbb

Pba Paa

Y

∫ b
P (b, b)

Pf1
//

P1f

��

ia
��

ib //

j̃~~jb   

if��

Jb��
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• EB2 Given two 1-cells h, k :
∫ b
P (b, b)→ Y and 2-cells Γa : h · ia ⇒ k · ia satisfying

Pba

Paa

∫ b
P (b, b)

∫ b
P (b, b)

Y

Pbb

Pf1
??

ia ?? h

��

P1f �� ib

??

k

??

ia
��

Γa��

if��

Pba

Paa

∫ b
P (b, b)

∫ b
P (b, b)

YPbb

Pf1
??

ia
��

h

��P1f ��

ib �� k

??

ib

??

if��

Γb��

there is a unique 2-cell γ : h⇒ k such that Γa = γ ∗ 1ia for all a ∈ A.

Lemma 2.3.4. Let P : Bop × B → C be a pseudofunctor and suppose that i : P
··⇒∫ b

P (b, b) exists. Let j : P
··⇒ X be another extrapseudonatural transformation which

also satisfies the axioms EB1 and EB2. Then there is an adjoint equivalence between∫ b
P (b, b) and X.

In the sense of the above lemma we can consider bicodescent objects to be essentially

unique.

Proposition 2.3.5. Let P : Bop × B → C be a pseudofunctor. The bicodescent object

corresponding to the coherence data for P is equivalent to the bicoend of P .

Proof. By Lemma 2.3.2 the triple of a bicodescent object for P , (CodP, x, χ), provides

an extrapseudonatural transformation x : P
··⇒ CodP . It is clear that CodP satisfies the

same universal properties as
∫ b
P (b, b). Similarly the extrapseudonatural transformation

i from P to ∆∫ b P (b,b)
satisfies all of the axioms of a bicodescent object for P , including

the universal properties. We will describe how to show that these objects are equivalent.

The bicoend has invertible 2-cells if : ia ·Pfa ⇒ ib ·Pbf , where f : a→ b is a 1-cell in

B. Collectively this family of 2-cells corresponds to a 2-cell i.

∐
f

∐
a

∐
a

∫ b
Paa

u //

j

��

w

��

j
//

i��

Each of the 1-cells in the above diagram are induced using the universal properties of the
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displayed coproducts. The conditions in BC3 are met which induces a 2-cell as below.

CodP
∐
a Paa

∫ a
Paa

j
oo

s

��

j

||

∼=

Similarly the bicodescent object CodP is an extrapseudonatural transformation, as

previously described, satisfying the appropriate axioms. Since
∫ a
Paa is the universal

such transformation there is an induced 1-cell t :
∫ a
Paa → CodP satisfying the prop-

erties described in the previous definition. Our claim now is that s and t form an

equivalence in B.

It is simple to check this claim. In analogous 1-dimensional cases this would be im-

mediate following from the uniqueness inherent in the 1-dimensional universal property.

Since the 1-dimensional properties now no longer contain a uniqueness statement, we do

not find that s and t are inverses but that we instead obtain isomorphisms 1 ∼= st and

ts ∼= 1, as in the diagrams below.

CodP

∫ a
Paa

CodP

∐
a∈B Paa

x

bb

joo

x

||

s

��

t

��

id

##

∼=

∼=

∼=

CodP

∫ a
Paa

∫ a
Paa

∐
a∈B Paa

ia

bb

xaoo

ia
||

t

��

s

��

id

""

∼=

∼=

∼=

These isomorphisms can then be used to show that the two objects CodP and
∫ a
Paa
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are equivalent in B.

We will use the notation i : P
··⇒
∫ b
P (b, b) to refer to the bicodescent object corre-

sponding to a pseudofunctor P .

Lemma 2.3.6. Let P : A × Bop × B → C be a pseudofunctor. Assume that, for each

a ∈ A, the bicodescent object

ja : Pa−−
··⇒
∫ b

P (a, b, b)

exists in C. Then

a 7−→
∫ b

P (a, b, b)

is the object part of a pseudofunctor∫ b

P (−, b, b) : A→ C.

Proof. Each f : a→ a′ in A gives a pseudonatural transformation

Pf−− : Pa−− ⇒ Pa′−−.

By Lemma 2.2.1 there is then an extrapseudonatural transformation

ja
′ · Pf−− : Pa−−

··⇒
∫ b

Pabb,

inducing the following invertible 2-cells.

Pabb Pa′bb

∫ b
Pabb

∫ b
Pa′bb

Pfbb
//

ja
′
b

��

jab

��

∫ b Pfbb //
jfb��

The coherence cells of P along with these jfb induce coherence cells for these new 1-cells.

This can be seen more clearly in the remarks following the proof. The uniqueness in

the 2-dimensional universal property of each
∫ b
Pabb shows that each of the axioms for

a pseudofunctor are satisfied. Furthermore, the above 2-cells constitute pseudonatural

transformations jb : P−bb ⇒
∫ b
P−bb.
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For reference, we will describe the properties of the coherence cells for the pseudo-

functors
∫ b
P−bb : A→ C. The inverse of the invertible 2-cell

∫ b
Pabb

∫ b
Pa′bb

∫ b
Pa′′bb

∫ b Pfbb 55
∫ b Pf ′bb
��

∫ b P(f ′f)bb

//

φf ′,f��

induced by the 2-dimensional universal property of
∫ b
Pabb, upon being whiskered by jab ,

yields the invertible pasting diagram below.

Pabb
∫ b
Pabb

∫ b
Pa′′bb

∫ b
Pabb

∫ b
Pa′bb

Pa′bb Pa′′bb

jab //

∫ b
(f ′f)bb

��

jab

��

∫ b Pfbb // ∫ b Pf ′bb //

P(f ′f)bb

&&

Pfbb

��

Pf ′bb //

ja
′
b

��

ja
′′
b

��

jf
′f
b��

jfb��
jf
′
b��

∼=

The unlabeled isomorphism is the composite coherence cell for P−bb consisting of P (1f ′f , l1, l1)

and φPf ′bb,fbb. Similarly, the inverse of the invertible 2-cell

∫ b
Pabb

∫ b
Pabb

∫ b Pabb
""

id

==
φ

∫ b P−bb
a��
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when whiskered by jab , gives the invertible pasting diagram

Pabb
∫ b
Pabb

∫ b
Pabb

∫ b
Pabb

Pabb

∼=

jidab��

jab //

id

��

jab

��

∫ b Pabb //

Pabb
""

jab
""

where the unlabeled isomorphism is the composite coherence cell consisting of ljab ,(
rjab
)−1

, and φ
P−bb
a .

Lemma 2.3.7. Let A be a bicategory. There is a pseudofunctor

I =

∫ a

−(a)×A(−, a) : Bicat(Aop,Cat)→ Bicat(Aop,Cat).

Proof. Since Cat is bicocomplete the bicodescent object

I(F ) =

∫ a

F (a)×A(−, a)

exists for each pseudofunctor F : Aop → Cat. Given a pseudonatural transformation

γ : F ⇒ G, we can define another pseudonatural transformation

γ × 1A(−,−) : F ×A(−,−)⇒ G×A(−,−).

Since I(F ) and I(G) are bicodescent object then we also have extrapseudonatural trans-

formations iF : F × A(−,−)
··⇒ I(F ), iG : G × A(−,−)

··⇒ I(G), and so the composite

of iG and γ× 1A(−,−), in the manner of Lemma 2.2.1, induces a pseudonatural transfor-

mation I(γ) : I(F ) ⇒ I(G) via the universal property of iF . This also means there are

invertible modifications

Fa×A(−, a) I(F )

Ga×A(−, a) I(G)

iFa +3

I(γ)

��

γa×1A(−,)

��

iGa

+3

Γa
�

satisfying the pasting axiom EB1 of Definition 2.3.3.

