
Supervisory Control Theory for

Controlling Swarm Robotics
Systems

Yuri Kaszubowski Lopes

Supervisors:
Dr Roderich Groß
Dr Tony J. Dodd

A Thesis Submitted for the Degree of
Doctor of Philosophy

9th December 2016

To obtain, something of equal
value must be lost. That is
Alchemy’s first law of
Equivalent Exchange.
Hiromu Arakawa
Fullmetal Alchemist, Vol. 1

v

Abstract

Swarm robotics systems have the potential to tackle many interesting problems. Their
control software is mostly created by ad-hoc development. This makes it hard to deploy
swarm robotics systems in real-world scenarios as it is difficult to analyse, maintain, or
extend these systems. Formal methods can contribute to overcome these problems.
However, they usually do not guarantee that the implementation matches the specifi-
cation because the system’s control code is typically generated manually.

This thesis studies the application of the supervisory control theory (SCT) framework
in swarm robotics systems. SCT is widely applied and well established in the man-
ufacturing context. It requires the system and the desired behaviours (specifications)
to be defined as formal languages. In this thesis, regular languages are used. Regular
languages, in the form of deterministic finite state automata, have already been widely
applied for controlling swarm robotics systems, enabling a smooth transition from the
ad-hoc development currently in practice. This thesis shows that the control code for
swarm robotics systems can be automatically generated from formal specifications.

Several case studies are presented that serve as guidance for those who want to learn
how to specify swarm behaviours using SCT formally. The thesis provides the tools for
the implementation of controllers using formal specifications. Controllers are validated
on swarms of up to 600 physical robots through a series of systematic experiments.
It is also shown that the same controllers can be automatically ported onto different
robotics platforms, as long as they offer the required capabilities. The thesis extends
and incorporates techniques to the supervisory control theory framework; specifically,
the concepts of global events and the use of probabilistic generators. It can be seen as a
step towards making formal methods a standard practice in swarm robotics.

vii

Acknowledgments

Não há outra maneira de se iniciar meus agradecimentos senão em minha lı́ngua mãe,
pois muitos dos que contribuirão para tornar possı́vel este trabalho escrito em lı́ngua
estrangeira talvez não possam lê-lo, mas nada existiria sem eles. Primeiramente eu
gostaria de agradecer as duas pessoas mais importantes da minha vida, os meus pais,
Almir Lopes e Denise Kaszubowski Lopes, por toda a compreensão, amor, valores,
ensinamentos e carinho durante toda minha vida. E também a toda minha famı́lia,
em especial aos meus tios Marlon Manoel de Souza e Dirlei Kaszubowski de Souza,
meu primo e grande amigo Eric Kaszubowski de Souza, meus queridos avós, Maria de
Lourdes Kaszubowski, Thadeu Kaszubowski (In Memoriam) e Maria de Lordes Pereira
Lopes. Meu agradecimento ao povo brasileiro, que por intermédio da CAPES financia-
ram meu doutorado e ao povo catarinense que através de seus impostos financiaram
minha graduação e mestrado na universidade do estado de Santa Catarina.

I would like to express my gratitude to a number of people who provided expert advice,
support, and guidance during my PhD. My supervisors, Dr. Roderich Groß and Profes-
sor Tony J. Dodd who spared no efforts to assist my research. My scholarship tutor in
Brazil, Dr. André Bittercourt Leal. My examiners, Professor Visakan Kadirkamanathan
and Pedro Lima.

I also would like to acknowledge the support of several members of staff from the
University of Sheffield. Especially the staff from the Automatic Control and System
Engineering department. The staff members of Sheffield Robotics, in particular to Ana
MacIntosh, Louise Caffrey, and Michael Port.

I am thankful to my lab mates at the Natural Robotics Lab, for all of the friendship, ad-
vice, support, and the friendly environment for the discussion of ideas: Melvin Gauci,
Jianing Chen, Wei Li, Christopher Parrott, Fernando Perez-Diaz, Gabriel Kapellmann
Zafra, Matthew Doyle, Nicole Salomons, João Vasco Marques, Anıl Özdemir, Isaac Van-
dermeulen, Yue Gu, and in particular to Stefan Trenkwalder for his collaboration with
my work. I am thankful to my other PhD student fellows from Sheffield Robotics:
Haoyu Zhang, James Douthwaite, Christina Georgiou and especially to Natalie Eliza-
beth Wood.

Adapting to live in another country could have been extremely challenging, so I am
thankful that I was able to find a piece of Latin America with this amazing Mexican

ix

group and their friends, who made the stay in Sheffield so enjoyable. Moitısimas
gracias, José Solis Cordova, Daniela Miranda, Francisco Ochoa Cardenas, Nora Elvia
Manzo Flores, Ariel Cano, Alejandro Vidal Rosas, Yessica Garcia de Vidal, Vicktor
Cedeno Campos, Carlos Luna, Erick Noe Amezquita Lucio, Yang Zhang, and Matei
Neagu.

To other friends I made in Sheffield during this journey, especially to Victor Borges,
Mike Gransbury, Rebecca Gransbury, and Bernadette Hill.

Finally, a thank you to the people back home who supported me on this journey. My
dearest professors from the Santa Catarina State University, without their teachings
I would never be prepared for this PhD. Especially to Roberto Silvio Ubertino Rosso
Junior, André Bittencourt Leal, Carlos Norberto Vetorazzi Junior, Claudio Cesar de
Sá, Salvador Antonio dos Santos, Alexandre Gonçalves Silva, Ricardo Ferreira Mar-
tins, Omir Correia Alves Junior, Marcelo da Silva Hounsell, Ademir Nied, and Pedro
Bertemes Filho. To my friends and colleagues from the Santa Catarina State University
Lucas Hermann Negri, Romulo Amorim Bahiense, Gabriel Hermann Negri, Guilherme
Jarentchuk, André Diego Piske, Guilherme Espindola, Thiago Oliveira, Renan Sebem,
Eduardo Harbs, Rodrigo Trentini, and Yujuan Wang.

Without you I would never have had the opportunities to find my way to this milestone.

x

To planet Earth, for its
generous hospitality.
Yuri Kaszubowski Lopes

xi

Nomenclature

CCW Counter-clockwise

CW Clockwise

DES Discrete event system

DFA Deterministic finite state automata

FSM Finite state machines

HST Hybrid systems theory

OHP Overhead programmer

PDFA Probabilistic deterministic finite state automata

PFSM Probabilistic finite state machine

PFSM Probabilistic finite state machines

pGP Probabilistic generator player

PLC Programmable logic controller

pSCT Probabilistic supervisory control theory

SCT Supervisory control theory

UML Unified modelling language

VPB Virtual physics-based

xiii

List of Figures

2.1 The Kilobot robot. 22
2.2 Kilobot’s schematic. 23
2.3 The e-puck robot. 24
2.4 E-puck’s schematic. 25
2.5 Example of a DFA that realises a regular expression. 31
2.6 Probabilistic finite-state automata. 33
2.7 Free behaviour models. 37
2.8 Control specification. 38
2.9 Bad state and its removal. 40
2.10 Non-coaccessible state and its removal. 42
2.11 Control structure. 45

3.1 Free behaviour models for the orbit case study. 51
3.2 Specification for the orbit case study. 53
3.3 Free behaviour models for the segregation case study. 54
3.4 Specification for the segregation case study. 56
3.5 Free behaviour models for the aggregation case study. 57
3.6 Specification for the aggregation case study. 58
3.7 Alternative specifications for the aggregation case study. 59
3.8 Free behaviour models for the object clustering case study. 59
3.9 Specification for the object clustering case study. 60
3.10 Free behaviour models for the group formation case study. 61
3.11 Specification Ef1 , Ef2 , and Ef3 for the group formation case study. 64
3.12 Specification Ef4 , Ef5 , and Ef6 for the group formation case study. 65

4.1 Nadzoru interface. 80
4.2 Supervisor data structure in memory. 81
4.3 Snapshots from one of the orbit task trials. 85
4.4 Snapshots from one of the segregation task trials. 86
4.5 Snapshots from one of the aggregation task trials. 88
4.6 Snapshots from one of the object clustering task trials. 89
4.7 Dynamics of object clustering. 90
4.8 Mean dynamics of all 10 trials of the object clustering. 91

xv

List of Figures

4.9 Snapshots from one of the group formation task trials with 88 robots. . . 92
4.10 Snapshots from one of the group formation task trials with 600 robots. . 93

5.1 Free behaviour models for the clustering objects in the presence of an
intruder case study. 101

5.2 Specifications regarding the robot’s movement. 102
5.3 Specifications regarding the intruder detection. 103
5.4 Specifications preventing the same movement event from occurring con-

secutively. 103
5.5 Free behaviour models for the last spotted location case study. 105
5.6 Specification Egl1 for the last spotted location case study. 106
5.7 Free behaviour models for the disjoint agreement case study. 107
5.8 Specifications for the disjoint agreement case study. 108
5.9 Free behaviour models for the synchronous movement case study. . . . 110
5.10 Specifications for the synchronous movement case study. 112
5.11 Star topology used for the communication between robots. 115
5.12 Data structure of the package to transmit global events. 116
5.13 Snapshots from one of the object clustering in the presence of an intruder

task trials. 119
5.14 Dynamics of object clustering in the presence of an intruder. 120
5.15 Mean dynamics for the object clustering in the presence of an intruder task.121
5.16 Communication reliability for the object clustering in the presence of an

intruder task. 121
5.17 Impact of the Bluetooth communication performance on the swarm be-

haviour. 122
5.18 Snapshots from one of the last spotted location task trials. 123
5.19 Communication reliability for the last spotted location task. 124
5.20 Snapshots from one of the disjoint agreement task trials. 125
5.21 Communication reliability for the disjoint agreement task. 126
5.22 Snapshots for one of the synchronous movements task trials. 126
5.23 Communication reliability for the synchronous movements task. 127

6.1 Choice problem. 131
6.2 Choice problem with livelock . 131
6.3 Under-performance due to the choice problem. 132
6.4 Choice problem without livelocks. 132
6.5 Under-performance due to the choice problem. 134

xvi

List of Figures

6.6 Probabilistic generator derived from a non-probabilistic generator. . . . 136
6.7 Normalisation of the transitions probabilities. 137
6.8 Synchronous composition of two probabilistic generators. 139
6.9 Free behaviour models for the graph colouring case study. 141
6.10 Specifications for the graph colouring case study. 142
6.11 Memory representation of a probabilistic generator. 145
6.12 Snapshots of one of the distributed graph colouring task trials with 25

robots. 148
6.13 Snapshots of one of the distributed graph colouring task trials with 100

robots. 149
6.14 Graph colouring performance with 25 robots. 149
6.15 Graph colouring performance with 100 robots. 150
6.16 Movement priority using pSCT . 151

7.1 Same specification with a generator and a Petri-net. 156

xvii

List of Tables

2.1 Transition function of a DFA. 31

3.1 Events’ definition for the orbit strategy. 52

3.2 Events’ definition for the segregation strategy. 55

3.3 Events’ definition for the aggregation strategy. 57

3.4 Events’ definition for the object clustering strategy. 60

3.5 Events’ definition for the group formation strategy. 63

3.6 Events used by the specifications and free behaviour models for the orbit
case study. 70

3.7 Events used by the specifications and free behaviour models for the seg-
regation case study. 71

3.8 Events used by specifications and free behaviour models for the aggre-
gation case study. 72

3.9 Events used by specifications and free behaviour models for the object
clustering case study. 73

3.10 Events used by specifications and free behaviour models for the group
formation case study. 75

3.11 Number of states and transitions using different synthesis approaches. . 77

4.1 Memory usage of the local modular approach. 84

5.1 Events’ definition for the cluster of objects in the presence of an intruder
case study. 101

5.2 Events used by the specifications and free behaviour models for the clus-
ter of objects in the presence of an intruder case study. 104

5.3 Events’ definition for the last spotted location case study. 105

5.4 Events’ definition for the disjoint agreement case study. 107

5.5 Events used by the specifications and free behaviour models for the dis-
joint agreement case study. 109

5.6 Events’ definition for the synchronous movement case study. 111

5.7 Events used by the specifications and free behaviour models for the syn-
chronous movement avoiding collision case study. 113

5.8 Number of states and transitions using different synthesis approaches. . 114

xix

List of Tables

6.1 Associated probability for Gp1 and Gp2. 138
6.2 Events’ definition for the graph colouring case study 141
6.3 Events used by the specifications and free behaviour models for the graph

colouring case study. 144
6.4 Number of states and transitions using different synthesis approaches. . 148
6.5 Operational procedures reduction by the use of pSCT 151

xx

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Problem definition . 4
1.3 Aim and objectives . 5
1.4 Preview of contributions . 5
1.5 Publications . 6
1.6 Thesis outline . 7

2 Background and related work 11
2.1 Swarm robotics . 11

2.1.1 Design, analysing, and control . 12
2.1.2 Formal methods . 16

2.1.2.1 Hybrid system theory . 20
2.1.3 Platforms . 22

2.1.3.1 Kilobot . 22
2.1.3.2 e-puck . 23

2.2 Languages, grammars, and automata applied to discrete event systems . 26
2.2.1 Regular languages . 29
2.2.2 Stochastic languages . 31

2.2.2.1 Probabilistic finite-state automata 32
2.2.2.2 Probabilistic deterministic finite-state automata 33

2.3 Supervisory control of discrete event systems 34
2.3.1 Generators . 35
2.3.2 Free behaviour models . 36
2.3.3 Control specifications . 37
2.3.4 Supervisor synthesis . 38

2.3.4.1 Synchronous composition 38
2.3.4.2 Controllability of the target language 39
2.3.4.3 Accessibility . 41
2.3.4.4 Co-accessibility . 41
2.3.4.5 Trim . 41
2.3.4.6 Maximal controllable sub-language 41
2.3.4.7 Monolithic supervisor . 42

xxi

Contents

2.3.4.8 Modular supervisors . 43
2.3.4.9 Local modular supervisors 44

2.3.5 Controller implementation . 44
2.3.6 Applications . 46
2.3.7 Probabilistic generators . 46

2.4 Summary . 47

3 Design and synthesis of supervisors for controlling swarms of robots 49
3.1 Design of free behaviour models and control specifications 50

3.1.1 Orbit . 50
3.1.2 Segregation . 52
3.1.3 Aggregation . 55
3.1.4 Object clustering . 58
3.1.5 Group formation . 61
3.1.6 Design guidelines . 66

3.2 Supervisor synthesis . 67
3.2.1 Monolithic . 67
3.2.2 Modular . 68
3.2.3 Local modular . 70

3.2.3.1 Orbit . 70
3.2.3.2 Segregation . 71
3.2.3.3 Aggregation . 72
3.2.3.4 Object clustering . 73
3.2.3.5 Group formation . 74
3.2.3.6 Enabled events . 76

3.2.4 Comparison . 76
3.3 Summary . 77

4 A framework for executing supervisors on swarms of robots 79
4.1 Implementation of supervisory control in swarm robotics 79

4.1.1 Supervisor representation in memory 80
4.1.2 Generator player . 81
4.1.3 Operational procedures . 83
4.1.4 Memory usage . 84

4.2 Experiments . 84
4.2.1 Orbit . 85
4.2.2 Segregation . 85

xxii

Contents

4.2.3 Aggregation . 86
4.2.4 Object clustering . 87
4.2.5 Group formation . 90

4.3 Summary . 94

5 Supervisory control of swarms of robots using global events 97
5.1 Supervisory control over global events . 98
5.2 Modelling and supervisor synthesis . 99

5.2.1 Case study one: clustering objects in the presence of an intruder . 100
5.2.2 Case study two: last spotted location 104
5.2.3 Case study three: disjoint agreement 106
5.2.4 Case study four: synchronous movement avoiding collision . . . 109
5.2.5 Comparison . 113

5.3 Implementation . 113
5.3.1 Communication . 114
5.3.2 Memory representation . 116
5.3.3 Generator player . 116
5.3.4 Operational procedures . 117

5.4 Experiments . 117
5.4.1 Case study one: clustering objects in the presence of an intruder . 119
5.4.2 Case study two: last spotted location 122
5.4.3 Case study three: disjoint agreement 122
5.4.4 Case study four: synchronous movement avoiding collision . . . 124

5.5 Summary . 124

6 Probabilistic supervisory control of swarms of robots 129
6.1 Choice problem . 130
6.2 Probabilistic generators . 135

6.2.1 Operations for the synthesis of probabilistic supervisors 137
6.2.1.1 Normalisation . 137
6.2.1.2 Synchronisation . 138

6.3 Graph colouring case study . 140
6.3.1 Supervisor synthesis . 143

6.4 Implementation . 146
6.4.1 Memory representation . 146
6.4.2 Probabilistic generator player . 146

6.5 Experiments . 147

xxiii

Contents

6.6 Segregation and group formation cases 150
6.7 Summary . 151

7 Conclusion 153
7.1 Future work . 155

7.1.1 Other representations for languages 155
7.1.2 Formal verification . 156
7.1.3 Transparent distribution of the controller 157
7.1.4 Multi-level hierarchical control . 157

xxiv

1
Introduction

To improve the world around us, a substantial amount of commodities are being pro-
duced every day, and this has driven humans to change the way labour is tackled.
Hand tools have been a major advance, reducing much of the human effort in per-
forming tasks. Further mechanisation, such as the use of powered tools and advanced
machinery, have reduced, even more, the physical effort required for the manufacture
of goods. Machines and robots are now able to perform a range of tasks, releasing
humans from those that are repetitive, dangerous, and tedious.

Robots are not only able to assist humans in several tasks but they can even outper-
form them in quality and speed. Robots can provide companionship, extend human
abilities, they can be built to be many times stronger than humans, and can do tasks
more quickly, or make decisions beyond human capabilities. Multiple robots can be co-
ordinated to work collaboratively, and more recently, to self-organise as a collective. In
the future robots will assist humans to tackle labour by the spontaneous self-organised
collaboration between groups of robots and humans. The question on how this can be
achieved has aroused the interest of many researchers.

A promising answer comes from nature. Since the dawn of time, humans have ob-
served nature for inspiration in developing new technologies. Recently, the collective
behaviours found in nature have fomented a new horizon on how we can build robotic
systems that spontaneously self-organise and collaborate to perform tasks. Some of the
most prominent methods that arose from observing the social interactions of animals
are grouped under the term swarm intelligence. Swarm intelligence techniques include
well known meta-heuristics such as stochastic diffusion search [2], ant colony optimi-
sation [3, 4], and particle swarm optimisation [5]. A new and prominent field of study,
called swarm robotics [6, 7, 8, 9, 10, 11], was opened by translating swarm intelligence
techniques, from a virtual population of agents that search for a solution for an opti-

1

1 Introduction

misation problem, to real-world scenarios where agents are real robots cooperating to
solve physical tasks.

Swarm robotics systems may accomplish tasks despite failures in some of the robots,
and are typically designed so that their performance scales well with the number of
robots. These properties can be useful in several applications [11]. However, much of
the source code used to control swarm robotics systems is developed in an ad-hoc man-
ner, meaning that the correctness of controllers is not easily verifiable [12] hindering its
transition from the academic environment to real applications. Formal methods are an
ideal tool for addressing these problems.

Formal methods is an umbrella term for a set of mathematical techniques, languages,
and tools for the modelling, specification, and verification of systems [13]. A promising
field of study within formal methods is formal languages.

Formal languages study the mathematical representation of languages. The theory of
formal languages is concerned with the classification, patterns, features, properties, re-
lations, specifications, and recognition of languages [14]. The field started paying at-
tention to such characteristics in natural language, mainly on the syntactic aspects, but
later this was extended and applied to other areas [14]. For example, compilers make
use of formal languages to specify how a computer program can be written. Formal
languages are applied in the recognition of patterns and in the definition of commu-
nication standards. Formal languages are a useful tool to model systems; allowing a
formal mathematical representation of systems that can be understood by computers
and humans.

The supervisory control theory (SCT) [15, 16, 17]—or Ramadge-Wonham framework—
is a framework for the synthesis of controllers in the form of supervisors. Many works
in the manufacturing context have contributed to render the SCT as a reliable practice
[18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. In SCT, formal languages are used to model the
capabilities of systems. At the same time, specifications, also expressed as formal lan-
guages, are used to restrict these capabilities. This ensures that the system behaves as
intended. Regular languages, recognised by deterministic finite state automata (DFA)
(see Section 2.2.1 and generated by generators (see Section 2.3.1), are the most common
approach used in the literature to express formal languages to be applied with the SCT
framework.

2

1.1 Motivation

1.1 Motivation

The motivation for this work emerges from the potential uses of swarm robotics, and
the question about how formal methods can assist in the transition of swarm robotics
systems from the academic environment to real-world applications. Swarm robotics
explores collaboration among multiple individuals, an approach consistently found in
nature. Swarms of insects, colonies of ants, flocks of birds, and several other animals
use collaboration to perform their day to day activities. We humans are not different
and often collaborate to perform labour. Swarm robotics has the potential to formulate
intelligent solutions for several problems by combining robotics with the social aspects
of collaboration.

Future applications of swarm robotics systems include: medical [28], patter formation
[29, 30], patrol-inspection [31, 32], transportation [33, 34], among others. In these ap-
plications, a single specialised robot may not be used as some of the requirements can
exclusively be met by swarms of robots. For example, in a search and rescue environ-
ment, a swarm of small robots could be used to search and access obstructed locations
and when a victim is found the robots could self-assemble to combine strength to trans-
port the victim to a safer location [35].

Formal methods have the potential to increase the reliability of the behaviours exhib-
ited in swarm robotics systems. Once the desired behaviour of a swarm is formally
expressed the specification can be subject to verification and tests, for example, model
checking techniques. The formal specification can also serve as a documentation of the
behaviour.

In [36] interviews with nuclear engineers exposed for a short time to the use of formal
methods (in the form of “Statecharts“) resulted in the following two comments:

“ They felt that they could eventually come to an agreement that the State-
chart specification correctly described the system and did not feel that they
would have the same confidence with an English document. ”

And:

“ Once the nuclear engineers had experience with one or more of the formal
specification notations, they said they would never trust a natural language
specification again. ”

3

1 Introduction

This work focuses on the use of regular languages—that can be realised by genera-
tors (a type of finite state machines)—within the SCT framework. The use of regular
languages may enable a smooth transition between the ad-hoc development using fi-
nite state machines—commonly employed by the swarm robotics community—and the
use of formal languages that can automatically generate the control code for swarm
robotics systems. The motivation of this work is the potential acceptance of SCT using
finite state machines by the swarm robotics community that can drive the use of formal
methods as a standard practice in the field.

1.2 Problem definition

Designing the control logic for a swarm of robots is a challenging problem. Each robot
in the swarm typically executes an identical program that has access only to a limited
amount of local information. As a consequence, it is unaware of the overall configura-
tion of the swarm.

The control software of swarm robotics systems is usually obtained through ad-hoc
development, without relying on software engineering methods. The ad-hoc develop-
ment, which is mainly used in academic environments, hinders the transition of swarm
robotics systems to real-world applications. The source code resulting from ad-hoc de-
velopment is hard to maintain, analyse, or verify.

Formal methods help in addressing these problems (for example, see Knight et al. 36).
However, even when formal methods are used, it is not guaranteed that the final source
code would accurately represent the specifications. This uncertainty is due to the fact
that the source code has been obtained in a manual process as automatic code genera-
tion is not a standard practice in swarm robotics.

Furthermore, a cultural resistance to applying formal methods can be observed [36]:
they may be perceived as an additional step that does not add value to the final product,
prolongs its development cycle, introduces undesired complexity, and their integration
is often impeded by the lack of appropriate tools.

We propose the application of SCT to the domain of swarm robotics. We investigate
how to formally model the capabilities of and specifications for swarm robotics sys-
tems; how to automatically generate the controllers (including source code) for the in-

4

1.3 Aim and objectives

dividual robots in the swarm; and how SCT can be extended to provide useful methods
for swarm robotics systems.

1.3 Aim and objectives

The aim of this thesis is to investigate the use of regular languages for the synthesis and
control of swarm robotics systems within the supervisory control theory framework.

The specific objectives of this work are:

• To show, through several case studies (either novel or found in literature), how
swarm robotics solutions can be modelled using the SCT and regular languages
expressed by generators.

• Investigate how the SCT can reduce the amount of ad-hoc code.

• Investigate how the SCT can cope with different swarm robotics platforms.

• Investigate the SCT’s support for extensions.

• Examine the performance of the approach using swarms of physical robots.

1.4 Preview of contributions

The contributions of the thesis are:

• To use supervisory control theory for formally developing controllers for swarms
of autonomous robots and illustrate the modelling process using regular lan-
guages (generators) as the formal language in a range of case studies;

• To adapt the full supervisory control theory framework [15, 22, 1], from the mod-
elling to the software implementation, and validate its use with swarms of up to
600 physical robots;

5

1 Introduction

• To adapt an open source software tool to automatically generate the control soft-
ware for two established swarm robotics platforms (the e-puck [37] and the Kilo-
bot [38]), and to demonstrate that the same synthesised supervisor can be directly
executed on swarms of different platforms as long as they offer the required ca-
pabilities;

• To compare three existing supervisory control synthesis methods: monolithic [15],
modular [16], and local modular [20, 19, 22] in several swarm robotics’ case stud-
ies;

• To extend the SCT framework by introducing the concept of global events and
validate the extension in four case studies with swarms of physical robots;

• To propose a probabilistic SCT (pSCT) framework, which combines the concept of
probabilistic generators [39, 40] with support for marked states1 and the synthesis
of local modular supervisors [20, 19, 22], and to validate pSCT in one case study
with swarms of physical robots.

1.5 Publications

This thesis provides original contributions to scientific knowledge established by the
author’s own work. Five papers for academic journals and conferences have been pro-
duced based on the work presented in this thesis:

1. LOPES, Y. K., TRENKWALDER, S., LEAL, A. B., DODD, T. J., GROSS, R. Super-
visory control theory applied to swarm robotics. Swarm Intelligence, 10(1):65–97,
2016.

2. LOPES, Y. K., LEAL, A. B., DODD, T. J., GROSS, R. Application of Supervisory
Control Theory to Swarms of e-puck and Kilobot Robots. In: M. Dorigo, et al.
(Eds.), International Conference on Swarm Intelligence - ANTS, 2014, volume
8667 of LNCS, pages 62-73. Berlin: Springer. Finalist of Best Paper Award.

3. PINHEIRO, L.P., LOPES, Y.K., LEAL, A.B., ROSSO Jr, R.S.U. Nadzoru: A soft-
ware tool for supervisory control of discrete event systems. In: Proceedings of the

1Marked states are states that are considered safe for the system (e.g., they could correspond to the end
of a task).

6

1.6 Thesis outline

5th International Workshop on Dependable Control of Discrete Systems - DCDS,
volume 5, 2015, pages 182-187.

4. LOPES, Y. K., TRENKWALDER, S., LEAL, A. B., DODD, T. J., GROSS, R. Prob-
abilistic Supervisory Control Theory (pSCT) Applied to Swarm Robotics (to ap-
pear).

5. LOPES, Y. K., TRENKWALDER, S., LEAL, A. B., DODD, T. J., GROSS, R. Global
Discrete Events in the Supervisory Control of Swarm Robotics (in preparation).

The author presented Publication 2 as a full paper at the International Conference on
Swarm Intelligence - ANTS 2014, held in Brussels, Belgium.

The contents of Chapters 3 and 4 of this thesis have been previously published in Pub-
lications 1 and 2. The materials in Publications 5 and 4 are based on the contents of
Chapters 5 and 6 of this thesis, respectively. Part of the contents related to the software
tool nadzoru of Publication 3 represents additional material added to Chapter 4 of this
thesis. The introductory content, background, and related work from all of these five
publications have contributed to Chapters 1 and 2 of this thesis.

During the course of the author’s PhD project, another publication, that is not featured
in this thesis, has been done with his contribution:

1. TRENKWALDER, S., LOPES, Y.K., KOLLING A., CHRISTENSEN, A.L., PRO-
DAN, R., GROSS, R. OpenSwarm: An Event-Driven Embedded Operating Sys-
tem for Miniature Robots. In: International Conference on Intelligent Robots and
Systems - IROS 2016.

1.6 Thesis outline

This thesis’ structure takes the form of seven chapters, including this introductory chap-
ter. The remaining part of this thesis proceeds as follows:

• Chapter 2 presents the related work and reviews the background theory. It starts
with an overview of the swarm robotics fields in Section 2.1. Specifically, meth-
ods for the design, modelling, analysis, and control of swarm robotics systems

7

1 Introduction

are presented in Section 2.1.1. In Section 2.1.2 several works that consider the
use of formal methods in swarm robotics are presented. In Section 2.1.3 two
physical swarm robotics platforms are presented: the Kilobot [38], and the e-
puck [37]. The theory of formal languages and automata is introduced in Sec-
tion 2.2. In Section 2.3 the supervisory control theory (SCT) for the control of
discrete event systems (DES) is presented. The concepts of generators (Section
2.3.1), free behaviour models (Section 2.3.2), and control specifications (Section
2.3.3) are defined. Section 2.3.4 presents the steps for the synthesis of supervisors
using the SCT framework, Section 2.3.5 discuss the control implementation, and
Section 2.3.6 overviews the application of SCT. Finally, probabilistic generators
are overviewed in Section 2.3.7.

• Chapter 3 presents how to model the capabilities, how to specify the desired be-
haviour, and how to synthesise controllers in the form of supervisors for swarm
robotics systems using the SCT framework. It introduces five case studies and the
model of the formal specification of the desired behaviour in Section 3.1. It starts
with a didactic case, the orbit case study, in Section 3.1.1 and the segregation case
study, in Section 3.1.2. Further on, in the next Chapter, these two cases studies are
implemented in different swarm robotics platforms with source code generated
from the same formal specification. In Sections 3.1.3 and 3.1.4 two cases from
literature are formally specified: the aggregation and the clustering of objects.
The scalability of the approach is checked by the group formation case study pre-
sented in Section 3.1.5. Finally, in Section 3.2 the formal controllers (supervisors)
are synthesised using different methods and the results are compared in Section
3.2.4.

• Chapter 4 discuss the implementation of formal controllers from the synthesised
controllers obtained in the previous chapter and presents the results obtained
from systematic experimental trials performed on physical robots. The automatic
code generation, which is a compact representation of the synthesised supervisor,
and the required implementation are presented in Section 4.1. The experiments
are described and results are reported in Section 4.2.

• Chapter 5 presents the concept of global events that abstracts communication
among robots in the swarm. In Section 5.1 the concept of global events for the
supervisory control of swarm robotics is introduced. Four case studies are pre-
sented in Section 5.2, illustrating the concept of global events. It is shown how

8

1.6 Thesis outline

global events can be used to make the swarm cooperatively respond to situations
detected or observed by other robots (in Sections 5.2.1 and 5.2.2) and how robots
can make a joint decision to avoid conflicts (in Section 5.2.3) or to represent a con-
sensus (in Section 5.2.4, where robots perform synchronous movement). We de-
tail the automatic code generation for the controllers that support global events in
Section 5.3 and we describe the experimental methods and results in Section 5.4.

• Chapter 6 presents how we incorporate probabilistic generators to formulate prob-
abilistic controllers in a probabilistic supervisory control theory (pSCT) frame-
work. In Section 6.1 it is shown how probabilistic generators within the pSCT
framework can solve the choice problem (see [18]). From the adaptation of the
definitions of probabilistic generators found in literature, shown in Section 6.2,
we define a set of operations for the synthesis of probabilistic supervisors that can
cope with multiple models for the definition of the robots’ capabilities and spec-
ifications, in Section 6.2.1. We present a study case based on the graph colouring
problem in Section 6.3. We synthesise a probabilistic controller using pSCT and in
Section 6.4 we detail its implementation on physical robots using automatic code
generation. Our controller, automatically obtained, can distributively compute a
solution for this problem, as shown in Section 6.5 through experimental trials.

• Chapter 7 concludes the thesis by summarising research findings, their implica-
tions, and highlighting the significance of the findings. The chapter finally pro-
vides recommendations for further research work.

9

2
Background and related work

This chapter first reviews the literature on swarm robotics including related work on
the application of formal methods. It then reviews formal languages and Supervisory
Control Theory (SCT).

2.1 Swarm robotics

Swarm robotics studies systems composed of a large number of autonomous robots
that interact with each other and cooperate to achieve certain goals. Swarm robotics
systems are characterised by restricted communication among the individuals within
the swarm, use of local information, decentralised control, and the emergence of global
behaviour [7]. Robotic swarms tend to be robust, flexible, and scalable. Such properties
may prove useful in many real-world applications [11].

The term swarm intelligence was originally introduced by [8] to describe cellular robotic
systems. Later the term has been adopted in the context of social insects and optimi-
sation [9]. [41] defines swarm intelligence as a collective behaviour that emerges when
many simple individuals combine their separate behaviours. Swarm robotics can be
seen as the application of swarm intelligence concepts to collective robotics [42].

Some authors argue that the term swarm intelligence is too advanced to be used to
describe modest (in terms of what robots can achieve) groups of robots [8]. A definition
of swarm robotics is given by [9]:

“Swarm robotics is the study of how large number of relatively simple phys-
ically embodied agents can be designed such that a desired collective be-
haviour emerges from the local interactions among agents and between the
agents and the environment.”

11

2 Background and related work

According to [11] the main characteristics of the robots from a swarm robotics system
are: (1) they are autonomous, (2) they are located in the environment and can act to
modify it, (3) they have local sensing and communication capabilities, (4) they do not
have access to global knowledge and to centralised control, and (5) they cooperate to
accomplish a given task.

In recent years swarm robotics has been extensively studied as discussed in reviews of
this field [43, 44, 42, 45]. Several research domains have been considered; for example,
modelling, behaviour design, biologically inspired methods, communication, mapping
and localisation, control approaches, reconfiguration of robotic systems, manipulation
and transportation of objects, task allocation, motion coordination, and analytical stud-
ies [44, 42].

This thesis is mainly concerned with the control of swarm robotics systems, specifi-
cally, how controllers can be automatically obtained from formal specifications, how
we can verify safety conditions of such specifications, and how the controller can be
implemented on real robots.

2.1.1 Design, analysing, and control

According to [11], the design of swarm robotics systems can be categorised into auto-
matic design or behaviour-based design. Automatic design concerns the application of
methods that automatically generate behaviours. Examples of automatic design meth-
ods are reinforcement learning [46] and evolutionary robotics [47]. Behaviour-based
design concerns the development of system behaviour, primally by developers [11].
Behaviour-based design can make use of several techniques such as finite state machine
(FSM) [48] and virtual physics-based (VPB) designs such as potential fields [11].

The above binary classification of design methods seems however not to be an accu-
rate representation of reality, as the classes of design methods may overlap. Auto-
matic design methods usually require developer input, for example, in the form of a
fitness function that expresses the desired behaviour [49], whereas techniques listed as
behaviour-based design can be automatically obtained [50].

FSM are mathematical models where the state space of the system is a finite discrete
set. FSM is a common choice to represent behaviour-based design in swarm robotics
[38, 12]. They are usually implemented by switch-case statements. Transitions between

12

2.1 Swarm robotics

states occur abruptly and are usually related to a change in stimulus, and each state is
usually related to a particular control routine.

In [12] a tool called RoboChart is presented, which automatically generates control code
from a notation based on FSM and inspired by the unified modelling language (UML)
[51]. RoboChart allows a specification to be described graphically or textually. The
automatic code generation tool then provides an implementation based on this specifi-
cation. Two case studies are presented: self-organised aggregation [52, 53] (see Section
2.1.3.2) and swarm taxis [54]. The method used by the authors presents similarities with
the work presented in Chapters 3 and 4 of this thesis and previously published in [55]
and [56]. However, RoboChart is shown to support only a single specification model,
whereas SCT, used in this thesis, allows the decomposition of the specification model
into several sub-systems, which is usually simpler to describe than a larger single spec-
ification. Another difference is that the control output is related to states and the input
to transitions in RoboChart, whereas in this thesis, both, control input and control out-
put, are related to transitions (the RoboChart’s approach to controlling output could be
implemented with self-loop transitions). Furthermore, the approach used in this thesis
makes possible to distinguish the system state once a control output is triggered.