The action of I on 2-cells is described as follows. If Σ: γ V δ is a modification
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then for each a ∈ A there is a natural transformation Σa : γa ⇒ δa, giving rise to a

modification Σa×1: γa×1⇒ δa×1. (Note that in the following diagram we switch the

style of arrow.) The composite modification

Fa×A(−, a) I(F )

I(F ) I(G)

Ga×A(−, a)

iFa
--

I(γ)

��

iFa

��

I(δ)
//

γa×1A(−,a)

��δa×1A(−,a)
**

iGa

""

Γa��

∆−1
a��

Σa×1
{�

satisfies the requirements of axiom EB2, yielding a unique 2-cell I(∆): I(γ) V I(δ).

The action of I on 2-cells preserves the strict composition of modifications due to the

uniqueness property inherent in the universal property. It remains to describe the data

for the pseudofunctor on 1-cell composition and check the appropriate axioms, however

this clearly follows from similar arguments to the above.

2.4 Fubini for codescent objects

This section makes use of the previous definitions and technical lemmas in order to

prove a bicategorical analogue of the Fubini theorem for coends. Similar results have

been established via a different approach [Nun16].

Proposition 2.4.1. Let P : Aop×Bop×A×B→ C be a pseudofunctor and assume that

the bicodescent objects

ja
′a : P (a′,−, a,−)

··⇒
∫ b

P (a′, b, a, b)

and

i : P
··⇒
∫ a,b

P (a, b, a, b)

exist, where (a′, a) ∈ Aop ×A. Then there is a 1-cell

σ :

∫ a ∫ b

P (a, b, a, b)→
∫ a,b

P (a, b, a, b)
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if the left side exists.

Proof. Suppose that the bicodescent object k :
∫ b
P−b−b

··⇒
∫ a ∫ b

Pabab exists. By

Lemma 2.1.4, fixing a ∈ A results in an extrapseudonatural transformation ia− : Pa−a−
··⇒∫ a,b

Pabab yielding a family of 1-cells φa :
∫ b
Pabab →

∫ a,b
Pabab along with corresponding

families of invertible 2-cells

Pabab ∫ a,b
Pabab

∫ b
Pabab

iab
''

jaab 77

φa

��

Φab��

in C, satisfying the usual axioms. To induce σ as in the statement of the theorem we

now need find invertible 2-cells

∫ b
Pa′bab

∫ b
Pabab

∫ b
Pa′ba′b

∫ a,b
Pabab

∫ b Pfbab
//

φa

��

∫ b Pa′bfb
��

φa
′
//

φf��

and show that there is an extrapseudonatural transformation φ− :
∫ b
P−b−b

··⇒
∫ a,b

Pabab.

To find the φf we will use the 2-dimensional universal properties of the bicodescent

objects
∫ b
Pa′bab. For each b ∈ B we have an invertible 2-cell

Pa′bab

∫ b
Pa′bab

∫ b
Pabab

∫ a,b
Pabab

∫ b
Pa′bab

∫ b
Pa′ba′b

Pabab

Pa′ba′b

ja
′a
b

<<

∫ b Pfbab
//

φa

""

ja
′a
b

""

∫ b Pa′bfb//
φa
′

<<

Pfbab

22

Pa′bfb
,,

jaab

??

ja
′a′
b ��

iab ,,

ia′b
22

(
jfab

)−1

��

ja
′f
b��

ifb��

Φab��

(
Φa
′
b

)−1

��

which satisfies the pasting conditions of axiom EB2. This is seen by pasting these 2-cells

with ja
′a
g for some g : b→ b′ in B and using properties of the jfab , properties of the Φa

b ,

axiom EP1, and axiom EP6, before using similar applications of these in the reverse
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order. Hence there is a unique 2-cell φf as required, which satisfies appropriate pasting

conditions, namely that the whiskering of φf by ja
′a
b yields the composite 2-cell displayed

above.

We must now check that these φf satisfy the axioms of an extrapseudonatural trans-

formation. As the codomain of the 1-cells is an object of C then some of the axioms

again become redundant, namely EP2-4, and EP7. For EP1 we whisker each of the

diagrams by ja
′′a
b . On one side we get an instance of the above 2-cell for f ′f , while on

the other we have to use the properties of the coherence cells of
∫ b
P−b−b, in the man-

ner described following Lemma 2.1.4. To equate the two pasting diagrams is a case of

using the pseudonaturality of jb, extrapseudonaturality of i, and instances of the above

composite 2-cell for both f and f ′. The uniqueness in the 2-dimensional universal prop-

erty of
∫ b
Pa′′bab is used to show that EP1 then holds. For EP5, most of the 2-cells in

φida ∗ 1jaab are identities, leaving Φa
b to cancel with itself, before again using axiom EB2

to show the equality. Axiom EP6 is simple to check.

Since φ :
∫ b
P−b−b

··⇒
∫ a,b

Pabab is then an extrapseudonatural transformation there

exists an invertible 2-cell

∫ b
Pabab ∫ a,b

Pabab

∫ a ∫ b
Pabab

φa
))

ka 55

σ

��

Σa��

for each a ∈ A.

Lemma 2.4.2. Let P : Aop×Bop×A×B→ C be a pseudofunctor and assume that for

each fixed pair (a′, a) ∈ Aop ×A the bicodescent object

ja
′a : P (a′,−, a,−)

··⇒
∫ b

P (a′, b, a, b)

exists. Similarly suppose that the bicodescent object

θ :

∫ a,b

P (a, b, a, b)→
∫ a ∫ b

P (a, b, a, b)

exists. For each fixed b ∈ B, considering jb as a pseudonatural transformation j : P−b−b ⇒∫ b
P−b−b, the composite of k and j, as in Lemma 2.2.1 satisfies the compatibility condi-

tion of Lemma 2.1.3.

Proof. The proof relies on the equality of certain pasting diagrams, as in Lemma 2.1.3.
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The easiest way to prove this equality is to show that one of the pasting diagrams acts

as an inverse for the other. The steps required depend on how the jb interact with the

ja
′a, as specified by Lemma 2.3.6.

Proposition 2.4.3. Let P : Aop×Bop×A×B→ C be a pseudofunctor and assume that

the bicodescent objects

ja
′a : P (a′,−, a,−)

··⇒
∫ b

P (a′, b, a, b)

and

k :

∫ b

P (−, b,−, b) ··⇒
∫ a ∫ b

P (a, b, a, b)

exist, where (a′, a) ∈ Aop ×A. Then there is a 1-cell

θ :

∫ a,b

P (a, b, a, b)→
∫ a ∫ b

P (a, b, a, b)

if the left side exists.

Proof. Suppose that the bicodescent object i : P
··⇒
∫ a,b

Pabab exists. By Lemma 2.2.1,

the composite of j and k is extrapseudonatural in a. This composite is also extrapseudo-

natural in b, following from the extrapseudonaturality of j, simply by whiskering dia-

grams with the 1-cells of k. By the previous lemma, the composite of j and k is then

extrapseudonatural in (a, b), so there exists an invertible 2-cell

Pabab
∫ a,b

Pabab

∫ b
Pabab

∫ a ∫ b
Pabab

iab //

jaab

��

ka
//

θ

��

Θab��

for each (a, b) ∈ A×B.

Theorem 2.4.4. Under the conditions of Proposition 2.4.1 and Proposition 2.4.3 there

is an adjoint equivalence∫ a,b

P (a, b, a, b) '
∫ a ∫ b

P (a, b, a, b).

Proof. The equivalence is provided by the 1-cells and invertible 2-cells induced in the
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previous theorems. We require isomorphisms

σ · θ ∼= id, θ · σ ∼= id

before showing that they satisfy appropriate axioms. For the first isomorphism, we can

show that the invertible 2-cells

Pabab

∫ a,b
Pabab

∫ a ∫ b
Pabab

∫ a,b
Pabab

∫ a,b
Pabab

∫ b
Pabab

iab
55

θ //

σ

		iab %%

id
//

jaab
//

ka

??

φa

��

iab

**

Θab��

Σa��

Φab��
l−1
iab��

satisfy the requirements of axiom EB2, giving a unique invertible 2-cell κ : σ · θ ⇒ id

such that κ ∗ 1iab is the pasting diagram above.

The second isomorphism requires two steps. The first uses invertible 2-cells

Pabab

∫ b
Pabab

∫ a,b
Pabab

∫ a,b
Pabab

∫ b
Pabab

∫ a,b
Pabab

jaab

<<

φa
//

θ

""

jaab
""

ka
//

id

<<

ka

22

iab

;;

Φab��

l−1
ika��

Θab��

satisfying the requirements of axiom EB2 to give unique invertible 2-cells Ωa : θ · φa ⇒
id · ka such that Ωa ∗ 1jaab is the pasting diagram above. The second step uses invertible
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2-cells

∫ b
Pabab

∫ a ∫ b
Pabab

∫ a,b
Pabab

∫ a ∫ b
Pabab

∫ a ∫ b
Pabab

ka
99

σ //

θ

��ka ��

id
//

φa

==

Σa��

Ωa��

which again satisfy the requirements of axiom EB2, in order to give unique invertible

2-cells λ : θ · σ ⇒ id such that λ ∗ 1ka is the pasting diagram above. To apply EB2 in

this instance requires that, for some f : a → a′, the pasting of the two instances of the

previous diagram, for a and a′, with kf are equal. We show that they are equal by using

the universal property of
∫ b
Pabab, whiskering the diagrams with ja

′a
b gives an equality

of pasting diagrams and by uniqueness the original diagrams are equal.

Checking that this is then an adjoint equivalence relies again on the axiom EB2. The

check here is somewhat simpler than the previous calculations. For each pair (a, b) ∈
A×B we have invertible 2-cells

Pabab
∫ a,b

Pabab
∫ a ∫ b

Pabab

∫ a ∫ b
Pabab

∫ a,b
Pabab

iab //

θ

��

θ

EE

θ
44

id **

id ** θ
44

σ

��

l−1
θ��

rθ��

κ�� λ−1��

which plainly satisfy the requirements of EB2. We also note that this whiskered pasting

diagram is equal to the identity on θ ·iab and so by uniqueness we find that the composite

2-cell, when not whiskered by iab, is the identity on θ. A similar argument shows

that the other triangle identity also holds, hence the equivalence is in fact an adjoint

equivalence.

Corollary 2.4.5. Let P : Aop ×Bop ×A×B→ C be a pseudofunctor and assume that
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the bicodescent objects

ja
′a : P (a′,−, a,−)

··⇒
∫ b

P (a′, b, a, b)

and

lb
′b : P (−, b′,−, b) ··⇒

∫ a

P (a, b′, a, b)

exist, where (a′, a) ∈ Aop×A and (b′, b) ∈ Bop×B. Then there is an adjoint equivalence∫ a ∫ b

P (a, b, a, b) '
∫ b ∫ a

P (a, b, a, b).

2.5 Example

Whilst we will work with bicodescent objects for the most part, our main example is

actually a bidescent object. The definition of a bidescent object is similar to that of

a bicodescent object. We now consider the universal extranatural transformation for a

pseudofunctor P : Bop ×B→ C

p :

∫
b
P (b, b)

··⇒ P

satisfying similar axioms to those in Definition 2.3.3.

Lemma 2.5.1. Let A and B be bicategories and let F , G : A → B be pseudofunctors.

The category of pseudonatural transformations

Bicat(A,B)(F,G)

is given by the bidescent object for the pseudofunctor B(F,G) : Aop ×A→ Cat.

Proof. We will describe an extrapseudonatural transformation

i : Bicat(A,B)(F,G)
··⇒ B(F,G)

and show that it is universal. We need to give functors

ia : Bicat(A,B)(F,G)→ B(Fa,Ga)
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along with, for each f : a→ a′ in A, a natural transformation

Bicat(A,B)(F,G) B(Fa′, Ga′)

B(Fa,Ga) B(Fa,Ga′).

ia′ //

ia

��

B(Ff,Gb)

��

B(Fa,Gf)
//

if��

For a pseudonatural transformation α : F ⇒ G we define ia(α) = αa whilst for a mod-

ification Γ: α ⇒ β we define ia(Γ) = Γa, clearly defining a functor. For the natural

transformations we define the components as (if )α = αf . Naturality follows from the

modification axioms.

The axioms required for this to be an extrapseudonatural transformation are all

instances of axioms for pseudonatural transformations between F and G. It remains to

show that this is the universal such extrapseudonatural transformation, or bicoend. Let

j : X
··⇒ B(F,G) be another extrapseudonatural transformation, where X is a category.

We will define a functor h : X → Bicat(A,B)(F,G) along with natural isomorphisms

Ha : ia · h⇒ ja. Notice that for each x ∈ X there is a family of 1-cells

{ja(x) : Fa→ Ga}a∈A

and a family of invertible 2-cells

{(jf )x : ja′(x) · Ff ⇒ Gf · ja(x)}f : a→a′ .

The extrapseudonaturality axioms for j show that there is a pseudonatural transforma-

tion j−(x) for each x ∈ X, defining the on-objects part of the functor h. For a morphism

k : x→ y in X we have a family of 2-cells

{ja(k) : ja(x)⇒ ja(y)}a∈A.

This data provides a modification, with the axioms holding since each jf is a natural

isomorphism, defining the mapping of morphisms for the functor h. Now we must

provide natural isomorphisms Ha : ja ⇒ ia · h. Note that ih(x) = ia(j−(x)) = ja(x), so

we pick Ha to be the identity, immediately satisfying naturality.

Suppose now that there are two functors s, t : X → Bicat(A,B)(F,G), along with

natural transformations ψa : ia · s ⇒ ia · t for each a ∈ A, satisfying the usual pasting
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diagrams. We want to provide a natural transformation ψ̄ : s⇒ t such that 1ia ∗ ψ̄ = ψa.

For each x ∈ X there are pseudonatural transformations s(x) and t(x), along with

families of 2-cells

{(ψa)x : s(x)a ⇒ t(x)a}a∈A

in B. These 2-cells define a modification (ψ−)x for each x ∈ X, following from the initial

pasting conditions assumed of the ψa. Defining ψ̄x = (ψ−)x completes the proof.

It will be useful to express every category C as a bicolimit in Cat. It is well known,

though explicitly described in [Bou10], that every small category is the codescent object

of the diagram

C0 id // C1
t

oo

soo
C1 ×C0 C1.

r
oo

qoo
p

oo

where C0 is the object set of C, C1 is the set of morphisms in C, and C1×C0 C1 is the set

of composable morphisms in C. This diagram is the coherence data for the 2-functor

∆1 : Cop × C→ Cat,

the constant 2-functor at the terminal category 1. Each of the sets in the diagram can be

seen as a coproduct of terminal categories indexed over objects, morphisms, and pairs

of composable morphisms, respectively. It is easy to see that C0 and C1 are indexed

in the same way as we originally described coherence data. For C1 ×C0 C1 note that

the coproduct should be indexed over 2-cells α : gf ⇒ h in C. Since C is a category

it has no non-trivial 2-cells, so the only such triangles are those declaring the identity

id : g · f ⇒ gf . Hence the last object in the diagram is indexed as required.

It is simple to see that an object satisfying the axioms of a codescent object [Lac02],

[Str87] also satisfies those of a bicodescent object. A bicodescent object only requires

existence of an induced 1-cell in the 1-dimensional property whereas a codescent object

requires this to also be unique.



Chapter 3

Free Cocompletions for

Bicategories

3.1 Copowers in bicategories

When we previously considered free cocompletions in the V-enriched case we made use

of copowers. Given a V-category C, an object v ∈ V, and an object c ∈ C, the copower

v · c ∈ C is the weighted colimit characterised by the isomorphism

C(v · c, d) ∼= V(v,C(c, d))

in V. Copowers are used when defining the induced functor F̂ : Ĉ→ D in the character-

isation of the free cocompletion of C. We will need a similar bicolimit to exist in order

to define the free bicocompletion of a bicategory.

Definition 3.1.1. Let B be a bicategory. Given an object b ∈ B and a category C, the

bicopower C ·b is defined to be the object of B characterised by the following equivalence

of categories

B(C · b, d) ' Cat(C,B(b, d)),

for all d ∈ B.

We can describe bicopowers explicitly as bicolimits in B.

Lemma 3.1.2. Let B be a bicategory. If C is a category and b ∈ B then the bicopower

C · b, if it exists, is the bicolimit of the pseudofunctor

∆b : C→ B
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where C is considered as a locally discrete 2-category.