Probabilistic FSMs (PFSMs) are an extension of finite state machines (FSMs). In PFSM
transitions are associated with probabilities, which can be constant or change over time
[44, 11]. The application of PFSM in swarm robotics includes the work of [57] where
the collective behaviour of aggregation was studied. In the aggregation task, all robots
in a homogeneous environment have to group themselves [11]. [58] explores chain for-
mation behaviours, in which the robots have to connect two points of interest in the
environment. In another application, [59] applies PFSM to task allocation. Task alloca-
tion refers to the collective behaviour in which different tasks are distributed across the
robots [11].

VPB design has its origin on how physics studies particles [11]. Robots are seen as
virtual particles that interact with each other by exercising and being subject to virtual
forces. Examples of VPB design in swarm robotics include the works of [60] and [61].
In these works, artificial potential fields are applied to represent the virtual forces from
the environment. Obstacles are related to repulsive forces, and targets are related to
attractive forces. Furthermore, the work of [61] goes beyond by associating robots to
virtual forces, where these forces may represent social interactions.

[44] classifies the analysis of swarm robotics into four different approaches, which is

13

2 Background and related work

based on the modelling characteristics of the system. The first is sensor-based1 modelling
that is concerned with simulations of the system. The main components of the system
modelled by the sensor-based approach are the sensors, actuators, and environment ob-
jects. The robot-to-robot and the robot-to-environment interactions are modelled only
after these principal components were modelled.

Microscopic models are the second category. They consider robot-to-environment and
robot-to-robot interactions separately. Behaviours are associated with states, and the
transitions between states are related to internal events inside the robot and external
events in the environment [44].

Macroscopic models are the third category. They consider the swarm as a whole and
thus directly model properties of the entire system [11]. The system’s macroscopic state
describes the number of robots in a particular microscopic state. The change in the sys-
tem’s macroscopic state can be described by differential equations [44], representing the
evolution over time of the ratio between the number of robots in a particular state and
the total number of robots [11]. These equations capture the system’s mean behaviour,
however, because of finite-size effects, they may not accurately model small swarms.
Master equations [62] can be applied used to capture the dynamics of the system’s state
distribution. They may, however, not be feasible for large swarms.

[11] highlights the work of [63], which models a clustering task where robots collect ob-
jects, as one of the first to apply differential equations. Another task where robots must
cooperate to remove sticks out of holes also is analysed by using differential equations
[64, 65]. A foraging task that considers the effect of interference is modelled using dif-
ferential equations by [66]. In this case, authors apply the robot group size as a decreas-
ing function to model the individual performance of the robots. Chain and aggregation
formation is also explored using differential equations [67], while applying PFSMs.

In [62], authors studied for the first time the problem of predicting the yield of self-
assembly systems. Given an initial state or input the yield is the final quantity of a
desired outcome over an indefinite period. In the work of [62], the starting configura-
tion is a group of x1 mechanical equilateral triangle parts, X1, which can magnetically
connect with each other. One side of the triangle has a north magnet, another a south
magnet, and the third has no magnet and therefore cannot establish any connection.
Two single parts of type X1 can connect and form another shape compound of two

1The term sensor-actuator-based modelling might be more accurate.

14

2.1 Swarm robotics

parts, X2; another single part, X1, can connect with X2 and form a three parts compo-
nent, X3; and so on. The outcome is the predicted number, x6, of 6 parts components,
X6, which forms a hexagon. The possible combinations can be expressed by chemical
relations, for example:

2X → X2, X +X2 → X3, X +X3 → X4, 2X2 → X4. (2.1)

Authors applied difference equations to determine the mean value of xi : i ∈ {1, · · · , 6}
and the master equation to determine the probability distribution.

The fourth category of swarm robotics analysis approaches presented by [44], cellular
automata (CA), can be considered a special case of microscopic modelling. The CA is
composed of a single or multi dimensional grid of cells. A finite number of possible
states is related to each cell in the grid. Cells can only interact with the neighbouring
cells, these interactions occur locally and are regulated by a set of rules.

Whereas the distinction between microscopic and macroscopic seems clear, sensor-
based and CA appear as subcategories of microscopic and macroscopic categories. A
CA can be seen as a particular method of the macroscopic analysis, rather than a dif-
ferent category. Similarly, sensor-based approaches does not appear as a different ap-
proach, but as a specification of the microscopic modelling.

Even though swarm robotics emphasises decentralised approaches, the control of swarm
robotics systems can also include centralised control. In the centralised control there is
a single control agent [68, 45], which can be a robotic agent (leader) [69]. In the de-
centralised control agents operate locally [68, 45] and are completely autonomous [69].
In the decentralised control of swarm robotics systems, the robots are self-organising
[42, 69].

Note that authors may either refer to decentralised control as distributed control (e.g.,
[69]) or have distinct meanings for both terms (e.g., [68]). In [68], the decentralised
control is split into two categories: distributed architectures, in which all agents per-
form the same control strategy, and hierarchical architectures, in which the agents can
be considered as locally centralised. On the other hand, in [69], the centralised control
is split into two categories: strong centralisation, in which the central agent remains
the same, and weak centralisation, in which multiple robots are allowed to become a
leader. The study and experiments of these categories of control and the proper balance
between centralised and distributed control are investigated by [70].

15

2 Background and related work

The design aspect is concerned with the methods used to produce swarm robotics sys-
tem’s behaviours. These behaviours can be expressed by models using a particular
representation. Representations that allow the analysis of the models can be referred
as formal methods. The analysis of the models can be performed, for example, at mi-
croscopic or macroscopic levels. Furthermore, the analysis can check properties of the
system, for example, safety conditions. The control of swarm robotics systems tends to
be decentralised, even though centralised implementations exist in the literature. In this
thesis, we focus on the application of models represented by a specific formal method
to automatically generate the control that adheres to the specifications. The next section
reviews works that approach formal methods in swarm robotics.

2.1.2 Formal methods

Formal methods are languages, techniques, and tools which are based on mathematical
principles for specifying and verifying hardware and software systems [13]. The formal
specification of a system is defined by [13] as a process to describe the system behaviour
and its desired properties. In this work, we split this definition into system modelling,
which describes the system’s possible behaviours (capabilities) and control specifica-
tions, which define the desired behaviour/properties. The specifications can than be
subject to formal verification and analysis, which check whether a system holds certain
properties [13]. This section overviews previous work that investigates the application
of formal methods in swarm robotics.

According to [71] the use of formal methods can be classified by the level of rigour:

• Level 0: Absence of formal methods;

• Level 1: Use of mathematical notations and concepts: formal specifications are
used to communicate, using a precise and compact notation. This helps to reduce
ambiguities.

• Level 2: Application of formalised specification languages with tool support: for-
mal languages are used to model the system in a more structured way. This makes
use of some automated tools to perform checking and to simulate the system.
Specifications can be used to produce a simulation or to prototype an implemen-
tation, automatically or with human assistance. Formal verification can prove
specification properties and infer system’s behaviour;

16

2.1 Swarm robotics

• Level 3: Full use of formal specification, proof checking, and automated theorem
proving: Whereas proofs in level 2 are performed informally, level 3 provides
automated theorem proving. Automated theorem proving can be obtained by
using computer programs even though the processing cost can be high.

As previously presented, swarm robotics systems can be modelled at two levels of ab-
straction: microscopic and macroscopic. In [65], the authors present a unified frame-
work focused on non-automatic design methods, which uses PFSM, for modelling a
swarm robotics system at both microscopic and macroscopic levels. The authors present
a case study where a swarm of robots cooperatively pull sticks out of the ground. This
work contributes to the area by combining microscopic and macroscopic modelling
under a more rigorous, unified framework, presenting a swarm robotics case using
probabilistic modelling methods and describing abstraction steps.

As [72] argue, modelling a system at multiple levels (microscopic and macroscopic) can
lead to inconsistencies between such levels. To address this, they propose biochemical
performance evaluation process algebra (Bio-PEPA), a method widely used for mod-
elling biochemical reactions. Bio-PEPA models the swarm robotics system solely at
the microscopic level and supports the integration of spatial information. Bio-PEPA
enables analysis and verification of macroscopic features by an automated system anal-
ysis technique called model checking.

In the work of [73], algebraic graph theory is applied to analyse stability properties
of networked mobile agents that are flocking using decentralised control. Agents ex-
change information via networks that may change in topology. They do so while avoid-
ing collisions and converging to a common direction and speed.

In [74] Lyapunov analysis, singularity theory, and monotone dynamical systems were
applied to study collective decision-making behaviour in groups of animals. The agent
mechanisms were modelled at the microscopic level to characterise the steady-state
behaviour in the honeybee nest site selection problem.

[75, 76] propose a method called property-driven design. It uses a discrete-time macro-
scopic-prescriptive model and model checking. The method consists of four steps: first,
the requirements are formally specified. Second, a prescriptive macroscopic model is
designed using Markov chains and verified by model checking. Third, this model is
used to guide the implementation of a simulated robot swarm. Finally, the desired
robot swarm is implemented and tested in simulations and then with robots. In the

17

2 Background and related work

property-driven design, the swarm is described using properties and the robot has a
prescriptive model. This is used to simulate and to be implemented on robots, and it
is applied to perform a top-down design for robotics swarms using two case studies.
However, the formal specification is used only to guide the development, such as a
blueprint is used in the development of a building. The authors highlight that the use
of such methods improves upon the traditional ad-hoc approach, which depends on
the developer’s ingenuity and expertise. However, the obtained model is used only as
a guide for the implementations of both the simulated and the physical swarms. The
property-driven design does not yet incorporate the automatic porting of the models to
source code.

Probabilistic finite-state machines can be automatically generated. In [50], the Auto-
MoDe-Vanilla (automatic modular design) approach is presented. In AutoMoDe prede-
fined, parametric modules serve as building blocks to the design process. Controllers,
represented as PFSM, are obtained using the F-Race optimisation algorithm. They
are then compared against controllers generated by EvoStick [50] and by human ex-
perts [77]. The human experts are either constrained to use the predefined parametric
modules (C-Human) or unconstrained (U-Human). The results show that C-Human
outperformed AutoMoDe-Vanilla, but AutoMoDe-Vanilla was better than U-Human.
AutoMoDe was also extended to use the iterated F-Race algorithm, resulting in an ap-
proach called AutoMoDe-Chocolate, which outperforms both AutoMoDe-Vanilla and
C-Human [78]. However, a well established community-wide practice that is shared
and empirical still not available [79].

In [80], methods for the evaluation of the expected value of a path integral for general
Markov chains on finite state spaces are reviewed. Authors demonstrate the method
application in the analysis of swarm robotics systems. The work concludes that inter-
actions between the robots can be so complex that sometimes the only practical way of
studying those systems is to use numerical simulations.

Petri-nets (PN) [81] are another formal approach to modelling the control software of
swarm robotics systems. Petri-nets can represent formal languages and therefore are
a suitable candidate to be used with the SCT-framework. In [82], the authors use PNs
to coordinate the actions of a group of robots. A mechanism for verifying group plans
prior to execution, and an online approach to detect and solve conflicts using PN is
introduced. The PN based controller is, however, executed from a central computer,
which communicates with the robots. In [83], PN models were used in multi-robotics

18

2.1 Swarm robotics

for task planning, plan execution, and plan analysis. It is shown how to detect prop-
erties such as boundedness, livelocks, and deadlocks in PNs. The authors extend a
PN-based framework by introducing communication models and communication ac-
tions to model and analyse the execution of multi-robot tasks.

[84] presented the design and implementation of a mission control system for an au-
tonomous under-water vehicle based on Petri-nets. The Petri-nets are used to specify
and execute the desired autonomous vehicle mission. However, the Petri-nets are not
used to model the solution, instead the user synthesises the solution using an impera-
tive language and the result are Petri-nets.

As in the case for supervisors2 represented by finite state automata, checking for the
controllability (see section 2.3.4.2) of deterministic PN is decidable [85, 86]. The con-
trollability was believed to depend on the uncontrollable marking notion defined in
[85]. The problem was thus reduced to checking the existence of reachable uncontrol-
lable markings. However, as shown in [86], such a definition is not correct, as there are
controllable deterministic PNs with reachable uncontrollable markings based on the
definition presented in [85]. An adjusted definition of uncontrollable marking solving
this issue is presented by [86].

Temporal logic [87] has been applied to the modelling and analysing of swarm robotics
systems [88]. It can be combined with model checking for formal verification [89, 90,
91]. In model checking, all possible executions of the system are considered to check
whether certain properties are met. Automatic code generation for temporal logic mod-
els has yet to be developed.

In [90] and [91], formal verification techniques are applied for analysing the emergent
behaviours of swarm robotics. The authors used model checking, and temporal logic
to verify whether all possible behaviours within the swarm will hold the desired prop-
erties. The method works by checking if temporal properties are satisfied. The paper
concludes that the formal method of temporal logic can be used to specify a swarm
robotics system due to its capability to model concurrent processes. However, the pa-
per focuses on using the swarm specification to analyse the emergent behaviour and
does not address the control design.

In [92] probabilistic temporal verification is applied in an ant-based swarming scenario
involving Micro Aerial Vehicles (MAVs) initially proposed by [93]. Micro Aerial Vehi-

2The concept of supervisors will be present later in the text.

19

2 Background and related work

cles are deployed, from a base, to search for a target user at an unknown location and
establish a communication network with the user. The MAVs are positionless, mean-
ing that they are not aware of their position coordinates, and therefore they depend on
proprioceptive sensors and local neighbourhood communication. The MAVs position
themselves in Y-junction grid that covers a space in the form of an equilateral trian-
gle. Valid positions are located at the border of an MAV’s communication range with a
neighbour, which is 100 m. The MAVs move at a speed of 10 m/s and are deployed one
by one with an interval that varies from 7.5 s to 22.5 s. They navigate through the grid,
choosing between two alternative paths in each node by using a probability that takes
into account the amount of deposited pheromone and a constant that determines the
attractiveness of unexplored paths. Originally this problem was simulated with 50 ms
intervals by [93]. In [93] it is proposed some abstractions and assumptions to reduce
the search space for the model checking.

• Each step is equal to 10 s;

• At each step, an MAV is deployed;

• The MAV that returns to base only resumes the exploration if there is land signal;

• It is assumed that there will be no collisions.

With these assumptions, one point that is missed out is the case where an MAV is de-
ployed while the previous one did not reach the next node, as the deployment interval
and the time to travel from one position to another are the same: 10 s. These assump-
tions simplify the problem but are necessary to reduce the search space to a tractable
level.

2.1.2.1 Hybrid system theory

Most of the aforementioned methods assume discrete system states. Hybrid system
theory (HST) offers an alternative, where the system can be represented by both discrete
and continuous states. HST has been used in the context of swarm robotics, multi-robot
systems, and other multi-agent systems [94, 95, 96, 97, 98, 99, 89, 100, 101, 102].

In particular, hybrid automata can capture continuous and discrete state variables [94].
In [94], the authors explore an analogy between robotic agents and cells in terms of

20

2.1 Swarm robotics

sensors and actuators. The control states are defined over a discrete set with the time-
dependent motion being defined in a continuous space using hybrid automata.

[95] overviews the problems design and verification using HST for safe conflict res-
olution in the context of distributed air traffic automation. [96] uses HST to control
the formation of a group of three robots moving along a given trajectory. Here the
discretization is at the controller level: the robot has multiple continuous motion con-
trollers. Its sensory input—in which other robots are perceived—is used to select the
controller to be executed.

In graph grammars [103] the symbols of the grammar are graphs, in which vertices
represent robots, and the edges represent the connections of two robots. Graph gram-
mars can be extended to be applied in the context of HST. In [97, 98] embedded graph
grammars includes the geometry, continuous dynamics, and local condition of systems.
Embedded graph grammars are then used for the problem of organising the robots into
subgroups while maintaining the overall connectivity.

Modelling large groups of robots can pose a challenge as the combinatorial explosion in
the number of states of the system can be untreatable. To avoid this problem a stochastic
approach can be assumed, in which the distribution of agents over the state space is
modelled [99]. In [99], a probability density function is used to formally define the
state of each agent in a large population of robots. The authors apply the minimum
principle [104] for the optimal control. This uses partial differential equations to solve
the problem of maximising the probability of the presence of robots in a predefined
region.

[89] uses HST in a motion planning problem. The state of the robot reflects its position
in the environment. It is represented both discretely and continuously. For the discrete
representation, the environment is partitioned into a graph of triangular regions. The
graph can be used to express high-level specifications using temporal logic. The paths
in the graph that conform with the specification can be considered as words of a formal
language. These can be recognised by a discrete automaton. The continuous represen-
tation is used to realise low-level motion control, for example, to move the robot from
one triangular region to the next. The overall controller can thus be considered a hybrid
automaton.

[100] address the problem of maintaining connectivity and speed synchronisation in a
network of mobile agents using hybrid control techniques.

21

2 Background and related work

In [101] the control of the spatial distribution of mobile agents is modelled as hybrid
systems where discrete variables of a Markov process depend on continuous variables.
Another example of HST is to control the probability densities of a process with a fixed
but unknown state function [102]. This has several potential applications in mobile
robotics such as the deployment of robots in an environment based on sensor measure-
ments, search, and monitoring.

2.1.3 Platforms

Several swarm robotics platforms are available for use. Two miniature mobile robotics
systems are of interest in this work, the Kilobot [38] and the e-puck [37].

2.1.3.1 Kilobot

(a) (b)

Figure 2.1: (a) The Kilobot swarm robot and (b) a swarm of 100 Kilobots.

The Kilobots [38] are designed to make it possible to test collective algorithms on a
large group of miniature robots. They provide a low-cost system accessible to robotics
researchers. The Kilobot system can be seen in Figure 2.1.

In Figure 2.2 the schematic of the Kilobot is shown highlighting its main components.
The Kilobots are equipped with [38]:

• two motors for locomotion based on vibration;

• a microcontroller unit;

22

2.1 Swarm robotics

• an infra-red (IR) receiver and emitter used for local communication and distance
sensing;

• a light sensor.

Light sensor

FrontVibration
 motors

RBG LEDCharging
hook

IR emitter
& receiver
(bottom)

Figure 2.2: The Kilobot’s schematic of the position of main components.

The Kilobot platform has been gaining in popularity for research involving many phys-
ical robots. In [105] self-assembly in an over-a-thousand-robot swarm is reported. The
design of such a large physical system and algorithms for the control of this system is
an engineering challenge. The authors demonstrate a swarm of 1024 Kilobots which
performed the self-assembly of complex two-dimensional shapes using only local in-
teractions and local sensing. The Kilobots received the desired shape in the form of a
binary image. The binary image was captured by the Kilobots using their light sensor,
robots then move into the position to additively form the desired shape.

In [106] Kilobots are used for shape formation by self-disassembling. Robots are grouped
together and receive the desired shape. They identify whether their location, which is
calculated distributively at run-time, belongs to the desired shape. Assisted by light
sources positioned at specific locations the robots that do not belong to the shape start
to move away. The result is the formation of the desired shape.

2.1.3.2 e-puck

The e-puck robot [37] was designed to meet educational needs at the university level.
However, many scholars apply this a platform in their research. The e-puck platform
can be seen in Figure 2.3.

23

2 Background and related work

(a) (b)

Figure 2.3: (a) The e-puck robot and (b) a swarm of 40 e-pucks.

In Figure 2.4 the schematic of the e-puck is shown highlighting its main components.
The e-puck is equipped with [37]:

• sensors: audio, visual, distances to objects, and gravity;

• actuators: two stepper motors and speakers;

• communication: wired and wireless devices;

• microcontroller.

The e-puck has been used for research in several works to investigate a range of swarm
strategies. In [107] the segregation of physical e-puck robots based on the Brazil nut
effect is experimentally demonstrated. When vibration is applied to a mixture of parti-
cles, the largest ones are likely to be on top. In packs of cereal, these are the Brazil nuts,
giving the name to this effect. Robots can exhibit the same segregation patterns, based
on different virtual attributes, mimicking the behaviour of such particles.

In [52, 53] a strategy that allows a group of e-puck robots to cluster together is pre-
sented. The e-pucks can perform a self-organised aggregation with minimal compu-
tation. The speed and direction of the e-puck’s solely depends on the reading value
of a line-of-sight sensor implemented using the robot’s camera. The input to output
mapping is obtained off-line using grid search.

The cooperative transportation of objects using a swarm of e-puck robots has been stud-
ied too [108, 34]. The proposed strategy aims to transport a tall—and possibly heavy—

24

2.1 Swarm robotics

power
 LED

camera's field
 of view: 56°

Front LED

ring's
 LEDs

IR proximity
 sensors

Bluetooth
 LED

Wheels

 Colour
Camera

Front

Figure 2.4: The E-puck’s schematic of the position of main components.

object to a goal position in a fully distributed manner without relying on communi-
cation. Robots can push the object to move it. The resulting movement of the object is
guaranteed to converge towards a goal location, as long as the object is of convex shape.
Also, e-pucks have been used to validate decentralised segregation strategies applied
for the navigation of swarm robotics [109].

In [49] a swarm of five e-puck robots is used to cluster objects initially spread in the
environment. As in [52, 53] the e-puck maps the line-of-sight sensor directly onto the
speed and direction of its wheels. The mapping is obtained off-line, using genetic algo-
rithms.

The e-puck has also been considered as a standard robot for simulation. Simulations of
swarm systems allow the investigation of large swarms while saving time and avoiding
the cost of such a system in exchange for the loss of accurate prediction of physical
behaviours. The Enki simulation toolkit [110] is an example of a 2D simulator that
provides physics and dynamics simulation of swarm robotics systems and faster than
real time experiments. For example, in [111] the synchronisation in swarms of mobile
agents are investigated. This work shows the correlation between the synchronisation
regime and factors such as the agent’s speed, angle, and range of interaction.

25

2 Background and related work

Algorithms implemented in physical e-puck robots assist the human management of
and interaction with a swarm robotics system. In [112] a human operator can inter-
act with a swarm through a management software package capable of organising the
swarm via a leader. The operator can request the count of robots and assign robots to
workgroups to perform different tasks.

Another example is the use of e-pucks in Enki to study human-robot integration in
the context of swarm robotics. In [113] the collaboration between a swarm of virtual
robots and a user with limited situational awareness is investigated. Use of more recent
devices, such as the Google Glass, in human–robot swarm interaction, has also been
considered [114].

The intensive use of the e-puck platform has called attention to some of its limita-
tions. Considering newer platforms, such as the Kilobot, the e-puck is comparatively
outdated, with revisions being restricted to replace deprecated hardware components.
Nevertheless, it is a platform that is largely available in research centres, and there-
fore some effort has been made to ensure e-puck’s usability. The use of the libIrcom
[115, 116] allows the e-puck to perform local communication and detect the distance
to nearby robots using the IR sensors, in an approach similar to the one used by the
Kilobot. The e-puck when libIrcom, can in addition, also detect the direction of nearby
robots.

Another effort to increase the e-puck usability is the development of an operating sys-
tem for this platform. Open Swarm [117] provides an easy-to-use event-driven interface
with the e-puck hardware. Although Open Swarm aims to be deployed in any minia-
ture robots, it has so far only been developed for the e-puck platform.

2.2 Languages, grammars, and automata applied to discrete
event systems

A language L is defined as a set of words (also called string) w over an alphabet Σ,
where the alphabet is a finite set of symbols. An empty word, ε, is a string with no
symbols. The number of symbols in a word w, denoted by |w|, is called the length of
the word. The set of all possible words of an alphabet is Σ∗ and it is obtained by con-
catenating zero or more symbols from Σ. The set of all non-empty word of an alphabet
is Σ+ = Σ∗ − {ε}. A language L over an alphabet Σ is a subset of Σ∗ [118].

26

2.2 Languages, grammars, and automata applied to discrete event systems

Let us consider two words w1 and w2. The concatenation of two words w1w2 is the
juxtaposing of their symbols. The concatenation of two languages L1 and L2 is [118,
119]:

L1L2 = {w1w2 : w1 ∈ L1, w2 ∈ L2}. (2.2)

The power of a language, Lk, is defined as k concatenations of the language, with L0 =

{ε}. Lk can be recursively defined as:

Li = {w1w2 : w1 ∈ Li−1, w2 ∈ L} ∀i > 0 (2.3)

For example, L1 = L, L2 = LL, and L3 = LLL. The complement of a language is all
the words that do not belong to the language [118, 119], that is:

L′ = Σ∗ − L. (2.4)

The Kleene closure of a language is [119, 118]:

L∗ =
∞
∪
i=0

Li, (2.5)

and the positive closure is [118]:

L+ =
∞
∪
i=1

Li. (2.6)

The prefix-closure of a language is defined as [119]:

L = {s ∈ Σ∗ : ∃t ∈ Σ∗ ∧ st ∈ L}. (2.7)

The events of a discrete event system (DES) are related to the symbols from an alphabet
of a language [119], and the words formed by these symbols represent sequences of
operations (e.g., related to the sensing and actuation). In the context of this thesis, we

27

2 Background and related work

consider the use of languages to control robotic systems modelled as DES. The control
objective is to guarantee that at any time only valid words or prefix of valid words
occur. The problem is that for the majority of real-world application the number of
valid words will be infinite or huge. It may be impossible to keep a dictionary of all
valid words. So, a representation of the language is needed.

A language representation may be able to (1) recognise words, given a word the formal
representation will accept or reject the word as a member of the language; (2) generate
words, the representation will generate words that belong to the language or; (3) realise
a language, the representation will both recognise and generate words.

Languages can be represented by grammars. A grammar M is a quadruple [118]:

M = (V, T, F, P), (2.8)

where,

• V : is a finite set of variables, also called non-terminal symbols;

• T : is a finite set of terminal symbols (the Σ of a language);

• F ∈ V : is the start symbol;

• P : is a finite set of productions (also called rules). In the form:

– < left >→ < right >.

A grammar generates words based on an unspecified number of derivations starting
in F , which may be zero (∗=⇒) or non-zero (+

=⇒) derivations. Thus, a language L is
realised by a grammar M as [118]:

L(M) = {w ∈ T ∗ : F
∗

=⇒w} or L(M) = {w ∈ T ∗ : F
+

=⇒w}. (2.9)

The Chomsky hierarchy [120, 121] classify languages in for classes:

28

2.2 Languages, grammars, and automata applied to discrete event systems

• Type-3 or regular languages [122, pg 31] are generated by productions of one of
the forms A → Ba (left regular) or A → aB (right regular) but never both in the
entire grammar, where A ∈ V and B ∈ V are variables and a ∈ T is a terminal.
Also, the forms A → B and A → ε are allowed in both cases. The operator | can
be used to specify multiples productions that have the same start, as A → aB|a.
The use of left regular and right regular leads to equivalent languages;

• Type-2 or context-free languages [122, pg 100] are generated by productions in
the form A → α, where A ∈ V is a variable and α is a string of terminals (T) and
variables (V);

• Type-1 or context-sensitive languages [118, pg 153] are generated by productions
of the form αAβ → αγβ, where A ∈ V is a variable and, α, β and γ are a string of
terminals (T) and variables (V) where γ cannot be empty;

• Type-0, unrestricted languages or recursively enumerable languages are the lan-
guages recognised by a Turing machine [122, pg 137].

2.2.1 Regular languages

The Type-2 languages are recognised by Push-down automata [122, pg 109], in which
the non-determinism is necessary. The language class of interest of this work for con-
trol is the regular languages, which can be recognised by deterministic finite automata
(DFA).

A DFA is a formal machine composed of a set of states, a set of symbols called alphabet,
a transition function, an initial state and a set of final states. The machine evolves to
others states based on an input given by a tape; when a symbol is read from the tape,
the new state is given according to the complete transition functions, which takes into
account the current states and the symbol. Thus, the DFA accept a word in the input
tape if after it consumes all the input the resulting state of the DFA is part of the set of
final states. A formal representation for a DFA, A, is the quintuple:

A = {Q,Σ, δ, q0, Qm} (2.10)

where,

29

2 Background and related work

• Q: is a finite set of states;

• Σ: is a finite set of symbols;

• δ : Q× Σ→ Q: is the total transition function;

• q0: is the initial state, where q0 ∈ Q and;

• Qm: is the set of final, marked as accepting states, where Qm ⊆ Q.

Another representation for regular languages is a regular expression (RE) (see [122, pg
63]). For example, the RE a|b is the languageL = {a}∪{b} = {a, b}. The RE a∗means the
language L = {a}∗ = {ε, a, aa, aaa, ...}, that is, the language with any natural number
including 0 of a, a+ is a∗ − {ε}. The concatenation is implicit in RE and the parenthesis
is used to group parts of the RE that must be evaluated first. For example, (a|b)b is the
language L = ab, bb, also the operators ∗ or + can be applied to a group. In the RE
(a|b)∗, the language is L = {ε, a, b, aa, ab, bb, aaa, aab, ...}. Let us consider examples of
languages over an alphabet Σ = {a, b, c} defined as:

• zero or more symbols a followed by a suffix bc is expressed as a∗bc;

• one or more symbols a followed by a suffix bc is expressed as a+bc or aa∗bc;

• all words with the prefix abc is expressed as abc(a|b|c)∗.

Let us consider the RE a∗bc. The grammar that realises this RE isM = {{A,B,C}, {a, b, c}, A, P ,
where P is,

A → aA|B
B → bC

C → c

(2.11)

A DFA that recognises this language is A = {{q0, q1, q2, qf}, {a, b, c}, δ, q0, {q2}}, where
q2 is the only final state and δ is given by Table 2.1, where λ means that there is no tran-
sition; in that case the word is rejected. Figure 2.5 presents the graphical representation
of DFA A.

30

2.2 Languages, grammars, and automata applied to discrete event systems

Table 2.1: Transition function of a DFA accepting language a∗bc.
Current symbol

state a b c

q0 q0 q1 λ
q1 λ λ q2

q2 λ λ λ

q0 q1 q2

a

b c

Figure 2.5: An example of a DFA that realises the language a∗bc, that is, all the words
starting with zero or more symbols a and finishing with the suffix bc.

SCT is one of the frameworks to model and synthesise DES using DFA to generate
formal languages. The SCT was introduced by [15], and it will be described in more
detail in Section 2.3.

2.2.2 Stochastic languages

A stochastic language is a probability distributionD over Σ∗. The probability of a string
x ∈ Σ∗ under the distribution D is denoted by PrD(x), where [123]:

∑
x∈Σ∗

PrD(x) = 1 (2.12)

Probabilistic finite-state machines (PFSMs) are applied to define the probability dis-
tribution D [123]. PFSMs have been applied in a variety of fields, including linguis-
tics, speech and pattern recognition, bioinformatics, circuit testing, analysis of time se-
ries, and machine translation. In this section, the concept of probabilistic finite-state
automata (PFA) and probabilistic deterministic finite-state automata (PDFA) are pre-
sented. The choice for such formal machines allows us to build on the experiences and
concepts of the traditional SCT.

31

2 Background and related work

2.2.2.1 Probabilistic finite-state automata

In [123] a definition for PFA is given based on the works of [124, 125, 126, 127, 128, 129].
According to [123], a PFA, Ap, is defined as:

Ap = {Q,Σ, δ, I, F, P}, (2.13)

where:

• Q is a finite set of states;

• Σ is an alphabet;

• δ : Q× Σ×Q is the set of transitions;

• I : Q→ R+ are the initial state probabilities;

• F : Q→ R+ are the final state probabilities;

• P : δ → R+ are the transition probabilities;

and the sum of all initial state probabilities is equal to 1, as:

∑
q∈Q

I(q) = 1. (2.14)

Moreover, the probability of a state q being final, F (q), plus the sum of the probabilities
of all transitions with origin in state q is equal to 1, as:

∀q ∈ Q,F (q) +
∑

e∈Σ,q′∈Q
P (q, e, q′) = 1, (2.15)

Note we consider that 0 ∈ R+ and that P (q, e, q′) = 0 if δ(q, e, q′) is not defined.

In this thesis, PFAs are represented as graphs. The transition δ(q, e, q′)—where q, q′ ∈ Q
are the origin and target states, respectively and e ∈ Σ denotes the symbol—are repre-
sented by labelled arcs. The arcs’ label are in the form e : p, where p = P (q, e, q′) (i.e.,

32

2.2 Languages, grammars, and automata applied to discrete event systems

the associated probability of the transition). States have the label in the form q : (i, f),
where q ∈ Q is the state, i ∈ I is the probability I(q), and f ∈ F is the probabil-
ity F (q). Figure 2.6 shows a PFA with for states Q = {q0, q1, q2, q3} over an alphabet
Σ = {a, b, c}. It has two initial states: q0 and q2, that is I(q0), I(q2) > 0, with I =

{(q0, 0.6), (q2, 0.4)}. It has three final states: q0, q1, and q3, that is F (q0), F (q1), F (q3) > 0,
with F = {(q0, 0.1), (q1, 1.0), (q3, 1.0)}. The regular expression for the language L recog-
nised by the PFA of Figure 2.6 is a∗(a|(b|c)c∗b).

q0:
(0.6, 0.1)

q1:
(0.0, 1.0)

q2:
(0.4, 0.0)

q3:
(0.0, 1.0)

a: 0.3

b: 0.2,
c: 0.2

a: 0.2
b:0.5

c: 0.5

Figure 2.6: An example of a PFA. Arcs represent transitions triggered by a symbol and
its associated probability. Nodes represent states. A node’s label informs the
state name and a pair of probabilities: the probabilities of the state are for
the initial state and final state, respectively.

2.2.2.2 Probabilistic deterministic finite-state automata

A PDFA is a sub-class of PFA where [123]:

• ∃q0 ∈ Q : I(q0) = 1, that is, there is only a single initial state;

• ∀q ∈ Q,∀e ∈ Σ, |{q′ : (q, e, q′) ∈ δ}| ≤ 1, that is, the transition function δ is defined
completely by q and e.

33

2 Background and related work

Therefore, a PDFA can be denoted by:

Apd = {Q,Σ, δ, q0, F, P}, (2.16)

where:

• Q is a finite set of states;

• Σ is the alphabet;

• δ : Q× Σ is the set of transitions;

• q0 ∈ Q is the initial state;

• P : δ → R+ is the transition probabilities;

• F : Q→ R+ is the final state probabilities;

further, the probability of a state q be final, F (q), plus the sum of the probabilities of all
transitions with origin in state q is equal to 1, as:

∀q ∈ Q,F (q) +
∑

e∈Σ,q′∈Q
P (q, e, q′) = 1, (2.17)

In [123] it is proved that PFA and PDFA are not equivalent as the determinism on PFA
implies a loss of expressive power.

2.3 Supervisory control of discrete event systems

DES is an abstraction for a large variety of problems [18]. DESs are all those systems
which can be expressed in a discrete state. In a DES the state space is a discrete set,
which means that the change from one state to another happens abruptly. In the DES,
the transition function is always relating the occurrence of an event in the current dis-
crete state with another discrete state. That is, changes in state (called transitions) are
triggered by events [119].

34

2.3 Supervisory control of discrete event systems

SCT [15, 16, 17] is a theoretical framework for synthesising controllers, called super-
visors. It assumes that the systems under investigation can be represented as discrete
event systems (DES). SCT distinguishes the events that drive the evolution of the sys-
tem between uncontrollable events and controllable events. Uncontrollable events rep-
resent control input, such as feedback signals, for example, from sensors. Controllable
events represent the control output, such as command signals—issued by the controller,
for example, to move a robot forward.