Proof. The bicolimit of the pseudofunctor ∆b consists of an object bic∆b, 1-cells βc : b→
bic∆b for each c ∈ C, and invertible 2-cells

b bic∆b

βc

%%

βc′

99
βf��

for each f : c → c′ in C, subject to usual axioms of a bicolimit. We can then use the

axioms of the bicolimit to show that there exists a functor

P : Cat(C,B(b, d))→ B(bic∆b, d)

for each d ∈ B which is furthermore an equivalence. Since we have equivalences

B(C · b, d) ' Cat(C,B(b, d)) ' B(bic∆b, d)

then bic∆b ' C · b.

In many cases these bicopowers will be taken in Cat or Bicat(Aop,Cat) (where

bicolimits can be computed pointwise) which reduces to the usual product formula,

giving

C ·G ' C×G

where C ∈ Cat and G : Aop → Cat is a pseudofunctor.

3.2 Bicategorical cocompletion

In the first chapter we recalled the free cocompletion of a strict 2-category under strict

Cat-weighted colimits. In this brief chapter we will describe the free bicocompletion of

a bicategory, by which we mean the free cocompletion of a bicategory under bicolimits.

The proofs in this chapter are much the same as the standard results for cocompletion.

Showing that each pseudofunctor Aop → Cat is a bicolimit of representables takes a

little more effort than before but the rest of the section is standard.

Remark 3.2.1. The colimit of any functor F : C → D between categories can be de-

scribed as a coend. While more needs to be checked, in much the same way it can
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be shown that the bicolimit of any pseudofunctor P : A → B can be described as a

bicodescent object: ∫ a

P (a) ' bicP.

Lemma 3.2.2. Let B be a bicategory. The pseudofunctor B(−, b) : Bop → Cat preserves

bicolimits as bilimits, up to equivalence.

Proof. Let K be a bicategory and P : K → B a pseudofunctor for which the bicolimit

bicP exists. We wish to show that B(bicP, b) ' bilimB(P−, b). First we note that

the bilimit of a pseudofunctor F : A → B is equivalently given by the bidescent object∫
a F (a), similarly to the previous remark. This then allows us to have the following

series of equivalences:

bilimB(P−, b) '
∫
k
B(P (k), b)

=

∫
k
B(P (k),∆b(k))

' Bicat(K,B)(P,∆b)

' B(bicP, b).

The first equivalence is the one just described, the second equality is clear, the third

equivalence is the use of Lemma 2.5.1, and the final equivalence is the defining property

of the bicolimit of P .

By Lemma 1.5.8[Str80] we compute bicolimits of pseudofunctors P : K→ Â locally,

as Bicat is pseudo-closed [HP02].

Lemma 3.2.3. Each pseudofunctor F : Bop → Cat is a bicolimit of representable pseud-

ofunctors given by an equivalence

F '
∫ b

Fb×B(−, b).

Proof. We will show that F can be described as the bicodescent object of the pseudo-

functor

F ×B(−,−) : Bop ×B→ Bicat(Bop,Cat).

Note that (F ×B(−,−))(a, b) = Fa×B(−, b). We will use the first definition of bicode-

scent object, using specific coherence data as described in Section 2.3. The coherence

data for this pseudofunctor is spelled out below. As shorthand we will write Y a
1 , Y a

2 , and
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Y a
3 for the objects in the diagram for the coherence data corresponding to F ×B(a.−),

where Y a
1 is the coproduct indexed over objects in B, Y a

2 over morphisms, and Y a
3 over

2-cells.

Working pointwise by fixing an object a ∈ B gives a pseudofunctor F×B(a,−) : Bop×
B → Cat. We describe each of the functors where in each case the subscript denotes

which piece of the coproduct the object lives in, h : m→ m′ is a 1-cell in B, and β : g ⇒ g′

is a 2-cell in B.

u : (m, g)f 7−→ (Ff(m), g)x

(h, β)f 7−→ (Ff(h), β)x

v : (m, g)x 7−→ (m, g)idx

(h, β)x 7−→ (h, β)idx

w : (m, g)f 7−→ (m, f · g)y

(h, β)f 7−→ (h, f ∗ β)y

p : (m, g)θ : f2f1⇒f3 7−→ (Ff2(m), g)f1

(h, β)θ : f2f1⇒f3 7−→ (Ff2(h), β)f1

q : (m, g)θ : f2f1⇒f3 7−→ (m, g)f3

(h, β)θ : f2f1⇒f3 7−→ (h, β)f3

r : (m, g)θ : f2f1⇒f3 7−→ (m, f1 · g)f2

(h, β)θ : f2f1⇒f3 7−→ (h, f1 ∗ β)f2

The coherence 2-cells are given as below.

δ(m,g)x = ((φFx )m, idg)x

γ(m,g)x = (idm, lg)x

κ(m,g)θ = (F (θ)m · (φFf2f1)m, idg)x

λ(m,g)θ = (idm, (θ ∗ 1g) · αf2f1g)x
ρ(m,g)θ = (idFf2(m), idf1·g)

For each object a ∈ B there is a functor

ia :
∐
x∈obB

Fx×B(a, x)→ Fa

sending objects (m, g)x to Fg(m) and sending morphisms (h, β)x to the composite
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(Fβ)m′ · Fg(h) as in the following naturality square for Fβ.

Fg(m)
Fg(h)

//

(Fβ)m
��

Fg(m′)

(Fβ)m′
��

Fg′(m)
Fg′(h)

// Fg′(m′)

There is a natural isomorphism

Y a
2 Y a

1

Y a
1 Fa

u //

i

��

w
��

i
//

σa��

with components (σa)(m,g)f = (φFfg)m which satisfies the usual pasting axioms of a bi-

codescent object, the first corresponding to the composition axiom for the pseudofunctor

F , and the second to the unit axiom for F .

We will show that each (Fa, i, σ) is the bicodescent object of the coherence data we

previously described. Suppose that G : Bop → Cat is a pseudofunctor,

j :
∐
x∈obB

Fx×B(a, x)⇒ G

is a pseudonatural transformation, and that there is an invertible modification Γ between

ju and jw which satisfies the pasting axioms of a bicodescent object. We will now

work locally, finding functors t : Fa → Ga which together constitute a pseudonatural

transformation τ : F ⇒ G. (We will abuse notation slightly here and often write t for

ta, and similarly for i, to avoid having too many subscripts.)

We want to describe a pseudonatural transformation τ : F ⇒ G such that τ · i ∼= j,

compatible with Γ and σ. For m ∈ Fa put t(m) = j(m, ida). Given

(m, g) ∈
∐
x∈obB

Fx×B(a, x)

there is an isomorphism

ti(m, g) = t(Fg(m)) = j(Fg(m), ida) ∼= j(m, g · ida) ∼= j(m, g),

natural in (m, g), where the first isomorphism is given by (Γa)(m,g) and the second by
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ja(idm, rg). This isomorphism is compatible with σ and Γ in the sense that we have an

equality of pasting diagrams as follows.

Fa Y a
1 Y a

2

Ga Y a
1

ioo

j
yy

t

��

uoo

w
yy

j
oo

τ�� Γ�� Fa

Ga

Y a
1

Y a
2Y a

1
uoo

t

��

i

�� ioo

j
yy

w
��

σ��

τ��

The equality follows from a combination of the bicodescent conditions that Γ satisfies,

the right unit axiom in B, and the naturality of Γ.

The final thing to check is that Fa satisfies the 2-dimensional aspect of the universal

property. This means that if there are two functors h, k : Fa → Ga and a natural

isomorphism Θ: h · i⇒ k · i satisfying

Y a
2

Y a
1

Fa

Fa

Ga

Y a
1

u
??

i
??

h

��

w �� i

??

k

??

i
��

Θa��

σ��

Y a
2

Y a
1

Fa

Fa

GaY a
1

u
??

i

��

h

��
w ��

i �� k

??

i

??
σ��

Θb��

then there is a unique natural isomorphism ξ : h⇒ k such that ξ∗i = Σ. The component

ξm is given by the composite

h(m)
h(φFa )−1

m
// hFida(m)

Σ(m,ida)
// kF ida(m)

k(φFa )m
// k(m).