In SCT, the designer models (i) what the system can do and (ii) what it should do. Con-
cerning (i), they specify an arbitrary number of so-called free behaviour models, which de-
scribe all of the system’s capabilities. Concerning (ii), they specify an arbitrary number
of so-called control specifications. Both free behaviour models and control specifications
are expressed using a formal language. Each symbol of the language’s alphabet cor-
responds to an event of the DES. Therefore, the desirable sequence of events form the
words of the language. SCT combines all free behaviour models and control specifica-
tions into a coherent language. It synthesises a supervisor (controller), which guaran-
tees that, at any time, only valid words or prefixes of valid words occur. This is realised
by restricting the set of controllable events that the system may choose from.

For example, consider a service robot tasked to retrieve milk from a fridge. The robot
would first choose controllable event “open fridge”. Suppose uncontrollable event
“fridge has milk” was then triggered; SCT would restrict the set of controllable events
to “take milk out of fridge” and “close fridge” thereafter. If, however, uncontrollable
event “fridge out of milk” was triggered, SCT would restrict the set of controllable
events to “close fridge”. In both cases, the robot would be prevented from starting a
new activity until the fridge was closed. The desired sequence of events—related to
actuation and sensing—would thus adhere to what is both possible and desirable, ei-
ther (“open fridge”, “fridge out of milk”, “close fridge”) or (“open fridge”, “fridge has
milk”, “take milk out of fridge”, “close fridge”).

2.3.1 Generators

The class of formal languages that is most commonly used in SCT are the regular lan-
guages, also called Type-3 languages [120, 121]. The words of a regular language,
within the SCT framework, can be produced by a generator. A generator is similar
to a finite automaton, also called finite state machine (FSM). However, while a finite

35

2 Background and related work

automaton recognises words from a particular regular language (i.e. given a word the
automaton will accept it or not accept it), a generator produces words that belong to
the language. As a result the transition function of a generator is partial in contrast to
the total transition function used by automata. A generator G is a 5-tuple:

G = (Q,Σ, δ, q0, Qm), (2.18)

where:

• Q is a finite set of states;

• Σ is a finite set of symbols related to the system’s events;

• δ : Q× Σ→ Q is a partial transition function;

• q0 ∈ Q is the initial state;

• and Qm ⊆ Q is a set of marked states.

The language realised by generator G is referred to as L(G). For simplicity, we may use
G indistinctly to denote the generator or the language L(G).

Events—that are the symbols of the language–are of two types: uncontrollable events
(Σu) and controllable events (Σc), where Σ = Σu ∪ Σc and Σu ∩ Σc = ∅. A controllable
event ec ∈ Σc is enabled in a state q ∈ Q if δ(q, ec) is defined. Let Σ∗ denote the set of all
words—or sequences of events—over an alphabet Σ. Let Σ+ denote the set of all words
excluding the empty word ε (i.e. Σ+ = Σ∗ \ ε).

Marked states are states that are considered safe for the system. For example, a marked
state can correspond to the end of a task. Reaching a marked state does not necessarily
implicate the end of the operation; the generator could continue to evolve.

2.3.2 Free behaviour models

In SCT, the system is formally represented by m free behaviour models. Each free be-
haviour model abstracts one of the system’s relevant physical capabilities. This modu-
larisation leads to an intuitive link between hardware and software (also, see [130]). The

36

2.3 Supervisory control of discrete event systems

q1 q2

move
/

stop
/

q1 q2

active

inactive

(a) G1 (b) G2

Figure 2.7: Examples of free behaviour models for (a) a conveyor and (b) a sensor placed
at the end of the conveyor. Each behaviour modelGi has its own set of states
Qi = {q1, q2, ...}. move and stop are controllable events. active and inactive
are uncontrollable events.

free behaviour modules are realised by generators Gi, i ∈ {1, 2, . . . ,m}. By default, it
is assumed that the free behaviour models are independent of each other. Figure 2.7
shows two examples of free behaviour models. These represent (a) a conveyor that
transports parts in a manufacturing plant and (b) a sensor that detects the presence of
a part at the end of the conveyor. States are represented by circles. The initial state is
indicated by an unlabelled arrow. Marked states are represented by double-line circles.
It is common that only the initial state of a free behaviour model is marked. This means
that the resulting supervisors should be able to return to the initial condition. Transi-
tions and associated events are shown as labelled arrows. Arrows with a stroke relate
to controllable events, and arrows without a stroke relate to uncontrollable events.

2.3.3 Control specifications

The desired behaviour of the system is formally represented by n control specifications.
Each control specification restricts the possibilities of one or more free behaviour mod-
els. It is realised by a generator Ej , j ∈ {1, 2, . . . , n}. Figure 2.8 shows an example
specification that relates the free behaviour model of the conveyor with that of the sen-
sor to implement the following rule: “when a part arrives in front of the sensor the
conveyor shall stop. Otherwise, it shall move”. SCT works by preventing controllable
events from occurring in some states. This is achieved by disabling controllable events.
For example, in state q1 (see Figure 2.8), event stop is disabled and event move is en-
abled. Hence, when the sensor is inactive, the conveyor will move. Normally, all states
of specifications are marked states. An exception to this would be a specification rep-
resenting a buffer. It can then be desirable, for a system, to guarantee that it reaches

37

2 Background and related work

q1 q2

move
/

active

stop
/

inactive

Figure 2.8: An example of a control specification that enables the conveyor to move only
when there is no part in front of the sensor.

a state with the buffer empty; thus, only the state that represents the empty buffer is
marked.

2.3.4 Supervisor synthesis

The supervisor represents the control logic of the robot. To obtain the supervisor, one
has to restrict the free behaviour models according to the specifications. In other words,
the robot should be allowed to perform only those actions that are compatible with the
specifications. Formally, this is achieved by combining the free behaviour models and
specifications using synchronous composition.

2.3.4.1 Synchronous composition

The synchronous composition (represented by ·||·) of two generators Ga and Gb with
alphabets Σa and Σa, respectively, is defined as:

Ga||Gb = (Qa ×Qb,Σa ∪ Σb, δa||b, (q0a , q0b), Qma ×Qmb
), (2.19)

where

δa||b((qa, qb), e) =

(δa(qa, e), δb(qb, e)) if δa(qa, e)! ∧ δb(qb, e)! ∧ e ∈ Σa ∧ e ∈ Σb

(δa(qa, e), qb) if δa(qa, e)! ∧ e ∈ Σa ∧ e /∈ Σb

(qa, δb(qb, e)) if δb(qb, e)! ∧ e /∈ Σa ∧ e ∈ Σb

undefined otherwise,

(2.20)

38

2.3 Supervisory control of discrete event systems

and δ(x, y)! means that δ is defined on input (x, y). Equation 2.20 ensures that events
that are not common to Σa and Σb can occur asynchronously, whereas events that are
common to both alphabets must occur synchronously.

The synchronous composition of free behaviour models with specifications is called the
target language. In the case of a single free behaviour modelG and a single specification
E, the target language K is defined as:

K = G||E. (2.21)

2.3.4.2 Controllability of the target language

It is important to note that the target language is not necessarily controllable. A lan-
guage K over an alphabet Σ is controllable with respect to the free behaviour model G
and the set of uncontrollable events Σu ⊆ Σ, if [119]:

∀s ∈ L(K),∀eu ∈ Σu, seu ∈ L(G)⇒ seu ∈ L(K), (2.22)

In other words, if s is a prefix of a word of the language generated by K, L(K), and
eu an uncontrollable event that is physically possible to occur after this sequence (i.e.
seu ∈ L(G)) , then seu must also be a prefix of a word in L(K) (i.e. seu ∈ L(K)).

Let us consider controllability in more detail. Each state qK(y) of a target language K =

G||E can be mapped to a state qG(x) in G. qK(y) can be considered as a composed state
(qG(x), ·). If an event e is enabled in qG(x) but not in qK(y) = (qG(x), ·), it is physically
possible to occur, but denied by the control specification. This corresponds to case
“undefined” in Equation 2.20. If e is an uncontrollable event, qK(y) is called a bad state,
as the controller is not able to disable event e when the state is reached. The language
is then uncontrollable. Thus, qK(y) is a bad state if:

∃ e ∈ Σu : e ∈ ΣG(x) and e /∈ ΣK(y), (2.23)

39

2 Background and related work

where ΣG(x) denotes the set of events defined in state qG(x) and ΣK(y) denotes the set of
events defined in state qK(y). To extract the controllable sub-language from an uncon-
trollable language, all bad states (e.g. qbad) and all states that have uncontrollable paths
to any bad state (i.e. qa : ∃s ∈ Σ+

u : δ(qa, s) = qbad) are removed. The resulting language
is minimally restrictive [15]. In other words, it is the largest sub-language of K that is
controllable.

Figure 2.9 shows an example of a bad state and its removal. The composition of G, Fig-
ure 2.9(a), and E, Figure 2.9(b), results in target language K, Figure 2.9(c). State q(2,2)

in K is related to state q2 in G where both uncontrollable events a and b are enabled,
but a is disabled in q2 of specification E, and hence it is disabled in q(2,2) in K. As a
consequence, the uncontrollable event a could occur in q(2,2), even though it should not
occur according to the specification. To prevent the event from occurring, state q(2,2)

must not be reached. Therefore, it is removed. As the controller can only disable con-
trollable events, it is necessary to remove also all states with an uncontrollable path to
q(2,2), if any. Following the removal of bad state q(2,2), the target language, Figure 2.9(d),
is controllable.

q1 q2

b

c
/

a, b

q1 q2

a, b

b

(a) G (b) E

q(1,1) q(2,1)

q(1,2)q(2,2)

c
/

b a, b

b

c/

b

q(1,1) q(2,1)

q(1,2)

c
/

b a, b

b

(c) K = G||E (d)

Figure 2.9: An example of a bad state and its removal. The composition of G (a) and
E (b) results in target language K (c). Removing bad state q(2,2) results in a
controllable language (d). For details, see text.

40

2.3 Supervisory control of discrete event systems

2.3.4.3 Accessibility

States of a generator that are reachable from initial state q0 are called accessible. The
initial state is accessible by definition. If all states of a generator are accessible, the
generator is called accessible.

2.3.4.4 Co-accessibility

States of a generator that can reach at least one marked state q ∈ Qm are called coac-
cessible. Marked states are coaccessible by definition. If all states of a generator are
coaccessible, the generator is called coaccessible.

2.3.4.5 Trim

All non-accessible and non-coaccessible states of G can be removed with the operator
trim(G).

Figure 2.10 shows an example of a non-coaccessible state and its removal by the trim

operator. This example considers the controllable event a and the uncontrollable events
b and c. The generator in Figure 2.10(a) has all states accessible from initial state q1.
States q1, q2, and q3 are also coaccessible, as all of them have a path to marked state q1.
State q4 is non-coaccessible and is eliminated (see Figure 2.10(b)). However, in state q3

the uncontrollable event c can occur which is not desirable (it previously led to the non-
coaccessible state q4). Thus, q3 must be removed as well (Figure 2.10(c)). Note that as
only transitions triggered by controllable events led to q3, the resulting target language
is controllable.

2.3.4.6 Maximal controllable sub-language

The maximal controllable sub-language of a target language K over a free behaviour
modelG is obtained by the SupC(G,K) operator. SupC(G,K) removes bad states from
language K (obtained by Equation 2.21) and applies the trim operator to guarantee the

41

2 Background and related work

accessibility and co-accessibility of the resulting generator. It works iteratively as the
trim can result in additional bad states. The remaining language,

Lm(S/G) = SupC(G,K), (2.24)

is controllable, accessible, and coaccessible. As a consequence, it is non-blocking.

With the presented methods, supervisors can be synthesised that possess all the afore-
mentioned properties. The supervisors can be represented as monolithic [15], modu-
lar [16], and local modular [20, 19, 22] supervisors.

q1 q2 q3 q4

a
/

a
/

b

c

b

(a)

q1 q2 q3

a
/

a
/

b b

q1 q2

a
/

b

(b) (c)

Figure 2.10: An example of a non-coaccessible state and its removal by trim(·). In (a),
states q1, q2, and q3 are coaccessible, as all of them have a path to marked
state q1. State q4 is not coaccessible and hence removed (b). As state q4

could be reached from state q3 through uncontrollable event c, q3 is re-
moved as well (c). State q3 could only be reached through controllable
events, which can be disabled by the supervisor.

2.3.4.7 Monolithic supervisor

If all free behaviour and specification models are composed to a single supervisor S, S
is called monolithic. The first step to synthesise a monolithic supervisor is to compose
all m free behaviour models in a single generator:

G = G1|| . . . ||Gm. (2.25)

42

2.3 Supervisory control of discrete event systems

All n specifications are also composed of a single generator:

E = E1|| . . . ||En. (2.26)

The monolithic target language, K, is obtained by the synchronous composition of G
and E:

K = G||E. (2.27)

Finally, the monolithic supervisor S is obtained as:

S : Lm(S/G) = SupC(G,K). (2.28)

2.3.4.8 Modular supervisors

Due to the parallel composition, the number of states may grow exponentially with the
number of free behaviour models and specifications. As a result, a prohibitively large
amount of program memory can be required to store the control logic. To alleviate this
problem, modular supervisors were proposed [16]. In this approach, the modularity
of the specifications is explored. The modular approach composes one supervisor for
each specification. These supervisors can then be executed in parallel.

The free behaviour models are composed of a single generator Gmod. This is done in
the same way as for the monolithic approach (see Equation 2.25). Thus, Gmod = G.

Rather than calculating a single target language, one target languageKmod
j is computed

for each specification Ej :

Kmod
j = Gmod||Ej ∀ j ∈ {1, . . . , n}. (2.29)

The modular supervisor is obtained for each target language, analogous to Equation 2.28:

Smodj : Lm(Smodj /Gmod) = SupC(Gmod,Kmod
j) ∀ j ∈ {1, . . . , n}. (2.30)

43

2 Background and related work

The modular approach requires the specifications to have no conflicts. To check for con-
flicts all modular supervisors are composed together into Smod|| . Smod|| is then compared
with the monolithic supervisor. If they are not equivalent, that is, they produce differ-
ent languages, then a conflict exists (see [16, 1], for details). Where a conflict occurs
between specifications, the conflicting specifications have to be composed together in a
single supervisor. This reduces the number of supervisors. For example, if two speci-
fications E1 and E2 are in conflict, then the supervisors Smod1 and Smod2 are replaced by
Smod1,2 , where Lm(Smod1,2) = SupC(G,Kmod

1,2) and Kmod
1,2 = G||E1||E2.

2.3.4.9 Local modular supervisors

The local modular approach [20, 19, 22] explores not only the modular property of spec-
ifications but also of free behaviour models. It reduces the number of free behaviour
models used in the synthesis of each supervisor. This may result in supervisors with
fewer states and transitions in total.

In the local modular approach, similar to the modular one, a supervisor is created for
each control specification. However, only the free behaviour models that are affected
by the particular control specification are taken into account. Thus, each specification
Elocj has its own local free behaviour model Glocj , which is the parallel composition of
all free behaviour Gi that have at least one event in common with Ej .

2.3.5 Controller implementation

The SCT states that the supervisors in the controller implementation can only disable
controllable events and the physical plant is responsible for generating both types of
events: controllable and uncontrollable [18, 22]. However, a real controller acts by sens-
ing stimuli from the physical plant and answering with commands. Usually, those stim-
uli are uncontrollable events and commands are controllable events. Whereas the plant
spontaneously generates the uncontrollable events it does not spontaneously generates
the controllable events (see causality problem in [18]).

[22] suggests an architecture that can agree with the SCT and with the control paradigm.
This architecture is shown in Figure 2.11 and it is based on the inclusion of a product
system. The product system is the free behaviour generators and it is included as an

44

2.3 Supervisory control of discrete event systems

artificial piece of the plant inside the control system responsible to generate the con-
trollable events. Thus, the controllable events are generated inside the control system
as required by the traditional control approach, but the supervisor only disables these
events as requested by the SCT.

Figure 2.11: Control structure adapted from [22]. The supervisor is the synthesised con-
trol. The product system is included to solve the causality problem. The
operational procedure is responsible to relate the discrete events with the
physical system.

In fact, the supervisors and product systems are a data structure (see Section 4.1.1)
that represents the synthesised control logic and free behaviours models, respectively.
Based on this data, another module not shown in the architecture, called generator
player (see Section 4.1.2), generates the events and controls all the flow of the con-
troller. This discrepancy happens because this architecture was created concerning the
programmable control logic (PLC) implementations, which is very common in man-
ufacturing coordination control. In Section 4.1 a implementation focused on swarm
robotics is presented.

Furthermore, the architecture states an operational procedure layer (see Section 4.1.3)
that links events and commands to the real system. The operational procedure layer
requires some programming, but normally the amount of code is several times smaller
than the code for the whole control logic.

45

2 Background and related work

2.3.6 Applications

SCT is mostly applied in the context of manufacturing systems. It is used to synthesise
a controller based on formal descriptions of the system and specifications. Studies have
illustrated how code for manufacturing coordination control can be automatically gen-
erated using SCT [21, 24, 22, 1]. SCT is also applied to design controllers for systems
of multiple robots [131, 31, 32], solving tasks such as object delivery and patrolling/in-
spection.

These works focus, however, on the design and analysis of controllers rather than on
their implementation and validation using physical robots. In [31, 32] authors agree
that the modular approach used in simulation only is a limiting factor due to the in-
creasing state size of the automata representation. Moreover, the works by [31, 32] are
only partially based on the RW framework [15, 17]; as a consequence, a variety of soft-
ware tools and theory are not applicable to those systems. SCT has also been considered
for transportation systems, moving both goods [132, 133] and persons, for example, in
theme parks [134].

2.3.7 Probabilistic generators

In this section we introduce the concept of probabilistic finite-state generators, which
for simplicity we will refer as probabilistic generators (PG). Whereas the difference on
the formal definition of DFA and generators3 is the use of partial transition functions
for generators and total transition function for DFA, PG and PFA have more substantial
differences. First, PG have a single initial state (q0), in contrast with PFA. Second, the
PG transition function is deterministic, in contrast with PFA.

As in generators, in PG the symbols, Σ, are related to discrete events. Therefore, Σ

is referred to as a set of events. Events are also partitioned into two disjoint sets of
controllable and uncontrollable events.

Furthermore, multiple definitions for probabilistic generators have been proposed. The
definition of [40] does not contain a definition for final states, differently from PFA and
PDFA. A probabilistic generator Gp is defined as [40]:

Gp = {Q,Σ, δ, q0, p}, (2.31)
3For the sake of brevity when the term generator is used it is referring to non-probabilistic generators.

46

2.4 Summary

where:

• Q is a finite set of states;

• Σ is a finite set of events, with Σ = Σu ∪Σc, where:

– Σu is the set of uncontrollable events and;

– Σc is the set of controllable events;

• δ : Q× Σ→ Q is the partial transition function;

• q0 is the initial state, where q0 ∈ Q.

The probability of an event occurring in a particular state is:

p : Q× Σ→ [0, 1], (2.32)

where

∀q ∈ Q,
∑
e∈Σ

p(q, e) ≤ 1. (2.33)

If each state q in a generator G holds
∑
e∈Σ

p(q, e) = 1, then G is non-terminating. Other-

wise, G is terminating (i.e., if ∃q ∈ Q,
∑
e∈Σ

p(q, e) < 1) [40].

A different definition for probabilistic generators, given by [39], included marked states,
Qm:

Gp = {Q,Σ, δ, q0, Qm, p}. (2.34)

2.4 Summary

Swarm robotics systems are composed of a larger number of robots that are interact-
ing and cooperating to achieve certain goals. Swarms of robots have the potential to

47

2 Background and related work

be applied to real-world scenarios and tackle many interesting problems. The design
of swarm robotics systems may be categorised into automatic design or behaviour-
based design methods, though these classes may also overlap. The modelling of swarm
robotics systems may be categorised by sensor-based, microscopic, macroscopic, and
cellular automata; though sensor-based and cellular automata can be see as subcat-
egories of the other categories. The control of swarm robotics systems may be cate-
gorised by centralised and decentralised; the latter being separated in distributed and
hierarchical. This work focuses on the use of microscopic methods, that could be ob-
tain using behaviour-based or automatic design techniques, controlled by a distributed
decentralised implementation.

For much of present swarm robotics systems the controllers are still developed in an
ad-hoc manner, hindering the transition of swarm robotics to real-world applications.
The use of formal approaches could greatly benefit the development. In this chapter,
related works that use formal methods to model, analyse, and synthesise swarm robotic
controllers were reviewed.

This chapter overviewed the theory of formal languages with a focus on regular lan-
guages. The use of regular languages could enable a smooth transition from the ad-
hoc development as regular languages can be realised by state machines, which are
already widely often employed by the swarm robotics community. Formal languages
can recognise or generates words that belong to a language. Each symbol of the al-
phabet of a particular language can be related to a discrete event in the swarm robotics
system (e.g., events related to sensing and actuation). Thus, a controller can be obtained
as a language that contains only valid sequences of events. As the control specification
and the system model is represented by formal languages, it facilitates the application
of formal analysis to guarantee the correctness of the control.

While some works address the use of formal approaches in swarm robotics, there is a
lack of work addressing automatic code generation. The SCT provides a framework
that can be adapted to automatically produce the source code to control swarms of
robots.

48

3
Design and synthesis of supervisors for

controlling swarms of robots

In this chapter it is discussed how to model the capabilities, how to specify the de-
sired behaviour, and how to synthesise controllers in the form of supervisors for swarm
robotics systems using the supervisory control theory (SCT) framework.

The method to obtain a supervisor consists of three steps:

1. The capabilities of the robot must be formally defined using generators, called
free behaviour models. In general, each component of the robot (e.g., a wheel, a
camera, etc.) is modelled individually. Examples are provided in Section 3.1.

2. The desired behaviour of the robot is defined using generators, called specifica-
tions. Specifications restrict the free behaviour of the robots. Each specification
can be modular, that is, it can consider a single aspect involving a subset of the
free behaviour models. Examples are provided in Section 3.1.

3. The free behaviour models and specifications are combined into a supervisor in a
process called synthesis. In this process, a generator that realises a target language
is obtained through the synchronous composition of free behaviour models and
specifications. This generator is further modified by the iterative removal of states
that would cause the supervisor to be non-admissible. Three state-of-art synthesis
methods are demonstrated in Section 3.2.

49

3 Design and synthesis of supervisors for controlling swarms of robots

3.1 Design of free behaviour models and control
specifications

SCT models the system and its specifications using formal languages. The modelling
process may not always be intuitive, and multiple models may represent the same sys-
tem or specification. In the following, we provide guidance on how to model systems
with SCT. We present five case studies that illustrate how SCT can be applied in swarm
robotics. The case studies make use of two robotic platforms, the Kilobot [38] and the
e-puck [37]. Both platforms move on the ground and are able to locally broadcast mes-
sages.1

Two case studies—orbit and segregation—use both robotic platforms. This shows that
as long as all task-relevant hardware is available, the same supervisors can be applied
to different robotic platforms. Two further case studies, using the e-puck platform,
illustrate how state-of-the-art solutions for the problems of aggregation [53] and object
clustering [49] can be formalised using the SCT framework. The last case study—group
formation—requires advanced features of SCT. It uses the Kilobot platform.

We use θ ∈ {o, s, a, c, f} to refer to the different case studies, where o refers to to orbit,
s to segregation, a to aggregation, c to object clustering, and f to group formation. We
represent the number of free behaviour models by m and the number of specifications
by n. Gθi denotes the ith of mθ free behaviour models and Eθj denotes the jth of nθ

control specifications.

3.1.1 Orbit

The first case study involves two robots. One robot is static and the other orbits around
it [38]. The static robot broadcasts periodically an infrared (IR) message. The orbiting
robot uses the IR message to estimate its distance to the static robot. It moves counter-
clockwise (CCW) around the static robot. In particular, it modulates its behaviour ac-
cording to its distance (using two thresholds): (i) if the distance is smaller than the
lower threshold, the robot turns clockwise (CW); (ii) if the distance is bigger than the
upper threshold, the robot turns counter-clockwise (CCW); and (iii) if the robot is in-
side the boundary defined by the thresholds it moves forward. Note that the robot is
assumed to be within the boundary at the start.

1The e-puck requires a non-standard library to broadcast messages using infrared.

50

3.1 Design of free behaviour models and control specifications

q1

press

q1 q2

orbit
/

static
/

q1

moveFW,
turnCW,

turnCCW
/

q1

upperbound,
bound,

lowerbound

(a) Go1 (b) Go2 (c) Go3 (d) Go4

Figure 3.1: Free behaviour models for the orbit case study. (a) Input device to configure
the robot; (b) the robot’s ability to assume the roles of a static robot or an
orbiting robot; (c) motion capabilities; (d) boundary sensor. Marked states
(Qm) are indicated by double lines.

Figure 3.1 shows the free behaviour models, Go1, G
o
2, G

o
3, and Go4. In Table 3.1 the

events’ definition is summarised. Go1 represents a user input device that triggers the
uncontrollable event press. It is used to configure the robot. Go2 represents the robot’s
ability to assume the roles of an orbiting robot (state q1) and a static robot (state q2). Note
that each Goi has its own set of states Qi = {q1, q2, . . .}. Go3 represents the motion capa-
bilities of the robot. The robot executes one of three movements—move forward, turn
CW, and turn CCW—until a new command is issued. The movements are triggered by
controllable events moveFW, turnCW, and turnCCW.Go4 represents a boundary sensor,
which measures the distance between the robots and generates uncontrollable events
upperbound (too far), bound (within boundaries), and lowerbound (too close). In inter-
vals of 0.2 s one event is triggered. Due to the uncertainty of the distance measurement,
(as a result of noise in the IR sensor), these uncontrollable events can occur in any order
(e.g. directly from upperbound to lowerbound).

The orbit behaviour is defined by three specifications, Eo1 , E
o
2 , and Eo3 , illustrated in

Figure 3.2. Eo1 specifies the configuration of the robot through user interaction. When
press occurs the robot shall configure its role; it then switches from static to orbit, or vice
versa (as a result of free behaviour model Go2). Eo2 allows the robot to move only when
configured as an orbiting robot. The main strategy is defined by Eo3 where the motion
of the orbiting robot is specified by the states q1 (too far), q2 (within boundaries), and
q3 (too close). The robot is placed within the boundaries at the start of the experiment
and, consequently, the initial state is q2.

51

3 Design and synthesis of supervisors for controlling swarms of robots

Table 3.1: Summary of events’ definition for the orbit strategy. In the controllability
column controllable events are indicated by C and uncontrollable events are
indicated by U.

event controllability definition
press U Detection of the input device actuation.
static C Robot assumes the role of a static robot.
orbit C Robot assumes the role of an orbiting robot.
moveFW C Robot starts to move forward and continues doing so in-

definitely.
turnCW C Robot starts to turn clockwise and continues doing so in-

definitely.
turnCCW C Robot starts to turn counter-clockwise and continues do-

ing so indefinitely.
upperbound U Orbiting robot is too far from the static one.
bound U Orbiting robot is within the defined distance to the static

one.
lowerbound U Orbiting robot is too close from the static one.

3.1.2 Segregation

The system comprises an arbitrary number of leader and follower robots. Each leader
assumes one of multiple types, characterised by its colour. Here, colours red, green,
and blue are assigned at the beginning of the experiment. The segregation strategy
separates follower robots into distinct groups, whereby each follower robot belongs to
at most one leader [55]. Each leader broadcasts a signal containing its colour within a
limited range. Follower robots within the signal range of only one type of leader belong
to that leader and do not move. Followers that do not receive a signal also do not move.
Followers that receive a signal from more than one type of leader move randomly.

The free behaviour models are illustrated in Figure 3.3. In Table 3.2 the events’ defini-
tion is summarised. Gs1 represents a user input device that triggers the uncontrollable
event press. It is used to configure the robot. Gs2 defines the robot type. By default,
the robot is a follower (state q1 in Gs2). Followers do not transmit any message. There
are three types of leaders, which are set by the controllable events sendR, sendG, and
sendB. These events enable the broadcast of the messages red, green, and blue, respec-
tively. The follower type can be set by the controllable event sendNothing. Gs3 repre-
sents the robot’s motion capabilities. The motion is started through controllable events
moveFW (move forward), turnCW (turn clockwise), and turnCCW (turn counter clock-
wise). The motion proceeds for a random period of time, and then, the uncontrollable
event moveEnded is generated. The motion can also be stopped by the controller through

52

3.1 Design of free behaviour models and control specifications

q1 q2

press

press

static, orbit
/

q1 q2

orbit
/

static
/

moveFW,
turnCW,

turnCCW

/

(a) Eo1 (b) Eo2

q1 q2

q3

bound

lowerbound

turnCCW/

upperbound upperbound

lowerbound

moveFW/

bound

boundupperbound

turnCW— lowerbound

(c) Eo3

Figure 3.2: Specification for the orbit case study. Each specification, Eoj , has its own set
of states Qj = {q1, ..., qm}. (a) Configures the robot through user interaction
as either static or orbiting; (b) prevents the static robot from moving; (c)
moves the orbiting robot according to its distance to the static robot.

controllable event moveStop.

Gs4, Gs5, and Gs6 represent three different sensor outcomes that detect the presence of
red, green, and blue leaders, respectively. The corresponding uncontrollable events
getX, X ∈ {R,G,B} indicate that the robot has received a message, respectively, from
a red, green, or blue leader during the sample period of 0.2 s. On the other hand, the
event getNotX, X ∈ {R,G,B} occurs if no such message was received.

Figure 3.4 shows the specifications for the segregation strategy. The user can configure
the robot type. When press occurs, specification model Es1 reaches state q2, where the
events sendR, sendG, sendB, and sendNothing are enabled. As seen in model Gs2 (Fig-

53

3 Design and synthesis of supervisors for controlling swarms of robots

q1

press

q1 q2

q3q4

sendR
/

sendG/

sendB
/

sendNothing/

(a) Gs1 (b) Gs2

q1 q2

moveFW,
turnCW,

turnCCW
/

moveEnded

moveStop
/

∀ (X,Y) ∈ {(R, 4), (G, 5), (B, 6)}:

q1 q2

getX

getNotX

(c) Gs3 (d) GsY

Figure 3.3: Free behaviour models for the segregation case study. (a) Input device to
configure the robot; (b) the robot’s ability to assume one of the three leader
types or to be a follower; (c) motion capabilities; (d) the robot’s ability to
receive messages from nearby leader robots.

ure 3.3(b)), the robot type is restricted to change sequentially through states of follower
(q1), red leader (q2), green leader (q3), and blue leader (q4). Specification Es2 allows
only followers to move. It also sets up the message broadcasting of leaders. The main
strategy is represented in specification Es3, where only the stop event (moveStop) is en-
abled while being in state q1 (no signal received) or state q2 (one type of leader signal
received). Consequently, the robot does not move. However, if signals of two types of
leaders (state q3) or all three types of leaders (state q4) are received, the previously de-
scribed motion events are enabled. The controller can, therefore, choose from all three
movement options. How this choice is made is an implementation question (for details
about the choice problem, see [18]). In this work, the options are chosen with equal
probability. It is worth noting that message receiving events getR and getNotR occur
alternatively (see free behaviour model Gs4 in Figure 3.3(d)); the same is true for get-
G/getNotG as well as for getB/getNotB. This property is exploited in control specification
Es3.

54

3.1 Design of free behaviour models and control specifications

Table 3.2: Summary of events’ definition for the segregation strategy. In the controllabil-
ity column controllable events are indicated by C and uncontrollable events
are indicated by U.

event controllability definition
press U Detection of the input device actuation.
sendR C Robot assumes the role of a red leader and starts to broad-

cast the respective message.
sendG C Robot assumes the role of a green leader and starts to

broadcast the respective message.
sendB C Robot assumes the role of a blue leader and starts to broad-

cast the respective message.
sendNothing C Robot assumes the role of a follower and stops broadcast-

ing any message.
moveFW C Robot starts to move forward and continues doing so for a

random period of time.
turnCW C Robot starts to turn clockwise and continues doing so for

a random period of time.
turnCCW C Robot starts to turn counter-clockwise and continues do-

ing so for a random period of time.
moveEnded U Signals that the last movement’s period has ended and the

robot stopped.
moveStop C Stops the robot (the controller forces the robot to stop ig-

noring any time left).
getR U Robot got a message from a red leader in the past 0.2 s.
getNotR U Robot did not get a message from a red leader in the past

0.2 s.
getG U Robot got a message from a green leader in the past 0.2 s.
getNotG U Robot did not get a message from a green leader in the past

0.2 s.
getB U Robot got a message from a blue leader in the past 0.2 s.
getNotB U Robot did not get a message from a blue leader in the past

0.2 s.

3.1.3 Aggregation

The aggregation strategy allows a group of e-puck robots to gather in a homogeneous
environment [53]. It requires each robot to be equipped with a binary sensor, I , which
detects the presence of other robots in its line-of-sight. The sensor provides a value I =

1 if there is a robot in the line-of-sight and I = 0 otherwise. For this setting, Gauci et al.
53 propose a reactive controller: if no other robot was detected, the robot would move
backward along a circular trajectory, with scaled wheel velocities (vl0, vr0) = (−0.7,−1).
If another robot was detected, the robot would turn clockwise on the spot, with scaled
wheel velocities (vl1, vr1) = (1,−1). This controller was shown to be provably cor-
rect for two robots and it performed the aggregation task reliably with 40 physical

55

3 Design and synthesis of supervisors for controlling swarms of robots

q1 q2

press
press

sendNothing, sendR,
sendG, sendB

/
q1 q2

sendR, sendG,
sendB

/

turnCW,
turnCCW,
moveFW

/ sendNothing
/

sendR,
sendG,
sendB

/

(a) Es1 (b) Es2

q1 q2

q3q4

getR, getG,
getB

moveStop
/

getR,
getG,
getB

getNotR,
getNotG,
getNotB

moveStop
/

getR, getG, getB

getNotR,
getNotG,
getNotB

turnCW,
turnCCW,
moveFW

/getNotR,
getNotG,
getNotB

turnCW,
turnCCW,
moveFW

/

(c) Es3

Figure 3.4: Specification for the segregation case study. (a) Configures the robot through
user interaction; (b) allows followers to move and leaders to transmit a sig-
nal; (c) moves the follower robot according to the signal received.

robots [53]. In the following, we show how to formalise this controller using SCT.

Figure 3.5 shows the free behaviour models for the aggregation strategy. In Table 3.3
the events’ definition is summarised. Free behaviour model Ga1 represents the binary
sensor; uncontrollable events S0 and S1 represent sensor readings I = 0 and I = 1, re-

56

3.1 Design of free behaviour models and control specifications

q1

S0, S1

q1

V0, V1
/

(a) Ga1 (b) Ga2

Figure 3.5: Free behaviour models for the aggregation case study. (a) Binary sensor; (b)
motion capabilities.

Table 3.3: Summary of events’ definition for the aggregation strategy. In the control-
lability column controllable events are indicated by C and uncontrollable
events are indicated by U.

event controllability definition
S0 U Binary sensor detects wall (or nothing) in its line-of-sight.
S1 U Binary sensor detects a robot in its line-of-sight.
V0 C Robot’s wheels speeds are set to (vl0, vr0) = (−0.7,−1).
V1 C Robot’s wheels speeds are set to (vl1, vr1) = (1,−1).

spectively. Free behaviour model Ga2 represents the possible movements. Controllable
events V0 and V1 represent the pairs (vl0, vr0) and (vl1, vr1), respectively. The move-
ments are executed until a new command is issued.

Figure 3.6 shows the specifications to implement the aggregation strategy. Specifica-
tion Ea1 enables event V0 (robot moving backward along circular trajectory) if no other
robot is perceived (S0). Specification Ea2 enables event V1 (robot turning on the spot) if
another robot is perceived (S1). Specifications Ea3 and Ea4 guarantee that events V0 and
V1 will occur in alternation. Note that the movement of a robot continues indefinitely
once V0 or V1 is triggered.

Instead of specifications Ea3 and Ea4 , one may apply one of the specifications shown
in Figure 3.7. Note that the specification shown in Figure 3.7(a) would not be fully
equivalent to Ea3 and Ea4 , as it forces V0 to occur first. Similarly, the specification shown
in Figure 3.7(b) forces V1 to occur first. The third option, Figure 3.7(c), is however
equivalent to Ea3 and Ea4 ; it can be obtained by their synchronous composition (for
details, see Section 2.3.4).

57

3 Design and synthesis of supervisors for controlling swarms of robots

q1 q2

S1

S0

S0

S1

V0
/ q1 q2

S0

S1

S1

S0

V1
/

(a) Ea1 (b) Ea2

q1 q2

V1/
V0
/

V1
/

q1 q2

V0/
V1
/

V0
/

(c) Ea3 (d) Ea4

Figure 3.6: Specification for the aggregation case study. (a-b) Moves the robot accord-
ing to the sensor reading; (c-d) prevents the same movement event from
occurring consecutively (yet, the robot will perform its current movement
indefinitely).

3.1.4 Object clustering

The object clustering strategy allows a group of e-puck robots to cluster objects that are
initially dispersed in the environment [49]. Each robot can detect the presence of an
object or another robot in its direct line-of-sight. Its line-of-sight sensor I thus indicates
what it is pointing at: I = 0 if it is pointing at nothing (or the walls of the environment,
if this is bounded); I = 1 if it is pointing at an object; and I = 2 if it is pointing at
another robot.

The free behaviour models for this strategy are similar to those presented in the aggre-
gation case study. However, there are three modes of movement instead of two. The
corresponding parameters were obtained using an evolutionary search [49]:

x = (vl0, vr0, vl1, vr1, vl2, vr2) = (0.5, 1, 1, 0.5, 0.1, 0.5), (3.1)

where, vlI and vrI are the left and right wheel velocities, respectively, when the sensor

58

3.1 Design of free behaviour models and control specifications

q1 q2

V0
/

V1
/

q1 q2

V1
/

V0
/

(a) (b)

q1

q2 q3

V0 \ V1/V1\

V0
/

(c)

Figure 3.7: Three alternative specifications to be used instead of Ea3 and Ea4 in the ag-
gregation case study. The specifications in (a) or (b) are not fully equivalent
to Ea3 and Ea4 , as they restrict the first movement to be either V0 or V1, re-
spectively. The specification in (c) is the result of synchronous composition
Ea3 ||Ea4 , and thus fully equivalent.

reading is I .

q1

S0, S1, S2

q1

V0, V1, V2
/

(a) Gc1 (b) Gc2

Figure 3.8: Free behaviour models for the object clustering case study. (a) Sensor to
detect nothing, objects, or robots; (b) motion capabilities.

Figure 3.8 shows the free behaviour models for this strategy. In Table 3.4 the events’
definition is summarised. Free behaviour Gc1 represents the sensor. Uncontrollable
events S0, S1, and S2 represent the presence of nothing (I = 0), an object (I = 1),
or another robot (I = 2) in the line-of-sight. Free behaviour Gc2 defines the possible
movements. Controllable events V0, V1, and V2 represent pairs (vl0, vr0), (vl1, vr1), and
(vl2, vr2), respectively. The movements are executed indefinitely.

59

3 Design and synthesis of supervisors for controlling swarms of robots

Table 3.4: Summary of events’ definition for the object clustering strategy. In the con-
trollability column controllable events are indicated by C and uncontrollable
events are indicated by U.

event controllability definition
S0 U Binary sensor detects wall (or nothing) in its line-of-sight.
S1 U Binary sensor detects an object in its line-of-sight.
S2 U Binary sensor detects a robot in its line-of-sight.
V0 C Robot’s wheels speeds are set to (vl0, vr0) = (0.5, 1).
V1 C Robot’s wheels speeds are set to (vl1, vr1) = (1, 0.5).
V2 C Robot’s wheels speeds are set to (vl1, vr1) = (0.1, 0.5).

q1 q2

S1, S2

S0

S0

S1, S2

V0
/ q1 q2

S0, S2

S1

S1

S0, S2

V1
/ q1 q2

S0, S1

S2

S2

S0, S1

V2
/

(a) Ec1 (b) Ec2 (c) Ec3

q1 q2

V1, V2/
V0
/

V1, V2
/

q1 q2

V0, V2/
V1
/

V0, V2
/

q1 q2

V0, V1/
V2
/

V0, V1
/

(d) Ec4 (e) Ec5 (f) Ec6

Figure 3.9: Specification for the object clustering case study. (a-c) Moves the robot ac-
cording to the sensor reading; (d-f) prevents the same movement event from
occurring consecutively (yet, the robot will perform its current movement
indefinitely).

Figure 3.9 illustrates the specifications for the object clustering strategy. Specifications
Ec1, Ec2, and Ec3 relate, respectively, the perception of nothing (S0), an object (S1) or
another robot (S2) with the wheel velocities, which are specified by parameters vli and
vri through controllable events Vi, i ∈ {0, 1, 2}. Specifications Ec4, Ec5, and Ec6 guarantee
that events V0, V1, and V2 occur in alternation (e.g. when event V0 occurs it cannot occur
again until either event V1 or event V2 occurs).

60

3.1 Design of free behaviour models and control specifications

3.1.5 Group formation

q1 q2

moveFW,
turnCW, turnCCW

/
moveEnded

moveStop
/

q1 q2

startTimer
/

timeout

(a) Gf1 (b) Gf2

q1 q2

sendBG, sendBB,
sendOG, sendOB,
sendAG, sendAB,

sendE
/

msgStop
/

q1 q2

getMessage
/

receiveBG, receiveBB,
receiveOG, receiveOB,
receiveAG, receiveAB

(c) Gf3 (d) Gf4

q1

q2

q3

q4

q5

setGreen

setLeader

setBlue

join
/

join
/

q1

ignoreOG, ignoreOB
/

(e) Gf5 (f) Gf6

Figure 3.10: Free behaviour models for the group formation case study. (a) Motion ca-
pabilities; (b) timer; (c) message transmission; (d) message reception; (e)
the robot’s configurations; (f) the robot’s ability to choose not to make an
offer.

This case study is performed with the Kilobot robots. It involves two types of robots,

61

3 Design and synthesis of supervisors for controlling swarms of robots

leaders and followers. The followers are of two classes, which we call green and blue.
Robots of the same class could be equipped with identical tools, for example. The task
is to group each leader with a balanced number of followers from each class (±1). We
call this the equilibrium criterion. The strategy is as follows. Leaders are randomly dis-
tributed over the arena and do not move. Followers move randomly broadcasting a
message (broadcast) containing a unique identification code, their class, and the mes-
sage type. When a leader receives a broadcast message, it sends an offer message if
adding that robot would fulfil the equilibrium criterion. When a follower receives an
offer, it stops, sends an acceptance message to the leader, and starts relaying any mes-
sage to and from their leader.

Figure 3.10 shows the free behaviour models for this strategy. In Table 3.5 the events’
definition is summarised. Free behaviour model Gf1 represents the movement capabil-
ities. It is identical to Gs3 in Figure 3.3(c).

Free behaviour model Gf2 represents a timer. Controllable event startTimer starts the
timer. After the defined time has elapsed, uncontrollable event timeout is generated.

Free behaviour modelGf3 represents the message sending capability. Controllable events
sendBG and sendBB enable the broadcasting message of available green and blue fol-
lowers, respectively. Controllable events sendOG and sendOB are the messages emitted
by a leader to offer membership in the group to a specific green or blue follower, re-
spectively. Controllable events sendAG and sendAB are the messages that confirm the
acceptance of the green or blue follower, respectively. Controllable event sendE causes
followers that are already part of a group to relay the last received message that is re-
lated to its leader. Controllable event msgStop stops the sending of the current message.

Free behaviour model Gf4 defines the message receiving capability. Controllable event
getMessage reads the most recent received message in the buffer. Uncontrollable events
receiveBG and receiveBB are triggered when a broadcast message of a blue or green fol-
lower is received; receiveOG and receiveOB are triggered when a message is received that
offers membership to a green or blue follower, respectively; receiveAG and receiveAB are
triggered when receiving an acceptance message by a green or blue follower, respec-
tively, to join a group.

Free behaviour model Gf5 defines the robot configuration subsystem. The robots can be
configured as a leader by the uncontrollable event setLeader, or as a follower by setGreen
or setBlue; it is not possible for a robot to change its configuration. The configuration is

62

3.1 Design of free behaviour models and control specifications

Table 3.5: Summary of events’ definition for the group formation strategy.
event controllability definition
moveFW C Robot starts to move forward and continues doing so for a

random period of time.
turnCW C Robot starts to turn clockwise and continues doing so for

a random period of time.
turnCCW C Robot starts to turn counter-clockwise and continues do-

ing so for a random period of time.
moveEnded U Signals that the last movement’s period has ended and the

robot stopped.
moveStop C Stops the robot (the controller forces the robot to stop ig-

noring any time left).
startTimer C Start the timer.
timeout U Signals the trigger of the timer.
sendBG C Broadcasts availability of green followers.
sendBB C Broadcasts availability of green followers.
sendOG C Offers membership to green follower.
sendOB C Offers membership to blue follower.
sendAG C Confirms the acceptance of a green follower.
sendAB C Confirms the acceptance of a blue follower.
sendE C Requests the relay of the last received message.
msgStop C stops sending current message.
getMessage C Reads the most recent received message.
receiveBG U Signals the reception of a broadcast message from a blue

follower.
receiveBB U Signals the reception of a broadcast message from a green

follower.
receiveOG U Signals the reception by a green follower of an offer to join

the group.
receiveOB U Signals the reception by a blue follower of an offer to join

the group.
receiveAG U Signals the reception of a acceptance message from a green

follower.
receiveAB U Signals the reception of a acceptance message from a blue

follower.
setGreen U Signals the configuration of the robot as a green follower.
setBlue U Signals the configuration of the robot as a blue follower.
setLeader U Signals the configuration of the robot as a leader.
join C Marks the robots a part of a group.
ignoreOG C Leader do not send an offer, ignoring a green broadcast.
ignoreOB C Leader do not send an offer, ignoring a blue broadcast.

randomly selected during initialisation. Followers can join a group triggering the con-
trollable event join. In the free behaviour model Gf6 , the leader can choose not to send
an offer by the controllable events ignoreOG and ignoreOB. This is used to implement
the equilibrium criterion.

63

3 Design and synthesis of supervisors for controlling swarms of robots

q1

q2

q3

setGreen,
setBlue

setLeader

join/

moveFW,
turnCW, turn CCW

/

moveStop
/

q1 q2

q3

q4

setLeader

receiveBB,
receiveBG

receiveBG

receiveBB

sendOG,
ignoreOG
/

sendOB,
ingnoreOB/

(a) Ef1 (b) Ef2

q1

q2

q3

q4

q5

q6 q7

setGreen

setBlue

receiveOB,
receiveOG

receiveOG

receiveOB

sendBG
/

receiveOB

receiveOG

sendBB
/

sendAG
/

sendAB
/

join
/

receiveOB,
receiveOG

sendE
/

(c) Ef3

Figure 3.11: Specification models for the group formation case study. (a) Allows fol-
lowers that did not join a group to move; (b) allows leaders that received a
broadcast to send or not to send an offer; (c) allows followers that received
an offer message to join a group after sending an acceptance message.

Figures 3.11 and 3.12 illustrates the specifications for the group formation strategy.
Specification Ef1 defines that followers that have not yet joined any group can move.
All other robots are not allowed to move. Specification Ef2 defines that a leader robot
can send an offer to a follower when it receives a corresponding broadcast message. Al-

64

3.1 Design of free behaviour models and control specifications

q1 q2

sendBG, sendBB,
send OG, sendOB,
sendAG, sendAB,

sendE
/

msgStop
/ timeout

q1 q2q3

sendOB
/

sendOG
/

sendOG
/

ignoreOB
/sendOB

/

ignoreOG
/

(a) Ef4 (b) Ef5

q1 q2 q3

join
/

receiveBG, receiveBB,
receiveOG, receiveOB,
receiveAG, receiveAB

receiveBG, receiveBB,
receiveOG, receiveOB,
receiveAG, receiveAB

sendE
/

(c) Ef6

Figure 3.12: Specification models for the group formation case study. (a) Ensures that a
message is transmitted for a minimum period; (b) guarantees the equilib-
rium criterion; (c) the robot’s ability to choose not to make an offer.

ternatively, it can choose to ignore the request. Specification Ef3 controls the follower’s
cycle of messages. Robots broadcast their colour and identification code until they re-
ceive an offer for their colour. When this occurs, they send an acceptance message and
join the group. When a follower joins a group, it relays the messages it receives, us-
ing an echo function triggered by controllable event sendE. Specification Ef4 controls
the transmission mechanisms. A message is transmitted by the subsystem over a pre-
defined period of time. Once a message is sent, it can only be stopped after the timeout
of the subsystem. Specification Ef5 implements the equilibrium criterion for the leader.
In state q1, the system is in equilibrium and can make offers to both classes of followers.
In state q2, there is one more blue follower than green followers. Therefore, offers can
only be made to green followers. State q3 describes the equivalent situation where there

65

3 Design and synthesis of supervisors for controlling swarms of robots

are more green than blue followers. Finally, specification Ef6 defines the relay mode of
a follower. Any received message is retransmitted after joining a group by event sendE.
For all messages, an identification code filter is implemented to minimise the traffic
load in a layer that links the abstract discrete events to the hardware (see Section 4.1);
this is not implemented by using the formal method.

3.1.6 Design guidelines

In this section, we provide some guidelines for the design of the system’s free behaviour
models and control specifications.

• Initial states are often the only marked state in free behaviour models, as it implies
that the system must return to its initial condition. Exceptions to this rules exist,
for example in modelGf5 of the group formation (Figure 3.10(e)) where transitions
represent a change in configuration/role that will persist indefinitely.

• In control specifications, all states are usually marked.

• Use single-state free behaviour models with uncontrollable self-loops when a sen-
sor can give an input at any time and with controllable self-loops when the con-
troller can trigger an action at any time.

• State machines use to represent ad-hoc implementations usually have actions (of-
ten related to controllable events) triggered by states while transitions only occur
based on sensing (often related to uncontrollable events). With generators, a sim-
ilar approach can be achieved by replacing the actions in each state with self-loop
triggered by the controllable event.

• Generators make possible the use of specifications that have a transition with a
controllable event from one state to another (instead of a self-loop) this allows the
designer to separate the state space not only regarding observed input (uncon-
trollable events) but control responses (controllable events).

• Design the specifications regarding what must not occur in a particular state.

• Not only controllable but also uncontrollable events can be disabled in a partic-
ular state, the supervisor synthesis (in the next section) will then calculate which

66

3.2 Supervisor synthesis

controllable events must be disabled in which state to guarantee that undesired
uncontrollable events do not occur. When disabling uncontrollable events, you
may obtain an empty controller (a supervisor with no states and transitions) as
any control response of the controller will achieve a state where the occurrence of
an undesired event is possible.

• Each free behaviour model represents a small subsystem of your system (the
robot), and each control specification describes a particular aspect relating two
or more subsystem.

3.2 Supervisor synthesis

Now the synthesis of supervisors for the case studies are presented.

3.2.1 Monolithic

The first step to synthesise a monolithic supervisor is to compose all free behaviour
models in a unique generator. The composition for all cases are shown as follows:
Equation 3.2 for the orbit; Equation 3.3 for the segregation; Equation 3.4 for the aggre-
gation; Equation 3.5 for the object clustering; and Equation 3.6 for the group formation.

Go = Go1|| · · · ||Go4 (3.2)

Gs = Gs1|| · · · ||Gs4 (3.3)

Ga = Ga1||Ga2 (3.4)

Gc = Gc1||Gc2 (3.5)

Gf = Gf1 || · · · ||G
f
6 (3.6)

67

3 Design and synthesis of supervisors for controlling swarms of robots

The specifications are also composed in a unique generator. The composition for all
cases are shown as follows: Equation 3.7 for the orbit; Equation 3.8 for the segregation;
Equation 3.9 for the aggregation; Equation 3.10 for the object clustering; and Equa-
tion 3.11 for the group formation.

Eo = Eo1 || · · · ||Eo3 (3.7)

Es = Es1|| · · · ||Es3 (3.8)

Ea = Ea1 || · · · ||Ea4 (3.9)

Ec = Ec1|| · · · ||Ec6 (3.10)

Ef = Ef1 || · · · ||E
f
6 (3.11)

The monolithic target language, Kθ, is obtained by the synchronous composition of Gθ

and Eθ:2

Kθ = Gθ||Eθ. (3.12)

Finally, the monolithic supervisor Sθ is obtained as:

Sθ : Lm(Sθ/Gθ) = SupC(Gθ,Kθ). (3.13)

3.2.2 Modular

Rather than calculating a single target language, a target language Kmod,θ
j is calculated

for each specification Eθj . The free behaviour model used, Gmod,θ, is the same of the

2Note that θ denotes the case study as defined in Section 3.1.

68

3.2 Supervisor synthesis

monolithic approach (i.e. Gmod,θ = Gθ). Equation 3.14 shows the calculation of the
target language for the orbit; Equation 3.15 for the segregation; Equation 3.16 for the
aggregation; Equation 3.17 for the object clustering; and Equation 3.18 for the group
formation.

Kmod,o
j = Gmod,o||Eoj ∀ j ∈ {1, 2, 3} (3.14)

Kmod,s
j = Gmod,s||Esj ∀ j ∈ {1, 2, 3} (3.15)

Kmod,a
j = Gmod,a||Eaj ∀ j ∈ {1, · · · , 4} (3.16)

Kmod,c
j = Gmod,c||Ecj ∀ j ∈ {1, · · · , 6} (3.17)

Kmod,f
j = Gmod,f ||Efj ∀ j ∈ {1, · · · , 6} (3.18)

One modular supervisor is obtained for each target language. The obtained supervisor
is the one that generates the maximal controllable languages of Kmod,θ

j over Gmod,θ.
Equation 3.19 for the orbit; Equation 3.20 for the segregation; Equation 3.21 for the
aggregation; Equation 3.22 for the object clustering; and Equation 3.23 for the group
formation.

Smod,oj : Lm(Smod,oj /Gmod,o) = SupC(Kmod,o
j , Gmod,o) ∀ j ∈ {1, 2, 3} (3.19)

Smod,sj : Lm(Smod,sj /Gmod,s) = SupC(Kmod,s
j , Gmod,s) ∀ j ∈ {1, 2, 3} (3.20)

Smod,aj : Lm(Smod,aj /Gmod,c) = SupC(Kmod,a
j , Gmod,c) ∀ j ∈ {1, · · · , 4} (3.21)

Smod,cj : Lm(Smod,cj /Gmod,c) = SupC(Kmod,c
j , Gmod,c) ∀ j ∈ {1, · · · , 6} (3.22)

69

3 Design and synthesis of supervisors for controlling swarms of robots

Smod,fj : Lm(Smod,fj /Gmod,f) = SupC(Kmod,f
j , Gmod,f) ∀ j ∈ {1, · · · , 6} (3.23)

3.2.3 Local modular

In the local modular approach, similar to the modular one, a supervisor Sloc,θj is created
for each control specification Eloc,θj using a local free behaviour model Gloc,θj .

3.2.3.1 Orbit

Table 3.6: Events used by the specifications and free behaviour models for the orbit case
study. In the local modular approach, only the relevant free behaviour mod-
els are used when composing a supervisor for a specification. These are the
free behaviour models that have at least one event in common with the spec-
ification.

Eo1 Eo2 Eo3
Go1 press X

Go2
static X X
orbit X X

Go3

turnCW X X
turnCCW X X
moveFW X X

Go4

upperbound X
bound X

lowerbound X

local models Gloc,o1 Gloc,o2 Gloc,o3

Table 3.6 shows the relation of events for each specification for the orbit case study. The
local free behaviour models are obtained as:

Gloc,o1 = Go1||Go2,
Gloc,o2 = Go2||Go3,
Gloc,o3 = Go3||Go4.

(3.24)

70

3.2 Supervisor synthesis

The target languages are:

K loc,o
1 = Gloc,o1 ||Eloc,o1 ,

K loc,o
2 = Gloc,o2 ||Eloc,o2 ,

K loc,o
3 = Gloc,o3 ||Eloc,o3 .

(3.25)

The local modular supervisors are:

Sloc,o1 = SupC(Gloc,o1 ||K loc,o
1),

Sloc,o2 = SupC(Gloc,o2 ||K loc,o
2),

Sloc,o3 = SupC(Gloc,o3 ||K loc,o
3).

(3.26)

3.2.3.2 Segregation

Table 3.7: Events used by the specifications and free behaviour models for the segrega-
tion case study.

Es1 Es2 Es3
Gs1 press X

Gs2

sendR X X
sendG X X
sendB X X

sendNothing X X

Gs3

moveFW X X
turnCW X X

turnCCW X X
moveEnded
moveStop X

Gs4
getR X

getNotR X

Gs5
getG X

getNotG X

Gs6
getB X

getNotB X

local models Gloc,s1 Gloc,s2 Gloc,s3

Table 3.7 shows the relation of events for each specification for the segregation case

71

3 Design and synthesis of supervisors for controlling swarms of robots

study. The local free behaviour models are obtained as:

Gloc,s1 = Gs1||Gs2,
Gloc,s2 = Gs2||Gs3,
Gloc,s3 = Gs3|| . . . ||Gs6.

(3.27)

The target languages are:

K loc,s
1 = Gloc,s1 ||Eloc,s1 ,

K loc,s
2 = Gloc,s2 ||Eloc,s2 ,

K loc,s
3 = Gloc,s3 ||Eloc,s3 .

(3.28)

The local modular supervisors are:

Sloc,s1 = SupC(Gloc,s1 ||K loc,s
1),

Sloc,s2 = SupC(Gloc,s2 ||K loc,s
2),

Sloc,s3 = SupC(Gloc,s3 ||K loc,s
3).

(3.29)

3.2.3.3 Aggregation

Table 3.8: Events used by specifications and free behaviour models for the aggregation
case study.

Ea1 Ea2 Ea3 Ea4

Ga1
S0 X X
S1 X X

Ga2
V0 X X X
V1 X X X

local models Gloc,a1 Gloc,a2 Gloc,a3 Gloc,a4

Table 3.8 shows the relation of events for each specification for the aggregation case
study. The local free behaviour models are obtained as:

Gloc,a1 = Gloc,a2 = Ga1||Ga2,
Gloc,a3 = Gloc,a4 = Ga2.

(3.30)

72

3.2 Supervisor synthesis

The target languages are:

K loc,a
1 = Gloc,a1 ||Eloc,a1 ,

K loc,a
2 = Gloc,a2 ||Eloc,a2 ,

K loc,a
3 = Gloc,a3 ||Eloc,a3 ,

K loc,a
4 = Gloc,a4 ||Eloc,a4 .

(3.31)

The local modular supervisors are:

Sloc,a1 = SupC(Gloc,a1 ||K loc,a
1),

Sloc,a2 = SupC(Gloc,a2 ||K loc,a
2),

Sloc,a3 = SupC(Gloc,a3 ||K loc,a
3),

Sloc,a4 = SupC(Gloc,a4 ||K loc,a
4).

(3.32)

3.2.3.4 Object clustering

Table 3.9: Events used by specifications and free behaviour models for the object clus-
tering case study.

Ec1 Ec2 Ec3 Ec4 Ec5 Ec6

Gc1

S0 X X X
S1 X X X
S2 X X X

Gc2

V0 X X X X
V1 X X X X
V2 X X X X

local models Gloc,c1 Gloc,c2 Gloc,c3 Gloc,c4 Gloc,c5 Gloc,c6

Table 3.9 shows the relation of events for each specification for the object clustering case
study. The local free behaviour models are obtained as:

Gloc,c1 = Gloc,c2 = Gloc,c3 = Gc1||Gc2,
Gloc,c4 = Gloc,c5 = Gloc,c6 = Gc2.

(3.33)

73

3 Design and synthesis of supervisors for controlling swarms of robots

The target languages are:

K loc,c
1 = Gloc,c1 ||Eloc,c1 ,

K loc,c
2 = Gloc,c2 ||Eloc,c2 ,

K loc,c
3 = Gloc,c3 ||Eloc,c3 ,

K loc,c
4 = Gloc,c4 ||Eloc,c4 ,

K loc,c
5 = Gloc,c5 ||Eloc,c5 ,

K loc,c
6 = Gloc,c6 ||Eloc,c6 .

(3.34)

The local modular supervisors are:

Sloc,c1 = SupC(Gloc,c1 ||K loc,c
1),

Sloc,c2 = SupC(Gloc,c2 ||K loc,c
2),

Sloc,c3 = SupC(Gloc,c3 ||K loc,c
3),

Sloc,c4 = SupC(Gloc,c4 ||K loc,c
4),

Sloc,c5 = SupC(Gloc,c5 ||K loc,c
5),

Sloc,c6 = SupC(Gloc,c6 ||K loc,c
6).

(3.35)

3.2.3.5 Group formation

Table 3.10 shows the relation of events for each specification for the group formation
case study. The local free behaviour models are obtained as:

Gloc,f1 = Gf1 ||G
f
5 ,

Gloc,f2 = Gf3 || · · · ||G
f
6 ,

Gloc,f3 = Gloc,f6 = Gf3 ||G
f
4 ||G

f
5 ,

Gloc,f4 = Gf2 ||G
f
3 ,

Gloc,f5 = Gf3 ||G
f
6 .

(3.36)

74

3.2 Supervisor synthesis

Table 3.10: Events used by specifications and free behaviour models for the group for-
mation case study.

Ef1 Ef2 Ef3 Ef4 Ef5 Ef6

Gf1

moveFW X
turnCW X

turnCCW X
moveEnded
moveStop X

Gf2

startTimer
timeout X

Gf3

msgStop X
sendE X X X

sendBG X X
sendBB X X
sendOG X X X
sendOB X X X
sendAG X X
sendAB X X

Gf4

getMessage
receiveBG X X
receiveBB X X
receiveOG X X
receiveOB X X
receiveAG X
receiveAB X

Gf5

setLeader X X
setGreen X X
setBlue X X

join X X X

Gf6

ignoreOG X X
ignoreOB X X

local models Gloc,f1 Gloc,f2 Gloc,f3 Gloc,f4 Gloc,f5 Gloc,f6

The target languages are:

K loc,f
1 = Gloc,f1 ||Eloc,f1 ,

K loc,f
2 = Gloc,f2 ||Eloc,f2 ,

K loc,f
3 = Gloc,f3 ||Eloc,f3 ,

K loc,f
4 = Gloc,f4 ||Eloc,f4 ,

K loc,f
5 = Gloc,f5 ||Eloc,f5 ,

K loc,f
6 = Gloc,f6 ||Eloc,f6 .

(3.37)

75

3 Design and synthesis of supervisors for controlling swarms of robots

The local modular supervisors are:

Sloc,f1 = SupC(Gloc,f1 ||K loc,f
1),

Sloc,f2 = SupC(Gloc,f2 ||K loc,f
2),

Sloc,f3 = SupC(Gloc,f3 ||K loc,f
3),

Sloc,f4 = SupC(Gloc,f4 ||K loc,f
4),

Sloc,f5 = SupC(Gloc,f5 ||K loc,f
5),

Sloc,f6 = SupC(Gloc,f6 ||K loc,f
6).

(3.38)

As in the modular approach, one target language is calculated for each specification.
However, each target language uses its own local free behaviour model:

K loc,θ
j = Gloc,θj ||Eθj ∀ j ∈ {1, . . . , nθ}. (3.39)

The local modular supervisor Sloc,θj is obtained for each target language K loc,θ
j , analo-

gous to Equation 2.30:

Sloc,θj : Lm(Sloc,θj /Gloc,θj) = SupC(Gloc,θj ,K loc,θ
j) ∀ j ∈ {1, . . . , nθ}. (3.40)

3.2.3.6 Enabled events

In the case of multiple supervisors S1, . . . , Sn running in parallel, a controllable event
ec is enabled if for every supervisor Sj , where ec ∈ Σj , the transition function δj(qj , ec)
is defined.

3.2.4 Comparison

Table 3.11 compares the three methods introduced in this section in terms of size of
target language and supervisors for all case studies. In particular, it lists the number of
states and transitions. These performance metrics are related to the program memory
required to store the control strategy. The number of state transitions is based on the
minimised version of each automaton (see [135]). The local modular approach turned
out to be the most memory efficient in three of the four case studies. In the remaining

76

3.3 Summary

Table 3.11: Total number of states and transitions for each case study when using mono-
lithic, modular, and local modular synthesis approaches, respectively. Data
corresponds to the minimised version of the target language K and super-
visor S. Data in parentheses show the numbers prior to minimisation, if
different. The best results are highlighted in bold.

Monolithic Modular Local modular
K S K S K S

Orbit
states 12 12 12 12 9 9
transitions 60 60 79 79 23 23

Segregation
states 128 128 256 256 32 32
transitions 696 696 1720 1720 103 103

Aggregation
states 7 (9) 7 (9) 8 8 8 8
transitions 18 (22) 18 (22) 28 28 20 20

Object clustering
states 13(16) 13 (16) 12 12 12 12
transitions 48 (57) 48 (57) 66 66 48 48

Group formation
states

280 130 560 488 93 79
(304) (138) (776) (680) (108) (92)

transitions
1446 531 6708 5768 553 452

(1602) (561) (9272) (8012) (641) (525)

case study, it was almost on par with the best alternative. The modular approach is the
least memory efficient for the considered cases.

The local modular approach requires more effort when synthesising the supervisors.
One needs to check whether conflicts occur. However, once the supervisors are ob-
tained, as can be seen from Table 3.11, the local modular approach often outperforms
the other approaches in terms of total number of states and transitions (and hence in
memory usage).

3.3 Summary

This chapter demonstrated the use of supervisory control theory (SCT) for formally
developing controllers of swarm robotics systems. Using a series of case studies, it il-
lustrated how to formally model the capabilities of robots and their desired behaviour
(specifications). Supervisors—controllers in the form of formal languages—could then
be derived from these models. The supervisors, here represented as regular languages,
were driven through uncontrollable and controllable events. Uncontrollable events are

77

3 Design and synthesis of supervisors for controlling swarms of robots

triggered externally, for example, by the robot’s sensors. Controllable events are trig-
gered to initiate an action, for example, to move the robot forward. The SCT design
process reduces the action space to only those controllable events that do not violate
the specifications. It guarantees that the supervisors are ‘controllable’ and ‘deadlock-
free’. In addition, the supervisors can be subjected to a range of computational tools
[136, 137, 138, 139].

78

4
A framework for executing supervisors on

swarms of robots

In this chapter the implementation of formal controllers is discussed. First, the repre-
sentation of the supervisors in the memory is described. Second, it is presented how
these supervisors can be executed by a generator player, taking in account the occur-
rences of uncontrollable events. Third, it is shown how the controllable events of the
supervisor can be translated to hardware actions and how the reading of the sensors
can be translated to uncontrollable events—this is performed by what is called the op-
erational procedures. Finally, experiments for all the case studies from the previous
chapter are performed using the proposed implementation.

4.1 Implementation of supervisory control in swarm robotics

The implementation of swarm robotics’ control strategies is, in general, challenging as
errors are commonly introduced at this step. This is particularly the case if the strate-
gies are not formally defined and are implemented in an ad-hoc manner. The exercise
of formalising the strategy before implementation can assist in the identification of po-
tential flaws. For example, in the implementation of the group formation strategy (see
Section 3.1.5) one may not realise that the leader may have to ignore certain broadcast
messages it receives; or that the followers that joined a group must also stop any cur-
rent movement in addition to not triggering any new movements. To further improve
the translation of formally defined controllers to source code, this section presents a
framework for the automatic code generation for swarm robotics’ controllers.

The implementation is based on the SCT architecture proposed by [20, 22]. It adds three
layers on top of the robot’s hardware: the supervisor (which is at the highest level), the

79

4 A framework for executing supervisors on swarms of robots

(a) (b)

Figure 4.1: Nadzoru is an open source software tool for SCT [1, 140, 27]. It can be used
for all stages, from modelling (a) to automatic code generation (b).

generator player, and then the operational procedures. In this thesis, we implement
complete local modular supervisors.1

The implementation uses the open source software tool Nadzoru [1, 140, 27] available at
http://www2.joinville.udesc.br/˜gasr/nadzoru/. Nadzoru supports the
design of free behaviour models and control specifications, the synthesis of supervi-
sors, and automatic code generation. Furthermore, we extended Nadzoru to support
the e-puck and Kilobot platforms.

Figure 4.1 shows two snapshots of the Nadzoru graphical user interface. A video
demonstrating its use is available in the electronic supplementary material.

4.1.1 Supervisor representation in memory

Figure 4.2 illustrates the data structure that stores the synthesised supervisor in mem-
ory [1]. Each state is represented as a block of this data structure. Each block describes
all output transitions from that state. The first byte for each block is the amount of
output transitions (o). It is followed by o sets of 3 bytes, where each set represents a
transition. The first byte of each set represents the event. The other two bytes deter-
mine the target state. This data structure is limited to 256 events, 216 states and 255

1Note that these differ from reduced local modular supervisors [20, 22].

80

http://www2.joinville.udesc.br/~gasr/nadzoru/

4.1 Implementation of supervisory control in swarm robotics

q0 q1

a
a

b

1

0

a

1

1

2 3

2

4

a

5

1

6 7

b

8

0

9 10

State q0

δ(0, a)→ 1

State q1

δ(1, a)→ 1 δ(1, b)→ 0

number of
transitions

number of
transitions

Figure 4.2: Supervisor data structure in memory [1]. The first element of each state
represents the number of outgoing transitions. It is followed by blocks of
three elements, which detail the event that triggers the transition and the
resulting state.

output transitions per state. The memory occupation (in bytes) of the supervisor data
structure is given by:

mem = s+ 3× t, (4.1)

where s is the total number of states and t the total number of transitions among all
supervisors. The method can be adapted to support higher numbers of events, states,
and transitions [1].

In addition, a vector of size e bytes stores whether events are controllable or uncontrol-
lable, where e is the number of events used in the system. A matrix of size e×N bytes
defines which events are block of each supervisor, where N is the number of supervi-
sors. A vector of size N × 2 bytes stores the current state of all supervisors.

4.1.2 Generator player

The generator player—also called automata player—is a virtual machine. It executes
the generators realising the supervisors. An arbitrary number of generators can run in
parallel.

81

4 A framework for executing supervisors on swarms of robots

Algorithm 1 Generator player

1: Let N be the number of generators
2: procedure GENERATOR PLAYER

3: for all j ∈ {1, 2, . . . , N} do
4: set current state cj to initial state q0j ;
5: end for
6: while true do
7: if uncontrollable event eu ∈ Σu occurred then
8: for all j ∈ {1, 2, . . . , N} do
9: cj = δj(cj , eu);

10: end for
11: else
12: calculate the set of enabled controllable events ψ(c1, c2, . . . , cn);
13: if ψ(c1, c2, . . . , cn) 6= ∅ then
14: select one controllable event ec ∈ ψ(c1, c2, . . . , cn);
15: for all j ∈ {1, 2, . . . , N} do
16: cj = δj(cj , ec);
17: end for
18: execute callback function of ec;
19: end if
20: end if
21: end while
22: end procedure

The generator player is given by Algorithm 1. Its logic stores the states of all genera-
tors. It checks whether any uncontrollable events occurred (by calling functions in the
operational procedures, see Section 4.1.3). If an uncontrollable event occurred, the gen-
erators’ states are updated accordingly. Otherwise, the generator player determines the
list of enabled controllable events. If the list is not empty, the generator player selects
one such event (e.g. at random) and updates the generators’ states accordingly. It also
calls functions in the operational procedures to perform the action associated with the
event.

To perform the experiments, the generator player was implemented for both swarm
platforms—Kilobot and e-puck. These implementations (one per target platform) were
intensively used across the case studies and hence can be considered reliable. This is
an inherent advantage of virtual machines. It reduces the code that has to be manually
validated to the operational procedures, which link the abstract events to the hardware.