We then have the required equality of natural transformations following from unit axioms

for F and the naturality for Σ.

The bicategory Â = Bicat(Aop,Cat) has the following property. If B is a bicategory

and F : A → B a pseudofunctor then there exists a bicolimit preserving pseudofunctor

F̂ : Â → B which is a left adjoint to the pseudofunctor B(G−,−) : B → Â, giving an

equivalence of categories

B(F̂ (G), b) ' Â(G,B(F−, b)).
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Proposition 3.2.4. Let A be a bicategory. The bicategory of pseudofunctors Bicat(Aop,Cat)

satisfies the statement given above.

Proof. We know that Â has all bicolimits from the earlier discussion. Let F : A→ B be

a pseudofunctor, where B is a bicategory with all bicolimits. Define

F̂ : Â→ B

as follows. We require F̂ to preserve bicolimits so we define

F̂ (G) =

∫ a

Ga · Fa

where Ga ·Fa is the bicopower of Fa by the category Ga in B. We must now show that

F̂ preserves bicolimits in Â. Suppose that P : K → Â is a pseudofunctor. We want to

show that

bic(F̂P ) ' F̂ (bicP )

in B. We have described how bicolimits can be expressed as bicodescent objects and so

this becomes the requirement of an equivalence between the bicodescent objects∫ k ∫ a

(P (k)(a) · Fa) '
∫ a(∫ k

P (k)

)
(a) · Fa.

The first step is to use Fubini on the left hand side to swap the variables a and k. Since

bicopowers and bicodescent objects are both bicolimits then they commute with each

other, so we are done.

The final thing that we will prove here is the adjunction described above, namely

that F̂ is a left adjoint to the pseudofunctor B(F−,−) : B → Â. We appeal to the

following sequence of equivalences, though it can be shown directly:

B(F̂ (G), b) ' B

(∫ a

Ga · Fa, b
)

'
∫
a
B(Ga · Fa, b)

'
∫
a
Cat(Ga,B(Fa, b))

' Â(G,B(F−, b)).

The first equivalence is simply the definition of F̂ , the second follows from Lemma 3.2.2,

the third equivalence uses the fact that Ga ·Fa is a bicopower, and the final equivalence
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is simply an instance of Lemma 2.5.1.

It would be prudent to go on to show that the bicategory Â = Bicat(Aop,Cat) is

in fact the free bicocompletion of A by which we mean that there is a pseudonatural

biequivalence

Bicocom(Â,B) ' Bicat(A,B),

where Bicocom(Â,B) is the bicategory of bicolimit-preserving pseudofunctors Â→ B.



Chapter 4

Promonoidal Bicategories

This chapter will introduce promonoidal bicategories, a categorification of Day’s promonoidal

categories, before beginning to investigate the connection with monoidal bicategories.

4.1 Promonoidal Bicategories

Promonoidal categories generalise the notion of monoidal categories, encompassing a

number of familiar structures such as monoidal categories and closed categories (the lat-

ter actually arising from a copromonoidal structure). Many of the bicodescent objects

we consider in the following chapters are over multiple variables. A previous lemma,

Lemma 2.4.2, ensures that in all situations that follow, the Fubini theorem for bicodes-

cent objects will hold.

Definition 4.1.1. Let A and B be bicategories. A pseudoprofunctor P : A −7→ B is a

pseudofunctor P : Bop ×A→ Cat.

Composition of pseudoprofunctors is given by a bicodescent object, exactly as pro-

functors are composed using coends. Given P : A −7→ B and Q : B→ C we define

(Q · P )(c, a) =

∫ b

P (b, a)×Q(c, b).

There is a tricategory, 2-Prof , with objects bicategories, 1-cells pseudoprofunctors,

pseudonatural transformations as 2-cells, and modifications as 3-cells. This structure is

described in [Chi15], where pseudoprofunctors are therein called biprofunctors. It would

be useful to be able to express promonoidal bicategories as a pseudomonoid structure in

2-Prof . The definition given here is motivated on this basis: the axioms of a promonoidal
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bicategory are themselves essentially those of a tricategory. However, make no claim that

our definition is in fact a pseudomonoid in 2-Prof , only that it would be desirable.

In the following definition we will be considering pseudofunctors P : Aop ×A×A→
Cat, J : Aop → Cat, and A(−,−) : Aop × A → Cat. Often we will write P (a, b, c) as

abc, Ja as a, and A(a, b) as ab, where no confusion will arise. In a similar way, the

components of the modifications in the following definition have objects in their source

and target which are the result of profunctor composition and we denote∫ x

P (x, b, c)× P (a, x, d)

by xbc · axd.

Another notational convention that we will use is as follows. As we are omitting

associations by deferring to the coherence theorem for bicategories, we will often label 1-

cells slightly differently to usual to make explicit the identities involved in large cartesian

products. For example, there are 1-cells such as l and r, which we display as

PJPP
1l1−−→ PAP.

The above is then a shorthand for a 1-cell∫ x

Pabc × Jx× Pdxe × Pfgh
1×l×1−−−−→ Pabc ×A(d, e)× Pfgh.

Similarly for a :
∫ x

Pxbc × Paxc →
∫ x

Pxcd × Pabx. We display this simply as

PP
a−→ PP.

The axioms later consist of up to four copies of P , involving such composites as

PPPP
a2−→ PPPP

1a1−−→ PPPP
a2−→ PPPP,

where a2 means that a is being applied to the first two copies of P in the sequence, with

an identity for the others. Similarly, 1a1 is an identity on the first P , an instance of a,

and an identity on the final P . A braiding such as PJP → JPP where the first P is

interchanged with the J will be written as

PJP
0,1−−→ JPP,

meaning to braid the first two objects and leave an identity on the remaining P . In the
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axioms we will similarly depict coherence 2-cells, e.g., π1 or 2λ1. A final notional issue

is the use of y1, y2, and y3 when applying the Yoneda equivalences to specific inputs of

P , with the index of each yi corresponding in the obvious way.

Definition 4.1.2. A promonoidal bicategory A consists of the following data.

• A bicategory A.

• A pseudofunctor P : Aop ×A×A→ Cat.

• A pseudofunctor J : Aop → Cat.

• An adjoint equivalence a in Bicat(Aop ×A×A×A,Cat), with components

aabcd :

∫ x

P (x, b, c)× P (a, x, d)→
∫ x

P (x, c, d)× P (a, b, x).

• Adjoint equivalences l and r in Bicat(Aop ×A,Cat), with components

lab :

∫ x

Jx× P (a, x, b)→ A(a, b),

rab :

∫ x

Jx× P (a, b, x)→ A(a, b).

• An invertible modification π in Bicat(Aop×A×A×A×A,Cat) with components

xbc · yxd · aye xcd · ybx · aye

xcd · yxe · aby

xde · ycx · aby

xbc · yde · axy

yde · xbc · axy

yde · xcy · abx

a1 //

1a

%%

a1

��

1a

��

0,1

��

1a
''

id

πabcde��

in Cat, which we depict as follows.
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π

1a

1a 1a0, 1

a1 a1

• An invertible modification λ in Bicat(Aop ×A×A,Cat) with components

y · xyb · axc xb · axc

abc
y · xbc · ayx

xbc · y · ayx xbc · ax

l1 //

y2

##
1a

��

0,1 ''

1l
//

y1

DD
λabc��

in Cat, which we depict as follows.

λ

l1 y20

0, 1 1l1a y1

• An invertible modification in Bicat(Aop ×A×A,Cat) with components

abc xc · abx

y · xcy · abx
ax · xbc

y · axy · xbc y · xbc · axy

y3
//

r�1

##
y1

��

r�1 ''

1,0
//

1a

DD
ρabc��

in Cat, which we depict as follows.
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ρ

y3 r�1

r�1 1, 0y1 1a

• An invertible modification µ in Bicat(Aop ×A×A,Cat) with components

abc

xb · axc

y · xby · axc y · xyc · abx

xc · abx

abc

y�
2
??

r�1 ??

1a //

l1

��

y3

��

id
//

µabc��

in Cat, which we depict as follows.

µ

y�
2

y31ar�1 l1

These data are subject to the following axioms.

PB1 The following string diagram equation holds in Bicat(Aop×AA×A×A×A,Cat).
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1π

π1

1π

π1

1π

1π

a2 1a1 a2 2a 1a1 a2 a2 1a1 a2 2a 1a1 a2

2a 1, 1 0, 2 2a 1, 1 2a 2a 1, 1 0, 2 2a 1, 1 2a

PB2 The following string diagram equation holds in Bicat(AopA×A×A,Cat).
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µ1
λ1

1π

1µ

y�
21 y311a1r�2 l2 a y�

21 y311a1r�2 l2 a

a a
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PB3 The following string diagram equation holds in Bicat(Aop ×A×A×A,Cat).

ρ1

1π

1µ

µ1

y�
21 y311a1r�2 l2a y�

21 y311a1r�2 l2a

a a

In the definition above the axioms involving λ and ρ appear to be very similar - one

is almost the mirror image of the other, as we might expect. This slight mismatch seems

to arise from the specification of λ and ρ and the placement of the Yoneda equivalences

therein.

4.2 Monoidal bicategories as promonoidal bicategories

Let (A,⊗, I,a, l, r, π, λ, ρ, µ) be a monoidal bicategory. We can give A the structure of

a promonoidal bicategory by defining P (a, b, c) = A(a, b ⊗ c) and Ja = A(a, I). The

1-cells for the promonoidal structure are defined in the same way as the 1-dimensional
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case. Corresponding to a we have the composite∫ x

P (x, b, c)× P (a, x, d) =

∫ x

A(x, b⊗ c)×A(a, x⊗ d)

'
∫ x

A(a, (b⊗ c)⊗ d)∫ x
A(1,a)

−−−−−−→
∫ x

A(a, b⊗ (c⊗ d))

'
∫ x

A(x, c⊗ d)×A(a, b⊗ x).

For l we use the composite∫ x

Jx× P (a, x, b) =

∫ x

A(x, I)×A(a, x⊗ b)

' A(a, I ⊗ b)
A(1,l)−−−→ A(a, b),

while for r we use ∫ x

Jx× P (a, b, x) =

∫ x

A(x, I)×A(a, b⊗ x)

' A(a, b⊗ I)

A(a,r)−−−−→ A(a, b).

Since each of a, l, and r are adjoint equivalences in A, their images under the Yoneda

mapping are also adjoint equivalences. They are then composed with Yoneda equiva-

lences which are adjoint equivalences themselves and so the above composites are all

adjoint equivalences.

We now have to define the coherence cells for the rest of the promonoidal structure

on A. In the following diagrams we write (a, b) in place of A(a, b), in order to save space.
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The coherence cell corresponding to π is drawn below.

(x, bc)(y, xd)(a, ye)

(y, (bc)d)(a, ye)

(y, b(cd))(a, ye)

(x, cd)(y, bx)(a, ye)

(x, cd)(a, (bx)e) (x, cd)(a, b(xe))

(x, cd)(y, xe)(a, by)

(y, (cd)e)(a, by)

(y, c(de))(a, by)

(x, de)(y, cx)(a, by)

(x, bc)(a, (xd)e)

(x, bc)(a, x(de))

(x, bc)(y, de)(a, xy) (y, de)(x, bc)(a, xy)

(y, de)(a, (bc)y)

(y, de)(a, b(cy))

(a, ((bc)d)e)

(a, (b(cd))e) (a, b((cd)e))

(a, b(c(de)))

(a, (bc)(de))

BB

(1,a)1

BB

BB

BB

1(1,a)
//

��

��

(1,a)1
��

��

��

1(1,a)
��

��
//

BB

1,(1,a)

BB

BB

(1,a1)

JJ

(1,a)
//

(1,1a)

��

(1,a)

##

(1,a)

;;

))

))

]] BB

55

55

55

33

++

))

A(1,π)��

∼=

∼= ∼=

∼= ∼=

∼=

∼= ∼=

∼= ∼=

The unlabelled 1-cells in the diagram above, as well as those that follow, are all Yoneda

equivalences or their adjoints, apart from the few 1-cells which are clearly braidings. We

depict the cell corresponding to λ below.

(y, I)(x, yb)(a, xc)

(x, Ib)(a, xc) (x, b)(a, xc)

(a, bc)

(y, I)(a, (yb)c)

(y, I)(a, y(bc))

(y, I)(x, bc)(a, yx) (y, I)(a, yx)(x, bc)

(a, Ix)(x, bc)

(a, x)(x, bc)

(a, (Ib)c)

(a, I(bc))

66

(1,l)1
//

((

��

1(1,a)
��

��
//

??

(1,l)1

DD

OO66

55

))

��

(1,l)

44

(1,l1)
//

(1,a)
��

A(1,λ)��

∼=

∼=

∼=

∼=

∼=
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Finally, the coherence cell associated with ρ is as follows.

(a, bc)

(x, c)(a, bx) (x, cI)(a, bx)

(y, I)(x, cy)(a, bx)

(a, x)(x, bc)

(a, xI)(x, bc)

(y, I)(a, xy)(x, bc) (y, I)(x, bc)(a, xy)

(y, I)(a, (bc)y)

(y, I)(a, b(cy))

(a, b(cI))

(a, (bc)I)

66

(1,r�)1
//

((

��

(1,r�)1
��

��
//

??

1(1,a)

DD

OO

(1,1r�)
//

(1,r�)
**

(1,a)

??

55

))

((

OO

A(1,ρ)��

∼=

∼=

∼=

∼=

∼=

Theorem 4.2.1. Let A be a monoidal bicategory. Then A posesses a promonoidal

structure with data described as in Section 4.2.

Proof. The size of the pasting diagrams involved in the axioms gets too large for us to

include here. Proving this is a long but simple exercise in using modifications and

naturality to shuffle the appropriate 2-cells around until they match up as per the

monoidal bicategory axioms.
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Chapter 5

Day Convolution for Monoidal

Bicategories

5.1 Day Convolution

In this section we will describe how a promonoidal structure on a bicategory A extends

to a monoidal structure on the bicategory Bicat(Aop,Cat). We begin by describing the

monoidal product of two pseudofunctors R,S : Aop → Cat using the familiar convolution

product [Day70]

R ? S =

∫ x

Rx×
∫ y

Sy × P−xy,

using bicodescent objects now rather than coends. We will often write such expressions

as

Rx×Sy×P−xy,

ignoring associations. By Lemma 2.3.6, this is a pseudofunctor Aop → Cat and using the

composition lemmas of Section 2.1 we can also see that the assignment R?S constitutes

a pseudofunctor.

Lemma 5.1.1. Let A be a promonoidal bicategory. Then

? : Bicat(Aop,Cat)×Bicat(Aop,Cat)→ Bicat(Aop,Cat).

is a pseudofunctor.

Proof. The proof is similar to Lemma 2.3.7. In the following we will write R × S ×
P : Aop ×Aop ×A×A→ Bicat(Aop,Cat) which takes (a′, b′, a, b) to Ra′ × Sb′ × P−ab.
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Given pseudofunctors R,S, T, U : Aop → Cat, the bicodescent objects

i : R× S × P ··⇒
∫ a,b

Ra× Sb× P−ab

and

j : T × U × P ··⇒
∫ a,b

Ta× Ub× P−ab

exist in Bicat(Aop,Cat). Given pseudonatural transformations δ : R ⇒ T , γ : S ⇒ U ,

the action of ? is induced by the universal property of the first bicodescent object above,

using the composition lemmas, as in the diagram below.

Ra× Sb× P−ab
∫ a,b

Ra× Sb× P−ab

Ta× Ub× P−ab
∫ a,b

Ta× Ub× P−ab

iab +3

∫ a,b δa×γb×1

��

δa×γb×1

��

jab
+3

Σab
�

We describe the associator and unitors in the same way as Day. Given three pseud-

ofunctors R,S, T : Aop → Cat, the associator for the monoidal structure is given by the

sequence of adjoint equivalences

(R ? S) ? T ' Rx×Sy×Pwxy×Tz×P−wz
' Rx×Sy×Tz×Pwxy×P−wz
1×1×1×a
−−−−−−→ Rx×Sy×Tz×Pwyz×P−xw
' R ? (S ? T ).