82

4.1 Implementation of supervisory control in swarm robotics

4.1.3 Operational procedures

The operational procedures are a low-level interface of the controller to the hardware [22].
Operational procedures were originally designed for manufacturing environments. As
a result, they were mainly used to translate events to signals on pins of programmable
control logic devices and vice versa. In the following, we show how to use operational
procedures in a more unrestricted way. Nadzoru allows the developer to define call-
back functions in a separate file or to input the code in the tool, which then outputs the
complete final code.

The operational procedures, implemented by the developer, define one callback func-
tion for each event. For controllable events, the generator player calls this function to
perform an action (see line 18 of Algorithm 1). In the segregation case study, for ex-
ample, controllable event turnCW is used to turn the robot clockwise for a random
duration of time. The corresponding callback function could be realised, using func-
tions from the e-puck library, as follows:

void callback turnCW (void∗ data){
i n t t = 5 + (rand () % 5) ;
d i r L e f t = −1; d i rRight = 1 ;
/ / s e t w h e e l s s p e e d
e s e t s p e e d l e f t (5 0 0) ;
e s e t s p e e d r i g h t (−250) ;
/ / s e t r e q u i r e d number o f s t e p s f o r s t e p p e r motor c o u n t e r
e s e t s t e p s l e f t (−500∗ t) ;
e s e t s t e p s r i g h t (250∗ t) ;

}

For uncontrollable events, the generator player calls a function to determine whether
these events occurred (see line 7 of Algorithm 1). For example, for uncontrollable event
moveEnded, the callback function could check whether the aforementioned duration has
elapsed:

unsigned char moveEnded (void∗ data){
return e g e t s t e p s l e f t ()∗ d i r L e f t < 0 | | e g e t s t e p s r i g h t ()∗ dirRight < 0 ;

}

In the following the operational procedure implementation of the case studies is pre-
sented.

83

4 A framework for executing supervisors on swarms of robots

Table 4.1: Memory usage of the control software for each case study and robot platform
using the local modular approach. Values are in bytes.

Case Platform Libraries/ Operational Generator Super-
Base code procedures player visors

Orbit e-puck 25344 948 2112 216
Orbit Kilobot 10968 1266 1482 126

Segregation e-puck 25308 1773 2106 654
Segregation Kilobot 10968 1512 1478 418
Aggregation e-puck 17502 408 2016 207

Object clustering e-puck 16695 696 2004 378
Group formation Kilobot 10968 1742 1584 1704

4.1.4 Memory usage

Table 4.1 shows the memory usage of the control software using the proposed imple-
mentation for each case study and robot platform using the local modular approach.
The usage is broken down into four components: libraries/base code, operational pro-
cedures, generator player, and supervisors. Libraries are a group of generic routines or
resources that are available to be used in any program. Base code includes initialisation
routines not related to the operational procedures.

For all case studies and robot platforms, the memory usage is within 10-30 kB. Only a
small fraction of this can be attributed to the operational procedures, generator player,
and supervisors. The use of memory to store the supervisor is, however, larger than the
theoretical amount derived in Section 4.1.1; the values depend on the specific overhead
and implementation details of each compiler.

4.2 Experiments

This section describes the experiments that we performed using local modular super-
visors. The experiments are used to validate our implementation of SCT in practice.
In particular, they test whether the modelled specifications match with the synthesised
control logic, as observed during the trials. The electronic supplementary material of-
fers a selection of video recordings. Video recordings from all 50 experimental trials and
additional resources (models, the Nadzoru tool, the used source code) can be found on
the online supplementary material [141].

84

4.2 Experiments

4.2.1 Orbit

The experiment took place in a two-dimensional 1.20 m × 0.90 m arena. It used two
robots, a static robot is placed in the centre of the arena and an orbiting robot is placed
inside the configured boundaries. Ten trials were performed for each platform. Each
trial was limited to 300 s.

Visual inspection confirmed that the SCT controller performed the orbit task as in-
tended. Figure 4.3 shows snapshots taken every 10 s for the first 30 s from one of
the experimental trials with the Kilobots and e-pucks, respectively.

(a) 0s (b) 10s (c) 20s (d) 30s

(e) 0s (f) 10s (g) 20s (h) 30s

Figure 4.3: Sequence of (superimposed) snapshots taken from one of the trials where
two Kilobots (a-d) and two e-pucks (e-h) perform the orbit task.

4.2.2 Segregation

The segregation experiment took place in a two-dimensional 1.20 m × 0.90 m arena. It
used a group of 39 follower robots in the Kilobot experiment and 20 follower robots in
the e-puck experiment. These robots were initially distributed on a grid. Three leader
robots were added inside the grid in the Kilobot experiment. For the e-puck experi-
ment, three pairs of leaders were added; this was done as the infrared (IR) signal range
of the e-puck is small in relation to its size. For each robot platform, ten trials were
performed for 300 s or until the robots were segregated, whichever occurred first. The

85

4 A framework for executing supervisors on swarms of robots

robots were considered to be segregated if they all receive a signal of only one leader
or no signal at all—as indicated by their light-emitting diodes (LEDs). Visual inspec-
tion confirmed that the SCT controller performed the segregation task as intended. Fig-
ure 4.4 shows snapshots taken from one of the experimental trials with the Kilobots and
e-pucks, respectively. Figures 4.4(a) and (c) show the initial grid formation with leaders
marked using tags. Figures 4.4(b) and (d) show the result after segregation occurred.
For Figure 4.4(d), tags were added to all robots after the experiments for visualisation
purposes (based on the robots’ states as indicated by their LEDs).

(a) (b)

(c) (d)

Figure 4.4: Snapshots from a segregation trial with Kilobots: (a) initial grid formation
with three leaders, marked with white tags; (b) result after segregation oc-
curred. Trial with e-pucks: (c) initial grid formation with three pairs of lead-
ers marked with tags; (d) result after segregation occurred, tags were added
after the experiments for visualisation.

4.2.3 Aggregation

The aggregation experiment used the same configuration as [53]. The e-puck robot
used its on-board camera to determine the type of object within its line-of-sight. The

86

4.2 Experiments

camera is a CMOS RGB colour camera with a resolution of 640×480 and a field of view
of 56◦ × 42◦. To simplify identification, the robots were fitted with black skirts. Trials
were performed in a 400 cm × 225 cm light grey floor arena surrounded by white walls
that were 50 cm in height. The arena had 120 pencil marks distributed as a 15 × 8 grid
with columns and rows spaced 25 cm apart. Forty robots were uniformly randomly
distributed over the marks in the arena.

In principle, one single pixel from the centre of the camera would be enough to realise
the line-of-sight sensor. To account for misalignment between the orientations of the
robots’ cameras, the sensor was implemented as a column of pixels (for details, see
[53]). This provided reliable readings in a range of up to 150 cm [53].

Ten trials were performed, each lasting 900 s. An IR signal was emitted to instruct
the robots to turn in place for a random period of time. As a result, the robots were
randomly orientated. A second IR signal instructed the robots to start the controller. In
case of failure of any robot (e.g. the robot reset because of a collision or low battery), a
restart of the controller was attempted via IR signal.

Figure 4.5 shows snapshots taken from one of the experimental trials, where 40 e-pucks
were performing the aggregation task. In one trial, we tried—without success—to man-
ually reset a robot with hardware failure. In five of the ten cases, one to three robots of
the forty became unresponsive. The remaining robots achieved aggregation in all ten
trials.

4.2.4 Object clustering

The object clustering experiment used the same configuration as in [49]. In particu-
lar, the robots were fitted with green skirts and the objects used were red cylinders
with 10 cm diameter and 10 cm height. As for the aggregation case study, the camera
was used as a theoretical one-pixel sensor to determine the type of object within the
line-of-sight. The implementation of the camera sensor is detailed in [49]. Trials were
performed in the same arena and using the same conditions as in the aggregation case
study.

Ten trials were performed, each lasting 600 s. As in [49], 5 e-pucks and 20 objects were
used. Figure 4.6 shows snapshots taken from one of the experimental trials.

87

4 A framework for executing supervisors on swarms of robots

(a) 0 s (b) 180 s

(c) 300 s (d) 480 s

Figure 4.5: Sequence of snapshots taken from one of the trials where 40 e-pucks perform
the aggregation task. Photo (a) displays the initial positions of the robots.
Photos (b-d) show the experiment after 120 s, 300 s, and 480 s.

To evaluate whether the performance of object clustering using SCT is similar to the
original implementation [49], we used two metrics to characterise the performance. We
measured the proportion of objects in the largest cluster and the compactness of objects.
Two objects are considered to belong to the same cluster if there is a sequence of objects
connecting them, such that any adjacent objects are no more than 10 cm apart. The
compactness of objects (u(t)) is defined as [49]:

u(t) =
1

4r2
o

No∑
i=1

||p(t)
i − p̄(t)||2, (4.2)

where ro is the radius of the object,No is the number of objects, p
(t)
i denotes the position

of the object i, and p̄(t) represents the centroid of the centre of the objects.

The clustering dynamics are plotted in Figure 4.7. The coloured curves correspond to
the 10 trials, the black dashed line represents the mean. Figures 4.7(a) and (b) show the
proportion of objects in the largest cluster. The results from [49] are plotted in (a), and

88

4.2 Experiments

(a) 0 s (b) 120 s

(c) 300 s (d) 480 s

Figure 4.6: Sequence of snapshots taken from one of the trials in which 5 e-pucks—in
black—cluster 20 objects—in white. Photo (a) displays the initial positions
of the robots and the objects. Photos (b-d) show the experiment after 120 s,
300 s, and 480 s.

those obtained using SCT in (b). Figures 4.7(c) and (d) show the compactness of objects.
The results from [49] are plotted in (c), and those obtained using SCT in (d). Overall
the results are similar, and in both implementations the robots succeeded in clustering
the objects. We notice that in the first half of the experiment—0 to 300 s—the original
method had a slightly faster convergence compared to the use of SCT; in the second
half, SCT overcomes that difference.

In Figure 4.8 we highlight the mean dynamics of all 10 trials—as previously detailed
in Figure 4.7—and we indicate the standard deviation. Figures 4.8(a-b) displays the
proportion of clustered objects over time using data from [49] and data collected using
the controller that was synthesised using SCT, respectively. Figures 4.8(c-d) displays
the compactness of objects over time using data from [49] and data collected using the
controller that was synthesised using SCT, respectively.

89

4 A framework for executing supervisors on swarms of robots

time, t (s)

p
ro
p
o
rt
io
n
of

cl
u
st
er
ed

ob
je
ct
s

0
0
.5

1

0 200 400 600
time, t (s)

p
ro
p
o
rt
io
n
of

cl
u
st
er
ed

ob
je
ct
s

0
0
.5

1

0 200 400 600

(a) (b)

time, t (s)

co
m
p
a
ct
n
es
s,
u
(t
)

0
15

0
0

3
0
00

0 200 400 600
time, t (s)

co
m
p
a
ct
n
es
s,
u
(t
)

0
15

0
0

3
0
00

0 200 400 600

(c) (d)

Figure 4.7: Dynamics of object clustering with 5 e-pucks and 20 objects. (a) and (c) are
plotted using data from [49]. (b) and (d) present the results for the controller
that was synthesised using SCT. In (a) and (b), the relationship between the
proportion of clustered objects and time is displayed. (c) and (d) display
the compactness of objects in relation to time. Each coloured line represents
one experimental trial. The thick black dashed line indicates the mean. The
horizontal dotted black line indicates a theoretical lower bound of the com-
pactness for 20 objects [49].

4.2.5 Group formation

The experiments took place in a 1.20 m × 0.90 m two-dimensional white floor arena.
The arena had 88 marks distributed as a 11 × 8 grid, where columns and rows were
10 cm away from each other. 88 Kilobots were placed on each pencil marks. Ten trials
were performed and each trial was limited to 300 s. The experiment evaluates the
match of the modelled specifications with the synthesised control logic. We observed
that the robots behaved according to the specifications in all the trials. Figure 4.9 shows
snapshots taken from the experimental trials with the Kilobots.

90

4.2 Experiments

time, t (s)

p
ro
p
o
rt
io
n
of

cl
u
st
er
ed

ob
je
ct
s

0
0
.5

1

0 200 400 600
time, t (s)

p
ro
p
o
rt
io
n
o
f

cl
u
st
er
ed

ob
je
ct
s

0
0
.5

1

0 200 400 600

(a) (b)

time, t (s)

co
m
p
a
ct
n
es
s,
u
(t
)

0
15

0
0

3
0
00

0 200 400 600
time, t (s)

co
m
p
a
ct
n
es
s,
u
(t
)

0
30

0
0

6
0
00

0 200 400 600

(c) (d)

Figure 4.8: Mean dynamics of all 10 trials of the object clustering with 5 e-pucks and
20 objects. (a) and (c) are plotted using data from [49]. (b) and (d) present
the results for the controller that was synthesised using SCT. In (a) and (b),
the relationship between the proportion of clustered objects and time is dis-
played. (c) and (d) display the compactness of objects in relation to time.
The thick red line indicates the mean, while the two brighter lines indicate
the standard deviation.

Furthermore, a second set of experiments were performed to test the scalability of the
approach. In this experiment 600 Kilobots were used in the group formation experi-
ment. The experiment took place in a 2.20 m × 2.20 m arena with a glass surface. The
robots were uniformly distributed over the arena. The trial duration was limited to
600 s. The robots were started using an overhead programmer (OHP) [38]. The OHP
can only communicate in a radius of around 50 cm. Due to the size of the arena, the
robots could not all be started at the same time. It took approximately 60 s to initialise
all the robots.

In total, 10 experimental trials were conducted. While it is difficult to monitor the con-

91

4 A framework for executing supervisors on swarms of robots

(a) 0s (b) 60s

(c) 120s (d) 180s

(e) 240s (f) 300s

Figure 4.9: Sequence of snapshots taken from one of the trials where 88 Kilobots per-
form the group formation task. In (f) the formed groups are highlighted.

tinuous operation of 600 autonomous robots, visual inspection confirmed that they
formed the groups as intended. Figure 4.10 shows snapshots taken from one experi-
mental trial. A video recording is included in the electronic supplementary material.
Video recordings from all experimental trials can be found on the online supplemen-
tary material [141]. Note that we use the robot’s LED to indicate its type. Leaders are
represented by non-blinking randomly chosen colours. When a follower joins a group,
it changes its colour to match the leader. Recall that there are two types of followers
and that an equal number of them (±1) will join each particular leader. To visually dis-
criminate between followers of different types even after they join a leader, they flash
their LEDs with two distinct frequencies.

92

4.2 Experiments

(a) 0 s (b) 90 s

(c) 180 s (d) 270 s

(e) 360 s (f) 450 s

(g) 540 s (h) 600 s

Figure 4.10: Sequence of snapshots taken from one of the trials where 600 Kilobots per-
form the group formation task. Photo (a) shows the robots in their initial
position, (b-g) show snapshots took at every 90 s showing the positions and
states of robots, and (h) shows the robots at the end of the trial.

93

4 A framework for executing supervisors on swarms of robots

4.3 Summary

Compared with other work on formal methods in swarm robotics, our work has the
advantage that the control software is automatically derived from the problem spec-
ification. The open source software tool Nadzoru supports users through all stages
of the development process, from specification to control software (for a demonstra-
tion see video in electronic supplementary material). We extended Nadzoru to allow
automatic code generation for two robot platforms—the Kilobot and the e-puck. The
supervisors run on a virtual machine on-board each robot. The same supervisors can
run on multiple platforms, further enhancing reusability. The only platform-specific
source code the user would have to provide are the callback functions for events. For
uncontrollable events, these would test whether the events occurred; for controllable
events, these would execute the associated actions. Note that events can be reused
for implementing solutions to different tasks, further reducing the amount of ad-hoc
development.

The case studies, which we reported, demonstrate that SCT is a promising method
to generate state-of-the-art solutions for canonical tasks in swarm robotics. The tasks
required the robots to gather, manipulate objects, and organise into logical groups. Sys-
tematic experiments with up to 40 e-pucks and up to 600 Kilobots confirmed the cor-
rectness of the implementation.

A limitation of SCT is that it assumes that the system under investigation can be rep-
resented as a discrete event system. In addition, the system and specifications have
to be modelled as a formal language. To assist this process, graphical software tools
(such as Nadzoru) can be used. The control logic can assume any behaviour that can
be expressed using a regular language (Chomsky Type-3 grammar). Regular languages
are realised by deterministic finite state machines (FSM), which are commonly used by
designers of swarm robotics systems. Traditionally, the designer creates a single, rel-
atively complex, FSM to express the desired behaviour. The supervisors used in this
thesis are an equivalent representation of such FSM. But instead of designing one com-
plex FSM or supervisor, SCT can be used to decompose the behaviour into smaller and
simpler parts and to separate the components related to the robot’s abilities from those
related to the specifications. This allows the designer to focus on each aspect individ-
ually. In principle, SCT can be used with formal languages of higher computational
power. For example, Petri-nets or pushdown automata (Chomsky Type-2 grammar)

94

4.3 Summary

can offer elegant solutions for problems involving unbounded variables (e.g. for robots
counting their neighbours). Note, however, that some formal methods are not suitable
for the control of DES [142] or may require alteration [86].

95

5
Supervisory control of swarms of robots

using global events

In Chapters 3 and 4 the SCT was applied to groups of robots in which each robot is
treated as an isolated system. This means that all events related to a particular robot
can only be observed by that robot. We name these types of events local events. Local
events are sufficient to perform sensing and actuation of the robot’s own hardware.
However, robots may be required to communicate with other robots of the swarm to
perform a common task [143]. Currently, the communication needs to be implemented
case by case on a lower level of the SCT framework’s control structure, the operational
procedures.

In this chapter, we extend the SCT framework to incorporate the concept of global
events in the context of swarm robotics. A global event is an event that is observ-
able by the distributed system as a whole. This allows the formal definition of the
communication between all robots of the swarm on the highest level of the SCT frame-
work’s control structure, the supervisor. We apply this novel concept to transparently
implement communication among robots in a swarm through formally defined discrete
events. This is demonstrated in four case studies, where we report experimental trials
on a physical swarm of robots.

In Section 5.1, we introduce the novel concept of global events. The case studies are
described in Section 5.2. Section 5.3 details the automatic code generation for the con-
trollers supporting global events. Section 5.4 presents the experimental methods and
results. The chapter is summarised in Section 5.5.

97

5 Supervisory control of swarms of robots using global events

5.1 Supervisory control over global events

A swarm of robots can be seen as a large system compounded of multiple identical and
independent smaller systems, the robots. These robots must cooperate to perform a
task despite each robot executing its control autonomously. To cooperate, robots need
to interact; in swarms of robots communication has been used to implement robots’
interactions; for example, robots can detect the presence of a leader in the neighbour-
hood. The communication among robots using the SCT usually relies on a specific
implementation not defined at the supervisor level.

Solutions for the integration of different systems using the SCT exist in the literature.
Hierarchical approaches have been considered for the integration among systems. In
[144], hierarchical interface-based supervisory control was applied in a flexible man-
ufacturing system. In [145], a hierarchical SCT approach has been presented to inte-
grate a simulated manufacturing cell with high level planning systems. Hierarchical
interface-based supervisory control considers a master–slave relationship among sys-
tems.

Despite such a relationship being appropriate in the manufacturing context it goes
against the concepts in practice in swarm robotics. In a manufacturing system there
is a clear vertical structure with higher level systems, for example a scheduler, super-
vising low level systems, such as a manufacturing cell. In swarm robotics, such high
level controllers are absent, as systems are horizontally related. Furthermore, hierar-
chical interface-based supervisory control enforces a serialization of requests (requests
are made by the high-level subsystem; for each request the low-level sub-system must
return an answer) [144].

To permit the formal specifications of communications horizontally among the robots
of the swarm this thesis introduces the concept of global events. In this approach, the
event set, Σ—usually formed by a set of controllable events, Σc, and a set of uncontrol-
lable events, Σu—is split into four disjointed sets: local uncontrollable events, Σlu; local
controllable events, Σlc; global uncontrollable events, Σgu; and global controllable events, Σgc.
Where Σc = Σlc ∪ Σgc and Σu = Σlu ∪ Σgu. The local events are equivalent to the tra-
ditional use of events in the SCT. When global events occur in a single robot, all other
robots of the swarm are notified and use this information to evolve the current state of
the supervisor.

98

5.2 Modelling and supervisor synthesis

As other robots only receive the information about the occurrence of global events on
other robots, without being able to disable them, the only transmitted events are global
uncontrollable ones. Therefore, each global controllable event requires a mapping to
a global uncontrollable event. This map is incorporated in the definition of generator
that supports global events, as:

G = (Q,Σ, δ, q0, Qm,m), (5.1)

where:

• Q is a finite set of states;

• Σ is a finite set of symbols related to the system’s events;

• δ : Q× Σ→ Q is a partial transition function;

• q0 ∈ Q is the initial state;

• Qm ⊆ Q is a set of marked states;

• and m : (Σgc ∪ Σgu) → Σgu is the map from global events to the related global
uncontrollable event to be transmitted.

In the next section we present a series of case studies using global events. In Section
5.2.1, we present the use of global uncontrollable events through a case study in swarm
robotics. Case studies considering the map of controllable events to global uncontrol-
lable events are shown in Sections 5.2.2, 5.2.3, and 5.2.4.

5.2 Modelling and supervisor synthesis

In the following, we provide guidance on how to model systems using the SCT with
global events. We present four case studies that illustrate how it can be applied in
swarm robotics. We use θ ∈ {go, gl, gd, gs} to refer to the different case studies applied
to global events, where go refers to to clustering objects in the presence of an intruder,
gl to last spotted location, gd to disjoint agreement, and gs to synchronous movement
avoiding collision.

99

5 Supervisory control of swarms of robots using global events

5.2.1 Case study one: clustering objects in the presence of an intruder

In this case study, we present an extension of the object clustering strategy [49]. Orig-
inally, the strategy allows a group of e-puck robots to cluster objects that are initially
dispersed in the environment. The extended strategy establishes that the object cluster-
ing must only occur when a condition is met, in this case the presence of an intruder.

The swarm of robots performs a rotation over their central axis scanning for an intruder.
Once one of the robot detects an intruder all robots begin to cluster the objects. If no
intruder is detected by any robot for 30 s the robots return to their scanning mode.

Without global sensing, robots would cluster objects only when an intruder was locally
detected. The sensing capabilities of the swarm would not be fully explored, leading
to a partitioned swarm performing two different and likely conflicting behaviours si-
multaneously. The searching strategy would need to be comprehensive as each robot
would rely on only its capabilities to find the intruder. With the proposed extension
the entire swarm can benefit from information available to a single robot. As a result,
the swarm performs the clustering algorithm together. This maximises the total time
of robots performing the clustering and allows a simple approach for the searching
behaviour.

In the following, it is shown how global uncontrollable events enable the formalisation
of this controller with the SCT. Figure 5.1 shows the free behaviour models for this
strategy. Each robot ri with i ∈ {1, · · · , R} has its own set of free behaviour models.
Free behaviour model Ggo1 represents the line-of-sight sensor. Uncontrollable events
S0, S1, S2, and S3 represent, respectively, the presence of nothing, an object, another
robot, or an intruder in the line-of-sight. Event S3 is a global uncontrollable event and,
therefore, its occurrence on a single robot will be vocalised for the entire swarm. Free
behaviour model Ggo2 defines the possible movements. Controllable events V0, V1, V2,
and V3 represent pairs (vl0, vr0), (vl1, vr1), (vl2, vr2), and (vl3, vr3), respectively. Where,
vli and vri are the left and right wheel velocities for Vi, respectively. The first three pairs
were obtained using an evolutionary search [49]:

(vl0, vr0, vl1, vr1, vl2, vr2) = (0.5, 1, 1, 0.5, 0.1, 0.5), (5.2)

100

5.2 Modelling and supervisor synthesis

The last pair was defined as rotating in place:

(vl3, vr3) = (0.3,−0.3). (5.3)

Free behaviour modelGgo3 represents a timer, which triggers an event after 30 s of its ac-
tivation. Controllable event startT imer activates the timer. Once the time has elapsed
uncontrollable event timeout is triggered. In the case of startT imer occurring during
the 30 s interval, the timer is restarted. Therefore, timeout will only be triggered after
30 s of the last timer’s activation. In Table 5.1 the events’ definition is summarised.

q1

S0, S1, S2, S3

q1

V0, V1, V2, V3

/

q1 q2

startT imer
/

startT imer
/

timeout

(a) Ggo1 (b) Ggo2 (c) Ggo3

Figure 5.1: Free behaviour models for the clustering objects in the presence of an in-
truder case study. (a) Line-of-sight sensor to detect nothing, objects, robots,
or an intruder; (b) motion capabilities; (c) timer. Global uncontrollable
events are highlighted in red.

Table 5.1: Summary of events’ definition for the cluster of objects in the presence of an
intruder case study. In the controllability column local controllable events are
indicated by C, local uncontrollable events are indicated by U, global control-
lable events are indicated by GC, and global uncontrollable events are indi-
cated by GU.

event controllability definition
S0 U Binary sensor detects wall (or nothing) in its line-of-sight.
S1 U Binary sensor detects an object in its line-of-sight.
S2 U Binary sensor detects a robot in its line-of-sight.
S2 GU Binary sensor detects an intruder in its line-of-sight.
V0 C Robot’s wheels speeds are set to (vl0, vr0) = (0.5, 1).
V1 C Robot’s wheels speeds are set to (vl1, vr1) = (1, 0.5).
V2 C Robot’s wheels speeds are set to (vl1, vr1) = (0.1, 0.5).
V3 C Robot’s wheels speeds are set to (vl1, vr1) = (0.3,−0.3).
startT imer C Activates the timer.
timeout U 30 s have elapsed since the timer’s last activation.

Figures 5.2, 5.3, and 5.4 illustrate the specifications for the object clustering strategy.

101

5 Supervisory control of swarms of robots using global events

Specifications Ego1 , Ego2 , and Ego3 relate, respectively, to the perception of nothing (S0),
an object (S1), or another robot (S2) with wheel velocities, which are specified by pa-
rameters vli and vri through controllable events Vi, i ∈ {0, 1, 2, 3}. When receiving an
event Si, i ∈ {0, 1, 2} the wheel velocities must be Vi or V3.

q1 q2

S1, S2

S0

V3

/

S0

S1, S2

V0,V3

/ q1 q2

S0, S2

S1

V3

/

S1

S0, S2

V1,V3

/

(a) Ego1 (b) Ego2

q1 q2

S0, S1

S2

V3

/

S2

S0, S1

V2,V3

/

(c) Ego3

Figure 5.2: Specifications regarding the robot’s movement according to the value of the
line-of-sight sensor reading for case study one.

Specification Ego4 relates the perception of an intruder with the activation of the timer.
Specification Ego5 relates the perception of an intruder (S3) in the last 30 s with the
wheel velocities. If no intruder has been spotted—state q1 in E5—the robot’s only op-
tion is to rotate in place (by triggering event V3). Otherwise, only events V0, V1, and V2

can be triggered.

Specifications Ego6 , Ego7 , Ego8 , and Ego9 guarantee that any of the events V0, V1, V2, and V3

do not occur consecutively (e.g., when event V0 occurs it cannot occur again until either
V1, V2, or V3 occur). The objective is to prevent the same movement activation from
occurring consecutively (yet, the robot will perform its current movement indefinitely).

We use the local modular approach to synthesise the supervisors with support of global
events. The operations used are the same for the traditional synthesis. Table 5.2 shows

102

5.2 Modelling and supervisor synthesis

q1 q2

S3

S3

startT imer

/

q1 q2

S3

V3

/
S3

V0,V1,V2

/
timeout

(a) Ego4 (b) Ego5

Figure 5.3: Specifications regarding the intruder detection. (a) Activation of the timer
when an intruder is detected; (b) the robot rotates on the spot if no intruder
has been detected in the last 30 s.

q1 q2

V0

/

V1,V2,V3

/

V1,V2,V3

/

q1 q2

V1

/

V0,V2,V3

/

V0,V2,V3

/

(a) Ego6 (b) Ego7

q1 q2

V2

/

V0,V1,V3

/

V0,V1,V3

/

q1 q2

V3

/

V0,V1,V2

/

V0,V1,V2

/

(a) Ego8 (b) Ego9

Figure 5.4: Specifications preventing the same movement event from occurring consec-
utively (yet, the robot will perform its current movement indefinitely).

the relation of events for each specification for the cluster of objects in the presence of
an intruder case study.

103

5 Supervisory control of swarms of robots using global events

Table 5.2: Events used by the specifications and free behaviour models for the cluster of
objects in the presence of an intruder case study.

Ego1 Ego2 Ego3 Ego4 Ego5 Ego6 Ego7 Ego8 Ego9

Ggo1

s0 X X X
s1 X X X
s2 X X X
s3 X X

Ggo2

v0 X X X X X X
v1 X X X X X X
v2 X X X X X X
v3 X X X X X X X X

Ggo3
startT ime X
timeout X

local models Gloc,go1 Gloc,go2 Gloc,go3 Gloc,go4 Gloc,go5 Gloc,go6 Gloc,go7 Gloc,go8 Gloc,go9

The local free behaviour models for the case study are obtained as:

Gloc,go1 = Gloc,go2 = Gloc,go3 = Ggo1 ||G
go
2 ,

Gloc,go4 = Ggo1 ||G
go
3 ,

Gloc,go5 = Ggo1 ||G
go
2 ||G

go
3 ,

Gloc,go6 = Gloc,go7 = Gloc,go8 = Gloc,go9 = Ggo2 .

(5.4)

The target language for each specification is obtained by:

K loc,go
i = Gloc,goi ||Egoi ∀i ∈ {1, · · · , 9}. (5.5)

The local modular supervisors are:

Sloc,goi = SupC(Gloc,goi ,K loc,go
i) ∀i ∈ {1, · · · , 9}. (5.6)

5.2.2 Case study two: last spotted location

In this case study only the last robot in the swarm that spotted a red object must keep
its Light-Emitting Diodes (LEDs) on. Figure 5.5 shows the free behaviour models for

104

5.2 Modelling and supervisor synthesis

this strategy. Each robot ri with i ∈ {1, · · · , R} has its own set of free behaviour models.
Free behaviour model Ggl1 represents the line-of-sight sensor. The uncontrollable event
S1 represents the presence of an object in the line-of-sight. Free behaviour model Ggl2
defines the LEDs’ status, controllable event on and off turns the LEDs on and off,
respectively.

The use of communication among the robots makes the implementation of this sin-
gle specification problem feasible. This is achieved by defining the event on in free
behaviour model Ggl2 as global and by including free behaviour model Ggl3 . Free be-
haviour model Ggl3 defines the global uncontrollable event on. The event on (in Ggl3) is
mapped to the occurrence of the global controllable event on (in Ggl2) on other robots.

q1

S1

q1 q2

on
/

off
/

q1

on

(a) Ggl1 (b) Ggl2 (c) Ggl3

Figure 5.5: Free behaviour models for the last spotted location case study. (a) Line-of-
sight sensor to detect an object; (b) The LED switch; (c) The LED activation of
other robots, the global uncontrollable event on is mapped to the occurrence
of the global controllable event on on other robots. Global uncontrollable
events are highlighted in red and global controllable events are highlighted
in blue.

In Table 5.3 the events’ definition is summarised.

Table 5.3: Events’ definition for the last spotted location case study.
event controllability definition
S1 U Presence of an object in the line-of-sight.
on GC Turns the LEDs on.
off C Turns the LEDs off.
on GU Indicates the occurrence of on in another robot.

Figure 5.6 illustrates the single specification, Egl1 , for this case. In state q1 the robot
can only turn off the LEDs (event off). If the robot’s line-of-sight sensor detects an
object (event S1), the generator evolves to state q2, where the robot can only turn on
the LEDs, by triggering the global controllable event on. When the global controllable

105

5 Supervisory control of swarms of robots using global events

event on occurs in a particular robot, it triggers the occurrence of the respective global
uncontrollable event, in this case, on. When on occurs in all other robots, their state
will be q1, where the action of turning off the LEDs is enabled.

q1 q2

S1

off

/

on

on

on

/

S1

Figure 5.6: Specification Egl1 for the last spotted location case study.

As there is only a single specification that uses all free behaviour models, the modular,
local modular, and monolithic supervisors are the same. The supervisor calculation
follows the same procedure used in the previous case study and is therefore omitted.

5.2.3 Case study three: disjoint agreement

In this case study, two robots must perform a disjoint agreement regarding the selec-
tion of one of two options. The robots must select a different alternative from the one
selected by the other robot. In this case, the options are to turn on the LEDs on the left
or the right side. Figure 5.7 shows the free behaviour models for this strategy. Free
behaviour model Ggd1 represents a request for the left (rL) or right (rR) side. Free be-
haviour model Ggd2 defines the global uncontrollable events rL and rR. rL and rR

are mapped to the occurrence of the global controllable events rL and rR (in Ggd1) on
other robots, respectively. Free behaviour model Ggd3 defines the LEDs’ status, control-
lable event onLoffR turns on the LEDs from the left side and turns off the LEDs from
the right side, controllable event onRoffL does the opposite.

Free behaviour model Ggd4 represents a timer, which triggers an event after 2 s of its ac-
tivation. Controllable event startT imer activates the timer. Once the time has elapsed,
the uncontrollable event timeout is triggered. In Table, 5.4 the events’ definition is sum-
marised.

Figure 5.8 illustrates the specifications. Specification Egd1 permits to turn on only the
side that the robot had previously requested. Specification Egd2 does not allow to turn

106

5.2 Modelling and supervisor synthesis

q1

rL, rR
/

q1

rL, rR

(a) Ggd1 (b) Ggd2

q1

onRoffL,
onLoffR

/ q1 q2

startT imer
/

timeout

(c) Ggd3 (d) Ggd4

Figure 5.7: Free behaviour models for the disjoint agreement case study. (a) The ability
of the robot to request left (rL) or right (rR); (b) Receiving other robot’s
suggestion through global uncontrollable events, the global uncontrollable
events rL and rR are respectively mapped to the occurrence of the global
controllable events sL and sR on other robots; (c) The LED activation of
other robots; (d) robot’s internal timer.

Table 5.4: Events’ definition for the disjoint agreement case study.
event controllability definition
rL GC Request for the left side.
rR GC Request for the right side.
rL GU Indicate the request for left side in another robot.
rR GU Indicate the request for right side in another robot.
onRoffL C Turns on the LEDs from the right side and turns off the

LEDs from the left side.
onLoffL C Turns on the LEDs from the left side and turns off the LEDs

from the right side.
startT imer C Activates the timer.
timeout U 2 s have elapsed since timer’s activation.

on the side that the other robot had previously requested. Specification Egd3 sets a re-
quest interval of 2 s. Specification Egd4 guarantees that the robot had made at least one
request and received another request before turning on any side. Table 5.5 shows the
relation of events for each specification.

107

5 Supervisory control of swarms of robots using global events

q1 q2

rR

/

rL,
onLoffR

/

rL

/

rR,
onRoffL

/

q1 q2

rL

onLoffR

/

rR

rR

onRoffL

/

rL

(a) Egd1 (b) Egd2

q1 q2

timeout

rL, rR
/

q1

q2

q3

q4

rL, rR
\

rL, rR

rL, rR
/

rL, rR

rL, rR

rL, rR
\

rL, rR,
onLoffR,
onRoffL

/

rL, rR

(c) Egd3 (d) Egd4

Figure 5.8: Specifications for the disjoint agreement case study. (a) Robots set the LEDs
according to the requested they made. (b) Robots cannot turn on the LEDs
requested by another robot. (c) The request takes place in a interval defined
by the timer. (d) Any robot cannot turn on LEDs until both robots have
made at least one request.

The local free behaviour models for the case study are obtained as:

Gloc,gd1 = Ggd1 ||G
gd
3 ,

Gloc,gd2 = Ggd2 ||G
gd
3 ,

Gloc,gd3 = Ggd1 ||G
gd
4 ,

Gloc,gd4 = Ggd1 ||G
gd
2 ||G

gd
3 .