The left unitor is given by

J ? R ' Jx×Ry×P−xy
' Ry×Jx×P−xy
1×l
−−→ Ry×A(−, y)
y−→ R,
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whilst the right unitor is similarly given by

R ? J ' Rx×Jy×P−xy
1×r
−−→ Rx×A(−, x)
y−→ R,

where in each case y denotes the Yoneda equivalence.

Day, on proving the convolution theorem in the case of promonoidal categories

[Day70], comments:

The proof of PC2 ⇒ MC3 requires a diagram that is too large for the space

available . . .

The diagram that Day refers to is commutative, which is not the case for our promonoidal

bicategories, which further does not bode well since we have to check coherence condi-

tions on these non-commutative diagrams which involves sticking numerous instances

of them together. To say that the diagrams that we require are too large for the space

available may now be a gross understatement.

As such, we will depict the rest of the data in string diagram form. In our string

diagrams we will label the source composite 1-cell, including an indication to the braid-

ing. We will use a similar labelling in each diagram as previously done. For instance,

the associator is a composite of a braiding and an instance of a from the promonoidal

structure. We will label this composite by

RSPTP
2,1−−→ RSTPP

3a−→ RSTPP.

Here 2, 1 describes two identities whiskered with a braiding of T and P , followed by a

whiskering with an identity, whilst 3a describes three identities whiskered with a.

Some of the following diagrams have small boxes in them. These boxes represent

an isomorphism borne out of the extrapseudonaturality of the bicodescent objects being

used. Often this means we are moving between a Yoneda equivalence on a contravariant

pseudofunctor S, say, to a Yoneda equivalence on one of the covariant variable of P .

Sometimes this also involves a braiding, resulting in the addition or removal of strings

in the input or output of a box in the diagram.

Certain 1-cells specified in the data, such as y, l, and r, have domain bicodescent

object featuring two objects of the image of P and J but only the hom-category in

the codomain. There are then isomorphisms in the string diagrams which feature such
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1-cells. For example, there is an invertible 2-cell in the following diagram that intro-

duces extra braidings due to the number of objects increasing from the use of r�. Such

isomorphisms are highlighted in the string diagrams with dashed circles. An example of

one of these isomorphisms can be seen as a 2-cell below.

APP JPPP

JPPP

PAP PJPP

r�2 //

1,1

$$

0,1

��

1r�1
//

0,2

77
∼=

Before we specify the rest of the data for the convolution monoidal structure, a final

remark is warranted. The string diagrams that we are using are largely for presentational

purposes. Certain manipulations of the string diagrams correspond precisely to changes

in the pasting diagram associated to them, certain braidings for example corresponding

to interchange of 2-cell composition. Each pasting diagram can be reconstructed from a

given string diagram in order to check the axioms required; the author, in checking these

axioms, found it useful to write out each step as both a string diagram and a pasting

diagram, especially for steps involving pseudonaturality of modifications as these are not

easily spotted as manipulations in the string diagrams. We emphasise that the string

diagrams themselves were not used to infer any of the following results. A good example

of this sort of string notation can be found in the thesis of Buhné [Buh15].

The first coherence cell, corresponding to π, is given by the following diagram.

3, 22, 3

4, 1 5a0 3, 2

4π0

5a0 5a04, 1

4a12, 3 3a2

4, 1
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As a pasting diagram it is as follows.

RSPTPUP

RSTPPUP

RSTPPUP RSTPUPP RSTPUPP

RSTUPPP

RSTUPPP

RSPTUPP

RSPTUPP

RSTPUPP RSTUPPP RSTUPPP

RSTPUPP RSTUPPP

RSTUPPP

2,3

;;

3a2

;;

4,1
// 5a //

3,2

##

4a1

##

4,1
##

5a
##

2,3

;; 3,2
//

4,1
//

5a

;;

4,1

##

2,3

;;

3,2
//

5a
##

5a

##

4a1

;; 5a
//

3,2
##

4π��
∼=

∼=

∼=

∼=

∼=

The coherence cell corresponding to λ is given by the following string diagram.

1l2

2, 1 3l0 2y10

0, 3 0y2

1, 20, 33a02, 1

2λ0
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Displayed as a pasting diagram this gives the following.

JRPSP RJPSP RASP

RSP

JRSPP

JRSPP RSJPP RSJPP RSPJP

RSPA

RJSPP RSJPP

RSAP

0,3
// 1l2 //

y2

**
2,1

��

3a

��

0,3
//

1,2
//

2,1
//

3l

44

2y1

OO
2,1

��

1,1
��

2y21
//

0,3
//

3a

��

1,2
//

3a

��

2l1
44

2λ��

∼=

∼= ∼=

∼=
∼=

For the coherence cell corresponding to ρ we use the following string diagram.

2ρ

2r�1

3r�1 2, 1

1y�1

2y�
1 3a

This can also be interpreted as the following pasting diagram.

RSP RSAP

RSJPP
RSPA

RSPJP RSJPP

1y�1
++

2y�
3

33

2r�

��

2y�
1 ��

3r�1
��

2,1
//

3a

BB
2ρ��

∼=

The final coherence cell, corresponding to µ, is given by the following string diagram.
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2µ

2l11, 2y�2 1r�2 3a2, 1 1y1

We depict this final coherence cell as the pasting diagram below.

RSP

RASP

RJPSP

RJSPP

RJSPP

RSJPP

RSAP

RSP

RSAP

RSJPP

y�2

OO

1r�2 77

2,1 77

3a 33 1,2
++

2l1

��

1y1

��

id
//

1,1

++

2y�
2

66

2r�1

77

1,2
++

3a 33

2y3 ,,
2µ��

∼=

∼=

∼=
∼=

The following proof refers to figures in the appendix.

Theorem 5.1.2. If A is a promonoidal bicategory then Bicat(Aop,Cat) is a monoidal

bicategory as described above.

Proof. We begin by showing that the first monoidal bicategory axiom, MB1, is satisfied

via a sequence of equalities between string diagrams. There are four diagrams in the

sequence, with the first and last being the two required to be equal for the axiom MB1

to hold. Careful manipulation of 2-cells using pseudonaturality and coherence cells

shows that the left hand diagram in Figure 5.1 is equal to the diagram on the right. The

diagram on the right hand side of Figure 5.1 is then equal to the diagram on the left hand

side of Figure 5.2, using the promonoidal bicategory axiom PB1. Similar manipulation

of the diagram on the left hand side of Figure 5.2 then results in the final diagram on

the right hand side of Figure 5.2, showing that MB1 holds for the monoidal structure

described.
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The axiom MB2 requires the diagram on the left hand side of Figure 5.3 to be

equal to the diagram in Figure 5.4. This is the most intricate to prove of the monoidal

bicategory axioms, simply due to how complex the coherence cell for λ we specified is.

The first step is to take the diagram in Figure 5.3 involving 2µ2 and move this past the

braiding 2, 1. This introduces many instances of the highlighted isomorphisms, as seen

in the diagram on the right hand side of Figure 5.3. However, once we have established

this then we can use the promonoidal bicategory axiom PB2 to change the resulting 3µ1

into the bottom of the right hand diagram of Figure 5.3.

The proof of axiom MB3 is similar to the way in which we proved MB2 but ends up

being far simpler to check. We can immediately use axiom PB3 to obtain the equality

in Figure 5.5. The tricky part of this proof is shuffling the resulting 3ρ1 upwards in the

diagram to become a 2ρ2 as in Figure 5.6.

5.2 Monoidal bicocompletion

In the standard setting for Day convolution it is true that if C is a monoidal category

then [Cop,Set] is the free monoidal cocompletion of C. This means that Ĉ is the free

cocompletion and each of the endofunctors − ?G, F ?− : Ĉ→ Ĉ preserve colimits. More

precisely there is an adjunction given by an equivalence of categories

MonCocomp(Ĉ,D) 'MonCat(C,D)

where, for a monoidally cocomplete category D, Cocomp(Ĉ,D) is the category of

monoidal colimit-preserving functors and monoidal natural transformations [IK86]. We

have a similar setting for monoidal bicategories in that if A is a monoidal bicategory then

Â is monoidally bicocomplete, so each of the endopseudofunctors − ? S,R ?− : Â→ Â

preserve bicolimits.

Proposition 5.2.1. Let A be a monoidal bicategory. The pseudofunctors

− ? S,R ?− : Â→ Â

preserve bicolimits, where R,S : Aop → Cat are pseudofunctors.

Proof. This is a simple exercise in commutativity of bicolimits and we will briefly de-

scribe one of the cases above. Let P : K → Â be a pseudofunctor. There is then a
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pseudofunctor

(bicP ) ? S =

∫ a,b

(bicP )(a)× Sb×A(−, a⊗ b)

'
∫ a,b(∫ k

P (k)

)
(a)× Sb×A(−, a⊗ b)

whereas the other bicolimit is given by the pseudofunctor

bic((− ? S) · P ) =

∫ k

P (k) ? S

'
∫ k ∫ a,b

P (k)(a)× Sb×A(−, a⊗ b).

The other case is similar.

We would like to further prove that Â is the free monoidal bicocompletion of A.

This would mean that given any other monoidally bicocomplete bicategory B and a

monoidal pseudofunctor F : A→ B there exists a monoidal bicolimit-preserving pseud-

ofunctor F̂ : Â → B. Furthermore, given two monoidal bicolimit-preserving functors

H,K : Â→ B, where B is monoidally bicocomplete, along with a monoidal pseudonatu-

ral transformation β : Hy ⇒ Ky, there is a unique monoidal pseudonatural transforma-

tion β′ : H ⇒ K such that β′ ∗ 1y = β. The above requirements would then constitute

a pseudonatural biequivalence

MonBicocom(Â,B) 'MonBicat(A,B),

where MonBicocom(Â,B) is the bicategory of monoidal bicolimit-preserving pseud-

ofunctors Â → B, monoidal pseudonatural transformations, and modifications. The

monoidal pseudofunctors we speak of are those defined by Day and Street [DS97], being

a distinguished kind of functor between tricategories [GPS95]. However, we consider

the algebraic variant [Gur13b] in line with our definitions of monoidal and promonoidal

bicategories.

We begin to set up the adjunction above, however we do not present all of the details

required to prove the biequivalence. First we should check that each F̂ : Â → B is in
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fact monoidal, the first step in which we establish an adjoint equivalence between

F̂ (R)⊗ F̂ (S) =

(∫ a

Ra · Fa
)
⊗
(∫ b

Sb · Fb
)

and

F̂ (R ? S) =

∫ c(∫ a,b

Ra× Sb×A(c, a⊗ b)
)
· Fc.

This makes use of the fact that B is monoidally bicocomplete and so its tensor prod-

uct preserves bicolimits in each variable, as well various properties of bicopowers and

bicodescent objects, along with some of the coherence cells which make F a monoidal

pseudofunctor. There is an obvious pseudofunctor

MonBicocom(Â,B)→MonBicat(A,B)

given by precocomposition with y : A→ Â which is the basis of this biequivalence.

5.3 Biclosed structure on presheaves

We give a remark on using Day convolution to define a biclosed structure on Â. The

ideas involved are the essentially the same as those in [Day70], again using bicodescent

and bidescent objects rather than coends and ends. Closed bicategories were defined

originally by Bénabou [Bén73]. We use the definition from [Sta16], though omit the

requirement of symmetry and so consider a biclosed structure rather than a closed

structure on a symmetric monoidal bicategory.

Definition 5.3.1. A monoidal category A is biclosed if each of the pseudofunctors

−⊗ b : A→ A, a⊗− : A→ A

has a right pseudoadjoint, where a, b ∈ A.

We begin to define the biclosed monoidal structure on the bicategory Â. By Theorem

5.1.2 Â is a monoidal bicategory and we define right pseudoadjoints to the pseudofunctors

− ? S,R ?− : Â→ Â
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as follows. For − ? S, define

T/S =

∫
c
Cat

(∫ b

Sb× Pc−b, T c
)
.

Similarly, for R ?−, define

R\T =

∫
c
Cat

(∫ a

Ra× Pca−, T c
)
.

5.4 Further Remarks

The axioms in the definition of a promonoidal bicategory were motivated by the desire

for these to be pseudomonoid objects in a monoidal tricategory 2-Prof of bicategories,

pseudoprofunctors, pseudonatural transformations, and modifications. It would seem

that such a result could be shown directly though the work involved in the proof would

surely be cumbersome. The definition of promonoidal bicategories could be recast in the

setting of Gray-monoids in order to reduce the complexity of the diagrams involved.

The setting of our results is rather specific. In the 1-dimensional setting a con-

volution product is defined on [Cop,V] whenever C is a promonoidal V-category, for a

suitable enriching category V. However our 2-dimensional result only applies when A

is a promonoidal bicategory, with no notion of enrichment. One suspects the results

could be developed further in the setting where A is a V-enriched bicategory, where V

is a suitable monoidal bicategory [GS16], in order to define a convolution product on

Bicat(Aop,V). Previous comments addressing Gray-monoids would also be suitable to

consider here.

Many of the cocompletion statements lack a full resolution. It would be desirable to

give a more full treatment to these ideas, including discussions of size. Such a treatment

would surely use the notions of relative pseudomonads [FGHW16].
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2, 5 3a4 4, 3 5a2 3, 4 4a3 6, 1 7a 5, 2 6a1 4, 3 5a2 2, 5 3a4 4, 3 5a2 3, 4 4a3 6, 1 7a 5, 2 6a1 4, 3 5a2

5π1

6π

6π

5π1

6π

6π

6, 1 7a 4, 3 5, 2 6, 1 7a 2, 5 3, 4 4, 3 5, 2 6, 1 7a
6, 1 7a 4, 3 5, 2 6, 1 7a 2, 5 3, 4 4, 3 5, 2 6, 1 7a

Figure 5.1: First equation to prove MB1.
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2, 5 3a4 4, 3 5a2 3, 4 4a3 6, 1 7a 5, 2 6a1 4, 3 5a2 2, 5 3a4 4, 3 5a2 3, 4 4a3 6, 1 7a 5, 2 6a1 4, 3 5a2

6π

5π1

6π

4π2

6π

6π

6, 1 7a 4, 3 5, 2 6, 1 7a 2, 5 3, 4 4, 3 5, 2 6, 1 7a
6, 1 7a 4, 3 5, 2 6, 1 7a 2, 5 3, 4 4, 3 5, 2 6, 1 7a

Figure 5.2: Third equation to prove MB1.
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3λ1

4π

4µ

1, 4

2µ2

2, 11y32, 3 3a2 2l31r�4y�4 3a 1, 4 2, 11y32, 3 3a2 2l31r�4y�4 3a

2, 1 3a 2, 1 3a

Figure 5.3: First equation to prove MB2, using PB2.
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3λ1

4π

4µ

1, 4 2, 11y32, 3 3a2 2l31r�4y�4 3a

2, 1 3a

Figure 5.4: Final step in proving MB2.
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4µ

4π0

3ρ1

3, 2

3µ1

3l22, 31y�3 2r�3 4a13a2, 1 2y2
3, 2 3l22, 31y�3 2r�3 4a13a2, 1 2y2

2, 1 3a 2, 1 3a

Figure 5.5: Use of axiom PB3 to prove MB3.
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2, 1 3a

3, 2 3l22, 31y�3 2r�3 4a13a2, 1 2y2

2ρ2

4π

4µ

Figure 5.6: Final diagram in proof of axiom MB3.
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[Buh15] L. Buhné. Topics in three-dimensional descent theory. PhD Thesis, Univer-

sität Hamburg, 2015. 80



98 References

[CF07] G. L. Cattani and M. P. Fiore. The bicategory-theoretic solution of recur-

sive domain equations. Electronic Notes in Theoretical Computer Science,

172:203 – 222, 2007. 19

[CG11] E. Cheng and N. Gurski. The periodic table of n-categories for

low-dimensions ii: degenerate tricategories. Cahiers Topologie Géom.
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