(5.7)

108

5.2 Modelling and supervisor synthesis

Table 5.5: Events used by the specifications and free behaviour models for the disjoint
agreement case study.

Egd1 Egd2 Egd3 Egd4

Ggd1
rL X X X
rR X X X

Ggd2
rL X X
rR X X

Ggd3
onRoffL X X X
onLoffR X X X

Ggd4
startT ime
timeout X

local models Gloc,gd1 Gloc,gd2 Gloc,gd3 Gloc,gd4

The target language for each specification is obtained by:

K loc,gd
i = Gloc,gdi ||Egdi ∀i ∈ {1, · · · , 4}. (5.8)

The local modular supervisors are:

Sloc,gdi = SupC(Gloc,gdi ,K loc,gd
i) ∀i ∈ {1, · · · , 4}. (5.9)

5.2.4 Case study four: synchronous movement avoiding collision

In this case study, robots must perform a synchronised movement while avoiding col-
lision with the surrounding arena’s wall and among each other. Robots can perform
five of the following movements. Robots that are not avoiding collision must agree in
performing the same one of three basic movements: moving forward, turning left, or
turning right. Robots that detect the presence of an obstacle do not need to perform the
same movement of the swarm and instead will perform one of the two movements for
collision avoidance: rotating left or rotating right.

Figure 5.9 shows the free behaviour models for this strategy. Free behaviour model Ggs1
defines the movements that the robots can perform. Controllable eventsmF , tL, tR, rL,
and rR instruct the robots to start moving forward, turning left, turning right, rotating
left, or rotating right, respectively. Free behaviour model Ggs2 represents the request for

109

5 Supervisory control of swarms of robots using global events

one of the basic movements: sF for moving forward, sL for turning left, and sR for
turning right. Free behaviour model Ggs3 defines the global uncontrollable events sF ,
sL, and sR. sF , sL, and sR are mapped to the occurrence of the global controllable

events sF , sL, and sR of Ggs2 in other robots, respectively.

Free behaviour model Ggs4 defines the proximity sensor that detects the presence of
objects (robots or walls). Uncontrollable events oL and oR occur if there was an object
detected on the left or right side during the last second, uncontrollable event oN is
triggered otherwise. Free behaviour model Ggs5 represents a timer, which triggers an
event after 10 s of its activation. Controllable event startT imer activates the timer.
Once the time has elapsed uncontrollable event timeout is triggered. In Table 5.6 the
events’ definition is summarised.

q1

mF ,
tL, tR,
rL, rR

/
q1

sF , sL, sR
/

q1

sF , sL, sR

(a) Ggs1 (b) Ggs2 (c) Ggs3

q1

oN ,
oL, oR

q1 q2

startT imer
/

timeout

(d) Ggs4 (e) Ggs5

Figure 5.9: Free behaviour models for the synchronous movement case study.

Figure 5.10 illustrates the specifications for this case. Specifications Egs1 , Egs2 , and Egs3

start the robot movement according to the movement requested or received from an-
other robot. Each of the three first specifications are concerned with a particular move-
ment. When a robot requests to move forward, event sF , the state of specifications Egs1 ;
Egs2 ; and Egs3 are q2; q1; and q1, respectively, which only allow the controller to trigger
the move forward event, mF . As sF is mapped to sF , all other robots will also have
the same state configuration, causing the swarm to perform the same movement.

110

5.2 Modelling and supervisor synthesis

Table 5.6: Events’ definition for the synchronous movement case study.
event controllability definition
mF C Instruct the robots to start moving forward.
tL C Instruct the robots to start turning left.
tR C Instruct the robots to start turning right.
rL C Instruct the robots to start rotating left.
rF C Instruct the robots to start rotating right.
sF GC Request for moving forwards.
sL GC Request for turning left.
sR GC Request for turning right.
sF GU Indicate the request for moving forwards in another robot.
sL GU Indicate the request for turning left in another robot.
sR GU Indicate the request for turning right in another robot.
oN U No object has been detected.
oL U Object detected on the left side.
oR U Object detected on the right side.
startT imer C Activate the timer.
timeout U 2 s have elapsed since timer’s activation.

Specification Egs4 , forbids the three basic movements if an obstacle is detected and only
allows the robot to rotate to the opposite direction to that of the object. Specification
Egs5 sets a request interval of 10 s. Table 5.7 shows the relation of events for each speci-
fication for the synchronous movements avoiding collision case study.

The local free behaviour models for the case study are obtained as:

Gloc,gs1 = Gloc,gs2 = Gloc,gs3 = Ggs1 ||G
gs
2 ||G

gs
3 ,

Gloc,gs4 = Ggs1 ||G
gs
4 ,

Gloc,gs5 = Ggs2 ||G
gs
5 .

(5.10)

The target language for each specification is obtained by:

K loc,gs
i = Gloc,gsi ||Egsi ∀i ∈ {1, · · · , 5}. (5.11)

The local modular supervisors are:

Sloc,gsi = SupC(Gloc,gsi ,K loc,gs
i) ∀i ∈ {1, · · · , 5}. (5.12)

111

5 Supervisory control of swarms of robots using global events

q1 q2

sF

/

sF

sL, sR,
tL, tR

/

sL, sR sL, sR
/

sL, sR

sF , mF
/

sF

q1 q2

sL

/

sL

sR, sF ,
tR, mF

/

sR, sF sR, sF
/

sR, sF

sL, tL
/

sL

(a) Egs1 (b) Egs2

q1 q2

sR

/

sR

sL, sF ,
tL, mF

/

sL, sF sL, sF
/

sL, sF

sR, tR
/

sR
q1

q2

q3

oL

oR

mF , tL, tR
/

oN

oR
oN

rR

/

oL

oL

oN

rL
/

oR

(c) Egs3 (d) Egs4

q1 q2

timeout

sF , sL, sR
/

(e) Egs5

Figure 5.10: Specifications for the synchronous movement case study.

112

5.3 Implementation

Table 5.7: Events used by the specifications and free behaviour models for the syn-
chronous movement avoiding collision case study.

Egs1 Egs2 Egs3 Egs4 Egs5

Ggs1

mF X X X X
tL X X X X
tR X X X X
rL X
rR X

Ggs2

sF X X X X
sL X X X X
sR X X X X

Ggs3

sF X X X
sL X X X
sR X X X

Ggs4

oN X
oL X
oR X

Ggs5
startT ime
timeout X

local models Gloc,gs1 Gloc,gs2 Gloc,gs3 Gloc,gs4 Gloc,gs5

5.2.5 Comparison

Table 5.8 compares the three methods for supervisor synthesis in terms of the size of
the target language and supervisors for all case studies with global events.

In particular, it lists the number of states and transitions. These performance metrics
are related to the program memory required to store the control strategy. The local
modular approach turned out to be the most memory efficient in all case studies. The
modularity cannot be used in case study two as it has a single specification.

5.3 Implementation

This section details the implementation of the supervisors containing global events.
This is achieved by modifying the generator player—also called automata player—
presented in Chapter 4 to communicate the occurrence of global events transparently.
Apart from flagging the desired event as global, and defining a map from each global

113

5 Supervisory control of swarms of robots using global events

Table 5.8: Total number of states and transitions for each case study when using mono-
lithic, modular, and local modular synthesis approaches, respectively. Data
corresponds to the target language K and supervisor S. The best results are
highlighted in bold.

Monolithic Modular Local modular
K S K S K S

Case one
states 102 85 36 35 22 21
transitions 568 470 317 310 122 115

Case two
states 4 4 4 4 4 4
transitions 10 10 10 10 10 10

Case three
states 36 27 20 19 12 11
transitions 143 96 115 108 37 34

Case four
states 44 44 22 22 13 13
transitions 420 420 286 286 93 93

controllable event to a global uncontrollable event, there is no another action required
by the user of this approach.

The generator player is a virtual machine. It executes the generators which realise the
supervisors. We extend the open source software tool Nadzoru [146, 1, 27] to support
global events in the modelling of free behaviour models and specifications in the su-
pervisor synthesis, and in the automatic generation of the controller’s source code. A
communication protocol and router software to deal with the required network com-
munication were developed.

5.3.1 Communication

The e-puck [37] uses a Bluetooth module for wireless communication. Bluetooth is
defined in IEEE 802.15.1 standard [147] on a 2.4−2.485GHz band. It is a package-based
master/slave protocol. A single master can communicate with up to seven slaves via
point-to-point connections in a network called piconet.

Our controller uses the Bluetooth capabilities of the e-puck to establish a wireless net-
work. We implemented a router to act as the central hub of a star topology, as shown in
Figure 5.11. Using the ISO OSI model [148], the proposed controller operates on top of
underlying network application layer and, consequently, operates independently from
the network topology. In other words, the controller applies to other network topolo-
gies.

114

5.3 Implementation

router

Figure 5.11: Star topology used for the communication between robots. The e-puck
robots are in green and the router is in blue.

Each device maintains a data buffer for each connection to another device. Messages
are buffered before being sent via Bluetooth. Messages are removed from the buffer
once an acknowledgement from the recipient is received or a predefined number of
attempts have been made. The robot is only required to have a single buffer, whereas
the router keeps one buffer for each connection. This approach, therefore, moves the
memory intensive message buffering from e-pucks to the router, which is implemented
on a desktop computer.

We implemented a communication protocol that handles the transmission of data through
the serial data service over Bluetooth. The package is composed by a header that con-
tains information regarding the package router and encapsulates a variable length data
section. The data section contains the information required to implement distributed
sensing using global uncontrollable events.

Figure 5.12 illustrates the structure of the package, which is composed of the follow-
ing: (1) the start byte, (2) the size of the data payload (#pl, i.e., the size in bytes of the
data being transmitted), (3) an acknowledgement identification (ack), (4) the checksum
value (cks), (5) the command (cmd), (6) the command parameters (cpr), (7) the data,
and (8) the end byte.

Whenever the router receives a message from a sender robot, it reads the package’s
header and checks the package’s consistency by using a checksum algorithm. If the
package is valid, the router emits an acknowledgement message to the sender robot and
performs the required action defined in the command. The command (cmd) component
of the package allows different actions, one of which is broadcasting, where all robots
receive a copy of the message. To perform the broadcast, the router queues one copy of
the message to be transmitted in the buffers for the recipient robots.

115

5 Supervisory control of swarms of robots using global events

start

0

#pl

1

ack

2

cks

3

cmd

4 5 6 7

cpr

8 9 10 11

... data ... end

#pl 1

Figure 5.12: Data structure of the package used to transmit the occurrence of global
events. The structure allows the definition of a command and a variable
payload of up to 255 bytes.

Messages in the buffer are transmitted to the respective robot. To account for any trans-
mission error the router waits for an acknowledgement message. If the acknowledge-
ment is not received within T ack ms another attempt is made with an increased T ack.
The value of T ack is T acki = 2000+1000×i1.41 ms, where i is the number of the attempt—
for the initial attempt i = 0. After seven failed attempts, the message is discarded1. If
the acknowledgement is received the message is removed from the buffer. Robot and
router use the same acknowledgement strategy.

5.3.2 Memory representation

The memory representation used for global events is an extension of the one presented
on Section 4.1.1. The extension consists of the addition of two vectors of size e bytes;
one to store whether events are global or local events and another to define the map
between global controllable events and global uncontrollable events.

5.3.3 Generator player

We modified the original generator player [56] to support global events. The modi-
fied version is given by Algorithm 2. Its logic stores the states of all generators. First,
it checks if any global uncontrollable event has occurred on another robot (see Algo-
rithm 2 line 8). Then, it checks if uncontrollable events occurred locally—either global,
in line 13, or local, in line 19—by calling functions in the operational procedures (see
Section 5.3.4). If the uncontrollable event that occurred locally is a global event (lines 13-
18) then the swarm is notified (line 18). This is achieved by broadcasting a message

1This usually means a more serious problem such as a link disconnection or the discharge of the robot’s
battery. In such a case the experiment would be considered to fail; this, however, did not occur during
our experiments.

116

5.4 Experiments

using the communication protocol previously described. If any uncontrollable event
occurred (local or global), the generators’ states are updated accordingly (lines 9-11,
14-16, and 20-22). Otherwise, the generator player determines the list of enabled con-
trollable events (line 25). If the list is not empty, the generator player selects one event,
at random, and updates the generators’ states accordingly (lines 26-30). It also calls
functions in the operational procedures to perform the action associated with the event
(line 31). If the controllable event that occurred is a global event (lines 33-34) then
the swarm is notified (line 33) with the respective global uncontrollable event that is
mapped by the Map function.

Note that the generator player (controller) prioritises the updating of the current state
based on the occurrence of uncontrollable events over the generation of a controllable
event. This is important as the control decision must be taken based on the most recent
state that is available. Also, the generator player prioritises global uncontrollable events
over local uncontrollable events as global uncontrollable events affect the entire system.

5.3.4 Operational procedures

The operational procedures interface the controller to the hardware [22]. They define
one callback function per event. Unlike the control logic, these functions are not au-
tomatically derived from the formal specifications. For each event that is triggered
the generator player calls this function to perform some action (see lines 12,17,23 and
31 of Algorithm 2). The operational procedures implement the routines to determine
whether an uncontrollable event has occurred locally on the robot (see lines 13 and 19
of Algorithm 2).

The use of global events eliminates the use of the operational procedures to implement
swarm-wide communication, keeping the same method for the use of the operational
procedures for the definition of other actuation and sensing.

5.4 Experiments

This section describes the experiments that we performed using local modular super-
visors that make use of global events. The experiments are used to validate our imple-
mentation of SCT in practice. The electronic supplementary material offers a selection

117

5 Supervisory control of swarms of robots using global events

Algorithm 2 Generator player

1: Let N be the number of generators
2: Let Map : Σgc → Σgu be the map from all global controllable events to global

uncontrollable events.
3: procedure GENERATOR PLAYER

4: for all j ∈ {1, 2, . . . , N} do
5: set current state cj to initial state q0j ;
6: end for
7: while true do
8: if egu ∈ Σgu occurred globally then
9: for all j ∈ {1, 2, . . . , N} do

10: cj = δj(cj , egu);
11: end for
12: execute callback function of egu;
13: else if egu ∈ Σgu occurred locally then
14: for all j ∈ {1, 2, . . . , N} do
15: cj = δj(cj , egu);
16: end for
17: execute callback function of egu;
18: Transmit(egu);
19: else if eu ∈ Σlu occurred locally then
20: for all j ∈ {1, 2, . . . , N} do
21: cj = δj(cj , eu);
22: end for
23: execute callback function of eu;
24: else
25: calculate the set of enabled controllable events ψ(c1, c2, . . . , cn) : cx ∈ Σc;
26: if ψ(c1, c2, . . . , cn) 6= ∅ then
27: randomly select ec ∈ ψ(c1, c2, . . . , cn);
28: for all j ∈ {1, 2, . . . , N} do
29: cj = δj(cj , ec);
30: end for
31: execute callback function of ec;
32: if ec ∈ Σgc then
33: Transmit(Map(egc));
34: end if
35: end if
36: end if
37: end while
38: end procedure

118

5.4 Experiments

of video recordings. Video recordings from all 40 experimental trials and additional
resources (models, the Nadzoru tool, the used source code) can be found on the online
supplementary material [141].

5.4.1 Case study one: clustering objects in the presence of an intruder

We performed experiments with object clustering in the presence of an intruder with a
controller automatically generated from the supervisor obtained using the SCT frame-
work. The e-puck robot uses its on-board camera to implement the line-of-sight sensor,
as described in Sector 4.2.3.

(a) 0 s (b) 60 s (c) 120 s

(d) 180 s (e) 600 s (f) 1200 s

Figure 5.13: The sequence of snapshots taken from one of the ten trials in which
five e-pucks—in black—cluster 20 objects—in red—in the presence of an
intruder—in blue. Photo (a) displays the initial positions of the robots and
the objects. Photo (b) shows the placed intruder, which was removed after
60 s (Photo (c)). Photos (d-f) illustrate permanently placed intruder (180 s),
the distribution of objects after a run-time of 600 s and 1200 s.

To simplify identification, the robots were fitted with green skirts and the objects to
cluster used were red cylinders with 10 cm diameter and 10 cm height. The intruder
object was a 43 cm × 63 cm blue box with 35 cm height. Trials were performed in a
400 cm × 300 cm light-grey-floor arena surrounded by white walls that were 50 cm in
height. The arena had 165 pencil marks distributed as a 15 × 11 grid with columns
and rows spaced 25 cm apart. Five e-pucks and 20 objects were uniformly randomly

119

5 Supervisory control of swarms of robots using global events

distributed over the marks in the arena. A randomly distributed orientation for each
robot was also assigned.

Ten trials were performed, each lasting 1200 s. An infrared (IR) signal was emitted
to instruct the robots to start the controller. After 60 s the intruder was inserted in
the corner of the arena, after a further 60 s the intruder was removed and finally after
another 60 s, reinserted again in the same corner. In the case of the robots not being able
to detect the intruder for an interval bigger than 120 s from the start of the searching
behaviour, the intruder is moved to the next free corner in the clock-wise direction.
In the case of a failure of any robot (e.g., the robot reset because of a collision or low
battery, or a robot gets stuck on the arena or wall for a period greater than 60 s), a restart
of the controller was attempted via IR signal. Figure 5.13 shows snapshots taken from
one of the experimental trials.

time, t (s)

p
ro
p
or
ti
on

of
cl
u
st
er
ed

ob
je
ct
s

0
0.
5

1

0 400 800 1200
time, t (s)

co
m
p
ac
tn
es
s,
u
(t
)

0
30

00
6
00

0

0 400 800 1200

(a) (b)

Figure 5.14: Dynamics of object clustering with intruder detection with five e-pucks and
20 objects. In (a), the relationship between the proportion of clustered ob-
jects and time is displayed. In (b), the compactness of objects in relation to
time. Each coloured line represents one experimental trial. The thick black
dashed line indicates the mean. The horizontal dotted black line indicates
a theoretical lower bound of the compactness for 20 objects. The vertical
dashed lines represent the introduction of the intruder (in blue) and its re-
motion (in red).

To evaluate the performance of the controller we measured the proportion of objects in
the largest cluster and the compactness of objects as defined in [49]. The clustering dy-
namics are plotted in Figure 5.14. The coloured curves correspond to the ten trials; the
black dashed line represents the mean. Figure 5.14(a) shows the proportion of objects
in the largest cluster. Figure 5.14(b) shows the compactness of objects.

To evaluate the reliability of the communication, the router collected statistics about

120

5.4 Experiments

time, t (s)

p
ro
p
o
rt
io
n
o
f

cl
u
st
er
ed

ob
je
ct
s

0
0
.5

1

0 400 800 1200
time, t (s)

co
m
p
a
ct
n
es
s,
u
(t
)

0
3
0
0
0

6
0
0
0

0 400 800 1200

(a) (b)

Figure 5.15: Mean dynamics of all ten trials. (a) and (b) plot the proportion of clustered
objects and display the compactness of objects over time, respectively. The
thick red line indicates the mean, while the two lighter lines indicate the
standard deviation.

the transmission of packages. Figure 5.16(a) shows the accumulated number of mes-
sage transmission attempts by the router to the robots. The vertical lines indicate when
the intruder is introduced (in blue) or removed (in red). Figure 5.16(b) shows the accu-
mulated failure rate of the message against the total of attempted messages.

time, t (s)

T
ot
al

n
u
m
b
er

of
m
es
sa
ge
s
tr
an

sm
it
te
d

0
25

00
50

00

0 400 800 1200
time, t (s)

F
ai
lu
re

ra
te

0
0.
05

0.
1

0 400 800 1200

(a) (b)

Figure 5.16: (a) The number of message transmission attempts by the router to the
robots. (b) Failure rate.

The reliability of the Bluetooth communication may impact the performance of the
swarm behaviour. In Figure 5.17(a) the failure rate (see Figure 5.16(b)) is related to
the average proportion of clustered objects. Trials with a bigger failure rate seem to
tend to have a slower convergence rate in the number of clustered objects. The failure
rate also seems to impact on the convergence rate based on the average compactness,
as shown in Figure 5.17(b). Though, given the small sample size, the effects may not be

121

5 Supervisory control of swarms of robots using global events

significant.

Failure rate

A
v
g.

p
ro
p
or
ti
on

of
cl
u
st
er
ed

ob
je
ct
s

0
0.
25

0.
5

0 0.01 0.02 0.03
Failure rate

A
v
g.

co
m
p
ac
tn
es
s

0
10

00
20

00

0 0.01 0.02 0.03

(a) (b)

Figure 5.17: Impact of the Bluetooth communication performance on the swarm be-
haviour. (a) Average proportion of clustered objects against the failure rate,
(b) the average compactness against the failure rate.

5.4.2 Case study two: last spotted location

Experiments were performed with the last location identification strategy with a con-
troller automatically generated from the supervisor obtained using the SCT framework.
Trials were performed in a 71 cm long × 41 cm wide white floor arena surrounded by
white walls that were 8 cm in height. Three e-puck robots were positioned equally
spaced on a centred line parallel to the length. All robots were oriented to the same
wall. Ten trials were performed, each lasting up to 60 s. An IR signal was emitted to
instruct the robots to start the controller. An object was moved 25 times in front of one
of the robots in a random order. Figure 5.18 shows snapshots taken from one of the
experimental trials.

To evaluate the performance of the communication, the router collected statistics about
the transmission of packages. Figure 5.19 shows the accumulated number of message
transmission attempts by the router to the robots. During all the trials there was no
message transition failure.

5.4.3 Case study three: disjoint agreement

We performed experiments with the disjoint agreement case study with a controller au-
tomatically generated from the supervisor obtained using the SCT framework. Trials
were performed in a 71 cm long × 41 cm wide white floor arena surrounded by white

122

5.4 Experiments

(a) (b)

(c) (d)

(e) (f)

Figure 5.18: The sequence of snapshots taken from one of the ten trials in which three
e-pucks perform last spotted location case study. Photo (a) displays the
positions of the robots. Photos (b-f) show the first 5 changes.

walls that were 8 cm in height. Two e-puck robots were positioned in a centred line
parallel to the length. All robots were oriented to the same wall. Ten trials were per-
formed, each lasting up to 300 s. An IR signal was emitted to instruct the robots to start
the controller. Figure 5.20 shows snapshots taken from one of the experimental trials.

To evaluate the performance of the communication, the router collected statistics about
the transmission of packages. Figure 5.21(a) shows the accumulated number of mes-
sage transmission attempts by the router to the robots. Figure 5.21(b) shows the accu-
mulated failure rate of the message against the total of attempted messages.

123

5 Supervisory control of swarms of robots using global events

time, t (s)
T
ot
al

n
u
m
b
er

of
m
es
sa
ge
s
tr
an

sm
it
te
d

0
40

80

0 20 40 60

Figure 5.19: (a) The number of message transmission attempts by the router to the
robots.

5.4.4 Case study four: synchronous movement avoiding collision

Trials were performed in a 400 cm× 300 cm light grey floor arena surrounded by white
walls that were 50 cm in height. The arena had 165 pencil marks distributed as a 15×11

grid with columns and rows spaced 25 cm apart. Five e-pucks were uniformly ran-
domly distributed over the marks in the arena. A randomly distributed orientation for
each robot was also assigned. Ten trials were performed, each lasting 300 s. An IR
signal was emitted to instruct the robots to start the controller.

Figure 5.22 shows snapshots taken from one of the experimental trials in which five
e-pucks perform synchronous movements avoiding collision. The 9 snapshots are su-
perimposed to show how the robots are synchronised, the first snapshot is the most
transparent one and the last the most opaque.

To evaluate the performance of the communication, the router collected statistics about
the transmission of packages. Figure 5.23(a) shows the accumulated number of mes-
sage transmission attempts by the router to the robots. Figure 5.23(b) shows the accu-
mulated failure rate of the message against the total of attempted messages.

5.5 Summary

In this chapter, the use of global events for the supervisory control of swarm of robots
was proposed. Global events are shared among all the robots of the swarm, abstracting
the communication between them. The transmitted global events are always uncontrol-
lable events. If a controllable event must be transmitted, a map to uncontrollable events
is used. This approach allows the formal definition of communication among robots,
eliminating the need to implement communication in the operational procedures.

124

5.5 Summary

(a) (b)

(c) (d)

(e) (f)

Figure 5.20: The sequence of snapshots taken from one of the ten trials in which two
e-pucks performs the disjoint agreement case study. Photo (a) displays the
positions of the robots. Photos (b-f) show the first 5 changes.

To illustrate the proposed framework, four case studies were presented. In the first
case study, only global uncontrollable events are used in conjunction with local control-
lable and local uncontrollable events. In the other three case studies global controllable
events are also considered. We showed that communications strategies can be modelled
successfully with the use of global events within the extended SCT framework. Each of
the case studies presented the expected behaviour as defined by the specifications.

125

5 Supervisory control of swarms of robots using global events

time, t (s)

T
ot
al

n
u
m
b
er

of
m
es
sa
ge
s
tr
an

sm
it
te
d

0
20

0
40

0

0 100 200 300
time, t (s)

F
ai
lu
re

ra
te

0
0.
05

0.
1

0 100 200 300

(a) (b)

Figure 5.21: (a) The number of message transmission attempts by the router to the
robots. (b) Failure rate.

Figure 5.22: The sequence of 9 (superimposed) snapshots taken in a period of 3.2 s from
one of the ten trials in which five e-pucks performs synchronous move-
ments while avoiding collision. Snapshots are taken every 0.4 s.

126

5.5 Summary

time, t (s)

T
ot
al

n
u
m
b
er

of
m
es
sa
ge
s
tr
an

sm
it
te
d

0
15

00
30

00

0 100 200 300
time, t (s)

F
ai
lu
re

ra
te

0
0.
1

0.
2

0 100 200 300

(a) (b)

Figure 5.23: (a) The number of message transmission attempts by the router to the
robots. (b) Failure rate.

127

6
Probabilistic supervisory control of

swarms of robots

In previous chapters, supervisory control theory (SCT) and associated design tools have
been used to overcome some of the deficiencies of ad-hoc development. Given a formal
description of the swarm’s agents capabilities and their desired behaviour, the control
source code was automatically generated. However, the traditional SCT is unable to
formulate probabilistic controllers at the supervisor level. Probabilities, if needed, must
be considered on the lowest level of the control structure, the operational procedures
[22].

In this chapter, we extend the SCT framework to incorporate probabilistic generators.
To formulate probabilistic controllers at the supervisor level, we propose a probabilis-
tic SCT (pSCT) framework [149]. The framework combines the concept of probabilistic
generators [39, 40] with support for marked states and the synthesis of monolithic [15],
modular [16], and local modular supervisors [20, 19, 22]. The latter results in supervi-
sors with more compact memory representation compared to the others.

Probabilistic generators differ from probabilistic automata. Probabilistic automata are
concerned with the uncertainty of the system’s state, which is defined by a stochastic
vector. In a particular state, each event may have transitions to multiple states (with
associated probabilities). Note that this is one approach to represent actuation uncer-
tainty. In [150], actuation uncertainty is represented by probabilistic computation tree
logic in the context of a stochastic motion planning task.

Probabilistic generators, on the other hand, are concerned with the uncertainty of events
occurring in the system’s state, which is assumed to be known. Each event will result
in a transition to a single state.

129

6 Probabilistic supervisory control of swarms of robots

We recall that in the SCT’s context, events can be uncontrollable or controllable. Un-
controllable events are related to the controller input, for example, from the sensors of
a robot. Controllable events are the controller output (i.e., the system’s input), in other
words, they can relate to a choosable action. The problem of selecting one of multiple
controllable events—associated with the transitions in the current state—is referred to
as the choice problem [18]. We show how the use of probabilistic generators in conjunc-
tion with the proposed pSCT represents a systematic and formally explicit solution for
the choice problem.

To illustrate and didactically introduce pSCT we make use of a case study from the
domain of swarm robotics. We apply the pSCT framework to control a swarm of real
robots that distributively solve the graph colouring problem [151]. pSCT automatically
generates the controller’s code and applies it on physical swarms of 25 and 100 Kilobot
robots [38].

6.1 Choice problem

Ideally, at the implementation level, no state should have more than one enabled con-
trollable event. In this way, for any input sequence, there is a single response. In reality,
this is not always the case, as the specifications may not restrict all the possibilities.

During the synthesis of the supervisor the only concern is to avoid deadlocks and live-
locks. Deadlocks and livelocks, in the context of generators, occur when the controller
is trapped in a non-marked state that has no path to reach a marked state. Deadlocks
imply that the system cannot evolve further, in contrast, livelocks imply that the con-
troller can evolve further but only in a subset of states without reaching a marked state.

For example, let us consider the supervisor shown in Figure 6.1. Some states of the
supervisors are omitted, the transition from/to the omitted part of the supervisor are
represented by dashed lines. In state q1 two controllable events, l and r, are enabled.
Such case occurs if a robot, which moves forward, encounters an obstacle (e.g., a wall)
and can either avoid it by moving to the left (event l) or the right (event r).

From the perspective of the supervisor both control responses are permissible, as re-
specting the specification. The choice problem occurs at the implementation level.
When in a particular state two or more controllable events are enabled, the controller’s
implementation has to choose which controllable event will be generated.

130

6.1 Choice problem

q1

q2

q3

l\

r/

Figure 6.1: A choice problem between two enabled controllable events from state q1.

If the choice strategy is deterministic it can result in the controller being trapped in a
subset of non-marked states. This is referred to as a livelock.1

The supervisor shown in Figure 6.2 is deadlock free, as each state has at least one path
that reaches a marked state (q5 in this case). Let us assume that the implementation
always chooses the first option in state q1—the transition triggered by event l. The
result is equivalent to removing the other transitions triggered by controllable events.
In this case a livelock occurs as the controller will be trapped in states q1, q2, and q4

executing the events l, a, b in this order indefinitely.

q1

q2

q3

q4

q5

l\

r/

a

a

b—

Figure 6.2: A choice problem with livelock. If the same transition (l) is repeatedly cho-
sen from q1 a livelock can occur. Some states of the supervisors are omitted.

Even when there is no livelock, the strategy of selecting the same transition in a state
can also lead to problems. Consider a robot that starts moving upwards from the central
position of the arena, as shown in Figure 6.3. Once it has reached position p1, p2, · · · ,
or p5, its supervisor is assumed to be in state q0 (see Figure 6.4). The uncontrollable

1If a controller is trapped in a single non-marked state this is called a deadlock. Deadlocks can be pre-
vented during the synthesis.

131

6 Probabilistic supervisory control of swarms of robots

Robot

p1p2

p3 p4

p5

Figure 6.3: A task that under-performs due to the choice problem.

q0 q1

q2

q3 q4

q5

q6
f

fr

fl

l
\

r/

l
\

r\

a

a

x
/

y
/

Figure 6.4: A choice problem without livelocks. Some states are omitted.

events f , fl, and fr represent the sensing of an obstacle “in front”, “in front and on the
left”, and “in front and on the right”, respectively. Controllable events l and r move the
robot to the left or the right, respectively. In the position p1, there is an obstacle in the
front, the supervisor thus reaches state q1 (Figure 6.4). If the controller always chooses
l in state q1, this will not cause a livelock, because it is possible for the generator to

132

6.1 Choice problem

reach a marked state (q6). In the positions p2, p3, and p4, there are obstacles (walls) in
the front and on the right side; accordingly, the supervisor reaches state q3 (Figure 6.4),
which only allows to turn left. Similarly to position p1, in position p5, the supervisor
reaches state q1. As the controller implementation triggers only the controllable event
l in state q1, the robot will never turn right, even though the event related to turning
right, r, is enabled in state q1. As a result, the robot is only exploring half of the arena.
This behaviour is solely caused by an inadequate implementation and is not restricted
by the supervisor. Therefore, if multiple controllable events are enabled, the controller
should not always have to choose the same event.

Events could be chosen in particular sequence every time the state is achieved. This
would avoid livelocks, as eventually all the controllable transitions will be chosen.
However, it requires to keep track of the last selected controllable event of each state,
increasing the amount of volatile memory used by the controller. Optionally, an equiv-
alent supervisor with single controllable event per state could be computed. This com-
putation will increase the size of the supervisor in program memory, which may not be
desired or even feasible.

The alternation in sequence between the enabled controllable events can also lead to
undesired implementation restriction, as shown in the examples in Figure 6.5. The use
of any deterministic sequence of events in a particular state where the choice problem
appears can also lead to undesired implementation restrictions. For example, let us as-
sume that the deterministic sequence l, r, l, · · · is chosen, Figure 6.5 shows an example
where an undesired implementation restriction appears. Note that for the configura-
tion of this arena the robot is still not able to explore the entire arena, even though the
supervisor does not impose this restriction. In this example, the considered robot move
at the positions p1, p5, and p6 lead the supervisor in Figure 6.4 to state q1. In the position
p1 the controller chooses left. In the position p5 the controller chooses right, when it is
in position p6 it chooses left again. Note that on the course from position p7 to p2 the
robot does not trigger any collision when passing by p1, as the collision only occurs if
there is an obstacle in front of the robot. In the subsequent cycles the robot will always
choose right in p5 and left in p6 leading to an undesired restriction.

Thus, a deterministic sequence can potentially lead to undesired implementation re-
strictions, in this case a limited exploration of the arena, assuming no noise being
present. A better, and more common, approach is to choose one of the enabled con-
trollable events randomly, as previously presented in Chapter 4. This will avoid live-

133

6 Probabilistic supervisory control of swarms of robots

Robot

p1p2

p3 p4

p5 p6

p7

Figure 6.5: Example of a task that under-perform due to the choice problem.

locks and unspecified restrictions, as eventually all the controllable transitions will be
chosen.

However, a uniformly random selection among the enabled controllable events is only
a basic solution that cannot couple with different events’ likelihood. It may be desirable
that some events occur more often than others. For example, moving forward may be
required to be more prominent than the turning movements. This was the case for the
random movement used in the segregation strategy presented in Chapters 3 and 4. In
that case, the events move forward, turn left, and turn right occurred, statistically, in
the same proportion. The differences were implemented in the operational procedures,
where the forward movement was performed for a longer time than the turning move-
ments. Consequently, the differences were not part of the formal modelling and speci-
fications. Probabilistic generators are able to formally represent different likelihoods of
controllable events.

134

6.2 Probabilistic generators

6.2 Probabilistic generators

We recall that different definitions for probabilistic generators have been proposed.
In [40] probabilistic generators are defined as:

Gp = {Q,Σ, δ, q0, p}, (6.1)

where:

• Q is a finite set of states.

• Σ is a finite set of events, with Σ = Σu ∪Σc.

• δ : Q× Σ→ Q is the partial transition function.

• q0 is the initial state, where q0 ∈ Q.

The probability of an event occurring in a particular state is:

p : Q× Σ→ [0, 1], (6.2)

where the sum of the probabilities for each state is limited to 1, as:

∀q ∈ Q,
∑
e∈Σ

p(q, e) ≤ 1. (6.3)

If each state q in a generator G holds
∑
e∈Σ

p(q, e) = 1, then G is non-terminating. Other-

wise, G is terminating—when no event e occurs, the generator stops.

A different definition for probabilistic generators, given by [39], includes marked states,
Qm:

Gp = {Q,Σ, δ, q0, Qm, p}. (6.4)

135

6 Probabilistic supervisory control of swarms of robots

q0 q1

q2

q3 q4

q5

q6
f

fr

fl

l:0.5
\

r:0.5
/

l:1.0
\

r:1.0\

a

a

x
/

y
/

Figure 6.6: Example of a probabilistic generator derived from a non-probabilistic gen-
erator.

This definition has been applied to the synthesis of a supervisor defined by a single
free behaviour model and a single specification [39]. The probabilistic supervisory con-
trol theory (pSCT) defines probabilistic generators as in Equation 2.34 but drops the
restriction of Equation 6.3.

In pSCT there are no terminating states. We use the p values to weigh the occurrence
of events in each state separately for each generator. When combining multiple gen-
erators, as will be shown later, their control logic is only guaranteed to be preserved,
if a normalisation of weights is applied once, rather than for each individual gener-
ator. For the sake of simplicity, we refer to the weights as probabilities This allows
the decomposition of the robots capabilities and the control specifications in several
probabilistic generators; permitting the individual consideration of each component.
In summary, p(q, e) is the isolated probability of an event e to occur in a state q, and
p′(q, e) = 1 − p(q, e) is the probability of the event e, in state q do not occur. Non-
probabilistic generators are a sub class of probabilistic generators where p(q, e) ∈ {0, 1}.

Non-probabilistic generators used by the traditional SCT can be expressed as proba-
bilistic generators in our pSCT framework. Figure 6.6 shows the probabilistic version
of the generator presented in Figure 6.4. The label of each transition is represented by
e : p, where e is a controllable event and 0 ≤ p ≤ 1 is the probability of the transition.
For this particular example, we assume that the controllable events in each state should
be chosen with equal probabilities, which is a common workaround at the implemen-
tation level of the traditional SCT.

136

6.2 Probabilistic generators

6.2.1 Operations for the synthesis of probabilistic supervisors

This section defines operations needed to synthesise supervisors based on the proposed
probabilistic generators. The use of such operations will be detailed later using a case
study.

6.2.1.1 Normalisation

The normalisation operation of a generatorGp,Norm(Gp), guarantees that in each state
the sum of all probabilities of the transitions related to the controllable events is equal
to 1. The normalised probability pn(q, ecx), with ecx ∈ Σc, is given by:

pn(q, ecx) =

 p(q, ecx) /
∑

ec∈Σc

p(q, ec) if
∑

ec∈Σc

p(q, ec) > 0

0 otherwise.
(6.5)

Figure 6.7 shows an example of an PFG and its normalisation.

q1

q2

q2

q4

l: 0.5 —
f: 1.0

/

r: 0.5 —

d

d
d

q1

q2

q2

q4

l: 0.25 —
f: 0.5

/

r: 0.25 —

d

d
d

(a) (b)

Figure 6.7: Example of the normalisation of the transitions probabilities.

137

6 Probabilistic supervisory control of swarms of robots

6.2.1.2 Synchronisation

The synchronous composition (represented by ·||·) of two probabilistic generators Gpa
and Gpb with alphabet Σi, i ∈ {a, b} is defined as:

Gp
a||G

p
b = (Qa ×Qb,Σa ∪ Σb, δa||b, (q0a , q0b), Qma ×Qmb

, pa||b), (6.6)

where

δa||b((qa, qb), e) =

(δa(qa, e), δb(qb, e)) if δa(qa, e)! ∧ δb(qb, e)!
(δa(qa, e), qb) if δa(qa, e)! ∧ e /∈ Σb

(qa, δb(qb, e)) if δb(qb, e)! ∧ e /∈ Σa

undefined otherwise,

(6.7)

with δ(x, y)! meaning that δ is defined for an input (x, y). The probability of transitions
triggered by controllable events is

pa||b((qa, qb), ec) =

pa(qa, ec)× pb(qb, ec) if δa(qa, ec)! ∧ δb(qb, ec)!
pa(qa, ec) if δa(qa, ec)! ∧ ec /∈ Σb

pb(qb, ec) if δb(qb, ec)! ∧ ec /∈ Σa

0 otherwise.

(6.8)

Figure 6.8(c) shows an example of the synchronous composition of two probabilistic
generators, Gp1 (Figure 6.8(a)) and Gp2 (Figure 6.8(b)). Note that the resulting generator
(Figure 6.8(c)) is not necessarily normalised.

The associated probabilities for Gp1 and Gp2 gave in Figures 6.8(a) and 6.8(b) are given in
Table 6.1.

Table 6.1: Associated probability for Gp1 and Gp2.

State
Gp1 Gp2

a b c b c d
q1 0.5 0.4 0.1 0.7 0.2 0.1
q2 1.0 0.0 0.0 0.5 0.5 0.0

138

6.2 Probabilistic generators

q1 q2

a: 0.5, b: 0.4, c: 0.1
\
x

a: 1.0
\

x,y

(a) Gp1, Σ1
u = {x, y}, Σ1

c = {a, b, c}

q1 q2

b: 0.7, c: 0.2, d: 0.1
\

x

b: 0.5,c: 0.5
\

x

(b) Gp2, Σ2
u = {x}, Σ2

c = {b, c, d}

q1,1 q1,2

q2,1 q2,2

d: 0.1
\

a: 0.5—

b: 0.28,
c: 0.02

/

x

b: 0.2,
c: 0.05

\
a: 0.5/xa: 1.0—

d: 0.1
/

x,y

a: 1.0—

x,y

(c) Gp(1,2), Σ
(1,2)
u = {x, y}, Σ

(1,2)
c = {a, b, c, d}

Figure 6.8: Example of the synchronous composition of two probabilistic generators.
(a) Gp1 and (b) Gp2, respectively are combined to form (c) Gp(1,2).

Equations 6.9 to 6.12 details the calculation of the probabilities resulting in the proba-
bilistic generator Gp1,2 shown in Figure 6.8(c).

p((q1, q1), a) = pg1(q1, a) = 0.5

p((q1, q1), b) = pg1(q1, b)× pg2(q1, b) = 0.4× 0.7 = 0.28

p((q1, q1), c) = pg1(q1, c)× pg2(q1, c) = 0.1× 0.2 = 0.02

p((q1, q1), d) = pg2(q1, d) = 0.1

(6.9)

p((q1, q2), a) = pg1(q1, a) = 0.5

p((q1, q2), b) = pg1(q1, b)× pg2(q2, b) = 0.4× 0.5 = 0.2

p((q1, q2), c) = pg1(q1, c)× pg2(q2, c) = 0.1× 0.5 = 0.05

p((q1, q2), d) = pg2(q2, d) = 0.0

(6.10)

p((q2, q1), a) = pg1(q2, a) = 1.0

p((q2, q1), b) = pg1(q2, b)× pg2(q1, b) = 0.0× 0.7 = 0.0

p((q2, q1), c) = pg1(q2, c)× pg2(q1, c) = 0.0× 0.2 = 0.0

p((q2, q1), d) = pg2(q1, d) = 0.1

(6.11)

139

6 Probabilistic supervisory control of swarms of robots

p((q2, q2), a) = pg1(q2, a) = 1.0

p((q2, q2), b) = pg1(q2, b)× pg2(q2, b) = 0.0× 0.5 = 0.0

p((q2, q2), c) = pg1(q2, c)× pg2(q2, c) = 0.0× 0.5 = 0.0

p((q2, q2), d) = pg2(q2, d) = 0.0

(6.12)

6.3 Graph colouring case study

Our case study derives from the classical graph colouring problem [151]. The system
comprises an arbitrary number of robots, r, and an arbitrary number of colours that can
be chosen, c. Each robot can be seen as a node in a graph. Two robots Ra and Rb share
an edge and are therefore neighbours if their distance is smaller than a threshold d. The
goal is to assign a colour to each robot in such a way that any pair of neighbours do not
have the same colour while the number of different colours used by the entire swarm
should be minimal.

A practical application of the graph colouring problem in swarm robotics is to assign
locally unique identification numbers to robots when the overall size of the swarm is
not a priori known, where each robot has a unique local identifier considering its neigh-
bourhood. Many swarm algorithms can benefit of a unique identification of each robot.
However, unique hard coded values are as large as the swarm size, taking space of the
communication message. Therefore, minimise the maximum identification value—the
colour—and at the same time guarantee that no neighbour have the same identification
number can be useful for many swarm robotics algorithms.

In the following, we present a heuristic strategy for addressing the graph colouring
problem. The free behaviour models (i.e., models of the robot’s capabilities) for the
graph colouring strategy are illustrated in Figure 6.9. Based on the availability of c
colours, free behaviour modelGpc1 defines the controllable events setx with x ∈ {1, · · · , c}.
setx sets the colour of the robot to x and starts to broadcast a message informing the
neighbour robots of its decision. Controllable event keep preserves the previous colour
selection. Free behaviour modelGpc2 defines the uncontrollable events getx and getNotx
with x ∈ {1, · · · , c}. getx occurs when at least one message over a time interval of 2 s
has been received stating that a neighbour has chosen the colour x, otherwise getNotx
occurs. Free behaviour model Gpc3 represents a timer that is triggered every 4 s.

140

6.3 Graph colouring case study

q1

Set1, · · · , Setc,
keep

/

q1

get1, · · · , getc
getNot1, · · · , getNotc

(a) Gpc1 (b) Gpc2

q1 q2

startTimer
/

timeout

(c) Gpc3

Figure 6.9: Free behaviour models for the colouring case study. (a) The robot’s ability to
assume one of c colours; (b) the robot’s ability to receive messages informing
it of the colour of nearby robots; (c) robot’s internal timer.

Table 6.2: Summary of events’ definition for the graph colouring case study. In the con-
trollability column controllable events are indicated by C and uncontrollable
events are indicated by U.

event controllability definition
Setx C Selects colour x ∈ {1, · · · , c}.
keep C Preserves the previous selection.
getx U Neighbour has chosen the colour x ∈ {1, · · · , c}.
getNotx U No neighbour has chosen the colour x ∈ {1, · · · , c}.
startT imer C Activates the timer.
timeout U 2 s have elapsed since timer’s activation.

In Table 6.2 the events’ definition is summarised.

Figure 6.10 shows the control specification realising the graph colouring strategy. Spec-
ificationsEpc(1,x) (Figure 6.10(a)), with x ∈ {1, · · · , c}, set a lower probability for selecting
a colour x, if it is known that a neighbour already had selected it—in states q2 and q4.
The specifications also set a lower probability of keeping the current colour (event keep)
if a neighbour has the same colour already selected—in state q4.

Specification Epc2 (Figure 6.10(b)) defines the default probability of a colour being se-
lected.2 Colours have different probabilities, the x-th colour, with x ∈ {1, · · · , c}, has

2Note that during synchronous composition, the probabilities defined in different specifications will get

141

6 Probabilistic supervisory control of swarms of robots

∀ x ∈ {1, · · · , c}, SetY = {Seti : i ∈ {1, · · · , c} ∧ i 6= x}:

q1 q2

q3 q4

SetY ,
keep : 1.0

/ getx

getNotx

Setx : 1.0 —

SetY ,
keep : 1.0

/

getNotx

getx

Setx : 10(−c+x−1)—

getx

getNotx

— SetY

Setx : 1.0,
keep : 1.0

/ getNotx

getx

Setx : 10(−c+x−1),
keep : 10(−c+x−1)

/

—SetY

(a) Epc(1,x)

q1

Set1 : 0.9, · · · , Setc : 9× 10−c

/
q1 q2

timeout

Set1, · · · , Setc, keep
/

(b) Epc2 (c) Epc3

Figure 6.10: Specifications for the colouring case study. (a) The probability of a robot
to assume a colour is reduced if a neighbour had already selected it; (b)
specification of the colours’ priorities; (c) waiting period for colour change.

probability 9 × 10−x of being selected. For example, Set1 has probability 0.9, Set2 has
probability 0.09, Set3 has probability 0.009, and so on.

Specification Epc3 (Figure 6.10(c)) establishes a waiting period for any change of colour
to happen.

multiplied and normalised.

142

6.3 Graph colouring case study

6.3.1 Supervisor synthesis

A monolithic probabilistic supervisor, Sp, using probabilistic generator is obtained by
the synchronous composition of all free behaviour models and specifications into a
single generator [16]. We will illustrate this process using the models for the graph
colouring strategy shown in Figures 6.9 and 6.10. First, all free behaviour models are
composed into a single generator:

Gpc = Gpc1 ||G
pc
2 ||G

pc
3 . (6.13)

All specifications are composed into a single generator:

Epc = Epc(1,1)|| . . . ||E
pc
(1,c)||E

pc
2 ||E

pc
3 . (6.14)

E and G are composed together into a target language:

Kpc = Gpc||Epc. (6.15)

Finally, the monolithic probabilistic supervisor for the graph colouring problem Spc is
the maximal controllable sub-language of Kpc. Spc is a generator for which bad states
and any states from which bad states can be reached through a sequence of uncontrol-
lable events, are removed. A bad state is a state in the supervisor in which an uncon-
trollable event is denied from occurring (according to the specifications) but physically
possible (according to the free behaviour models). The state is referred to as bad, as
the uncontrollable event cannot be disabled by the supervisor. The supervisor is non-
admissible if it contains bad states. The operation that realises the removal of bad states
and also guarantees that all states can be reached (accessible) and can reach a marked
state (co-accessible) is called SupC. Therefore, the monolithic supervisor is given by:

Spc = SupC(Gpc,Kpc). (6.16)

For the modular approach the free behaviour model used, Gmod,pc, is the same of the
monolithic approach (i.e. Gmod,pc = G).

143

6 Probabilistic supervisory control of swarms of robots

Table 6.3: Events used by the specifications and free behaviour models for the graph
colouring case study.

E1 E2 E3

G1
Setx X X X
keep X X

G2
getx X

getNotx X

G3
startT ime
timeout X

local models Gloc,pc1 Gloc,pc2 Gloc,pc3

The target languages for the modular approach, Kmod,pc
x , are:

Kmod,pc
(1,i) = E(1,i)||Gmod,pc : ∀i ∈ {1, · · · , c}

Kmod,pc
2 = E2||Gmod,pc

Kmod,pc
3 = E3||Gmod,pc.

(6.17)

The modular supervisors are:

Smod,pc(1,i) = SupC(Gmod,pc,Kmod,pc
(1,i))∀i ∈ {1, · · · , c}

Smod,pc2 = SupC(Gmod,pc,Kmod,pc
2)

Smod,pc3 = SupC(Gmod,pc,Kmod,pc
3).

(6.18)

A local modular supervisor explores the modularity of the free behaviour models and
the specification to synthesise supervisors that are potentially smaller than the mono-
lithic supervisor in the number of states and transitions [22]. This is done by creating
a local modular supervisor for each specification based on a local free behaviour. The
local free behaviour model of a specification is obtained by composing only the free
behaviour models that contain the events used in the specification. Table 6.3 shows
the relation of events for each specification for the graph colouring case study. The lo-
cal free behaviour models, Gloc,pcx , and the generators that realise the target language,
K loc,pc
x , are:

Gloc,pc1 = G1||G2

Gloc,pc2 = G1

Gloc,pc3 = G1||G3

K loc,pc
(1,i) = E(1,i)||G

loc,pc
1 : ∀i ∈ {1, · · · , c}

K loc,pc
2 = E2||Gloc,pc2

K loc,pc
3 = E3||Gloc,pc3 .

(6.19)

144

6.4 Implementation

q0 q1 q2

a: 1.0
/x

a: 0.4
/

b: 0.6
/

y

b : 0.5
/

c: 0.5
/

(a)

2

0

a

1

1

2 3

x

4

1

5 6

3

7

a

8

1

9 10

b

11

0

12 13

y

14

2

15 16

2

17

b

18

1

19 20

c

21

2

22 23

State q0

δ(0, a)→ 1

State q1

δ(0, x)→ 1

State q2

δ(2, b)→ 1δ(2, c)→ 2δ(1, a)→ 1δ(1, b)→ 0δ(1, y)→ 2

number of
transitions

number of
transitions

number of
transitions

(b)

1

0

1.0

1 2

2

3

0.4

4 5

0.6

6 7

2

8

0.5

9 10

0.5

11 12

State q0 State q1 State q2

p(0, a) p(1, a) p(1, b) p(2, b) p(2, c)

number of
probabilities

number of
probabilities

number of
probabilities

(c)

Figure 6.11: The memory representation of a probabilistic generator. (a) The probabilis-
tic generator; (b) the partial transition function representation [1]. The first
element of each state represents the number of outgoing transitions. It is
followed by blocks of three elements, which detail the event that triggers
the transition and the resulting state. (c) Representations of the probabili-
ties of controllable transitions.

The local modular supervisors are:

Sloc,pc(1,i) = SupC(Gloc,pc1 ,K loc,pc
(1,i))∀i ∈ {1, · · · , c}

Sloc,pc2 = SupC(Gloc,pc2 ,K loc,pc
2)

Sloc,pc3 = SupC(Gloc,pc3 ,K loc,pc
3).

(6.20)

145

6 Probabilistic supervisory control of swarms of robots

6.4 Implementation

The use of probabilistic deterministic finite generators under the pSCT framework re-
quires two changes in the implementation, previously presented in [56]. First, the mem-
ory representation must include the probabilities of each controllable transition. Sec-
ond, the choice between enabled controllable events must take into account the proba-
bility of each related transition in the current state.

6.4.1 Memory representation

Consider the probabilistic supervisor shown in Figure 6.11(a). Figures 6.11(b–c) illus-
trate the data structure that stores the supervisor in memory. In Figure 6.11(b) the rep-
resentation of the partial transition function, δ, is shown [1]. Each state is represented
by a block of this data structure. Each block describes all output transitions from that
state. The first byte of each block is the amount of output transitions (o). It is followed
by o sets of 3 bytes, where each set represents a transition. The first byte of each set rep-
resents the event. The other two bytes determine the target state. This data structure is
limited to 256 events, 216 states and 255 output transitions per state. As uncontrollable
events do not have an associated probability the probabilities of all controllable events
are stored in a separate data structure (see Figure 6.11(c)). Each state is represented by
a block of this data structure. Each block describes the probabilities of output transi-
tions triggered by controllable events from that state. The first byte of each block is the
amount of output of controllable transitions (oc). It is followed by oc sets of 2 bytes,
where each set represents a transition’s probability. The event of each set can be in-
ferred from the partial transition function (δ) representation as each set is stored in the
same order (see Figure 6.11(b)).

6.4.2 Probabilistic generator player

The probabilistic generator player (pGP) executes the generators realising the supervi-
sors. We modify the traditional generator player presented in [56] to incorporate the
calculation of the probabilities of multiple local modular supervisors. Probabilities of
local modular supervisors are computed at run-time for the specific current state. The
joint probability is calculated as defined in Equation 6.8 and it is normalised as defined

146

6.5 Experiments

in Equation 6.5. The monolithic supervisor can be normalised at the time it is being syn-
thesised (prior to run-time). However, the normalisation for local modular supervisor
can only occur after all synchronisation operations are performed, as, in general:

Norm(Spc) = Norm(Sloc,pc1 || · · · ||Sloc,pci) 6= Norm(Sloc,pc1)|| · · · ||Norm(Sloc,pci). (6.21)

For that reason, the probabilistic generator player needs to incorporate the calculation
of the normalised probabilities.

6.5 Experiments

Experiments are performed to validate the implementation of our pSCT model. In par-
ticular, they test whether the modelled specifications match with the synthesised con-
trol logic, as observed during the trials. Video recordings from all experimental trials
and additional resources (models and the used source code) can be found in the elec-
tronic supplementary material.

The experiments took place on a two-dimensional glass-floored arena. We performed
two sets of experiments. The first set is composed by trials using 25 Kilobot robots,
distributed on a 5 × 5 grid. Twelve trials were performed, each lasting 25 minutes. To
test the scalability of the approach we performed a second set of experiments using 100
Kilobot robots, distributed on a 10 × 10 grid. Two trials were performed, each lasting
45 minutes.

Robots are positioned on the grid in such way that their communication range only
reaches other robots in the next or previous vertical and horizontal positions (so called
Manhattan neighbourhood) but not in the diagonal. Therefore, robots in the middle of
the grid have four neighbours, the four corner robots only have two neighbours, and
the remaining robots in the border of the grid have three neighbours. The optimum
solution for this case requires the use of two different colours and forms a checkered
pattern. Robots are initially programmed with a code to assist the positioning process.
The program changes the colour of the RGB led according to the number of neighbours
a robot has.

147

6 Probabilistic supervisory control of swarms of robots

(a) (b) (c) (d) (e) (f)

Figure 6.12: A sequence of snapshots of one of the 12 trials where 25 Kilobots performed
the distributed graph colouring algorithm: Photos (a-f) show the experi-
ment after 0 s, 300 s, 600 s, 900 s, 1200 s, and 1500 s.

We synthesised the supervisor using c = 4 (number of available colours), which re-
sulted in a monolithic supervisor comprised of 240 states and 2480 transitions. By
contrast, for the local modular approach, all supervisors collectively comprise only 20
states and 220 transitions. The use of the local modular approach corresponds to a re-
duction by 91.7 % and 91.1 % in states and transitions, respectively, compared to the
monolithic approach. Table 6.4 details the results for all cases.

Table 6.4: Total number of states and transitions for each case study when using mono-
lithic, modular, and local modular synthesis approaches, respectively. Data
corresponds to the target language K and supervisor S using c = 4. The best
results are highlighted in bold.

Monolithic Modular Local modular
K S K S K S

graph states 320 240 38 37 21 20
colouring transitions 3600 2480 521 507 226 220

Figure 6.12 shows snapshots taken from one of the experimental trials with 25 robots3.

Figure 6.13 shows snapshots taken from one of the experimental trials with 100 robots.

To evaluate the performance of the controller we measured the proportion of robots
using up to 2 colours, ϕcolours:2, which is known to be the optimal configuration for
the experimental setup. We also measured the proportion of the connections among
neighbours with different colours, ϕconnections.

The proportion of robots using up to 2 colours for the 25 robots trials is shown in Figure
6.14(a) and the proportion of connections among neighbours with different colours is
shown in Figure 6.14(b).

3Environment lights were kept off to facilitate the recording of the experiment.

148

6.5 Experiments

(a) (b)

(c) (d)

Figure 6.13: A sequence of snapshots of one of the two trials where 100 Kilobots per-
formed the distributed graph colouring algorithm: Photos (a-d) show the
experiment after 0 s, 900 s, 1800 s, and 2700 s.

time, t (s)

p
ro
p
or
ti
on

o
f
ro
b
ot
s

u
si
n
g
u
p
to

tw
o
co
lo
u
rs

0
0.
5

1

0 500 1000 1500
time, t (s)

p
ro

p
or

ti
on

o
f

co
n

n
ec

ti
o
n

s

w
it

h
d

iff
er

en
t

co
lo

u
rs

0
0.

5
1

0 500 1000 1500

(a) (b)

Figure 6.14: (a) The proportion of robots using up to 2 colours and (b) the proportion of
the connections among neighbours with different colours in the 25 robots
trials. Each coloured line represents one experimental trial. The thick black
dashed line indicates the mean.

The proportion of robots using up to 2 colours for the 100 robots trials is shown in Fig-
ure 6.15(a) and the proportion of connections among neighbours with different colours
is shown in Figure 6.15(b).

149

6 Probabilistic supervisory control of swarms of robots

time, t (s)

p
ro
p
o
rt
io
n
of

ro
b
o
ts

u
si
n
g
u
p
to

tw
o
co
lo
u
rs

0
0
.5

1

0 900 1800 2700
time, t (s)

p
ro

p
o
rt

io
n

of
co

n
n

ec
ti

on
s

w
it

h
d

iff
er

en
t

co
lo

u
rs

0
0
.5

1

0 900 1800 2700

(a) (b)

Figure 6.15: (a) The proportion of robots using up to 2 colours and (b) the proportion of
the connections among neighbours with different colours in the 100 robots
trials.

Ideally, the robot’s communication range would allow it to form connections only with
their immediate neighbour on the vertical or horizontal line. However, due to noise
affecting the infrared communication among robots, additional connections were occa-
sionally formed or broken. In the last minute of the 25 robots trials, we obtained an
averaged success rate of 87% regarding ϕconnections and 93% regarding ϕcolours:2. The
first minute of execution, just after the initial setup, presented an averaged success rate
of 68% regarding ϕconnections and 52% regarding ϕcolours:2. For the 100 robots trials,
we obtained an averaged success rate of 95% regarding ϕconnections and 87% regard-
ing ϕcolours:2 by the last minute of the trials. The success rate in the first minute of the
100 robots trials was 87% regarding ϕconnections and 67% regarding ϕcolours:2. The re-
sults suggest that the strategy reaches solutions that optimises both measured metrics
simultaneously. The strategy succeeds in rapidly converging towards these solutions,
though a small percentage of errors remain.

6.6 Segregation and group formation cases

In Sections 3.1.2 and 3.1.5 the segregation and group formation case studies were pre-
sented. Both cases were modelled using non-probabilistic generators. In these strate-
gies, it was desired that the robots perform a random walk where they are moving
forward (event moveFW) for more time than turning clockwise (event turnCW) or
counter-clockwise (event turnCCW). The solution using the traditional SCT was to de-
fine such behaviour in the operational procedures, as shown in Table 6.5(a).

150

6.7 Summary

Table 6.5: Operational procedures reduction by the use of pSCT for the Kilobot platform
for the segregation and group formation case studies.

i n t moveTimeout ;
void callback moveFW (void∗ data){

moveTimeout = 2 0 ;
setMove (MOVE FW) ;

}
void callback turnCW (void∗ data){

moveTimeout = 1 0 ;
setMove (TURN CW) ;

}
void callback turnCCW (void∗ data){

moveTimeout = 1 0 ;
setMove (TURN CCW) ;

}

void callback moveFW (void∗ data){
setMoveFor10Sec (MOVE FW) ;

}
void callback turnCW (void∗ data){

setMoveFor10Sec (TURN CW) ;
}
void callback turnCCW (void∗ data){

setMoveFor10Sec (TURN CCW) ;
}

(a) (b)

q1

moveFW: 0.6,
turnCW: 0.2, turnCCW: 0.2

/

Figure 6.16: Specification defining a higher likelihood for the forward movement than
for turning for the segregation and group formation case studies.

The probabilistic supervisory control theory approach enables us to define (and docu-
ment) at the formal specification level the information that the forward movement is
more prominent than turning clockwise or turning counter-clockwise (see Figure 6.16).
This also leads to a simpler implementation of the operational procedures, as shown in
Table 6.5(b).

6.7 Summary

In this chapter, we proposed pSCT, a probabilistic supervisory control theory (pSCT)
framework. The framework uses a form of probabilistic generators to model prob-
abilistic processes and, thereby, prevent livelocks or indefinitely repetitive behaviour.
Furthermore, through decomposition into local modular supervisors, the automatically
generated controller code is smaller than that for a monolithic supervisor and is thus
more likely to be applied successfully to a swarm robotic system.

151

6 Probabilistic supervisory control of swarms of robots

To illustrate the advantages of the proposed framework, we presented a case study
where the robots distributively and locally searched for a solution to the graph colour-
ing problem using a strategy modelled with pSCT. The local modular supervisors were
collectively 91 % smaller than the monolithic supervisor, both regarding the total num-
ber of states and state transitions. The generated code was deployed on physical swarms
of 25 and 100 Kilobots, and systematic experiments were conducted. The results demon-
strate that probabilistic solutions can be modelled successfully with pSCT. Future work
could explore the use of pSCT in a variety of scenarios, for example, for controlling
large groups of animals [152].

152

7
Conclusion

This thesis explored the use of supervisory control theory (SCT) [15, 16, 17] to synthe-
sise, in a formal manner, controllers for swarm robotics systems. It presented a frame-
work that facilitates the development process from specification to implementation.
The developers would define what the robots of the swarm could do (capabilities) and
what they should do (specifications). In particular, they would provide, via a graph-
ical user interface, formal languages, which model the capabilities and specifications.
By combining the languages, SCT would then synthesise a new language, called su-
pervisor, which controls each robot of the swarm. In particular, the supervisor would
restrict a robot’s set of possible actions to those that would not cause a violation of the
specifications.

In this thesis, we used a type of state machines called generators to realise formal lan-
guages. Generators represent the class of regular languages. Generators differ from
finite state automata in two aspects: (1) finite state automata recognise if a given word
is part of the language, whereas generators produce these words; (2) finite state au-
tomata have a total transition function, whereas generators have a partial transition
function. Note that SCT could be used with other classes of languages or be realised
by other techniques as well. We opted for generators because state machines are com-
monly used to represent controllers of swarm robotics systems. However, most of these
controllers have been implemented through ad-hoc development. The use of regular
languages realised by generators in SCT is expected to enable a smooth transition from
this ad-hoc development to more formal controller synthesis approaches. This, in turn,
would facilitate the development of more reliable control software for swarm robotic
systems, paving the way for such systems to be considered in real-world applications.

One advantage of the SCT framework is automatic code generation. In other words,
both the control logic (represented by the supervisors) and source code (for the im-
plementation of the control logic) can be automatically derived from the capabilities

153

7 Conclusion

and specifications provided by the developer. We demonstrated this for two robotic
platforms and swarms of up to 600 physical robots. We also showed that the same su-
pervisor could be executed on multiple platforms, as long as they offered the required
capabilities.

This thesis builds on the works [20, 19, 22], in which a control structure and the local
modular approach are introduced. The supervisory control theory was successfully
applied considering three different aspects: deterministic discrete control over local
events (Chapters 3 and 4), deterministic discrete control over global events (Chapter 5),
and probabilistic discrete control over local events (Chapter 6).

In Chapter 3, we presented how to model the capabilities and specifications of a given
system using five case studies. Three case studies found in literature and two novel
strategies are used to didactically present how swarm robotics behaviours can be mod-
elled using regular languages. Three methods for the supervisor synthesis are pre-
sented: monolithic, modular, and local modular.

In Chapter 4, the implementation of the supervisors obtained on Chapter 3 were dis-
cussed. We developed a software tool capable of automatically producing source code
from the supervisors for two different swarm robotics platforms: Kilobot [38] and e-
puck [37]. We validated our approach by conducting systematic experiments with up
to 600 physical robots.

In Chapter 5, we showed how events occurring in different robots can be shared within
the swarm. Robots in a swarm can be seen as isolated systems; work in a manufacturing
context has shown how different systems can interact through the SCT framework.
However, such systems operate in a hierarchical manner not compatible with swarm
robotics principles. The proposed concept of global events allows such interactions
without the need of a higher hierarchical level centralised controller, making it suitable
for swarm robotics applications.

In Chapter 6, probabilistic generators were applied in the context of swarm robotics. It
was shown that probabilistic generators within the probabilistic SCT (pSCT) framework
offer an elegant solution to the choice problem. In fact, probabilistic generators can
be seen as a super class of generators. We showed how the likelihood of controllable
events can be formally defined and how this concept can be applied to specify and
implement a swarm strategy.

154

7.1 Future work

Formal methods will contribute to making swarm robotics systems more reliable and
may push their introduction in real-world applications, assisting humans in their day to
day activities and helping people to improve the world around us. Future work could
build upon this thesis by using other representations for formal languages, validating
semantic properties, distributing the controller, and exploring multi-level hierarchical
control.

7.1 Future work

The work in this thesis can be seen as an attempt to establish the use of formal meth-
ods as standard practice in swarm robotics. Several questions remain unanswered at
present: Will discrete event systems be sufficient for many real-world scenarios? How
can macroscopic level models be used within the SCT? Will the proposed approach be
suitable for more complex scenarios? What other extensions can be added to the SCT
framework, and how they can meet swarm robotics needs? How can we tackle the
need of ad-hoc code in the definition of operational procedures? How can automatic
design techniques make use of the automatic code generation framework presented in
this thesis? Future studies are therefore recommended.

7.1.1 Other representations for languages

State machines, such as generators, are a resource used by the swarm robotics com-
munity. This makes the use of generators a promising approach to advance the use of
formal methods in the swarm robotics community. However, many other approaches
exist and could be adequate for some applications.

Formal languages can be realised by Petri-nets. One advantage of Petri-nets is the pos-
sibility to represent some models in a more compact way when compared to generators.
For example Figure 7.1(a) represents a generator that specifies the avoidance of over-
flow and underflow of a buffer of size 5. Figure 7.1(b) shows the same specification
using a Petri-net. The event a is related to adding an item to the buffer and the event
r is related to removing an item from the buffer. Both formal machines represent the
same regular language, but Petri-nets enable a more compact representation.

155

7 Conclusion

q0 q1 q2 q3 q4 q5

a a

r

a

r

a

r

a

r r

q0

q1

a

r

(a) (b)

Figure 7.1: Buffer specification to avoid underflow and overflow with a generator (a)
and a Petri-net (b). Both formal machines represent the same regular lan-
guage, but the Petri-net enables a more compact representation.

Petri-nets can be bounded or unbounded. In a bounded Petri-net all its places have
up to a limited number of tokens. Bounded Petri-nets express the class of regular lan-
guages, as they can be converted to deterministic finite automata [119]. According to
[119], bounded Petri-nets can be used within the SCT framework. In an unbounded
Petri-net places may have an unlimited number of tokens. The computational power
of unbounded Petri-nets is bigger than that of generators but strictly weaker than that
of Turing machines [153]. Unbounded Petri-nets can have an infinite number of states.

The investigation of the properties in more powerful languages class, such as context-
free languages (realised by push-down automata) or the languages realised by un-
bounded Petri-nets, could be of interest in many applications too. Future work could
investigate how powerful language classes could model and control more complex
swarm robotic systems.

7.1.2 Formal verification

This thesis was concerned with the validation of safety and non-blocking properties,
which are system-theoretic or control-theoretic properties and are related only to the
structure of the supervisor. According to [119], those properties include controllability,
no conflict, no blocking and observability. In future works, techniques such as model
checking could be applied to verify properties, defined by temporal logic specifications,
of swarm robotics systems that use the SCT framework as presented in this thesis.

156

7.1 Future work

7.1.3 Transparent distribution of the controller

One issue to be overcome in swarm robotics is the limited computational resources on
a single robot. To be able to implement large control algorithms, the controller could
be distributed among the swarm, which provides more resources than a single robot.
However, the distribution of the control comes at the cost of extra complexity in the con-
trol design. The open question is how the SCT could assist by providing a transparent
distribution of control using formal methods as an alternative to the ad-hoc develop-
ment of distributed control in swarm robotics. This would result in a more reliable
controller that can be transparently distributed without additional design complexity.

A possible solution is to take advantage of the modularity of two of the three synthesis
methods applied in this thesis: the modular approach and the local modular approach.
The proposed idea consists of distributing m local modular supervisors over a set of
robots that can collaboratively calculate the next state and enable controllable events
of each other. In the distributed approach, the group of m modular or local modular
supervisors Z = {Si | ∀i ∈ [1, 2, · · · ,m]} can be distributed over the group of r robots
R = {Rj | ∀j ∈ [1, 2, · · · , r]}. Robot Rj would store Zj ⊆ Z in such a way that each
local modular supervisor would be stored in at least one robot, that is Z =

⋃r
j=1 Zj .

Thus, each robot Rj would keep a vector of its current state, V c
j , for each supervisor in

Z. The robot would perform a request to the others in two situations: (1) to determine
the available controllable events for its current state vector, V c

l , and (2) to determine its
next state for each supervisor when an event e occurs.

7.1.4 Multi-level hierarchical control

In the manufacturing context, the supervisory control theory has been applied from the
coordination control of several devices to higher-level production planning systems.
The lower level control of such devices is usually not approached by the SCT. The SCT
acts by commanding the start of operations in the manufacturing plant—for example;
a robot must load a milling cutter machine with a part that is located in a conveyor—
without being concerned with how this is done.

In this thesis, on the other hand, we investigated how SCT can be used to synthesise
these lower level controllers in the context of swarm robotics. We presented several
cases that consist of a single behaviour dealing directly and in real time with sensors

157

7 Conclusion

and actuators of the robots. Each of these single behaviours can be seen as modules,
which are analogous to machine operations in a manufacturing cell. SCT could be
applied for the hierarchical controller to coordinate the activation of single behaviours
in each robot of a swarm. The coordinator will be implemented in each robot’s control
structure without any centralised controller.

158

References

[1] Y. K. Lopes, A. B. Leal, R. S. U. Rosso, and E. Harbs, “Local modular supervisory
implementation in microcontroller,” in Proceedings of the 9th International Confer-
ence of Modeling, Optimization and Simulation (MOSIM 2012), 2012.

[2] J. Bishop, “Stochastic searching networks,” in Proceedings of 1st IEE Conference
Artificial Neural Networks, 1989, pp. 329–331.

[3] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative learning
approach to the traveling salesman problem,” Transactions on Evolutionary Com-
putation, vol. 1, no. 1, pp. 53–66, 1997.

[4] M. Dorigo and G. Di Caro, “New ideas in optimization,” D. Corne, M. Dorigo,
F. Glover, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price, Eds. Maidenhead,
UK, England: McGraw-Hill Ltd., UK, 1999, ch. The Ant Colony Optimization
Meta-heuristic, pp. 11–32.

[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE
International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.

[6] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Swarm intelligence: From natural to
artificial systems,” Oxford University Press, 1999.

[7] M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi,
J.-L. Deneubourg, F. Mondada, D. Floreano, and L. M. Gambardella, “Evolving
self-organizing behaviors for a swarm-bot,” Autonomous Robots, vol. 17, no. 23,
pp. 223–245, 2004.

[8] G. Beni, “From Swarm Intelligence to Swarm Robotics,” in Swarm Robotics, 2005,
pp. 1–9.

[9] E. Şahin, “Swarm robotics: From sources of inspiration to domains of applica-
tion,” in Swarm Robotics, ser. Lecture Notes in Computer Science, E. Şahin and
W. M. Spears, Eds., vol. 3342. Springer, 2005, pp. 10–20.

[10] E. Şahin and A. Winfield, “Special issue on swarm robotics,” Swarm Intelligence,
vol. 2, no. 2, pp. 69–72, 2008.

159

References

[11] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a review
from the swarm engineering perspective,” Swarm Intelligence, vol. 7, no. 1, pp. 1–
41, 2013.

[12] W. Li, A. Miyazawa, P. Ribeiro, A. Cavalcanti, J. Woodcock, and J. Timmis, “From
formalised state machines to implementations of robotic controllers,” in Proc. of
the 2016 Int. Symposium on Distributed Autonomous Robotic Systems (DARS 2016),
2016.

[13] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future direc-
tions,” ACM Computing Surveys, no. 4, pp. 626–643, 1996.

[14] S. C. Reghizzi, Formal Languages and Compilation, ser. Texts in Computer Science.
Dordrecht: Springer, 2009.

[15] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete event
process,” SIAM J. Control and Optimization, vol. 25, no. 1, pp. 206–230, 1987.

[16] W. Wonham and P. Ramadge, “Modular supervisory control of discrete event
system,” Mathematics of control, signals and systems, vol. 1, no. 1, pp. 13–30, 1988.

[17] P. Ramadge and W. Wonham, “The control of discrete event systems,” Proceedings
of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[18] M. Fabian and A. Hellgren, “PLC-based implementation of supervisory control
for discrete event systems,” in 1998 IEEE 37th Conference on Decision and Control,
vol. 3. Piscataway, NJ: IEEE, 1998, pp. 3305–3310.

[19] M. Queiroz and J. Cury, “Modular supervisory control of large scale discrete
event systems,” in Proceedings of International Workshop on Discrete Event Systems
(WODES). Berlin, Germany: Springer, 2000, pp. 103–110.

[20] ——, “Modular control of composed systems,” in Proceedings of the 2000 American
Control Conference. Piscataway, NJ: IEEE, 2000, pp. 4051–4055.

[21] J. Liu and H. Darabi, “Ladder logic implementation of Ramadge-Wonham su-
pervisory controller,” in 2002 IEEE 6th International Workshop on Discrete Event
Systems. Piscataway, NJ: IEEE, 2002, pp. 383–389.

160

References

[22] M. Queiroz and J. Cury, “Synthesis and implementation of local modular supervi-
sory control for a manufacturing cell,” in Proceedings of 6th International Workshop
on Discrete Event Systems (WODES). Piscataway, NJ: IEEE, 2002, pp. 103–110.

[23] R. D. Barreta and C. R. Torrico, “Máquinas de mealy e moore para implementação
de controle supervisório de sistemas a eventos discretos em microcontroladores,”
Anais do XVII Congresso Brasileiro de Automática - CBA2008. (In Portuguese), 2008.

[24] A. B. Leal, D. L. L. Cruz, and M. S. Hounsell, “Supervisory control implemen-
tation into programmable logic controllers,” 14th IEEE International Conference on
Emerging Technologies and Factory Automation - ETFA, 2009.

[25] Y. Silva and M. Queiroz, “Formal synthesis, simulation and automatic code gen-
eration of supervisory control for a manufacturing cell,” ABCM Symposium Series
in Mechatronics - Vol. 4, pp. 418–426, 2010.

[26] A. B. Leal, D. L. L. Cruz, and M. S. Hounsell, “PLC-based implementation of
local modular supervisory control for manufacturing systems,” in Manufacturing
System, F. A. Aziz, Ed. Rijeka, Croatia: InTech, 2012, pp. 159–182.

[27] L. P. Pinheiro, Y. K. Lopes, A. B. Leal, and R. S. U. Rosso, “Nadzoru: A software
tool for supervisory control of discrete event systems,” in Proc. of the 5th Interna-
tional Workshop on Dependable Control of Discrete Systems (DCDS), vol. 5, 2015.

[28] C. Perrard and N. Andreff, “Control of a team of micro-robots for non-invasive
medical applications,” in 6th National Conference on Control Architectures of Robots.
Grenoble, France: INRIA Grenoble Rhône-Alpes, May 2011.

[29] S. Nolfi, G. Baldassarre, and D. Marocco, “The importance of viewing cognition
as the result of emergent processes occurring at different time scales,” in Proceed-
ings of the Third International Symposium on Human and Artificial Intelligent Systems -
Dynamic Systems Approach for Embodiment and Sociality, T. Asakura and K. Murase,
Eds. Fukui, Japan: Fukui University, 2002, pp. 63–76.

[30] O. S. Erkin Bahceci and E. Sahin, “A review: Pattern formation and adaptation in
multi-robot systems,” Carnegie Mellon University, Tech. Rep. CMU-RI-TR-03-43,
October 2003.

161

References

[31] A. Tsalatsanis, A. Yalcin, and K. Valavanis, “Optimized task allocation in coop-
erative robot teams,” in Proccedings of the 17th Mediterranean Conference on Control
and Automation (MED’09). Piscataway, NJ: IEEE, 2009, pp. 270–275.

[32] A. Tsalatsanis, A. Yalcin, and K. P. Valavanis, “Dynamic task allocation in coop-
erative robot teams,” Robotica, vol. 30, no. 5, pp. 721–730, 2012.

[33] R. Groß and M. Dorigo, “Group transport of an object to a target that only some
group members may sense,” in Parallel Problem Solving from Nature – 8th Interna-
tional Conference (PPSN VIII), ser. Lecture Notes in Computer Science, vol. 3242.
Springer Verlag, Berlin, Germany, 2004, pp. 852–861.

[34] J. Chen, M. Gauci, W. Li, A. Kolling, and R. Groß, “Occlusion-based cooperative
transport with a swarm of miniature mobile robots,” IEEE Transactions on Robotics,
vol. 31, no. 2, pp. 307–321, 2015.

[35] M. Dorigo, E. Tuci, V. Trianni, R. Groß, S. Nouyan, C. Ampatzis, T. H. Labella,
R. O’Grady, M. Bonani, and F. Mondada, “SWARM-BOT: Design and implemen-
tation of colonies of self-assembling robots,” in Computational Intelligence: Princi-
ples and Practice, G. Y. Yen and D. B. Fogel, Eds. IEEE Computational Intelligence
Society, NY, 2006, pp. 103–135.

[36] J. C. Knight, C. L. DeJong, M. S. Gibble, and L. G. Nakano, “Why are formal meth-
ods not used more widely?” in Fourth NASA Formal Methods workshop. NASA,
1997, pp. 1–12.

[37] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-puck, a robot designed for
education in engineering,” in Proceedings of the 9th Conference on Autonomous Robot
Systems and Competitions, vol. 1, no. 1, 2009, pp. 59–65.

[38] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable robot sys-
tem for collective behaviors.” in Proccedings of ICRA 2012. Piscataway, NJ: IEEE,
2012, pp. 3293–3298.

[39] V. Pantelic, S. M. Postma, and M. Lawford, “Probabilistic supervisory control
of probabilistic discrete event systems,” IEEE Transactions on Automatic Control,
vol. 54, no. 8, pp. 2013–2018, 2009.

162

References

[40] V. Pantelic, M. Lawford, and S. Postma, “A framework for supervisory control of
probabilistic discrete event systems,” IFAC Proceedings Volumes, vol. 47, no. 2, pp.
477–484, 2014.

[41] A. J. C. Sharkey, “The application of swarm intelligence to collective robots,” in
Advances in Applied Artificial Intelligence, J. Fulcher, Ed. Idea Group Publishing,
2006, pp. 157–185.

[42] Y. Mohan and S. Ponnambalam, “An extensive review of research in swarm
robotics,” Nature & Biologically Inspired Computing, pp. 140–145, 2009.

[43] Y. Liu and K. M. Passino, “Swarm Intelligence: Literature overview,” 2000.

[44] L. Bayindir and E. Sahin, “A review of studies in swarm robotics,” Turkish Journal
of Electrical Engineering, vol. 15, no. 2, 2007.

[45] J. C. Barca and Y. A. Sekercioglu, “Swarm robotics reviewed,” Robotica, vol. 31,
no. 3, pp. 345–359, 2013.

[46] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st ed. Cam-
bridge, MA, USA: MIT Press, 1998.

[47] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology,Intelligence,and Technol-
ogy. Cambridge, MA, USA: MIT Press, 2000.

[48] M. L. Minsky, Computation: Finite and Infinite Machines. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1967.

[49] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, “Clustering objects with robots
that do not compute,” in Proceedings of the 2014 International Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS ’14). Richland, SC: IFAAMS,
2014, pp. 421–428.

[50] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari, “Automode:
A novel approach to the automatic design of control software for robot swarms,”
Swarm Intelligence, vol. 8, no. 2, pp. 89–112, 2014.

[51] F. Bergenti and A. Poggi, “Exploiting uml in the design of multi-agent sys-
tems,” in Engineering Societies in the Agents World: First International Workshop,
A. Omicini, R. Tolksdorf, and F. Zambonelli, Eds., 2000, pp. 106–113.

163

References

[52] M. Gauci, J. Chen, T. J. Dodd, and R. Groß, “Evolving aggregation behaviors
in multi-robot systems with binary sensors,” in Proc. of the 2012 Int. Symposium
on Distributed Autonomous Robotic Systems (DARS 2012), ser. Springer Tracts in
Advanced Robotics, vol. 104. Springer-Verlag, Berlin, Germany, 2014, pp. 355–
367.

[53] M. Gauci, , J. Chen, W. Li, T. J. Dodd, and R. Groß, “Self-organised aggregation
without computation,” The International Journal of Robotics Research, vol. 33, no. 9,
pp. 1145–1161, 2014.

[54] J. D. Bjerknes and A. F. T. Winfield, “On fault tolerance and scalability of swarm
robotic systems,” in Proc. of the 2013 Int. Symposium on Distributed Autonomous
Robotic Systems (DARS 2013), A. Martinoli, F. Mondada, N. Correll, G. Mermoud,
M. Egerstedt, A. M. Hsieh, E. L. Parker, and K. Støy, Eds., 2013, pp. 431–444.

[55] Y. K. Lopes, A. B. Leal, T. J. Dodd, and R. Groß, “Application of supervisory con-
trol theory to swarms of e-puck and kilobot robots,” in Swarm Intelligence, ANTS
2014, ser. LNCS, M. Dorigo, et al., Ed., vol. 8667. Berlin, Germany: Springer,
2014, pp. 62–73.

[56] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and R. Groß, “Supervisory
control theory applied to swarm robotics,” Swarm Intelligence, vol. 10, no. 1, pp.
65–97, 2016.

[57] O. Soysal, “Probabilistic aggregation strategies in swarm robotic systems,” in in
Proc. of the IEEE Swarm Intelligence Symposium, 2005, pp. 325–332.

[58] S. Nouyan, A. Campo, and M. Dorigo, “Path formation in a robot swarm,” Swarm
Intelligence, vol. 2, no. 1, pp. 1–23, 2008.

[59] T. H. Labella, M. Dorigo, and U. L. D. Bruxelles, “Division of labor in a group of
robots inspired by ants foraging behavior,” ACM Transactions on Autonomous and
Adaptive Systems, pp. 4–25, 2006.

[60] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”
Int. J. Rob. Res., vol. 5, no. 1, pp. 90–98, 1986.

[61] J. H. Reif and H. Wang, “Social potential fields: A distributed behavioral control
for autonomous robots.” Robotics and Autonomous Systems, vol. 27, no. 3, pp. 171–
194, 1999.

164

References

[62] K. Hosokawa, I. Shimoyama, and H. Miura, “Dynamics of self-assembling sys-
tems: Analogy with chemical kinetics,” Artificial Life, vol. 1, no. 4, pp. 413–427,
1994.

[63] A. Martinoli, A. J. Ispeert, and L. Gambardella, “A probabilistic model for un-
derstanding and comparing collective aggregation mechanisms,” in Advances in
Artificial Life (ECAL 99), ser. Lecture Notes in Artificial Intelligence 1674, D. Flo-
reano, J.-D. Nicoud, and F. Mondada, Eds. Springer-Verlag, 1999, pp. 575–584.

[64] K. Lerman, A. Galstyan, A. Martinoli, and A. Ijspeert, “A macroscopic analyti-
cal model of collaboration in distributed robotic systems,” Artificial Life Journal,
vol. 7, no. 4, pp. 375–393, 2001.

[65] A. Martinoli, K. Easton, and W. Agassounon, “Modeling swarm robotic systems:
A case study in collaborative distributed manipulation,” The International Journal
of Robotics Research, vol. 23, no. 4-5, pp. 415–436, 2004.

[66] K. Lerman and A. Galstyan, “Mathematical model of foraging in a group of
robots: Effect of interference,” Auton. Robots, vol. 13, no. 2, pp. 127–141, 2002.

[67] V. Trianni, T. Labella, R. Groß, E. Şahin, M. Dorigo, and J. Deneubourg, “Mod-
eling pattern formation in a swarm of self-assembling robots,” Techinical Report
TR/IRIDIA/2002-12, 2002.

[68] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile robotics: An-
tecedents and directions,” Autonomous Robots, vol. 4, pp. 226–234, 1997.

[69] L. Iocchi, D. Nardi, and M. Salerno, “Reactivity and deliberation: A survey on
multi-robot systems,” in Balancing Reactivity and Social Deliberation in Multi-Agent
Systems, From RoboCup to Real-World Applications (selected papers from the ECAI
2000 Workshop and additional contributions). London, UK, UK: Springer-Verlag,
2001, pp. 9–34.

[70] L. E. Parker, “Designing control laws for cooperative agent teams,” in In IEEE
International Conference on Robotics and Automation, 1993, pp. 582–587.

[71] J. Rushby, “Formal methods and digital systems validation for airborne systems,”
SRI International, Melon Park, CA, Tech. Rep., 1993.

165

References

[72] M. Massink, M. Brambilla, D. Latella, M. Dorigo, and M. Birattari, “On the use of
bio-pepa for modelling and analysing collective behaviours in swarm robotics,”
Swarm Intelligence, vol. 7, no. 2–3, pp. 201–228, 2013.

[73] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and switching
networks,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 863–868,
2007.

[74] A. Franci, V. Srivastava, and N. Ehrich Leonard, “A realization theory for bio-
inspired collective decision-making,” ArXiv e-prints, 2015.

[75] M. Brambilla, C. Pinciroli, M. Birattari, and M. Dorigo, “Property-driven de-
sign for swarm robotics,” in Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems - Volume 1, 2012, pp. 139–146.

[76] M. Brambilla, A. Brutschy, M. Dorigo, and M. Birattari, “Property-driven design
for swarm robotics: A design method based on prescriptive modeling and model
checking,” ACM Transaction on Autonomous and Adaptive Systems, vol. 9, no. 4, pp.
17:1–17:28, 2015.

[77] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G. Podevijn,
A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, V. Trianni, and M. Birattari, “An
experiment in automatic design of robot swarms: Automode-vanilla, evostick,
and human experts,” in Swarm Intelligence, ANTS 2014, ser. LNCS, M. Dorigo, et
al., Ed., vol. 8667. Berlin, Germany: Springer, 2014, pp. 25–37.

[78] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G. Podevijn,
A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F. Mascia, V. Trianni, and M. Bi-
rattari, “Automode-Chocolate: automatic design of control software for robot
swarms,” Swarm Intelligence, vol. 9, no. 2–3, pp. 125–152, 2015.

[79] G. Francesca and M. Birattari, “Automatic design of robot swarms: Achievements
and challenges,” Frontiers in Robotics and AI, vol. 3, pp. 1–9, 2016.

[80] Y. Khaluf, M. Pace, F. Rammig, and M. Dorigo, “Integrals of markov processes
with application to swarm robotics modelling,” IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium, Tech. Rep. TR/IRIDIA/2012-020, December 2012.

[81] C. A. Petri, “Kommunikation mit automaten,” Ph.D. dissertation, Universität
Hamburg, 1962.

166

References

[82] J. King, R. Pretty, and R. Gosine, “Coordinated execution of tasks in a multiagent
environment,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, vol. 33, no. 5, pp. 615 – 619, 2003.

[83] H. Costelha and P. Lima, “Modelling, analysis and execution of multi-robot tasks
using Petri nets,” in Proceedings of the 7th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’08), vol. 3. Richland, SC:
IFAAMS, 2008, pp. 1187–1190.

[84] N. Palomeras, P. Ridao, M. Carreras, and C. Silvestre, “Using petri nets to specify
and execute missions for autonomous underwater vehicles,” in Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, oct. 2009, pp.
4439–4444.

[85] A. Giua, “Petri nets as discrete event models for supervisory control,” Ph.D. dis-
sertation, Rensselaer Polytechnic Institute, 1992.

[86] B. Lacerda and P. U. Lima, “On the notion of uncontrollable marking in supervi-
sory control of petri nets,” IEEE Transactions on Automatic Control, vol. 59, no. 11,
pp. 3069 – 3074, 2014.

[87] E. Emerson, “Temporal and Modal Logic,” in Handbook of Theoretical Computer
Science In van Leeuwen, J., (Ed.). Elsevier, 1990, pp. 996–1072.

[88] A. F. T. Winfield, J. Sa, M.-C. Fernández-Gago, C. Dixon, and M. Fisher, “On for-
mal specification of emergent behaviours in swarm robotic systems,” International
Journal of Advanced Robotic Systems, vol. 2, no. 4, pp. 363–370, 2005.

[89] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. Pappas, “Sym-
bolic planning and control of robot motion [grand challenges of robotics],” IEEE
Robotics & Automation Magazine, vol. 14, no. 1, pp. 61–70, 2007.

[90] C. Dixon, A. Winfield, and M. Fisher, “Towards temporal verification of emer-
gent behaviours in swarm robotic systems,” in Towards Autonomous Robotic Sys-
tems, ser. Lecture Notes in Computer Science, R. Groß, L. Alboul, C. Melhuish,
M. Witkowski, T. Prescott, and J. Penders, Eds., vol. 6856. Berlin, Germany:
Springer, 2011, pp. 336–347.

167

References

[91] C. Dixon, A. F. Winfield, M. Fisher, and C. Zeng, “Towards temporal verification
of swarm robotic systems,” Robotics and Autonomous Systems, vol. 60, no. 11, pp.
1429 – 1441, 2012.

[92] P. Gainer, C. Dixon, and U. Hustadt, Probabilistic Model Checking of Ant-Based Po-
sitionless Swarming. Springer International Publishing, 2016, pp. 127–138.

[93] S. Hauert, L. Winkler, J.-C. Zufferey, and D. Floreano, “Ant-based swarming
with positionless micro air vehicles for communication relay,” Swarm Intelligence,
vol. 2, no. 2, pp. 167–188, 2008.

[94] D. L. Milutinovic and P. U. Lima, Cells and Robots: Modeling and Control of Large-
Size Agent Populations, 1st ed. Springer Publishing Company, Incorporated, 2007.

[95] C. Tomlin, G. Pappas, J. Kosecka, J. Lygeros, and S. Sastry, “Advanced air traffic
automation: A case study in distributed decentralized control,” in Proceedings
of the Workshop Control Problems in Robotics and Automation. Berlin, Germany:
Springer-Verlag, 1998, pp. 261–295.

[96] R. Fierro, A. Das, V. Kumar, and J. Ostrowski, “Hybrid control of formations of
robots,” in Proceedings of ICRA 2001, IEEE International Conference on Robotics and
Automation. Piscataway, NJ: IEEE, 2001, pp. 157–162.

[97] J. M. McNew and E. Klavins, “Locally interacting hybrid systems with embedded
graph grammars,” in 2006 45th IEEE Conference on Decision and Control. Piscat-
away, NJ: IEEE, 2006, pp. 6080–6087.

[98] J. M. McNew, E. Klavins, and M. Egerstedt, “Solving coverage problems with
embedded graph grammars,” in Hybrid Systems: Computation and Control, ser.
LNCS, A. Bemporad, et al., Ed., vol. 4416. Berlin, Germany: Springer, 2007,
pp. 413–427.

[99] D. Milutinovic and P. U. Lima, “Modeling and optimal centralized control of a
large-size robotic population,” IEEE Trans. Robotics, vol. 22, no. 6, pp. 1280–1285,
2006.

[100] M. Zavlanos, H. Tanner, A. Jadbabaie, and G. Pappas, “Hybrid control for connec-
tivity preserving flocking,” IEEE Transactions on Automatic Control, vol. 54, no. 12,
pp. 2869–2875, 2009.

168

References

[101] A. Mesquita, “Exploiting stochasticity in multi-agent systems,” Ph.D. disserta-
tion, University of California, Santa Barbara, CA, 2010.

[102] A. R. Mesquita and J. P. Hespanha, “Jump control of probability densities with
applications to autonomous vehicle motion,” IEEE Transactions on Automatic Con-
trol, vol. 57, no. 10, pp. 2588–2598, 2012.

[103] H. Ehrig, “Introduction to the algebraic theory of graph grammars (a survey),” in
Proceedings of the International Workshop on Graph-Grammars and Their Application
to Computer Science and Biology. London, UK, UK: Springer-Verlag, 1979, pp.
1–69.

[104] H. O. Fattorini, Infinite dimensional optimization and control theory, ser. Encyclope-
dia of mathematics and its applications ;. New York :: Cambridge University
Press,, 1999.

[105] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-assembly in a
thousand-robot swarm,” Science, vol. 345, no. 6198, pp. 795–799, 2014.

[106] M. Gauci, R. Nagpal, and michael rubenstein, “Programmable self-disassembly
for shape formation in large-scale robot collectives,” in Proc. of the 2016 Int. Sym-
posium on Distributed Autonomous Robotic Systems (DARS 2016), 2016.

[107] J. Chen, M. Gauci, M. Price, and R. Groß, “Segregation in swarms of e-puck robots
based on the brazil nut effect,” in Proc. of the 11th Int. Conf. on Autonomous Agents
and Multiagent Systems, AAMAS 2012, 2012.

[108] J. Chen, M. Gauci, and R. Groß, “A strategy for transporting tall objects with a
swarm of miniature mobile robots,” in Proc. of the 2013 IEEE Int. Conf. on Robotics
and Automation, ICRA 2013, 2013.

[109] F. Inácio, D. Macharet, and L. Chaimowicz, “United we move: Decentralized
segregated robotic swarm navigation,” in Proc. of the 2016 Int. Symposium on Dis-
tributed Autonomous Robotic Systems (DARS 2016), 2016.

[110] S. Magnenat and Laboratory of Intelligent Systems, EPFL, Lausanne, “Enki
reference documentation,” Tech. Rep., 2005. [Online]. Available: http:
//lis2.epfl.ch/resources/download/doc1.0/libenki/

169

http://lis2.epfl.ch/resources/download/doc1.0/libenki/
http://lis2.epfl.ch/resources/download/doc1.0/libenki/

References

[111] F. Perez-Diaz, R. Zillmer, and R. Groß, “Firefly-inspired synchronization in
swarms of mobile agents,” in Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, ser. AAMAS ’15. Richland, SC: In-
ternational Foundation for Autonomous Agents and Multiagent Systems, 2015,
pp. 279–286.

[112] N. Salomons, G. Kapellmann-Zafra, and R. Groß, “Human management of a
robotic swarm,” in Proc. 17th Annual Conference Towards Autonomous Robotic
Systems (TAROS 2016), ser. Lecture Notes in Artificial Intelligence, vol. 9716.
Springer-Verlag, 2016.

[113] G. Kapellmann-Zafra, N. Salomons, A. Kolling, and R. Groß, “Human-robot
swarm interaction with limited situational awareness,” in International Conference
on Swarm Intelligence. Springer, 2016, pp. 125–136.

[114] G. Kapellmann-Zafra, J. Chen, and R. Groß, “Using google glass in human–robot
swarm interaction,” in Proc. 17th Annual Conference Towards Autonomous Robotic
Systems (TAROS 2016), ser. Lecture Notes in Artificial Intelligence, vol. 9716.
Springer-Verlag, 2016.

[115] A. Gutiérrez, E. Tuci, and A. Campo, “Evolution of neuro-controllers for robots
alignment using local communication,” International Journal of Advanced Robotic
Systems, vol. 6, no. 1, pp. 25–34, 2009.

[116] A. Gutiérrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-Huelin, and L. Mag-
dalena, “Open e-puck range & bearing miniaturized board for local communica-
tion in swarm robotics,” in IEEE International Conference on Robotics and Automa-
tion, ICRA 2009., 2009, pp. 3111–3116.

[117] S. Trenkwalder, Y. Lopes, K. A., A. Christensen, R. Prodan, and R. Groß,
“Openswarm: An event-driven embedded operating system for miniature
robots,” in International Conference on Intelligent Robots and Systems, IROS 2016,
2016, pp. 0–7.

[118] S. Y. Yan, An introduction to formal languages and machine computation. World
Scientific Publishing Co. Pte. Ltd., 1998.

[119] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, 2nd ed.
New York: Springer, 2008.

170

References

[120] N. Chomsky, “Three models for the description of language,” IRE Transactions on
Information Theory, vol. 2, no. 3, pp. 113–124, 1956.

[121] ——, “On certain formal properties of grammars,” Information and Control, vol. 2,
no. 2, pp. 137–167, 1959.

[122] M. Sipser, Introduction to the theory of computation: second edition, 2nd ed. Boston:
PWS Pub., 2006.

[123] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco, “Prob-
abilistic finite-state machines - part i,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, no. 7, pp. 1013–1025, July 2005.

[124] A. Paz, Introduction o Probabilistic Automata. New York: Academic Press, 1971.

[125] R. C. Carrasco and J. Oncina, Learning stochastic regular grammars by means of a
state merging method. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp.
139–152.

[126] H. Ney, Stochastic Grammars and Pattern Recognition. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1992, pp. 319–344.

[127] W.-G. Tzeng, “A polynomial-time algorithm for the equivalence of probabilistic
automata,” SIAM J. Comput., vol. 21, no. 2, pp. 216–227, 1992.

[128] A. L. N. Fred, Computation of Substring Probabilities in Stochastic Grammars. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 103–114.

[129] M. Young-Lai and F. W. Tompa, “Stochastic grammatical inference of text
database structure,” Machine Learning, vol. 40, no. 2, pp. 111–137, 2000.

[130] A. Cowley and C. Taylor, “Orchestrating concurrency in robot swarms,” in Pro-
ceedings of the IEEE/RJS International Conference on Intelligent Robots and Systems.
Piscataway, NJ: IEEE, 2007, pp. 945–950.

[131] D. Gordon-Spears and K. Kiriakidis, “Reconfigurable robot teams: modeling and
supervisory control,” IEEE Transactions on Control Systems Technology, vol. 12,
no. 5, pp. 763–769, 2004.

171

References

[132] D. Silva, E. Santos, A. Vieira, and M. de Paula, “Application of the supervisory
control theory in the project of a robot-centered, variable routed system con-
troller,” in 2008 IEEE International Conference on Emerging Technologies and Factory
Automation. Piscataway, NJ: IEEE, 2008, pp. 751–758.

[133] D. Mass, A. Pinotti, and A. Leal, “Sı́ntese e implementação de controle super-
visório monolı́tico para um ice maker,” in Anais do XIX Congresso Brasileiro de
Automática, CBA, vol. 19, 2012, pp. 5294–5301.

[134] S. Forschelen, J. van de Mortel-Fronczak, R. Su, and J. Rooda, “Application of su-
pervisory control theory to theme park vehicles,” Discrete Event Dynamic Systems,
vol. 22, no. 4, pp. 511–540, 2012.

[135] J. Brzozowski, “Canonical regular expressions and minimal state graphs for def-
inite events,” Mathematical Theory of Automata, vol. 12, pp. 529–561, 1962.

[136] K. Akesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - an integrated en-
vironment for verification, synthesis and simulation of discrete event systems,”
in 2006 IEEE 8th International Workshop on Discrete Event Systems. Piscataway, NJ:
IEEE, 2006, pp. 384–385.

[137] C. Reiser, A. E. C. Cunha, and J. Cury, “The environment Grail for supervisory
control of discrete event systems,” in 2006 IEEE 8th International Workshop on Dis-
crete Event Systems. Piscataway, NJ: IEEE, 2006, pp. 390–391.

[138] K. Rudie, “The integrated discrete-event systems tool,” in 2006 IEEE 8th Interna-
tional Workshop on Discrete Event Systems. Piscataway, NJ: IEEE, 2006, pp. 394–
395.

[139] L. Feng and W. Wonham, “TCT: A computation tool for supervisory control syn-
thesis,” in 2006 IEEE 8th International Workshop on Discrete Event Systems. Piscat-
away, NJ: IEEE, 2006, pp. 388–389.

[140] Y. K. Lopes, “Integração dos nı́veis MES, SCADA e controle da planta de man-
ufatura com base na teoria de linguagens e autômatos,” Master’s thesis, Santa
Catarina State University, Departamento de Engenharia Elétrica, Joinville, Brazil
(In Portuguese), 2012.

[141] ——, “Online supplementary material.” [Online]. Available: http:
//naturalrobotics.group.shef.ac.uk/supp/ykaszubowskilopes thesis/

172

http://naturalrobotics.group.shef.ac.uk/supp/ykaszubowskilopes_thesis/
http://naturalrobotics.group.shef.ac.uk/supp/ykaszubowskilopes_thesis/

References

[142] R. Sreenivas, “On a weaker notion of controllability of a language k with respect
to a language l,” IEEE Transactions on Automatic Control, vol. 38, no. 9, pp. 1446–
1447, 1993.

[143] J. C. Barca and Y. A. Sekercioglu, “Swarm robotics reviewed,” Robotica, vol. 31,
no. 3, pp. 345–359, 2013.

[144] R. J. Leduc, M. Lawford, and P. Dai, “Hierarchical interface-based supervisory
control of a flexible manufacturing system,” IEEE Transactions on Control Systems
Technology, vol. 14, no. 4, pp. 654–668, 2006.

[145] Y. K. Lopes, R. S. U. Rosso, A. B. Leal, E. Harbs, and M. d. S. Hounsell, “Finite
automata as an information model for MES and supervisory control integration,”
in Proceedings of the 14th IFAC Symposium on Information Control Problems in Man-
ufacturing, vol. 14, no. 1, 2012, pp. F–488–F–493.

[146] Y. K. Lopes, E. Harbs, A. B. Leal, and R. S. U. Rosso, “Proposta de implementação
de controle supervisório em microcontroladores,” in Proceedings of the 10th
Simpósio Brasileiro de Automação Inteligente (SBAI 2011) (In portuguese), 2011.

[147] “Ieee standard for information technology - telecommunications and informa-
tion exchange between systems - local and metropolitan area networks - specific
requirements. - part 15.1: Wireless medium access control (mac) and physical
layer (phy) specifications for wireless personal area networks (wpans),” IEEE Std
802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), pp. 0–580, 2005.

[148] H. Zimmermann, “Osi reference model–the iso model of architecture for open
systems interconnection,” Communications, IEEE Transactions on, vol. 28, no. 4,
pp. 425–432, Apr 1980.

[149] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and R. Groß, “Probabilistic
supervisory control theory (psct) applied to swarm robotics,” in Proceedings of
the 2017 International Conference on Autonomous Agents and Multiagent Systems (to
appear), ser. AAMAS ’17, 2017.

[150] C. Yoo, R. Fitch, and S. Sukkarieh, “Provably-correct stochastic motion planning
with safety constraints,” in 2013 IEEE International Conference on Robotics and Au-
tomation, Karlsruhe,Germany, May 6-10, 2013, 2013, pp. 981–986.

173

References

[151] D. P. Dailey, “Uniqueness of colorability and colorability of planar 4-regular
graphs are NP-complete,” Discrete Mathematics, vol. 30, no. 3, pp. 289–293, 1980.

[152] L. Bobadilla, O. Sanchez, J. Czarnowski, K. Gossman, and S. M. LaValle, “Con-
trolling wild bodies using linear temporal logic,” in Proceedings Robotics: Science
and Systems. Cambridge, MA: MIT Press, 2011, pp. 17–24.

[153] H.-C. Yen, “Introduction to petri net theory,” in Recent Advances in Formal
Languages and Applications, ser. Studies in Computational Intelligence, Z. Esik,
C. Martin-Vide, and V. Mitrana, Eds. Springer, 2006, vol. 25, pp. 343–373.

174

	Introduction
	Motivation
	Problem definition
	Aim and objectives
	Preview of contributions
	Publications
	Thesis outline

	Background and related work
	Swarm robotics
	Design, analysing, and control
	Formal methods
	Hybrid system theory

	Platforms
	Kilobot
	e-puck

	Languages, grammars, and automata applied to discrete event systems
	Regular languages
	Stochastic languages
	Probabilistic finite-state automata
	Probabilistic deterministic finite-state automata

	Supervisory control of discrete event systems
	Generators
	Free behaviour models
	Control specifications
	Supervisor synthesis
	Synchronous composition
	Controllability of the target language
	Accessibility
	Co-accessibility
	Trim
	Maximal controllable sub-language
	Monolithic supervisor
	Modular supervisors
	Local modular supervisors

	Controller implementation
	Applications
	Probabilistic generators

	Summary

	Design and synthesis of supervisors for controlling swarms of robots
	Design of free behaviour models and control specifications
	Orbit
	Segregation
	Aggregation
	Object clustering
	Group formation
	Design guidelines

	Supervisor synthesis
	Monolithic
	Modular
	Local modular
	Orbit
	Segregation
	Aggregation
	Object clustering
	Group formation
	Enabled events

	Comparison

	Summary

	A framework for executing supervisors on swarms of robots
	Implementation of supervisory control in swarm robotics
	Supervisor representation in memory
	Generator player
	Operational procedures
	Memory usage

	Experiments
	Orbit
	Segregation
	Aggregation
	Object clustering
	Group formation

	Summary

	Supervisory control of swarms of robots using global events
	Supervisory control over global events
	Modelling and supervisor synthesis
	Case study one: clustering objects in the presence of an intruder
	Case study two: last spotted location
	Case study three: disjoint agreement
	Case study four: synchronous movement avoiding collision
	Comparison

	Implementation
	Communication
	Memory representation
	Generator player
	Operational procedures

	Experiments
	Case study one: clustering objects in the presence of an intruder
	Case study two: last spotted location
	Case study three: disjoint agreement
	Case study four: synchronous movement avoiding collision

	Summary

	Probabilistic supervisory control of swarms of robots
	Choice problem
	Probabilistic generators
	Operations for the synthesis of probabilistic supervisors
	Normalisation
	Synchronisation

	Graph colouring case study
	Supervisor synthesis

	Implementation
	Memory representation
	Probabilistic generator player

	Experiments
	Segregation and group formation cases
	Summary

	Conclusion
	Future work
	Other representations for languages
	Formal verification
	Transparent distribution of the controller
	Multi-level hierarchical control

